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Abstract 

We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone 

marrow and that in the future it may be possible to use such information for better understanding 

of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders. 
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Introduction to Brain 

As a very brief introduction to the brain we provide the following. The brain is highly complex, and 

is comprised of three major anatomical units:  the brainstem, the cerebellum, and the forebrain. 

The brainstem consists of the medulla, pons, and midbrain.  Collectively, these structures mediate 

voluntary and involuntary movement, communicate sensory information from the periphery, are 

essential for consciousness, and control the cardiovascular and respiratory systems.  The 

brainstem also contains the cell bodies of nerve cells (neurons) that are involved in emotional, 

cognitive, and behavioral regulation. The cerebellum sits at the junction of the brainstem and 

forebrain, and is important for maintaining motor coordination and balance, and may influence 

cognition.  The forebrain (also called the cerebrum) is divided into the telencephalon and 

diencephalon, both of which are further divided into multiple structures and subdivisions.  The 

telencephalon is the cerebral cortex, which is the ultimate information processing center.  A short 

list of its functions includes (but is not limited to) perception, comprehension, learning and 

memory, emotions, decision-making, language generation, and it serves as the overall behavioral 

control center. The dicencephalon contains several structures that integrate and process many 

types of information coming from both the brainstem and the cortex, including regulation of body 

functions (hypothalamus), multiple types of sensory information (thalamus), emotion generation 

and learning and memory (amygdala and hippocampus, respectively), and generation of directed 

movement and actions (basal ganglia).  Despite the accumulating wealth of information and 

knowledge that the field of neuroscience has generated, there are still a myriad of functions that 

the brain performs that essentially remain a mystery. 

Why this Commentary? 
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The first author of this commentary, as have others, has been fascinated with the brain and its 

functions, exactly what it is capable of. We now ask how it may, in the future, be 

modulated/programmed for health benefit. After reading the book entitled: “When Einstein Walked 

with Gödel. Excursions to the Edge of Thought” (1), the first author, who originally started college 

as a math major, was intrigued by the third chapter entitled: “Numbers Guy: The Neuroscience of 

Math”. While this chapter dealt with the brain and mathematical prowess and the limited 

knowledge available in this area, it got the first author thinking about the brain and hematopoiesis. 

The following commentary is thus meant to serve as a provocative correspondence to stimulate 

thinking and work in the area of communication of the brain and hematopoietic interactions. The 

chapter in this book (1) resulted in the first author speculating about how and if we might be able 

to specifically link brain actions to the regulation and control of hematopoiesis, and vice versa.  

Such knowledge has the potential to help guide the development of better treatments for 

hematological disorders such as leukemia, myelodysplasia (MDS), myeloproliferative neoplasms 

(MPN), and other bone marrow (BM) disorders. Such knowledge could lead to the study of the 

Central Nervous System (CNS) control for beneficial treatment of disorders of other organ 

systems as well, should such possibilities be uncovered in the future. 

Possible Brain – Hematopoiesis Link 

The brain/hematopoietic regulatory link (2-11) hypothesis could initially be tested using 

sophisticated brain imaging methods to identify regions that are activated upon systemic 

cytokine/chemokine exposure (12-17), in order to assess BM microenvironment actions (2-11, 
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18-21), and during mobilization of Hematopoietic Stem (HSC) and Progenitor (HPC) cells from

BM to the blood for hematopoietic cell transplantation (HCT) (22-27). 

New information suggests how the BM microenvironment with interactions from nerves regulate 

mobilization of HSCs from the BM to blood (28), where nociceptive nerves detecting external 

signals, and involving G-CSF, are intimately involved in mobilization. Moreover purinergic 

signaling and extracellular ATP play a role both in neurogenesis and hematopoiesis, and that 

there is a role of catecholamines in HSC trafficking that play a pivotal role of ATP signaling as a 

mediator released in addition to that of catecholamines in synapses (29). 

