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LEVEL SPACING STATISTICS FOR THE MULTI-DIMENSIONAL QUANTUM

HARMONIC OSCILLATOR: ALGEBRAIC CASE

ALAN HAYNES, ROLAND ROEDER

Abstract. We study the statistical properties of the spacings between neighboring energy levels
for the multi-dimensional quantum harmonic oscillator that occur in a window [E,E + ∆E) of
fixed width ∆E as E tends to infinity. This regime provides a notable exception to the Berry-
Tabor Conjecture from Quantum Chaos and, for that reason, it was studied extensively by Berry
and Tabor in their seminal paper from 1977. We focus entirely on the case that the (ratios of)
frequencies ω1, ω2, . . . , ωd together with 1 form a basis for an algebraic number field Φ of degree
d + 1, allowing us to use tools from algebraic number theory. This special case was studied by
Dyson, Bleher, Bleher-Homma-Ji-Roeder-Shen, and others. Under a suitable rescaling, we prove
that the distribution of spacings behaves asymptotically quasiperiodically in logE. We also prove
that the distribution of ratios of neighboring spacings behaves asymptotically quasiperiodically in
logE. The same holds for the distribution of finite words in the finite alphabet of rescaled spacings.

Mathematically, our work is a higher dimensional version of the Steinhaus Conjecture (Three
Gap Theorem) involving the fractional parts of a linear form in more than one variable, and it is
of independent interest from this perspective.

1. Introduction

We study the statistical properties of spacings (also called gaps and nearest neighbor distances)
between neighboring energy levels for the multi-dimensional quantum harmonic oscillator in the
limit as the energy tends to infinity. This is a fundamental problem from physics whose motivations
date back to the origins of the study of Quantum Chaos.

Our main techniques are from algebraic number theory and to make these techniques accessible
we will focus entirely on the case that the (ratios of) frequencies ω1, ω2, . . . , ωd together with 1
form a basis for an algebraic number field Φ of degree d+ 1. (Here the dimension of the harmonic
oscillator is d + 1.) This is a rather special case, however it is also very important because of the
emphasis placed on it by previous works of Berry and Tabor [2], Dyson [14], Bleher [4], and others.

Mathematically, the problem reduces to studying the fractional parts of a linear form in more
than one variable, which is a topic of independent interest in number theory. Study of this topic
provides multi-dimensional analogs and extensions of the famous Three Gap Theorem (also called

the Steinhaus Conjecture) of Sós [26], Surányi [27], and Świerczkowski [28].
In order to reach readers from both of these perspectives we will now describe the motivations,

background, and also state our results in both contexts.

1.1. Physical Perspective. Given a quantum-mechanical system (or equivalently a Hamilton-
ian H), one of the central problems from Quantum Chaos is to study the distribution of spacings
between neighboring energy levels in the limit as the energy E tends to infinity. One typically
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considers all energy levels in a window

E ≤ e1 < e2 < . . . < eℓ < E +∆E,

where the width ∆E is fixed and one takes the limit as E → ∞. In this way, the ordered energy
levels e1(E) < e2(E) < . . . < eℓ(E)(E) all depend on the energy E > 0 as does the number ℓ ≡ ℓ(E)
of them. One is interested in the statistics of the distances between neighboring energy levels

δi(E) := ei+1(E)− ei(E) for 1 ≤ i ≤ ℓ(E)− 1,

and their fluctuations in the limit as E → ∞. As E increases, the size of these spacings decrease.
However, one can multiply by a factor λ(E) in order to produce normalized spacings

δi(E) := λ(E)δi(E) = λ(E) (ei+1(E) − ei(E)) for 1 ≤ i ≤ ℓ(E)− 1,

where λ(E) is chosen so that the normalized spacings δi(E) have average length equal to 1. This
allows one to ask whether the normalized spacings are described by a limiting law and to ask how
that law depends on the nature of the system (Hamiltonian H) being considered. We have:

Conjecture of Berry and Tabor (1977) [2]:
If the classical dynamical system associated to the Hamiltonian H is integrable, then the limiting
distribution of the normalized spacings for quantum energy levels is governed by a Poisson law.

Conjecture of Bohigas, Giannoni, and Schmit (1984) [8]:
If the classical dynamical system associated to the Hamiltonian H is chaotic, then the limiting
distribution of the normalized spacings for the quantum energy levels is governed by the eigenvalue
statistics of one of the three standard ensembles of random matrices, GOE, GUE, or GSE.

For more information on these conjectures and various exciting extensions of them to other contexts
we recommend [19, 6].

As discussed in the paper of Berry and Tabor [2], the multi-dimensional quantum harmonic
oscillator serves as a notable exception to these conjectures. Even though the classical multi-
dimensional harmonic oscillator is completely integrable, the asymptotic behavior of the normalized
spacings distributions is not governed by a Poisson law because the energy level contours are
flat. Rather, it depends dramatically on the arithmetic properties of the ratio of frequencies. A
considerable portion of the paper by Berry and Tabor is devoted to this situation. This was followed
by the works of Dyson [14], Boshernitzan [9, 10], Bleher [4, 5], and others.

The multi-dimensional quantum harmonic oscillator is given by the Hamiltonian

H = −
d+1
∑

j=1

~2

2m

∂2

∂x2j
+

d+1
∑

j=1

kj
2
x2j .

Applying Schrödinger’s equation, the quantum energy levels of the system are determined by d+1
non-negative integers, m0, . . . ,md, and they are of the form

e = e0 +m0α0 + . . .+mdαd,

where α0, . . . , αd are positive real numbers depending on the spring constant k and the mass m.
We have

e = e0 + α0(m0 +m1ω1 + . . .+mdωd),

where ωi = αi/α0 > 0. We will refer to ω1, . . . , ωd the ratios of frequencies.
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It is convenient to set ∆E = α0 and to perform a linear change of variables to the energy scale,
letting E = (E − e0)/α0, ε = (e − e0)/α0, and hence ∆E = 1. Then, the problem becomes to find
spacings between each of the neighboring energy levels

ε = m0 +m1ω1 + . . .+mdωd

lying between a given E and E +1 as E → ∞. All of our results will be described under this change
of variables.

The case d = 1 corresponds to a two-dimensional harmonic oscillator and it was carefully studied
by Bleher [4, 5], using methods involving continued fractions. He proved in [5, Theorem 1.5] that
for a generic ratio of the frequencies ω ≡ ω1 there is no limiting distribution of normalized spacings.
Meanwhile in the special case that the ratio of frequencies is the golden mean ω = (

√
5−1)/2, Bleher

explicitly describes how the distribution of normalized spacings depends on E ; see [4, Theorem 3].
From these formulae one can see that the distribution behaves periodically in log E , asymptotically
as E → ∞. In other words, although there is no limit of the distribution of normalized spacings,
the asymptotic behavior remains rather simple.

Later it was proved by Bleher-Homma-Ji-Roeder-Shen in [7, Theorem 1.6] that this phenomenon
carries over to the three-dimensional quantum harmonic oscillator when the ratios of frequencies
satisfy that 1, ω1, ω2 form a basis for a cubic algebraic number field Φ that has one fundamental
unit. Rather than using continued fractions, which do not generalize to higher dimensions, basic
techniques from algebraic number theory were used to prove that the distribution of normalized
spacings behaves asymptotically quasi-periodically in log E as E → ∞.

In this paper we build on these previous results to prove:

Theorem A. Suppose that the ratios of frequencies satisfy that 1, ω1, . . . , ωd ∈ R form a Q-basis
for an algebraic number field Φ. We then have:

(1) Uniform Labeling: There is a finite set S := {s1, . . . , sJ} ⊂ Φ and a rescaling factor
u(E) > 1 such that for any E > 1 the rescaled spacings satisfy:

δi(E) := u(E)(εi+1(E)− εi(E)) ∈ S for 1 ≤ i ≤ ℓ(E)− 1.

