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Abstract

Background: Cutaneous melanoma (CM) is the most lethal type of skin cancers. Nicotinamide 

adenine dinucleotide phosphate (NADPH) plays an important role in anabolic reactions and 

tumorigenesis, but many genes are involved in the NADPH system.

Methods: We used 10,912 SNPs (2,018 genotyped and 8,894 imputed) in 134 NADPH-related 

genes from a genome-wide association study (GWAS) of 858 patients from The University of 

Texas MD Anderson Cancer Center (MDACC) in a single-locus analysis to predict CM survival. 

We then replicated the results in another GWAS dataset of 409 patients from the Nurses’ Health 

Study (NHS) and Health Professionals Follow-up Study (HPFS).

Rsults: There were 95/858 (11.1%) and 48/409 (11.7%) patients who died of CM, respectively. 

In multivariable Cox regression analyses, we identified two independent SNPs (TKT rs9864057 

G>A and DERA rs12297652 A>G) to be significantly associated with CM-specific survival 

[hazards ratio (HR) of 1.52, 95% confidence interval (CI)=1.18-1.96, P=1.06×10−3 and 1.51 

(1.19-1.91, 5.89×10−4)] in the meta-analysis, respectively. Furthermore, an increasing number of 

risk genotypes of these two SNPs was associated with a higher risk of death in the MDACC, the 

NHS/HPFS, and their combined datasets (Ptrend<0.001, =0.004, and <0.001, respectively). In the 

expression quantitative trait loci (eQTL) analysis, TKT rs9864057 G>A and DERA rs12297652 

A>G were also significantly associated with higher mRNA expression levels in sun-exposed 

lower-leg skin (P=0.043 and 0.006, respectively).

Conclusions: These results suggest that these two potentially functional SNPs may be valuable 

prognostic biomarkers for CM survival, but larger studies are needed to validate these findings.
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1. Introduction

Cutaneous melanoma (CM) is the most lethal type of skin cancers. Although CM is much 

less common than basal or squamous cell carcinomas, it accounts for the majority of skin 

cancer deaths, because of its tendency to invade and spread during the course of the disease 

[1,2]. It has been estimated that 96,480 new CM cases, about 5.5% of all of new cancer 

cases, will be diagnosed in the United States in 2019, and 7,230 patients will die of this 

disease [3]. Between 2008 and 2014 in the US, the overall five-years survival rate after 

diagnosis was 91.8% [4], while patients with a late or distant-stage CM generally have a 

much poorer prognosis with a five-year survival rate of only approximately 18% [2]; 

survival is particularly poor for those patients with visceral metastasis (a median survival of 

6 months) [5]. To better identify high-risk subgroups with a poor survival, it is urgent to 

identify additional factors, such as genetic variants, that are involved in CM prognosis. Such 
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investigations are likely to help identify clinically relevant mechanisms, allowing for more 

accurate selection of CM patients for the most effective management and treatment.

Nicotinamide adenine dinucleotide phosphate (NADPH) plays a key role in anabolic 

reactions in all cellular organisms as a reducing agent [6]. The NADPH system generates 

free radicals in biological immune cells to destroy pathogens through a process called the 

respiratory burst [7]. Through the NADPH system, cells produce reactive oxygen species 

(ROS) that cause cellular and tissue damage by oxidizing both DNA and membranes, thus 

contributing to cellular dysfunction, aging, neurodegeneration, cell death and cancer [8]. The 

NADPH system also promotes migration of inflammatory cells and modulates radiation-

induced senescent cells by producing ROS [9]. In cancer cells, defects in the mitochondrial 

oxidative metabolism provide reduced equivalents through NADPH for metabolizing 

hydroperoxides to increase production of superoxide, hydrogen peroxide, and hydroperoxide 

[10]. The NADPH oxidases are an important site of ROS generation that is regulated in 

cancer cells and T cells in the context of antitumor immunity [11]. Several publications have 

highlighted the impact of NADPH on CM. For example, melanoma cells are characterized 

by altered redox signaling, especially in the form of higher levels of ROS, than those 

required for normal cell signals [12]. Two isoforms of NADPH (NOX1 and NOX4) are 

overexpressed, producing high ROS levels in melanoma cells, and the abundant ROS then 

stimulates the proliferation of tumor cells [13-15]. Some studies have shown that ultraviolet-

induced chemical excitation of melanin fragments leads to DNA damage by initiating the 

ROSdominated NADPH [16-18].