In support of the brain/hematopoietic regulatory link hypothesis is some evidence that the nervous 

system has a role in regulating HSC, HPC, and hematopoiesis (30-32), and that 

dipeptidylpeptidase (DPP)4/CD26 (24, 25, 33-39) is implicated in mobilization of HSC/HPC out 

from BM to the blood, and also for regulation of cytokine activity (39).  DPP4 can cleave the 

neurotransmitter Neuropeptide Y (NPY), and recent work has shown that manipulation of 

endothelial NPY and its receptors alters behavior of HSC and HPC (24, 25).   Although this work 

(24) involved peripheral endothelial NPY, effects of NPY is also integral to CNS function.

The above information, while of great interest, does not allow us to determine exactly how the 

brain-hematopoiesis might link, and led us to postulate that a brain/hematopoietic regulatory link 

is highly likely to exist. Such efforts to test this possibility will have to be multi-disciplinary in 

experimental attack, involving basic science researchers, neuroscientists, in vivo imaging 

scientists, and clinical investigators who are experts in blood cell production and the 

neurosciences.  It is possible that experts in other interacting disciplines should also be 
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incorporated. The co-authors of this correspondence met on several occasions to discuss these 

concepts, and began to plan preliminary studies to address some of the questions regarding 

brain-hematopoietic links, as little or no empirical information on this topic is currently available. 

Unfortunately, the experiments were put on hold because of the pandemic, but fortunately are 

beginning again. This correspondence is meant to stimulate thought and feedback on this 

potential new area of future research. 

Need for Experimental Evidence for a Brain – Hematopoiesis Link 

We believe that the brain plays an important role in the production of blood cells in the BM. Blood 

Cell Production (Hematopoiesis) allows formation of all blood cells necessary for sustained health, 

including: the white blood cells including: neutrophils, lymphocytes, and other lymphoid and 

lymphoid-like cells (Natural Killer cells, (NK cells), and NKT cells, etc.). These cells are important 

for maintaining/sustaining immunity and fighting cancer/leukemia and pre-cancer/leukemia cells. 

These mature cells, including platelets are produced by immature subsets of HSC and HPC found 

and nurtured mainly in BM of newborns and young and old adults through communication 

between cytokines, chemokines, and the microenvironment, as well as cell-cell interactions (12, 

13, 30-32). HSC are functionally defined by their capacity to make more of themselves (self-

renew) and to differentiate to form HPC and more mature cells. HSC and HPC functional activities 

such as self-renewal, survival, proliferation, differentiation, and migration are controlled within the 

BM microenvironment of neonates and adults (12, 13). Much is yet to be learned regarding the 

cellular, molecular, and biochemical regulation of HSC and HPC functions, information of crucial 

importance for eventual translation of this work to a clinical translational situation for HCT using 

HSC and HPC found in BM, cord blood collected at the birth of a baby (which is highly enriched 

for these cells at birth) or mobilized peripheral blood (when cytokines can induce mobilization of 

HSC/HPC from BM to the blood, since steady state blood itself contains few HSC and HPC). 
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Better understanding of HSC and HPC function, and how the brain impacts these functions, could 

also provide the opportunity for the potential future use of such cells for regenerative medicine 

(an exciting, but not yet rigorously proven clinical treatment process), and this evaluation ex-

vivo/in vitro using mouse and human embryonic stem cells and induced pluripotent stem cells. 

Emerging evidence has linked neurodegenerative diseases such as Alzheimer’s disease, multiple 

sclerosis, and traumatic brain injury to inflammatory processes arising from undesirable activation 

of cytokines (14-16).  In addition, the gut-microbiota-brain-axis may play an important role in the 

brain function via inflammatory pathways (40-43) and impinge on hematopoiesis.  

It is known that the nervous system plays an important role in regulating HSC, HPC, and 

hematopoiesis in the BM (30-32) which suggests a connection that might link brain activity with 

known neural-hematopoietic connections. Figure 1 diagrammatically summarizes some brain-

hematopoietic possibilities (7, 19). Understanding patterns of brain activity after exposure to 

treatments that alter HSC/HPCs should direct us to mechanistic underpinnings of how the brain 

modulates HSC/HPCs.  In turn, identifying these novel mechanisms may play important and 

crucial roles in learning how to control cytokine/chemokine-cell regulatory events within the BM. 