(2) Quasiperiodicity: For each 1 ≤ j ≤ J let pj(E) denote the proportion of the rescaled

spacings δi(E) such that δi(E) = sj ∈ S. Then, there are integers 0 ≤ k, r ≤ d + 1, a
Lipschitz continuous function

g : Tk × [0, 1]r → P :=
{

(p1, . . . , pJ) :
∑

pj = 1, pj ≥ 0
}

,

angles θ = (θ1, . . . , θk) ∈ Tk, rates β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

(p1(E), . . . , pJ(E)) = g (θ log E , {β log E}) +O(αlog E ).

Here, we use the notation

{β log E} := ({β1 log E}, . . . , {βr log E}) ∈ [0, 1]r ,

where {x} denotes the fractional part of a real number x.

Remark 1. Note that E 7→ (θ log E , {β log E}) describes a linear flow in log E time on the “general-
ized annulus” Tk× [0, 1]r, i.e. a quasiperiodic motion. This is why we say that the rescaled spacings
distribution depends quasiperiodically on log E, asymptotically as E → ∞.

Remark 2. Note also that the rescaling factor u(E) is adapted to the number field Φ and therefore
it might not precisely equal the normalization factor λ(E). I.e. the rescaled spacings may not be
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normalized to have average length exactly equal to 1. This is why we refer to u(E) as the “rescaling
factor” rather than the “normalizing factor”.

For many quantum systems it is difficult to determine the normalization factor λ(E). In 2007 it
was proposed by Oganesyan and Huse [23] that instead of studying the statistics of the normalized
spacings δi(E) for 2 ≤ i ≤ ℓ(E) one can study the ratios of neighboring spacings

ρi(E) :=
δi(E)
δi−1(E)

for 2 ≤ i ≤ ℓ(E)− 1.

(Note that in [23] they take the reciprocal of ρi(E) in the case that ρi(E) > 1, but we will not
do that.) The conjectures of Berry and Tabor and of Bohigas, Giannoni, and Schmit can then be
re-phrased in terms of ratios. See, for example, [1].

Considering the ratios of neighboring spacings is also quite suitable in our setting because the am-
biguity associated to the choice of rescaling factor u(E) that is described in Remark 2 is eliminated.
We have:

Theorem B. Suppose that the ratios of frequencies satisfy that 1, ω1, . . . , ωd ∈ R form a Q-basis
for an algebraic number field Φ. We then have:

(1) Uniform Set of Ratios: There is a finite set R := {r1, . . . , rJ} ⊂ Φ such that for any
E > 1 the ratios of neighboring spacings satisfy:

ρi(E) :=
δi(E)
δi−1(E)

∈ R for 2 ≤ i ≤ ℓ(E)− 1.

(2) Quasiperiodicity: For each 1 ≤ j ≤ J let pj(E) denote the proportion of the ratios of
neighboring spacings ρi(E) such that ρi(E) = rj ∈ R. Then, there are integers 0 ≤ k, r ≤ d+ 1,
a Lipschitz continuous function

h : Tk × [0, 1]r → P :=
{

(p1, . . . , pJ ) :
∑

pj = 1, pj ≥ 0
}

,

angles θ = (θ1, . . . , θk) ∈ Tk, rates β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

(p1(E), . . . , pJ(E)) = h (θ log E , {β log E}) +O(αlog E).

Remark 3. Theorem B does not immediately follow from Theorem A since the ratios of neighboring
spacings are considered rather than the ratios between arbitrary pairs of spacings. However, in
Section 5 we will prove a generalization of Theorem A which implies Theorem B.

In order to prove Theorems A and B we need a way to compute all of the energy levels ε occurring
in the window E ≤ ε < E + 1 for a give choice of E > 0. For any vector m = (m1, . . . ,md) of
non-negative integers such that m · ω < E + 1, there is exactly one integer m0 ≥ 0 that forces

E ≤ ε := m0 +m1ω1 + . . .+md < E + 1.

This allows us to reduce the problem modulo 1, considering differences between the fractional parts
of the numbers m1ω1 + . . . + mdωd determined by integer vectors m ∈ R(t). Here, R(t) is the
homothetic expansion of

R = {v ∈ Rn : v1ω1 + . . .+ vdωd < 1 and vi ≥ 0 for 1 ≤ i ≤ d}
by a factor of t = E + 1 about the origin. Therefore, Theorems A and B will be special cases of
Theorems A’ and B’ that are stated in the next subsection.
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1.2. Mathematical Perspective. Having provided the physical context and statements of our
results, we will now rephrase them purely in the mathematical context.

Suppose that d ∈ N and that ω = (ω1, . . . , ωd) ∈ Rd. Let R be a bounded, convex region in Rd

with non-empty interior, and for t ≥ 1 let R(t) denote the homothetic dilation of R by a factor of
t. Throughout the paper we will refer to t ≥ 1 as the “scale”. Let {x} denote the fractional part
of a real number x, set M(t) = R(t) ∩ Zd, and write the elements of the set

Y (t) := {{m · ω} :m ∈ M(t)}
in order as

0 ≤ y1(t) ≤ · · · ≤ y|M(t)|(t) < 1.

For each value of i = 1, . . . , |M(t)| − 1, let

δi(t) = yi+1(t)− yi(t),

and let D(t) be the number of distinct elements of the set {δi(t)}|M(t)|−1
i=1 . Finally, let

∆1(t) < · · · < ∆D(t)(t)

be the ordered sequence of these distinct elements. We may also write ∆i for ∆i(t) and, following [7],
we refer to the quantities δi and ∆i as spacings.

The classical Three Gap Theorem (also called the Steinhaus Conjecture and the Three Distance
Theorem) states that if d = 1, then D(t) ≤ 3 for all t. This was first proved in 1957 by Sós [26], in

1958 by Surányi [27], and in 1959 by Świerczkowski [28]. In the case when d ≥ 2, estimating the
size of D(t) is a more difficult problem. It was known to Geelen and Simpson (attributed by them
to Holzman in [16, Section 4]) that, in the case when d = 2, if R is a square with sides parallel to
the coordinate axes and if 1, ω1, and ω2 are Q-linearly dependent, then

(1) sup
t≥1

D(t) < ∞.

A proof of this, as well as an extension to d ≥ 3, is given in [18, Section 4]. A problem attributed
to Erdős is to determine for what values of ω the quantity D(t) remains bounded. It was first
speculated that the condition that the numbers 1, ω1, . . . , ωd be Q-linearly dependent is necessary
in order for D(t) to remain bounded. However, the situation is more subtle.

A vector ω ∈ Rd is called Diophantine with exponent γ if there is some positive number K such
that for all nonzero vectors m ∈ Zd, we have

(2) |m · ω| ≥ K

|m|γ , where |m| =
√

m2
1 + . . .+m2

d.

It follows from the Minkowski’s Theorem that γ ≥ d. We call ω badly approximable if γ = d. The
set of badly approximable ω has zero Lebesgue measure, but it is known by work of Jarńık [21]
and Wolfgang Schmidt [25] to be a subset of Rd of Hausdorff dimension d.

Boshernitzan-Dyson Theorem. If ω ∈ Rd is badly approximable, then (1) holds.

This result was not published by Boshernitzan and Dyson, but a proof can be found in [7].
In the other direction, it was proved in [18] that when d ≥ 2, for almost all choices of ω ∈ Rd,

(3) sup
t≥1

D(t) = ∞.

The proof given in [18] uses ergodic theory in spaces of unimodular lattices in Rd+1. Part of the
interest in this problem lies in the fact that, for d ≥ 2, if (3) holds, then

lim inf
n→∞

n‖nω1‖ · · · ‖nωd‖ = 0,
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where ‖ · ‖ denotes the distance to the nearest integer [18, Theorem 3]. In other words, if (3) holds
then the generalized Littlewood conjecture is true for ω. The converse of this statement, however,
is not true.

We also remark that, as another twist in the above mentioned problem of Erdős, it turns out
that there do exist vectors ω ∈ Rd that are not badly approximable but for which (1) holds. An
explicit example is given in [3] for d = 2.

Now let us focus on the situation when 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic number
field Φ of degree d+1. In this case it is known by work of Perron [24] that ω is badly approximable,
so it follows from the Boshernitzan-Dyson Theorem that (1) holds. (In fact, Dyson originally proved
the theorem in this special case.) Actually, more is true, as demonstrated by the following result.