Many genetic variants have been found to be associated with cancer risk or survival patients 

with CM [1, 19]. However, the biological relevance of most identified genetic variants, such 

as single nucleotide polymorphisms (SNPs), remains unknown. Understanding of genetic 

factors that contribute to the NADPH pathway offers opportunities for prediction and 

identification of high-risk CM patients for personalized managenment and treatment.

In the present study, therefore, we systematically examined associations between genetic 

variants in NADPH-related genes and CM survival, by using publicly available genotyping 

datasets and also evaluated correlations between significant SNPs and their gene expression 

levels to identify biological mechanisms that may underlie the observed associations.

2. Patients and methods

2.1. Study populations

In the present study, we used two publically available genome-wide association study 

(GWAS) genotyping datasets: a discovery dataset from The University of Texas MD 

Anderson Cancer Center (MDACC) and a replication dataset by from the Nurses’ Health 

Study (NHS) and the Health Professionals Follow-up Study (HPFS). There were 95/858 

(11.1%) and 48/409 (11.7%) patients who died of CM, respectively. All patients from the 

discovery dataset gave written informed consent, and the protocol was approved by the 

MDACC Institutional Review Board. For the replication dataset, a written informed consent 

was also obtained from each subject, and the study protocol was approved by the 
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institutional review boards of Brigham and Women’s Hospital and the Harvard T.H. Chan 

School of Public Health, and those of participating registries as required.

2.2. Discovery Dataset

The discovery dataset included 858 non-Hispanic white patients with CM who were 

recruited between March 1993 and August 2008 to be participants in a hospital-based case-

control study [20]. All CM patients were classified according to the American Joint 

Committee on Cancer (AJCC) staging system [21] and followed using standardized methods 

and guidelines [22]. Demographic and clinical variables such as age, sex, Breslow thickness, 

tumor stage, ulceration, and mitotic rate were available in the datasets obtained from the 

dbGaP database (accession: phs000187.v1.p1) [23] (Supplementary Table 1).The details of 

genotyping information and data quality control have previously been reported [20]. Using 

the MACH software program and the 1000 Genomes Project CEU population (March 2010 

release) as the reference, data from the MDACC study have been imputed (imputation 

quality r2 ≥ 0.8) [24].

2.3. Replication Dataset

The replication dataset from the NHS/HPFS was produced by merging two subdatasets from 

two other studies: one having 317 female cases from the NHS and the other having 177 male 

cases from the HPFS [25]. There were 409 non-Hispanic white patients in the NHS/HPFS 

GWAS dataset. Participants were enrolled in the NHS in 1976 and the HPFS in 1986, and 

were diagnosed after the enrollment up to the 2008 follow-up cycle for both cohorts. 

Clinical information on age, sex, survival outcome, and genotype data were available. 

Genotype data were generated using the Illumina HumanHap610 array and imputed using 

the MACH software program by using the 1000 Genomes Project CEU population 

(Northern Europeans from Utah) database (phase I v3, March 2012, with imputation quality 

r2 ≥ 0.8) as reference panel [26, 27]. The study protocol was approved by the institutional 

review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of 

Public Health, and those of participating registries as required.

2.4. Gene and SNP extraction

Because females carry two copies of the X chromosome but males are heterozygous, and 

there is no standard statistical data based on sex-specific analysis, five genes in the X 

chromosome (but no seudogenes and none on Y chromosome) were excluded.