Thus, identifying potential links between the brain and signaling events within the BM would likely 

be important, as would be influences of the BM on brain function. Having a useful means such as 

neuroimaging to better understand CNS control of hematopoiesis will ultimately yield information 

of possible use for HCT and other clinical benefit by manipulating brain activity (perhaps via 

repeated transcranial magnetic stimulation, electric stimulation (44) or pharmacological 

manipulation). This putative ability to enhance desirable cellular responses, while possibly 

decreasing side effect profiles of such treatments would be far reaching and paradigm changing. 
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While at present, we do not have preliminary evidence for brain/BM regulatory control of 

HSC/HPC and hematopoiesis beyond the loose connections noted above, we propose some 

preliminary experiments that we believe, for the first time, may begin to elucidate such links. 

Beginning Experimental Suggestions for Establishing Potential Brain – Hematopoiesis 

Links 

In brief, examples of potential experiments would be: Determine if agents that are known to 

influence blood cell production originating in the BM and mobilization of HSC and HPC from the 

BM to blood have effects on brain activity assessed with functional magnetic resonance imaging 

(fMRI) and/or on cerebral blood flow measured with perfusion MRI (Figure 2; see reference 45). 

It should be possible to acquire functional and perfusion MRI data at baseline, and immediately 

after s.c. injection of cytokines, chemokines, or other growth modulating factors (12, 13) 

previously used in mice and man. Since we know that the effects of some cytokines, chemokines 

and other factors may occur very quickly (perhaps within 1-3 hours in the BM), it is possible that 

effects in the brain may be detected earlier, perhaps within minutes to early hours. 

There might be changes in blood flow directly in response to exogenous administration to mice of 

cytokines/chemokines/other growth regulatory molecules.  This is especially important to consider 

for fMRI, which indirectly measures neuronal activity via changes in blood oxygenation levels. 

This signal is flow-dependent, and could be confounded by direct effects of treatments on the 

vasculature.  Thus, controlling for non-specific (non-neuronal) effects will be an important 

component in any experimental design.  At a later time, when such effects are evaluated in 

humans, any effects of the various treatments on brain activity may be different in timing and 
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strength of the brain responses than what was initially observed in animals. Again, this speaks to 

the need to take such factors into account when designing human neuroimaging experiments. 

Regardless, this information could then serve as the first translational link between BM and brain 

responses. In turn, this would then drive research to help glean mechanistic insight into these 

phenomena, yet to be elucidated. As brain function and its links to the BM and other organs get 

better defined in a future technological advance context, it may be possible to define with more 

exactitude what neuronal circuitry is involved in the signals that the modulation of HSCs/HPCs 

elicit, and what intimate connections exist between the nervous system and BM 

microenvironment, HSCs, HPCs, and also the more mature myeloid, lymphoid, and stromal, 

endothelial, osteoblastic and osteomac cell types in the BM. As there are studies linking the 

nervous system to the mobilization of HSC/HPC from BM to blood (22-27), added insight into 

HSC/HPC mobilization may also be found. 

Additional Considerations 

It is important to understand that all cell regulation involves feedback loops (both negative and 

positive (12, 13)), and experiments can start with effects of modulation of BM cells to how the 

brain may respond, but also how the brain may elicit effects on the BM and other hematopoietic 

cell containing organs. This sequence (forwards and backwards) includes: the CNS (brain and 

spinal cord), the peripheral nervous system, neuronal endocrine involvement, microenvironmental 

effects, and BM and other cells. We already know that stress (46-50) and the microbiome (40-43, 

51-55) has effects on both the brain and the BM. Moreover, other areas in the endeavor to uncover

brain to/from regulation will need to eventually take into account enzymes, such as 

Dipeptidylpeptidase 4 (DPP4), known to regulate blood cell production and mobilization of HSCs, 
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HPCs, and more mature blood cells (33-39) and other enzymes. Sitagliptin, an orally active DPP4 

inhibitor, has already been used to modestly enhance time to recovery of neutrophils for cord 

blood HCT (56, 57) with some decreased graft vs. host disease (GVHD) in cord blood HCT, and 

more recently to reduce the undesirable effects of GVHD in recipients of allogeneic mobilized 

peripheral blood HCT (58). Thus, it is possible that regulation of brain activity might be able to 

dampen GVHD. Hematopoietic studies evaluating HSC and HPC function should also entail the 

role of collecting BM and blood cells in an in vivo hypoxia oxygen tension (Physioxia) situation 

compared to that of ambient air collections (59, 60); the oxygen tension in the BM ranges from 

about 1-5%. Since the oxygen tension in the blood and other internal organs is lower than that of 

ambient air, it should be taken into consideration for a more physiological understanding of 