Theorem 4. [7, Theorem 1.6] If 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic number field Φ,
then there exists a finite set

S = {s1, · · · , sJ} ⊆ Φ

such that every spacing ∆i has the form usj for some unit u in the ring of integers ZΦ and some
sj ∈ S.

Throughout this paper we will denote by Z×
Φ the group of units in the ring of integers ZΦ of an

algebraic number field Φ.
Consider the one dimensional case d = 1. As t ≥ 1 increases, additional points yj(t) are added

one-by-one. Most of the time, this results in one of the large-sized spacings being split into one of
the mid-sized spacings and one of the small-sized spacings. This continues until each of the large-
sized spacings is split, at which point one renames the medium-sized spacings to be “large” and the
small-sized spacings to be “medium” and then repeats the process, splitting each new large-sized
spacing into a new medium-sized spacing and a (truly new) small-sized spacing. Therefore, as t
increases, the proportions of spacings occurring that are deemed to be “small”, “medium”, and
“large” depend in an organized way on t, which can be made precise using the theory of continued
fractions.

The purpose of this paper is to describe analogous behavior in the far more complicated situation
when d ≥ 2, at least in the algebraic case when 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic
number field Φ. We will prove in Part (1) of Theorem A’, below, a stronger version of Theorem 4
that allows us to uniformly label the spacings ∆1(t), . . . ,∆D(t)(t) using the elements of a finite set
S ⊂ Φ. We can then prove in Part (2) of Theorem A’ a description of the time t evolution of the
proportion of spacings realizing these labels from S. We will also prove a similar theorem about
the frequencies with which the ratios of neighboring spacings occur, see Theorem B’ below.

Theorem A’. Suppose that 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic number field Φ and
let r ≥ 1 denote the rank of Z×

Φ. We then have:

(1) Uniform Labeling: There is a finite set S := {s1, . . . , sJ} ⊂ Φ and a rescaling factor
u(t) ∈ Z×

Φ such that for any t > 1 we have

δi(t) := u(t)δi(t) ∈ S for 1 ≤ i ≤ |M(t)| − 1.

We will refer to the
{

δi(t)
}

as the rescaled spacings.
(2) Quasiperiodicity: For each 1 ≤ j ≤ J let pj(t) denote the proportion of the rescaled

spacings δi(t) such that δi(t) = sj ∈ S. Then, there is an integer 0 ≤ k ≤ d+1, a Lipschitz
continuous function

g : Tk × [0, 1]r → P :=
{

(p1, . . . , pJ) :
∑

pj = 1, pj ≥ 0
}

,
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angles θ = (θ1, . . . , θk) ∈ Tk, rates β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

(p1(t), . . . , pJ(t)) = g (θ log t, {β log t}) +O(αlog t).

Here, we use the notation

{β log t} := ({β1 log t}, . . . , {βr log t}) ∈ [0, 1]r ,

where {x} denotes the fractional part of a real number x.

Note that t 7→ (θ log t, {β log t}) describes a linear flow in log t time on the “generalized annulus”
Tk × [0, 1]r , i.e. a quasiperiodic motion. Therefore, Theorem A’ asserts that the frequencies at
which the rescaled spacings s1 < s2 < · · · < sJ occur, as a function of t, depend quasiperiodically
on log t, as t → ∞. To understand some of the details of this dependence, before delving into
the complexities of the proof, first note there are many ways to choose a basis {ǫ1, . . . , ǫr} for a
finite index subgroup of Z×

Φ, none of which in general can be assumed to be canonical. All of the
parameters in the statement of the theorem depend on this choice of basis and, once it has been
made, they are explicitly computable. The units u(t) will turn out to be determined by

u(t)−1 = ǫ
⌊β1 log t⌋
1 · · · ǫ⌊βr log t⌋r ,

for a suitable choice of β, and this in turn determines S. The Minkowski embedding of Φ into
Rd+1 (see next section for details) allows us to view multiplication by u(t)−1 in Φ as a linear
transformation U(t) on Rd+1. By using the Jordan decomposition of a complex matrix defined using
a particular choice of matrix logarithm for U(t), we are able to understand the time evolution of
U(t) as t → ∞, and to prove that it is governed completely by two types of generalized eigenspaces:
one dimensional spaces corresponding to purely imaginary eigenvalues 2πiθ1, . . . , 2πiθk (of which
there is at least one), and spaces with eigenvalues whose real parts are negative. This gives k and
θ, and α is determined by the maximum of the real parts of the eigenvalues which are not purely
imaginary (if there are any). Finally, the function g is defined explicitly in Section 4.3 and equation
(23), it is straightforward to compute and depends only on S and the region R.

Remark 5. Under the additional hypothesis that Φ has one fundamental unit (which restricts the
theorem to quadratic fields and cubic fields with a complex embedding), a preliminary version of
Theorem A’ was proved in [7, Thms 1.5 and 1.6]. The term involving rate β ≡ β1 does not appear in

those theorems because they are expressed at a sequence of times tn = ηen/β that is chosen to make
the sequence {β log tn} constant. When r > 1 such a choice is not typically possible. However,
several aspects of the proofs from [7, Thms 1.5 and 1.6] will play an important role in our proof of
Theorem A’.

The labeling of spacings by elements of S may seem ad hoc because it depends on the construction
of u(t) from the proof of Theorem A’, Part (1). By adjusting the choice of u(t) we could easily
change the set of labels S. For this reason, it may be more natural to consider the ratios between
the neighboring spacings.

Theorem B’. Suppose that 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic number field Φ and
let r ≥ 1 denote the rank of Z×

Φ. We then have:

(1) Uniform Set of Ratios: There is a finite set R := {r1, . . . , rJ} ⊂ Φ such that for any
t > 1 the ratios of neighboring spacings satisfy:

ρi(t) :=
δi(t)

δi−1(t)
∈ R for 2 ≤ i ≤ |M(t)| − 1.



8 ALAN HAYNES, ROLAND ROEDER

(2) Quasiperiodicity: For each 1 ≤ j ≤ J let pj(t) denote the proportion of the ratios of
neighboring spacings ρi(t) such that ρi(t) = rj ∈ R. Then, there is an integer 0 ≤ k ≤ d+1,
a Lipschitz continuous function

h : Tk × [0, 1]r → P :=
{

(p1, . . . , pJ ) :
∑

pj = 1, pj ≥ 0
}

,

angles θ = (θ1, . . . , θk) ∈ Tk, rates β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

(p1(t), . . . , pJ(t)) = h (θ log t, {β log t}) +O(αlog t).

Remark 6. Theorem B’ does not immediately follow from Theorem A’ because only the ratios
of neighboring spacings are considered, rather than the ratios between arbitrary pairs of spacings.
However, in Section 5 we will state and prove a stronger version of Theorem A’, namely Theorem C,
about the frequencies with which a given word sj1sj2 . . . sjl appears among the consecutive rescaled
spacings. Theorem B’ then follows immediately from Theorem C using words of length l = 2.

Question 1. Let ω ∈ Rd and suppose Statement (1) from Theorem B’ holds for the ratios of
spacings determined by ω. Must 1, ω1, . . . , ωd be a Q-basis for an algebraic number field Φ?

1.3. Plan for the paper. As explained at the end of Section 1.1, Theorems A and B are direct
consequences of Theorems A’ and B’.

Our proof of Part (1) of Theorem A’ is an application of transference principles from Diophantine
approximation, together with well known results from algebraic number theory. In Section 2 we will
review some of these results, and in Section 3 we will present the proof of Part (1) of Theorem A’.
Our proof of Part (2) of Theorem A’ uses many results from the proofs of [7, Thms 1.5 and 1.6]
combined with several new ideas that are needed when Z×

Φ has rank r > 1. It is presented in
Section 4. In Section 5 we prove Theorem C, the generalization of Theorem A’ mentioned in
Remark 6. Since Theorem B’ is an immediate corollary to Theorem C this will also complete the
proof of Theorem B’. Finally, in Section 6 we work out the details of Theorems A’ for a particular
example (a totally real cubic field) which highlights the computational aspects and importance of
many of the steps in our proofs.