Pseudogenes were also excluded because they have no biological function. A total of 134 

NADPH pathway genes located on autosomes were extracted from the online Molecular 

Signatures Database, which includes gene sets extracted from original research publications 

as well as and the entire collections from the online resources, such as GO and KEGG 
(http://software.broadinstitute.org/gsea/msigdb/index.jsp) (Supplementary Table 1). All 

selected genes were expanded with ±2-kb flanking regions and mapped to all the SNPs 

identified in the MDACC GWAS dataset following standard quality-control criteria, 

including minor allele frequency (MAF) ≥ 0.05, genotyping rate ⩾ 95%, and Hardy-

Weinberg equilibrium (HWE) P value ⩾ 1×10−5. Consequently, 10,912 [with 2,018 (18.5%) 
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genotyped and 8,894 (81.5%) imputed] common SNPs in the NADPH pathway genes were 

extracted from the MDACC GWAS dataset. A detailed flowchart is shown in Figure 1.

2.5. Statistical analysis

CM-specific survival (CMSS) was the outcome of interest in the present study, calculated 

based on the date of CM diagnosis to the last follow-up or CM-related death date. We used 

multivariate Cox proportional hazards regression models and the GenABEL package of R 

software to compute the hazards ratio (HR) and 95% confidence interval (CI) for 

associations between SNPs and CMSS in an additive genetic model. Multivariate analysis of 

the MDACC dataset was adjusted by age, sex, Breslow thickness, tumor stage, ulceration, 

and mitotic rate. Multivariate analysis of the NHS/HPFS dataset as well as the combination 

of the two datasets were adjusted only for age and sex, because clinical factors were not 

available in the NHS/HPFS dataset.

Because most of the SNPs in the present study were imputed based on linkage 

disequilibrium (LD) among them, false-positive report probability (FPRP) has been 

suggested as a better probability threshold for these types of datasets for multiple testing 

correction than the false discovery rate (FDR) [28]. In the FPRP calculation, a prior 

probability of 0.10 was selected to detect an HR of 2.0 for an association with variant 

genotypes or minor alleles of each SNP. SNPs with FPRP < 0.2 were selected for replication 

in the NHS/HPFS dataset. We also used a meta-analysis to combine the results from the 

discovery and replication sets. When there was no heterogeneity between the MDACC and 

the NHS/HPFS datasets (Cochran’s Q test P-value > 0.100 and the heterogeneity statistic 

(I2) < 50%), we used a fixed-effects model; otherwise, a random-effects model was used. To 

identify independent predictive SNPs for CMSS, the validated SNPs together with clinical 

prognostic variables were included in a multivariate stepwise Cox model only using the 

MDACC dataset that had more covariates available for further adjustment. We used Kaplan-

Meier survival curves and log-rank tests to evaluate the effect of selected SNPs on the 

cumulative probability of CMSS. We also used the Chi-square-based Q-test with P < 0.05 to 

evaluate effect difference in the stratified analyses. We used the receiver operating 

characteristic (ROC) curve, which relies on the value of area under the curve (AUC), to 

illustrate the CMSS prediction with the sensitivity and specificity. Time-dependent AUC and 

ROC analyses were performed using the two R packages of survival and timeROC [29]. The 

expression quantitative trait loci (eQTL) analysis for associations with the alleles and 

genotypes of the significant SNPs was assessed by linear regression analysis using the R 

software. All analyses were performed with SAS (version 9.3.3; SAS Institute, Cary, NC, 

USA) unless otherwise specified. All reported P values were two-sided.