HSC/HPC numbers and functional activity when cells are collected outside the body, although it 

is clear that oxygen tension in the brain must be high to support cognitive and brain functions. 

Additionally, in relation of stress and the microbiome, it is likely that the aging process may elicit 

different effects from that of the young (61, 62). 

What is the Possibility of Getting Useful Brain – Hematopoiesis Information? 

Frank Wilczek, Nobel Laureate in Physics, 2004, noted that neurons are the basic units of human 

brains, with their numbers being in the range of one hundred billion (1011) (63). This number of 

neurons is about equal to numbers of stars in our galaxy, a mind-boggling number. The neurons 

are wired together with many connections, perhaps hundreds or thousands with other neurons. 

With this vast complex number of neurons and their multipartite connections, can we ever make 

complete sense of how the brain-hematopoietic system and hematopoietic system-brain 

communicate with each other, and can these interactions/connections ever be used to control 
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hematopoiesis at a brain neuron level? Moreover, there are more glial cells in the brain than 

neurons, and they influence the function of neurons, another complication to investigating brain-

hematopoietic and- other organ interactions. Difficult, yes. Impossible in the future, probably not 

if one takes an optimistic pioneering attitude. Einstein has been quoted as saying: “Everything 

should be as simple as possible, but not simpler” (63). It is likely that the study of brain-

hematopoietic and other organ systems will get more complicated as they are analyzed, but 

ultimately, simple is the best solution if we are eventually ever able to take advantage of these 

links for therapeutic benefit in context of triggering the correct brain neural connections and their 

signaling, perhaps either physically or through next generation pharmacology. 

 

Will linking the brain with that of hematopoiesis and vice versa be a next frontier to investigate for 

potential health benefits? We think and hope so, but information in this area will require beginning 

experiments in these areas and knowledge will continue to evolve as more advanced technologies 

to study the brain become available. Basic scientists in multi-disciplines working with clinical 

investigators will figure out the connections and how to utilize the knowledge either sooner rather 

than later, or perhaps later rather than sooner. Regardless, work in this direction, no matter how 

preliminary or simplistic at the beginning, is well-worth the effort. The longer we wait to start, the 

longer it will be before we get answers.   
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Legends 

 

Figure 1.  Diagrammatic representation of possible reasons for suggesting links between the brain 

and regulation of hematopoiesis and vice versa.  A) Simplistic picture of brain-neuronal 

connections; B and C) Simplistic overview of neural regulation of hematopoiesis, inflammation 

and cancer (7); and D) Simplistic rendition of the BM microenvironment (19). 

 

Figure 2. Potential means to currently evaluate brain-organ links. A.) Diagrammatic representation 

of assessing the brain and organ responses. PNS:  peripheral nervous system.  ANS:  autonomic 

nervous system.  CNS:  central nervous system.  CBV:  cerebral blood volume.  CBF:  cerebral 

blood flow.  CMRO2:  cerebral metabolic rate of oxygen.  The hemodynamic response function is 

a parameter used in functional magnetic resonance imaging to estimate relative changes in blood 

oxygenation levels.  B.  Representative brain networks observed in human subjects with functional 

fMRI.    C.  Top: Representative maps of quantitative blood flow (cerebral blood flow, CBF, mL/100 

g/min).  Bottom:  Representative maps of arterial transit time (ATT; m sec) from the same data 

acquisition.  Data were acquired in a single subject with an MRI method called pseudo-continuous 

arterial spin labeling (pCASL).  Similar technology can be applied to rodents with high-field small 

animal MRI systems, with the result being translational information about rodent and human brain 

networks and brain blood flow. See article by Khalili-Mahani et al (45). 
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