1.4. Acknowledgments. The second author thanks Pavel Bleher for introducing him to this sub-
ject and for many interesting conversations about it. We thank Evgeny Mukhin and Vitaly Tarasov
for providing us with the proof of Lemma 12, which plays a crucial role in our paper. The second
author also thanks Aneesh Dasgupta for interesting conversations about this subject. The work of
the first author was supported by NSF grant DMS-2001248. The work of the second author was
supported by NSF grant DMS-1348589.

2. Notation and preliminary results

For x ∈ R, we write {x} for the fractional part of x and ‖x‖ for the distance from x to the
nearest integer. For d ∈ N and x ∈ Rd, we write |x| for the Euclidean norm of x.

Results from Diophantine approximation known as transference principles (see [11, Section V,
Theorem VI]) imply that ω ∈ Rd is badly approximable if and only if there exists a constant K ′ > 0
with the property that, for any t ≥ 1, any ball of diameter K ′/td in [0, 1) contains a point of the
set

{{m · ω} :m ∈ M(t)} .
If 1, ω1, . . . , ωd form a Q-basis for an algebraic number field of degree d+1 over Q, then the results
from [24] mentioned in the introduction imply that ω is badly approximable. By the transference
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principle just cited, we thus have for all t ≥ 1 and for all i that

(4) ∆i ≤
K ′

td
.

Next we summarize some basic facts from algebraic number theory, proofs of which can be found
in [29, Chapters 1, 3]. As above, suppose that Φ is an algebraic number field of degree d + 1 over
Q. There are d + 1 distinct embeddings of Φ into C, and the non-real complex embeddings come
in complex conjugate pairs. Suppose there are r1 real embeddings and 2r2 complex embeddings,
and write σ1, . . . , σr1 for the real embeddings and σi, σi+r2 , with r1 < i ≤ r1 + r2, for each pair of
complex conjugate embeddings. Identifying C with R2, we define a map σ : Φ → Rd+1 by

σ(α) = (σ1(α), . . . , σr1+r2(α)).

This map is injective, and the set
Γ = σ(ZΦ)

is called the Minkowski embedding of the ring of integers of Φ into Rd+1. It is a discrete subgroup
of Rd+1, and the quotient Rd+1/Γ has a measurable fundamental domain of finite volume. In other
words, Γ is a lattice in Rd+1.

Let k ∈ Z be chosen so that for each 1 ≤ j ≤ d we have kωj ∈ ZΦ. Notice that

MΦ := {α ∈ Φ : kα ∈ ZΦ}(5)

is a ZΦ module that contains ω1, . . . , ωd. In particular, for any t ≥ 1 each spacing ∆i(t) ∈ MΦ and
moreover x∆i(t) ∈ MΦ for any x ∈ ZΦ. The image

Γ′ = σ(MΦ)(6)

is a lattice because Γ′ = 1
kΓ, with Γ a lattice.

Next, let Z×
Φ denote the group of multiplicative units of ZΦ. By the Dirichlet unit theorem, this

group has rank r1 + r2 − 1. Consider the map ϕ : Z×
Φ → Rr1+r2 defined by

(7) ϕ(u) = (log |σ1(u)| , . . . , log |σr1+r2(u)|) .
This map is well defined, since |σi(u)| 6= 0. The norm of any unit is ±1, so the image of ϕ is
contained in the hyperplane in Rr1+r2 with equation

(8) x1 + · · ·+ xr1 + 2xr1+1 + · · ·+ 2xr1+r2 = 0.

Furthermore, the image of ϕ is a lattice in this hyperplane (see the proof of [29, Theorem 11]). All
of these facts will be useful to us in what follows.

3. Proof of Part (1) of Theorem A’ (Uniform Labeling)

Suppose without loss of generality that t ≥ 1. Since ω ∈ Rd we know that r1 ≥ 1, so let us assume
that σ1 : Φ → R is the trivial embedding which maps each number ωj to itself. Each spacing ∆i(t)
has the form

∆i(t) = (m−m′) · ω,
for somem,m′ ∈ M(t). It follows from this and (4) that there exists a constant C > 0, which does
not depend on t, with the property that for each spacing ∆i, we have that

|σ1(∆i)| ≤
C

td
.

Also, since |m −m′| is bounded by a constant times t, and the maps σj are homomorphisms, it
immediately follows that

|σj(∆i)| ≤ Ct.
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for 2 ≤ j ≤ r1 + r2.
Since ϕ(Z×

Φ) is a lattice in the hyperplane defined by (8), there is a constant C ′ > 0 with the

property that, for any point x ∈ Rr1+r2 satisfying (8), there is an element of ϕ(Z×
Φ) in the ball of

radius C ′ centered at x. Using the fact that r1 + 2r2 = d+ 1, we apply this observation with

(9) x = (d log t,− log t, . . . ,− log t).

We thus deduce that there is a unit u = u(t) with the properties that

|σ1(u)| ≤ eC
′

td

and, for 2 ≤ j ≤ r1 + r2, that

|σj(u)| ≤
eC

′

t
.

It follows that σ(u∆i) is a point of the set Γ′ from (6), which lies in a cube C of side length 2CeC
′

centered at the origin in Rd+1. Let S be the collection of all elements of MΦ (defined in (5)) whose
images under σ lie in C. Since Γ′ is a lattice and σ is injective, the set S is finite. The statement
of the theorem thus follows. �(Part (1) of Theorem A’)

4. Proof of Part (2) of Theorem A’ (Quasiperiodicity)

Several times in this section we will need to refer to the muliplicative inverse of u(t) and thus we
will denote it by u1 ≡ u1(t) := u(t)−1.

Let n : Φ → Qd+1 denote the expansion of an element of Φ in terms of the basis 1, ω1, . . . , ωd.
That is, for any α ∈ Φ,

n(α) = (n0, n1, . . . , nd) iff α = n0 + n1ω1 + . . . + ndωd.

Let m : Φ → Qd be the “truncated expansion” of α given by

m(α) = (n1, . . . , nd) if n(α) = (n0, n1, . . . , nd).

The preliminary versions of Part (2) of Theorem A’ from [7] are proved in three steps:

(1) Describing the proportions of spacings at a given scale t ≥ 1 in terms of suitable partitions
of M(t) and R,

(2) Relating these partitions to n(u1(t))
t , the normalized expansion of u1(t) in the basis 1, ω1, . . . , ωd,

and
(3) Analysis of the asymptotic behavior of n(u1(t))

t as t → ∞.

Steps (1) and (2) carry over directly to our setting. We will describe them in Sections 4.1 and 4.3,
with a discussion of any necessary adaptations. However, Step (3) requires some new ideas, which
we present in Section 4.4, thus completing the proof of Part (2) of Theorem A’. (Section 4.2 presents
some lemmas that are needed in Sections 4.3 and 4.4.)

4.1. Partitions of M(t) and R. For any 1 ≤ j ≤ J , let Yj(t) be the set of numbers yi(t) such
that δi(t) = yi+1(t)− yi(t) = sju1(t). Here, u1(t) = u(t)−1, where u(t) is the unit from Part (1) of
Theorem A’ and sj is an element of the finite set S, which has been ordered so that s1 < · · · < sJ .

Let Mj(t) be the set of vectors m ∈ M(t) such that {m · ω} ∈ Yj(t). Up to the single point
corresponding to the largest element yℓ(t)(t) ∈ Y (t) we have that

J
⊔

j=1

Mj(t) = M(t),
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so, by a slight abuse of notation, we will call {Mj(t)} a partition of M(t). We refer the reader to
[7, Fig. 1] for an explicit example. We conclude that at scale t ≥ 1 the proportion of times that
the rescaled spacing sj ∈ S occurs is

pj(t) =
|Mj(t)|

|M(t)| − 1
.

We will need the following result from [7].

Proposition 7 (Prop. 5.1 from [7]). For any 1 ≤ j ≤ J let

vj(t) =m(sju1(t)).

Then we have

Mj(t) = [M(t) ∩ (M(t) − vj(t))] \
j−1
⋃

i=1

(M(t)− vi(t)),(10)

where Ω+ v is defined to be {u+ v : u ∈ Ω} for any Ω ⊂ Rd and v ∈ Rd.