3. Results

3.1. Characteristics of study populations

The analyses included 858 patients from the MDACC dataset and 409 patients from the 

NHS/HPFS dataset. The age range at diagnosis was between 17 and 94 years with a mean 

age of 52.4 years (52.4±14.4) in the MDACC dataset, compared with 34-87 years and 61.1 

years (61.1 ± 10.8 years) in the NHS/HPFS dataset. The male/female ratio was 57.8% (496)/
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42.2% (362) in the MDACC dataset, compared with 33.7% (138)/66.3% (271) in the NHS/

HPFS dataset. Univariate analysis revealed that age, sex, tumor stage, Breslow thickness, 

ulceration, and mitotic rate were all significantly associated with CMSS in the MDACC 

dataset, while age but not sex was statistically significantly associated with CMSS in the 

NHS/HPFS dataset. The median follow-up time for patients was 81.1 months in the 

MDACC dataset and 179.0 months in the NHS/HPFS dataset. Death rates in the MDACC 

dataset (95/858, 11.1%) and the NHS/HPFS dataset (48/409, 11.7%) were similar 

(Supplementary Table 2).

3.2. Gene and SNP extraction

After the exclusion of five genes in the X chromosome, we included 134 NADPH-related 

genes from the online database (MSigDB) (Supplementary Table 1). Initially, we extracted 

10,912 common SNPs from the MDACC GWAS dataset (2,018 genotyped SNPs and 8,894 

imputed SNPs). The associations between all these SNPs and CMSS were presented in a 

Manhattan plot (Supplementary Figure 1). Using P < 0.05 as a threshold, we identified 834 

SNPs as significantly associated with CMSS in the discovery phase. After further screening 

for false-positive findings with a FPRP < 0.2, 341 SNPs were selected for further replication 

(Figure 1).

In the replication analyses, we continued to use the Cox regression analysis (including only 

the two available variables of age and sex) to verify the 341 SNPs in the NHS/HPFS dataset. 

Five SNPs in two genes [rs9864057, rs17234092, rs17306163, rs62255994 in TKT 
(transketolase) and rs12297652 in DERA (deoxyribose-phosphate aldolase)] remained 

statistically significant (P < 0.05) for CMSS (Figure 1). Subsequently, LD analysis showed a 

high LD (i.e., the same LD plots) among the four SNPs in TKT gene. After meta-analysis of 

these five SNPs, the same associations remained statistically significant, and there was no 

statistically significant heterogeneity in the results for these five SNPs between the two 

datasets (Table 1). However, in the univariate analysis as shown in Supplementary Table 2, 

sex was a risk factor for the MADCC datasets but not for the NHS/HPFS dataset, but in the 

multivariable medling, sex was no longer a risk factor for the MDACC dataset (Table 2).

3.3. Genetic variants in NADPH-related genes as independent survival predictors

The four SNPs in the same LD plot of TKT were subsequently annotated and filtered using 

SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunchtml), RegulomeDB (http://

www.regulomedb.org/) and F-SNP (http://compbio.cs.queensu.ca/F-SNP) for in silico 
functional prediction. As shown in Supplementary Table 3, out of the four LD SNPs on 

TKT, TKT rs9864057 is located at the potential enhancer regions of 16 tissues and the 

DNAse I sensitive site, while DERA rs12297652 may modify the biding activity of LXR. 

Therefore, we selected these two SNPs as the representative SNPs for further analysis. In 

stepwise Cox regression analysis, including the two tagging SNPs, with adjustment for other 

clinical covariates in the MDACC dataset, these two SNPs (TKT rs9864057 G>A and 

DERA rs12297652 A>G) remained significant and independent predictors of CMSS (Table 

2). All SNPs, both genotyped and imputed, in TKT and DERA are shown in regional 

association plots containing 200-kb up and downstream of rs9864057 and rs12297652, 

respectively (Supplementary Figure 2).
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3.4. Two independent SNPs as CM survival predictors in the MDACC dataset, the NHS/
HPFS dataset, and the combination of both datasets

We further examined associations between the identified independent SNPs and CM survival 

in the MDACC dataset, the NHS/HPFS dataset, and their combination in multivariate 

analysis. The risk alleles of these two independent SNPs were rs9864057 A in TKT and 

rs12297652 G in DERA (Table 3).