Remark 8. Our formula for Mj(t) above has minus signs where the analogous formula in [7] has
plus signs. The reason is that we define δi(t) = yi+1(t)− yi(t) while yi(t)− yi−1(t) is used in [7].

Denote the power set of our region R by P(R) and let

P : (Rd)J → P(R)J

be the mapping which sends the J-tuple of vectors v = (v1, . . . ,vJ) to the J-tuple (P1(v), . . . , PJ (v))
of subsets of R where,

Pj(v) = [R ∩ (R− vj)] \
j−1
⋃

i=1

(R− vi).

Proposition 9 (Prop. 5.2 from [7]). If

v := v(t) =

(

m(s1u1(t))

t
, . . . ,

m(sJu1(t))

t

)

,(11)

then

pj(t)−
volume(Pj(v))

volume(R)
=

|Mj(t)|
|M(t)| − 1

− volume(Pj(v))

volume(R)
= O

(

1

t

)

.(12)

The proof of [7, Prop. 5.4] uses the estimate that for any convex Ω ⊂ R2 we have

area(tΩ)− |tΩ ∩ Z2| = O(t).

This estimate adapts to work for a convex region Ω ⊂ Rd, with the area becoming volume and the
error becoming O(td−1). This is the only change needed to adapt the proof of [7, Prop. 5.4] to the
present setting.

Proposition 10 (Prop. 5.3 from [7]). The function P is Lipschitz continuous with respect to the
infinity norm on (Rd)J and the metric

d(P (1), P (2)) =

J
∑

j=1

vol(P
(1)
j ∆P

(2)
j )

on J-tuples of subsets of R, where ∆ denotes the symmetric difference of sets.
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The only change needed to adapt the proof of Prop. 5.3 from [7] from dimension two to dimension

d ≥ 2 is that one needs to remark that the polynomial Q(x) =
(

1 + x
a

)d − 1 which appears in that
proof is Lipschitz on the interval [0, 1].

4.2. Matrix representation of multiplication by elements of Φ and their logarithms.
Multiplication by any non-zero a ∈ Φ corresponds to an invertible linear mapping from Φ to itself.

Lemma 11. For any two non-zero a, b ∈ Φ the (d + 1) × (d + 1) dimensional matrices A and B
representing multiplication by a and b in terms of the basis 1, ω1, . . . , ωd commute.

Proof. This is an immediate consequence of commutativity ab = ba in Φ. �

Combined with Lemma 11 the following lemma plays a crucial role in our proof.

Lemma 12. For any k ≥ 1 let A1, . . . , Ak be a commuting collection of invertible n× n matrices.
Then, there exist n× n matrices L1, . . . , Lk such that

Aj = eLj(13)

for each 1 ≤ j ≤ k and such that all k matrices L1, . . . , Lk commute.

As usual, the matrix exponential in (13) is interpreted using the standard power series for ez. The
matrices L1, . . . , Lk are called logarithms of A1, . . . , Ak; see, for example [17, Sec. 2.3]. Although
it seems that this lemma should be well-known we could not find a suitable reference. We thank
Evgeny Mukhin and Vitaly Tarasov for providing us with the following proof.

Proof. We claim that there is an invertible n× n matrix P such that for every 1 ≤ j ≤ k we have
Aj = PDjP

−1 with each Dj a block diagonal matrix

Dj = diag(Bj,1, . . . , Bj,m),

with the size of the blocks independent of 1 ≤ j ≤ k, and each block having the form

Bj,ℓ = λj,ℓI +Nj,ℓ,

where λj,ℓ ∈ C \ {0} and Nj,ℓ is a nilpotent matrix for each 1 ≤ j ≤ k and 1 ≤ ℓ ≤ m. Here, I
denotes the identity matrix of the appropriate dimension.

Let us first see how this claim yields the desired result. Notice that it suffices to find commuting
logarithms of the block diagonal matrices Dj , for 1 ≤ j ≤ k, because the desired L1, . . . , Lk will then
be obtained by conjugating by P . Moreover, matrix exponentials respect block-diagonal structure,
so it suffices to find mutually commuting matrix logarithms for k commuting matrices of the form

Mj = λjI +Nj ,

where Nj is nilpotent for each 1 ≤ j ≤ k. One can do this using the Mercator series to define

Lj := log λjI−
∞
∑

m=1

1

m

(−Nj

λj

)m

,

for each 1 ≤ j ≤ k. (One can choose any complex logarithm log λj that one likes.) The series
converge because they terminate in finitely many steps, since each Nj is nilpotent. Moreover
L1 . . . ,Lk commute because the N1, . . . , Nk commute.

Now we are left to establish the claim from the beginning of the proof. Existence of the matrix P
that simultaneously conjugates the A1, . . . , Ak to the desired block diagonal form is a generalization
of the well-known fact that commuting diagonalizable matrices are simultaneously diagonalizable.
We sketch it here in the case k = 2, leaving the straightforward generalization to larger k to the
reader.
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By the Jordan decomposition we can write Rn as a direct sum of generalized eigenspaces of A1.
Let V be any one of the generalized eigenspaces of A1, corresponding to eigenvalue λ. By definition,
it consists of the vectors in Rn in the kernel of (A1 − λI)ℓ for some ℓ ≥ 1. On V the matrix A1 is
conjugate to λI +N for some nilpotent matrix N , by the Jordan form.

Commutativity of A1 and A2 implies that A2(V ) is a subspace of V . We can therefore decompose
V into generalized eigenspaces of A2 and, for any such subspace W of V , commutativity of A1 and
A2 implies A1W is a subspace of W . In particular N(W ) is a subspace of W .

This proves that Rn can be decomposed into a direct sum of spaces that are simultaneously
generalized eigenspaces of A1 and A2, on each of which A1 is conjugate to λI + N1 and A2 is
conjugate to µI +N2 for some λ, µ ∈ C \ {0} and nilpotent matrices N1 and N2. �

4.3. Reduction to analysis of normalized expansions of u1(t). Here we reduce the proof of
Part (2) of Theorem A’ to the proof of the following theorem.

Theorem 13. Under the hypotheses of Theorem A’ there is an integer 0 ≤ k ≤ d+ 1, a Lipschitz
continuous function

g3 : T
k × [0, 1]r → Rd+1,

angles θ = (θ1, . . . , θk) ∈ Tk, “rates” β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

n(u1(t))

t
= g3 (θ log t, {β log t}) +O(αlog t).

Proof of Part (2) of Theorem A’ supposing Theorem 13. Let us first summarize what Propositions
7-10 achieve. Let

g1 : (R
d)J → RJ

be given by

g1(v) =

(

volume(P1(v))

volume(R)
, . . . ,

volume(PJ(v))

volume(R)

)

.

Then, g1 is Lipschitz continuous and satisfies that for any t ≥ 1

g1(v(t))− (p1(t), . . . , pJ(t)) = O(t−1),

where v(t) is given by (11).
We now claim that there is a is a linear function

g2 : R
d+1 → (Rd)J

such that

v(t) = g2

(

n(u1(t))

t

)

.

For any 1 ≤ j ≤ J let Sj denote the matrix expressing multiplication by sj ∈ S in terms of the
basis 1, ω1, . . . , ωd. For any 1 ≤ j ≤ J we let the j-th component vj(t) of v(t) be the projection of

n(sju1(t))

t
= Sj

n(u1(t))

t
∈ Rd+1

onto its last d components.
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Therefore, given the function g3 : Tk × [0, 1]r → Rd+1 whose existence is asserted by Theorem
13, we can let g = g1 ◦ g2 ◦ g3 so that

g (θ log t, {β log t}) = g1

(

g2

(

n(u1(t))

t
+O(αlog t)

))

= g1

(

v(t) +O(αlog t)
)

= (p1(t), . . . , pJ(t)) +O(t−1) +O(αlog t),

with the last equality using that g1 is Lipschitz. Since t−1 = (1/e)log t this proves the claim. �

4.4. Analysis of normalized expansions of u1(t) as t → ∞. We will now use results from
linear algebra to finish the proof of Theorem 13. We begin by deriving an explicit formula for
u1(t) = u(t)−1. Let r = r1 + r2 − 1 denote the rank of the unit group Z×

Φ and let ǫ1, . . . , ǫr be a

basis for a finite index subgroup of the multiplicative group Z×
Φ . Recall that the image of Z×

Φ under
the mapping ϕ given in (7) forms a lattice in the hyperplane H ⊂ Rr1+r2 defined by (8). Therefore
we can use the coordinate system

(y1, . . . , yr) 7→ y1ϕ(ǫ1) + · · ·+ yrϕ(ǫr)

on H. In these coordinates the image under φ of the group generated by ǫ1, . . . , ǫr becomes the
integer lattice Zr. The path x(t) defined in (9) becomes

x(t) = −w log t(14)

for some suitable non-zero vector w = (w1, . . . , wr). We can then use

u1(t) = u(t)−1 = ǫ
⌊w1 log t⌋
1 · · · ǫ⌊wr log t⌋

r

as the unit in Part (1) of Theorem A’.
Let U(t) denote the matrix representing multiplication by u1(t) in the basis 1, ω1, . . . , ωd. We

have

U(t) = E
⌊w1 log t⌋
1 · · ·E⌊wr log t⌋

r ,

where E1, . . . , Er are the matrices representing multiplication by the units ǫ1, . . . , ǫr.
Let us approximate U(t) by a continuous version. According to Lemmas 11 and 12 we can choose

logarithms L1, . . . , Lr of the matrices E1, . . . , Er in a way that they all commute. Let

Ũ(t) = ew1(log t)L1+···+wr(log t)Lr = e(log t)L,(15)

where

L := w1L1 + · · ·+ wrLr.

We remark that, since L1, . . . , Lr commute, we also have that

Ũ(t) = Ew1 log t
1 · · ·Ewr log t

r ,(16)

since the definition of the real power of a matrix gives Ew1 log t
j := ew1 log tLj for 1 ≤ j ≤ r. Note

that making a different choice of matrix logarithm can lead to a different value of the real power
of a matrix, just like for the real power of a real number. However, we have fixed our choices of
logarithms once and for all when we defined (15).

For any t ≥ 1, again using the commutativity of L1, . . . , Lr, we have that

U(t) = A(t)Ũ(t)(17)
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where

A(t) = e−{w1 log t}L1···−{wr log t}Lr .(18)

We think of A(t) as the “multiplicative error” between U(t) and our continuous approximation

Ũ(t). It ranges over a compact subset of the space of invertible (d+ 1)× (d+ 1) matrices.

Remark 14. The product A(t)Ũ (t) is a real matrix, because U(t) is. However, the matrices A(t)

an Ũ(t) are not (necessarily) real because the logarithms L1, . . . , Lr are not necessarily real.

To prove Theorem 13 we must estimate

n(u1(t))

t
=

1

t
U(t) e1 = A(t)

(

1

t
Ũ(t) e1

)

,

where e1 = (1, 0, . . . , 0)T . To do this we write

1

t
Ũ(t) = e−(log t)Ie(log t)L = e(log t)(L−I),

where I denotes the (d+ 1)× (d+ 1) identity matrix.

Lemma 15. The real part of every eigenvalue of L− I is non-positive and there exist eigenvalues
whose real part is 0. In the Jordan canonical form for L−I, each of the purely imaginary eigenvalues
corresponds to a 1× 1 (i.e. trivial) Jordan block.

Proof. If a, b : [1,∞) → R are functions, we will use the asymptotic notation a(t) ≍ b(t) to denote
that there exist constants C1, C2 > 0 such that for every t ≥ 1 we have

C1 ≤
a(t)

b(t)
≤ C2.

Recall from Section 2 that, because ω is badly approximable, the transference principle implies
that there is a K ′ > 0 such that each spacing satisfies

∆i(t) ≤
K ′

td
.

Focusing on the smallest spacing, Part (1) of Theorem A’ implies that ∆1(t) = sj(t)u1(t) for some
sj(t) in the finite set S. This gives

∆1(t) = (1, ω1, . . . , ωd) Sj(t) U(t) e1 ≤
K ′

td
,

where Sj(t) is the matrix representing multiplication by sj(t) in the basis {1, ω1, . . . , ωd}. Since the
vector (ω1, . . . , ωd) is badly approximable, we find that there is a constant C1 > 0 such that

|Sj(t) U(t) e1| > C1t

for every t ≥ 1.
Also observe that, since

∆1(t) = {(m1 −m2) · ω}
for some m1,m2 ∈ M(t), there is a constant C2 > 0 such that for every t ≥ 1 we have

|Sj(t) U(t) e1| < C2t.

In summary, we have

|Sj(t) U(t) e1| ≍ t.
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Since the Sj(t) range over a finite set of invertible matrices (corresponding to multiplication by
elements of the finite set S) we conclude that

|U(t) e1| ≍ t.(19)

For each 1 ≤ i ≤ d, let Wi denote multiplication by ωi in the basis {1, ω1, . . . , ωd}. We then have

|U(t) ei+1| = |U(t) Wi e1| = |Wi U(t)e1| ≍ t.

The last equality holds because of Lemma 11, and the last assertion follows from (19) because Wi

is invertible.
Finally, since U(t) = A(t)Ũ (t) with A(t) given by (18) and hence varying over a compact set of

invertible matrices, we have

|Ũ(t) ei| ≍ t.

for each 1 ≤ i ≤ d+ 1. In other words, this gives that for each 1 ≤ i ≤ d+ 1 we have
∣

∣

∣
elog t(L−I)ei

∣

∣

∣
=

∣

∣

∣

∣

1

t
Ũ(t)ei

∣

∣

∣

∣

≍ 1.(20)

Now we will use the Jordan decomposition L− I = PJP−1, where P is an invertible matrix and
J is in Jordan form. It follows from the power series definition of the matrix exponential that

e(log t)(L−I) = P e(log t)JP−1.

Since P is invertible, (20) implies for each 1 ≤ i ≤ d+ 1 that we have
∣

∣

∣
e(log t)JP−1ei

∣

∣

∣
≍ 1.(21)

Let us consider the upper left Jordan block, which we suppose is k × k:

J1 =















λ 1 0 0 · · · 0 0
0 λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · λ 1
0 0 0 0 · · · 0 λ















= λI +N,

where N is the nilpotent matrix whose only non-zero entries are ones on the “super-diagonal” of
J1. It satisfies N

k = 0. Since I commutes with every matrix we have

e(log t)J1 = e(log tλ)I e(log t)N = diag(elog tλ, . . . , elog tλ) p((log t)N)

where

p(x) = 1 + x+
x2

2!
+ · · · + xk−1

(k − 1)!
.

From this, one can check that the (1, k) entry of e(log t)J1 equals

1

(k − 1)!
(log t)k−1elog tλ

and that all other entries have moduli that are smaller, asymptotically as t → ∞, by at least a
factor of log t.

Because e1, . . . ,ed+1 form a basis for Rd+1 there exists 1 ≤ j ≤ d+1 such that the k-th entry of
P−1ej is non-zero. It follows from the previous paragraph that

|e1 · (e(log t)JP−1ej)| ≍ (log t)k−1elog t Re(λ).
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Combined with (21) this implies that Re(λ) ≤ 0 and that if Re(λ) = 0 then k = 1.
By permuting the Jordan blocks of J we find that the same holds for every other Jordan block.

Finally, existence of at least one purely imaginary eigenvalue is needed for the lower bound implied
by (21) to hold. �

Proof of Theorem 13. By Lemma 15, we can write L− I = PJP−1 with J being block-diagonal of
the form

J = diag(2πiθ1, . . . , 2πiθk, Jk+1, . . . , Jℓ)

with θ1, . . . , θk ∈ R for some 1 ≤ k ≤ d + 1 and with the blocks Jk+1, . . . , Jℓ all corresponding to
eigenvalues with real parts less than some γ < 0. Note that at this step we have selected the angles
θ = (θ1, . . . , θk) which are asserted to exist in the statement of the theorem.

Consider the (d+ 1)× (d+ 1) diagonal matrix:

Ĵ := diag(2πiθ1, . . . , 2πiθk, 0, . . . , 0).