Under an additive genetic model, the TKT rs9864057 A allele and the DERA rs12297652 G 

allele were significantly associated with CMSS in the MDACC dataset (trend test: P = 0.010 

and 0.005, respectively). Under a dominant genetic model, the TKT rs9864057 A and 

DERA rs12297652 G genotypes were both associated with elevated risk of CMSS 

(HR=1.82, 95% CI =1.20-2.77 and P =0.005 for rs9864057 GA+AA vs. GG and HR=2.09, 

95% CI =1.28-3.41 and P =0.003 for rs12297652 AG+GG vs. AA). Similar results were 

obtained in the NHS/HPFS dataset (trend test: P = 0.05 and P =0.05, respectively, and 

HR=1.76, 95% CI =0.99-3.11, P =0.053 and HR=2.14, 95% CI =1.07-4.30, P =0.03, 

respectively). Furthermore, when these two datasets were combined, the associations 

persisted (trend test: rs9864057, P = 0.001 and rs12297652, P =0.001; rs9864057 GA+AA 

vs. GG: HR=1.66, 95% CI = 1.19-2.30, P =0.003; rs12297652 AG+GG vs. AA: HR=1.93, 

95% CI =1.32-2.84, P =0.001) (Table 3).

3.5. Analysis of combined genotypes of the two independent SNPs

To assess the combined effect of the two SNPs, we combined the risk genotypes of 

rs9865057 GA+AA and rs12297652 AG+GG into one variable as the number of risk 

genotypes. The trend test consistently showed that the risk increased with the number of risk 

genotypes in the MDACC dataset (P < 0.001), the NHS/HPFS dataset (P = 0.004), and the 

combined dataset (P < 0.001). Furthermore, when we dichotomized all patients into 0-1 risk 

genotypes and 2 risk genotypes, patients with 2-risk genotypes had a higher risk of death 

than those with 0-1 risk genotypes in the MDACC dataset (HR=2.12, 95% CI=1.38-3.26 and 

P < 0.001), the NHS/HPFS dataset (HR=2.38, 95% CI=1.35-4.20 and P = 0.003), and the 

combined dataset (HR=2.02, 95% CI=1.45-2.83, P <0.001). These results were further 

evaluated by Kaplan-Meier plot to visualize the associations between the number of risk 

genotypes and CMSS (Figure 2a-2f).

3.6. Stratified analyses for the combined efficacy of risk genotypes on CMSS

We then performed stratified analyses by age and sex for the associations between CMSS 

and the number of risk genotypes in the MDACC dataset and the NHS/HPFS dataset using 

multivariate Cox regression analysis with adjustment where appropriate, looking for possible 

interaction between these covariates and SNPs. The risk of CM death associated with the 2-

risk genotype was statistically higher for males ≤ 50 years in the MDACC dataset and for 

females > 50 years in the NHS/HPFS dataset. We found no evidence for any interactions 

between the subgroups (Supplementary Table 4).

3.7. ROC curve and time-dependent AUC to estimate CMSS survival

We also used inverse probability of censoring weighting estimators for the ROC curve and 

time-dependent AUC to estimate the improvement in prediction by adding risk genotypes to 
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the model. In the combined dataset of both MDACC and NHS/HPFS, we found five-year 

risk of CMSS with clinical variables (age and sex) had an AUC=63.58%, while the addition 

of risk genotypes to the model significantly increased the AUC to 69.72% (P = 0.005) 

(Figure 3a-3b). However, such prediction was not statistically significant for both 5-year and 

10-year survival prediction in the MDACC dataset with adjustment for age, sex, Breslow 

thickness, distant/regional metastasis and ulceration (Supplementary Figure 3a-3b) and in 

the NHS/HPFS dataset with adjustment for age and sex (Supplementary Figure 3c-3d). 

These results suggest that the sample sizes of the datasets are not large enough or more 

SNPs in different pathway genes need to be identified.