Let eγ < α < 1. Then, it follows from the calculations of exponentials of Jordan blocks in the end
of the proof of Lemma 15 that for any t ≥ 1 we have

e(log t)J − e(log t)Ĵ = O(αlog t).(22)

Here we mean that the modulus of each corresponding component of the difference is O(αlog t).
Define g3 : T

k × [0, 1]r → Rd+1 by

g3(ψ,x) := Re
(

e−x1L1···−xrLrP diag(e2πiψ1 , . . . , e2πiψk , 0, . . . , 0) P−1e1

)

.(23)

Clarifications:

(1) Here, as usual, we denote the angles ψ ∈ Tk by their lifts in Rk. However the formula
clearly only depends on the angles themselves.

(2) The Re denotes that we are taking the real part of each component of the resulting vector.
(3) This function is differentiable, hence Lipschitz.

If we define our rates by β = w (see (14)) then we have

g3(θ log t, {β log t}) = Re
(

A(t)P elog tĴP−1e1

)

.

Finally, observe that

n(u1(t))

t
= A(t)

(

1

t
Ũ(t) e1

)

= A(t)elog t(L−I)e1 = A(t)P elog tJP−1e1.

Since A(t) ranges over a compact set of matrices, the result follows from (22) and the fact that
n(u1(t))

t is real.
�

5. Quasiperiodicity of finite words and Proof of Theorem B’

We will show that a relatively simple modification of the proof of Theorem A’ yields the following
stronger statement.

Theorem C. Suppose that 1, ω1, . . . , ωd ∈ R form a Q-basis for an algebraic number field Φ and
let r ≥ 1 denote the rank of Z×

Φ. Let S be the finite set given by Part (1) of Theorem A’.
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For each choice of 1 ≤ j0, . . . , jl ≤ J let pj0,...,jl(t) denote the proportion of the points from
{yi(t) : 1 ≤ i ≤ ℓ(t)− l − 1} such that

δi(t) = yi+1(t)− yi(t) = sj0u(t)
−1,

δi+1(t) = yi+2(t)− yi+1(t) = sj1u(t)
−1,

...(24)

δi+l−1(t) = yi+l(t)− yi+l−1(t) = sjl−1
u(t)−1, and

δi+l(t) = yi+l+1(t)− yi+l(t) = sjlu(t)
−1.

Equivalently, pj0,...,jl(t) is the proportion of the points yi(t) such that the sequence of l+1 consecutive
rescaled spacings starting at yi(t) forms the word sj0sj2 . . . sjl.

Then, there is an integer 0 ≤ k ≤ d+ 1, a Lipschitz continuous function

h : Tk × [0, 1]r → P :=
{

(p1,...,1, . . . , pJ,...,J) :
∑

pj0,...,jl = 1, pj0,...,jl ≥ 0
}

,

angles θ = (θ1, . . . , θk) ∈ Tk, rates β = (β1, . . . , βr) ∈ Rr, and 0 < α < 1 such that

(p1,...,1,1(t), p1,...,1,2(t), . . . , pJ,...,J,J(t)) = h (θ log t, {β log t}) +O(αlog t).

Proof. The only changes to the proof of Theorem A’ that are necessary are adaptations to Sec-
tion 4.1 about the partitions.

For any length l + 1 word j0j1 . . . jl ∈ J l+1 let Yj0j1...jl(t) be the subset of those

{yi(t) : 1 ≤ i ≤ ℓ(t)− l − 1}
such that (24) holds. Let Mj0j1...jl(t) be the set of vectorsm ∈ M(t) such that {m·ω} ∈ Yj0j1...jl(t).
These sets form a partition of M(t) up to the l points corresponding to {yℓ(t)−l, . . . , yℓ(t)}. As in
the proof of Theorem A’ we have for any word j0j1 . . . jl that

pj0j1...jl(t) =
|Mj0j1...jl(t)|
|M(t)| − l

.

Let us first consider the case of words of length two. As in Proposition 7, for any 1 ≤ j ≤ J let

vj(t) =m(sju1(t)).

Then, we claim that

Mj0j1(t) = Mj0(t) ∩ (Mj1(t)− vj0(t)) .
To see this, notice that if m(yi(t)) = v then to have δi(t) = sj0u(t)

−1 we need to have v ∈ Mj0(t)
and in order to have δi+1(t) = sj1u(t)

−1 we need to have v + vj0(t) ∈ Mj1(t). Here, we are using
that since δi(t) = sj0u(t)

−1 we have m(yi+1(t)) = v + vj0(t).
A simple induction yields the following formula in the general case:

Mj0j1...jl(t) = Mj0(t) ∩ (Mj1(t)− vj0(t)) ∩ · · · ∩
(

Mjl(t)− vj0(t)− vj1(t)− · · · − vjl−1
(t)

)

.

In each of these formulae the sets Mj(t) are defined as in Section 4.1 and given by (10).
Denote the power set of our region R by P(R) and let

P : (Rd)J → P(R)J
l

be the mapping which sends v = (v1, . . . ,vJ) ∈ (Rd)J to (P11...1(v), . . . ,PJJ...J(v)) ∈ P(R)J
l

,
where,

Pj0j1...jl(v) = Pj0(v) ∩ (Pj1(v)− vj0) ∩ · · · ∩
(

Pjl(v)− vj0 − vj1 − · · · − vjl−1

)

.
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Here,

Pj(v) = [R ∩ (R− vj)] \
j−1
⋃

i=1

(R− vi),

is the same formula as from Section 4.1.
We then claim that the appropriately generalized versions of Propositions 9 and 10, expressed

in terms of the definitions and formulae above for Mj0j1...jl(t) and Pj0j1...jl(v), also hold in this
context. We leave this to the reader to check. The remainder of the proof holds exactly as the
proof of Theorem A’ �

Theorem B’ is now an immediate consequence of Theorem C in the case of words of length two.
�(Theorem B’)

6. Worked example: a totally real cubic field

In this section we will work out the details of our quasiperiodicity theorem (Part (2) of Theorem
A’) in a particular example which highlights many of the important steps in its proof. For our
example we take a totally real cubic field of smallest discriminant, for which we can use the table in
[13] to identify a pair of generators for a finite index subgroup of the group of units in Z×

Φ . We also
take the region R to be the half open unit square, so that R(t) = [0, t)2 and M(t) = Z2 ∩ [0, t)2.

Let ω1 be the smallest real root of the cubic polynomial f(x) = x3 − 7x2 + 14x − 7, and let
ω2 = ω2

1. Then 1, ω1, and ω2 form a Q-basis for the algebraic number field Φ = Q(ω1) of degree
d+ 1 = 3 over Q, and the ring of integers of Φ is ZΦ = Z[ω1] (see [13]).

All three of the roots of f(x) are real and positive, so let us list them as 0 < α1 < α2 < α3 (note
that ω1 = α1). For each 1 ≤ i ≤ 3 let σi be the embedding of Φ into R which maps ω1 to αi. It
is clear that r1 = 3 and 2r2 = 0, so the rank of the group of units is r1 + r2 − 1 = 2. Now we let
ǫ1, ǫ2 ∈ Φ be defined by

(25) ǫ1 = 2− 4α1 + α2
1 and ǫ2 = −5 + 5α1 − α2

1.

It follows from [13] that ǫ1 and ǫ2 generate a finite index subgroup of the group of units of ZΦ.
Next, following (14), we let β = (β1, β2) be determined by

(

β1
β2

)

=

(

log |ǫ1| log |ǫ2|
log |σ2(ǫ1)| log |σ2(ǫ2)|

)−1(−2
1

)

,

so that

β ≈ (1.96080,−0.70061),

and for t ≥ 1 we set

u1(t) = ǫ
⌊β1 log t⌋
1 ǫ

⌊β2 log t⌋
2 .

Note for later that the fact the ǫ1 and ǫ2 are units also gives that

β1 log |σ3(ǫ1)|+ β2 log |σ3(ǫ2)| = −β1 log |ǫ1σ2(ǫ1)| − β2 log |ǫ2σ2(ǫ2)| = 1.

The first claim of Theorem A’ is that there is a finite set S ⊆ Φ with the property that, for any
t ≥ 1, every spacing ∆i(t) has the form u1(t)s for some s ∈ S. In order to identify such a set, we
must first derive an upper bound for ∆i(t). As indicated by our proof above, we will do this using
Cassels’s transference principle. First notice that if (m1,m2) ∈ Z2 \{0} satisfies |m1|, |m2| ≤ t, and
if m0 ∈ Z is chosen so that

‖m · ω‖ = m0 +m1ω1 +m2ω2,
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then we have that
|m0| ≤ |m1ω1 +m2ω2|+ 1/2 ≤ (1/2 + α1 + α2

1)t.

This in turn gives for j = 2 and 3 that

|m0 +m1αj +m2α
2
j | ≤ (1/2 + α1 + α2

1 + αj + α2
j )t,

and it follows that

‖m · ω‖ =
Norm(m0 +m1α1 +m2α

2
1)

|m0 +m1α2 +m2α2
2| · |m0 +m1α3 +m2α2

3|
≥ 1

Kt2
,

with
K = (1/2 + α1 + α2

1 + α2 + α2
2)(1/2 + α1 + α2

1 + α3 + α2
3).

The inhomogeneous transference principle [11, Section V, Theorem VI] then implies that, for any
t ≥ 1 and for any real number γ, there is an integer solution (n1, n2) ∈ Z2 to the inequality

‖n · ω − γ‖ ≤ ⌊K⌋+ 1

2Kt2

satisfying

|n1|, |n2| ≤
(⌊K⌋+ 1

2

)

t.

Rescaling, we conclude that there is always an integer solution (n1, n2) ∈ Z2 to the inequality

‖n · ω − γ‖ ≤ (⌊K⌋+ 1)3

8Kt2
,

with |n1|, |n2| ≤ t. It follows that, for t ≥ 1, every spacing ∆i(t) must satisfy the inequality

(26) ∆i(t) ≤
(⌊K⌋+ 1)3

4Kt2
.

Since every spacing ∆i(t) must be of the formm ·ω for somem ∈ M(t), from the above discussion
we also have for j = 2 and 3 that

σj(∆i(t)) ≤ (1/2 + α1 + α2
1 + αj + α2

j )t.

Next, with help from the math software Sage, we find that

|u1(t)−1| = |ǫ1|−⌊β1 log t⌋|ǫ2|−⌊β2 log t⌋

= t2 exp ({β1 log t} log |ǫ1|+ {β2 log t} log |ǫ2|)
≤ |ǫ2|t2,

that

|σ2(u1(t)−1)| = |σ2(ǫ1)|−⌊β1 log t⌋|σ2(ǫ2)|−⌊β2 log t⌋

= t−1 exp ({β1 log t} log |σ2(ǫ1)|+ {β2 log t} log |σ2(ǫ2)|)

≤ |σ2(ǫ1)||σ2(ǫ2)|
t

,

and that

|σ3(u1(t)−1)| = |σ3(ǫ1)|−⌊β1 log t⌋|σ3(ǫ2)|−⌊β2 log t⌋

= t−1 exp ({β1 log t} log |σ3(ǫ1)|+ {β2 log t} log |σ3(ǫ2)|)

≤ |σ3(ǫ1)|
t

.
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This means that the Minkowski embedding σ(u1(t)
−1∆i) of u1(t)

−1∆i into R3 is a point of the
lattice Γ = σ(ZΦ) which lies in the box

[−K1,K1]× [−K2,K2]× [−K3,K3],

with

K1 =
(⌊K⌋+ 1)3|ǫ2|

4K
,

K2 = (1/2 + α1 + α2
1 + α2 + α2

2)|σ2(ǫ1)||σ2(ǫ2)|, and

K3 = (1/2 + α1 + α2
1 + α3 + α2

3)|σ3(ǫ1)|.
Therefore, for our finite set S we may take the collection of all points of Γ which lie in this box.
Unfortunately, here there is a bit of a disappointment. The volume of the box defined above is
approximately 11, 034, 177, while a fundamental domain for Γ has volume 7. This means that the
number of lattice points in the box is close to 106. While it is not computationally infeasible to
find and list all of these points, further computations of the areas of the regions from Proposition
9 become unwieldy. They are also somewhat unenlightening, because most of the regions end up
being empty- in all cases we have computed, which includes all t ≤ 300, there are no more than 10
distinct spacings. However, we can still continue further to explore the quasiperiodic behavior of
the function g3 from the statement of Theorem 13.

The linear transformations E1 and E2 of Γ determined by multiplication by ǫ1 and ǫ2 in Φ (with
respect to the basis σ(1), σ(ω1), σ(ω2) of Γ) are given by

E1 =





2 7 21
−4 −12 −35
1 3 9



 and E2 =





−5 −7 −14
5 9 21
−1 −2 −5



 .

These matrices commute, and they are diagonalizable, therefore they are simultaneously diagonal-
izable. Explicitly, let

λ1 = 2− α1, λ2 = 2− 4α1 + α2
1, λ3 = −5 + 5α1 − α2

1,

let

D1 = diag(λ1, λ2, λ3), D2 = diag(λ2, λ3, λ1),

and let

Q =





1 1 1
−3 + 2α1 − (3/7)α2

1 −α1 + (1/7)α2
1 −1− α1 + (2/7)α2

1

1− (5/7)α1 + (1/7)α2
1 (1/7)α1 (4/7)α1 − (1/7)α2

1



 .

Then we have for i = 1 and 2 that

Ei = QDiQ
−1.

Noting that λ1 > 0 while λ2, λ3 < 0, and choosing a branch of the logarithm which includes both
the positive and negative real axes, a pair of commuting logarithms of E1 and E2 is given by

L1 = Q diag(log λ1, log |λ2|+ iπ, log |λ3|+ iπ) Q−1, and

L2 = Q diag(log |λ2|+ iπ, log |λ3|+ iπ, log λ1) Q
−1.

Now, following the proof of Theorem 13, we take L = β1L1 + β2L2. In this case, again using Sage,
we have that

L− I = PJP−1
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with

P ≈





−0.52319 −0.48157 0.82671
0.83239 0.83647 −0.55556
−0.18274 −0.26156 0.08893





and

J ≈ diag(6.16003 i,−2.20103 i,−3.00000 + 3.95900 i).

These numbers have been computed using (complex) double float precision, but for readability we
have rounded them to five digits. This means that k = 2 in the statement of Theorems A’ and 13,
and that

θ ≈
(

6.16003

2π
,
−2.20103

2π

)

.

Finally, with g3 defined as in (23), we have that

n(u1(t))

t
= g3(θ log t, {β log t}) +O(αlog t),

for any α > e−3. Below is a table comparing the actual values of n(u1(t)) with the approximate

values given by tg3(θ log t, {β log t}). The values of t have been sampled along the sequence ⌊10i/2⌋.

i t = ⌊10i/2⌋ n(u1(t)) tg3(θ log t, {β log t})
1 3 (−5, 8,−2) (−4.80194, 7.86690,−1.97869)
2 10 (−3, 4, 0) (−3.02177, 4.01463,−0.00234)
3 31 (−41, 68,−18) (−40.99761, 67.99839,−17.99974)
4 100 (186,−308, 81) (186.00012,−308.00008, 81.00001)
5 316 (−20, 74,−63) (−20.00001, 74.00001,−63.00000)
6 1000 (424,−609, 61) (424.00000,−609.00000, 61.00000)

Consistent with our observations above, this data indicates that the error in approximating
n(u1(t)) by tg3(θ log t, {β log t}) is roughly on the order of magnitude of 1/t2. In conclusion,
this is an example in which the frequencies with which the elements of S appear in Theorem A’
are determined quasiperiodically by a linear flow on a two dimensional torus with flow direction
determined by θ and a linear flow on [0, 1]2 with flow direction determined in β.

References

[1] YY Atas, E Bogomolny, O Giraud, and G Roux. Distribution of the ratio of consecutive level spacings in random
matrix ensembles. Physical review letters, 110(8):084101, 2013.

[2] Michael Victor Berry and Michael Tabor. Level clustering in the regular spectrum. Proceedings of the Royal Society

of London. A. Mathematical and Physical Sciences, 356(1686):375–394, 1977.
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