3.8. Expression quantitative trait loci (eQTL) analysis

To study the correlation between the two independent SNPs and mRNA expression levels of 

their corresponding genes, we used data on mRNA expression levels of these two SNPs for 

further statistical analysis using three in silico eQTL databases: 373 European descendants 

from the 1000 Genomes Project, The Cancer Genome Atlas (TCGA) database, and the 

Genotype-Tissue Expression (GTEx) project.

Through the GTEx project, we found that both TKT rs9864057 and DERA rs12297652 were 

significantly correlated with elevated mRNA expression levels in the skin of sun-exposed 

lower leg (P = 0.043 and 0.006, respectively), but not significantly associated with mRNA 

expression levels in the whole blood or in non-sun-exposed skin (Supplementary Table 5). 

The lymphoblastoid cell-line data from the 373 European descendants and the TCGA 

database did not demonstrate any correlation between these two SNPs and mRNA 

expression levels (data not shown).

4. Discussion

NADPH is a key factor in controlling redox reactions in human tissue, including tumor 

tissue, and NADPH is closely related to cancer cell growth, metabolism, migration, invasion, 

and metastasis [10]. However, few studies have investigated the roles of genetic variants in 

the NADPH-related genes in predicting outcomes of cancers, including melanoma. In the 

present study, we found that two-independent SNPs (TKT rs9864057 G>A and DERA 
rs12297652 A>G) were significantly associated with CMSS. Additional analyses suggested 

that their variant alleles were correlated with elevated mRNA expression levels in sun-

exposed skin, a possible biological mechanism underlying the associations between the 

variants of NADPH-related genes and CM progression that led to poor survival.

TKT is located on chromosome 3p21.1, and this gene encodes a thiamine-dependent enzyme 

that plays a role in the pentose phosphate pathway. In mammals, transketolase joins the 

pentose phosphate pathway and glycolysis, and then transfers sugar phosphates into the 

main carbohydrate metabolism, an important factor in the production of NADPH for 

biosynthesis [30]. Because alteration in cellular metabolism is one of the hallmarks of 

cancers [31], several studies have reported the clinical significance of TKT in energy 

regulatory mechanism, especially in the survival of patients with cancers. For example, it 

was reported that TKT expression was correlated with tumor size in breast cancer; in 

addition, TKT expression was higher in lymph node metastases than in primary tumor or 
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normal tissues of patients in whom high TKT levels were associated with poor survival after 

breast cancer [32]. TKT has also been associated with metastasis of ovarian and esophageal 

cancers, predicting poor survival [33, 34], but there are no such reports about melanoma 

survival. Other studies have reported significant associations between SNPs of the TKT gene 

and the morbidity/mortalities of some non-cancer diseases, particularly diabetic nephropathy 

[35-37]. Because melanoma is a cancer derived from neuroectoderm [38], a link between 

TKT genetic variants and nerve function has been reported [36]. Taken together, the findings 

in the present study support a significant role for TKT genetic variants in predicting CMSS.

DERA is located on chromosome 12p12.3 and encodes the human deoxyribose phosphate 

aldolase, which is involved in the glycosaminoglycan metabolism and the innate immune 

system. Deoxyribose phosphate aldolase activity levels have been correlated with DERA 
expression in most cell lines tested, and cells with high DERA activity can use deoxy 

nucleotide as a source of energy [39]. Through DERA, thymidine-derived 2-deoxy-D-ribose 

5-phosphate enters the glycolytic pathway, affecting cancer cell growth, invasion, and 

metastasis [40]. Thymidine, via the glycolytic pathway, relies on DERA in vitro and in vivo 
to convert it into multiple thymidine-derived intermediate metabolites required for the 

survival of cells under low-glucose conditions; therefore, the number of viable cancer cells is 

thereby reduced, while DERA is also reduced in a microenvironment in which glucose was 

insufficient [41]. Inhibition of thymidine phosphorylase activity suppresses tumor growth by 

increasing the proportion of apoptotic cells and probably inhibiting angiogenesis in human 

epidermoid carcinoma cells [42]. These findings suggest that DERA plays a central role in 

the survival and growth of cancer cells, particularly under starvation conditions. 

Furthermore, enhanced DERA-dependent thymidine catabolism has been observed in human 

gastric cancer [40, 43]. DERA has not been previously reported to be associated with CM 

progression and prognosis.

While we found consistent evidence that two novel SNPs (TKT rs9864057 G>A and DERA 
rs12297652 A>G) in two NADPH-related gene predicted CMSS, the present study has some 

limitations. First, the available clinical variables in the two datasets were different, and the 

fact there were only two variables (age and sex) available in the NHS/HPFS dataset limited 

adjustment for other potentially relevant clinical covariates. The second limitation is that the 

predictive model was built on a non-Hispanic white population in the United States, which 

may limit generalization of our findings to other populations. Third, SNPs in other relevant 

genes may have been omitted due to limited knowledge regarding identification of NADPH-

related genes. Finally, while differential expression is suggested by the in silico analyses, the 

exact molecular mechanisms of these two SNPs underlying the observed associations remain 

to be determined. Additional functional studies are needed to explore these newly identified 

SNPs in order to confirm their potential utility as biomarkers for CM prognosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• In the pathway gene analysis, two novel and independent SNPs (TKT 
rs9864057 G>A and DERA rs12297652 A>G) were significantly associated 

with cutaneous melanoma-specific survival (HR=1.52, 95% CI=1.18-1.96, 

P=1.06×10-3] and 1.51 (1.19-1.91, 5.89×10-4)

• The associations were in an allele dose-response manner (Ptrend<0.001 for 

rs9864057 variant genotypes, 0.004 for rs12297652 variant genotypes, and 

<0.001 for the number of their combined genotypes, respectively).

• TKT rs9864057 G>A and DERA rs12297652 A>G were significantly 

associated with higher mRNA expression levels in sun-exposed lower-leg skin 

(P=0.043 and 0.006, respectively).
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Figure 1: 
Research flowchart. Abbreviations: NADPH: nicotinamide adenine dinucleotide phosphate; 

SNP: single-nucleotide polymorphism; MDACC: The University of Texas M.D. Anderson 

Cancer Center; FPRP: false-positive report probability; TKT: transketolase; DERA: 

deoxyribose-phosphate aldolase; AUC: area under the curve; ROC: receiver operating 

characteristic; GWAS: genome-wide association study; MAF: minor allele frequency; HWE: 

Hardy-Weinberg equilibrium; NHS: the Nurses’ Health Study; HPFS: the Health 

Professionals Follow-up Study.
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Figure 2: 
The independent SNPs and CMSS. (a-f) Kaplan-Meier survival curves of the exact numbers 

of risk genotypes (a) in the MDACC dataset, (c) in the NHS/HPFS dataset and (e) in these 

two combined dataset; dichotomiazed groups of risk genotypes (b) in the MDACC dataset, 

(d) in the NHS/HPFS dataset and (f) in the combined dataset. Abbreviations: SNP: single-

nucleotide polymorphism; CMSS: cutaneous melanoma-specific survival; MDACC: The 

University of Texas M.D. Anderson Cancer Center; NHS: the Nurses’ Health Study; HPFS: 

the Health Professionals Follow-up Study.
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Figure 3: 
ROC and time-dependent AUC estimation for prediction of CM survival in the combined 

dataset of MDACC and NHS/HPFS as estimated by inverse probability of censoring 

weighting approach. (a) Five-year CM survival prediction by ROC curve, (b) Time-

dependent AUC estimation: based on age, sex and the combined risk genotypes of the two 

genes. Abbreviations: ROC: receiver operating characteristic; AUC: area under the curve; 

MDACC: The University of Texas M.D. Anderson Cancer Center; NHS: the Nurses’ Health 

Study; HPFS: the Health Professionals Follow-up Study; CM: cutaneous melanoma.
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