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Abstract

When comparing survival times of treatment and control groups under a more realistic non-proportional 
hazards scenario, the standard log-rank (SLR) test may be replaced by a more efficient weighted log-
rank (WLR) test, such as the Fleming-Harrington (FH) test. Designing a group-sequential clinical 
trial with one or more interim looks during which a FH test will be performed, necessitates correctly 
quantifying the information fraction (IF). For SLR test, IF is defined s imply as the ratio o f interim to 
final numbers of events; but for FH test, i t can deviate substantially f rom this r atio. In this paper, we 
separate the effect of weight function (of FH test) alone on IF from the effect of censoring. We have 
shown that, without considering the effect of censoring, IF can be derived analytically for FH test using 
information available at the design stage and the additional effect due to censoring is relatively smaller. 
This paper intends to serve two major purposes: first, to emphasize and rationalize the deviation of IF 
in weighted log-rank test from that of SLR test which is often overlooked (Jiménez, Stalbovskaya and 
Jones); second, although it is impossible to predict IF for a weighted log-rank test at the design stage, 
our decomposition of effects on IF provides a reasonable and practically feasible range of IF to work 
with. We illustrate our approach with an example and provide simulation results to evaluate operating 
characteristics.

Keywords: Censoring distribution against events (CDE), delayed effects, early separation, Fleming-
Harrington (FH) test, information fraction, interim analyses, late separation, non-proportional haz-
ards, time-to-event endpoint, type-I error.

1 Introduction

In many comparative time-to-event (TTE) analyses, an implicit assumption is that the survival 
functions exhibit proportional hazards (PH). For example, PH assumption is essential to perform 
a standard log-rank (SLR) test or to fit a  C ox proportional h azards r egression m odel. H owever, in 
recent years, multiple clinical trials (e.g., Glioblastoma [1], acute lymphoblastic leukemia [2], head 
and neck cancer [3], and many others [4]) have exhibited late separation of survival curves, possibly 
due to a delayed treatment effect. Alternatively, survival curves may converge after early separation 
in some clinical trials (e.g., chemotherapy [5] and surgical and medical therapy [6]). Under these 
non-PH circumstances, to compare the survival distributions, the SLR test still remains a valid op-
tion, but it does not necessarily remain the most powerful test in the class of all linear rank tests. 
Moreover, ignoring the non-PH nature of the survival distributions may have serious consequences
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on the outcomes of the clinical trial, including failure to meet statistical significance [7–9].

Under a non-PH scenario (i.e., when hazards ratio (HR) changes over time), to increase power, the 
SLR test should be replaced by the weighted log-rank (WLR) test, which puts non-uniform weights to 
different events [10–12]. One choice of weights proposed by Fleming and Harrington (FH) [13, 14], and 
denoted by FH(ρ, γ) (see Section 2.2), has become very popular because of its flexibility to adapt to 
various non-PH scenario between by appropriately tuning ρ and γ. For example, FH(ρ = 0, γ > 0) 
put greater weights to later events whereas, FH(ρ > 0, γ = 0) assigns greater weights to earlier 
events. Of course, FH(ρ = 0, γ = 0) ≡ 1 refers to equal weights given to all events, which corre-
sponds to the SLR test. More importantly, the FH test (that is, the WLR test with FH weights) 
has the following two desirable statistical properties: (1) It maintains the probability of type-I error 
when ρ and γ are pre-specified (Tsiatis [ 15]); (2) Empirical s tudies [ 7, 8 ] have shown that while the 
FH test suffers only a minimal loss of power under the PH scenario, it achieves a substantial gain 
in power under the non-PH scenario. Despite these advantages, the WLR test must be used with 
caution as it might lose power when weights are mis-specified [16].

To detect early success or futility in a clinical trial, often a group-sequential design is adopted in which 
one or more interim analyses are permitted before the final a nalysis. Validity o f a  group-sequential 
design is primarily based on two principles [17]: (a) Re-parameterization of the test-statistic as a 
Brownian motion with independent increments; (b) Determination of the group-sequential bound-
aries based on information fraction (IF) accrued at each interim look. Tsiatis [15] has shown that 
the members of the FH class of statistics can be re-parameterized as Brownian motions for group-
sequential monitoring. However, estimation of IF, which determines the rejection boundaries for 
testing at the interim analysis, remains a challenging problem: For the SLR test, the IF is pro-
portional to the number of interim events; but in general, this relationship is not guaranteed to 
hold for the WLR test [18]. As Brummel and Gillen [19] pointed out, if IFs accrued at the interim 
analyses are not correctly estimated at the design stage, then power and type-I error will di
er from the originally targeted value: If IF is under-estimated, then the overall size of the test may be 
inflated; on the contrary, i f IF i s over-estimated, then the overall p ower of the test may b e compro-
mised. The focus of this paper is to correctly estimate IF for FH(ρ, γ) test in a group-sequential trial.

Previous works [18–20] observed that for the FH(ρ, γ) test, information growth depends on the un-
derlying pooled survival and censoring distributions across treatment arms along with the number of 
events at interim and final a nalyses. Consequently, all previous works on estimating IF are primarily 
based on parametric assumptions on TTE, enrollment, and lost-to-follow-up (LTFU) distributions 
[18–21]. In practice, these distributions cannot be predicted upfront at the design stage. Jiménez, 
Stalbovskaya and Jones [22] proposed an approach to implement FH test in a group-sequential design 
which does not allow rejection of null hypothesis at the interim. Moreover, this approach did not 
account for the deviation in IF from the ratio of events, and as such compromised the overall size 
of the test when weighted for late separation [23]. In this paper, we recognize that IF cannot be 
predicted precisely upfront at the design stage due to uncertainty in enrollment, TTE and LTFU 
distributions. Therefore, we focus on obtaining a reasonable and practically feasible range of IF to 
work with. Our approach has two advantages: first, t he u ncertainty i n d istributions a re reflected 
through the range of IF; second, the minimum IF can be used to define r ejection b oundaries at 
interim analyses without inflating the overall type I  error.
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In this paper, we separate the effect of the weight function FH(ρ, γ) on IF from the effect of censor-
ing combinedly introduced by enrollment, LTFU and TTE distributions. The impact of non-uniform
weighting of events on IF is easy to understand: For example, if a weight function gives larger weights
to later events to account for late separation, the accrual of information will be relatively slower at
the beginning causing IF to be smaller than the ratio of interim to final number of events. Similarly,
one can visualize the effect of a weight function that puts higher weights to earlier events or to
events in the middle. In the first step, we measure the effect of the given weight function FH(ρ, γ)
alone on IF ignoring the effect of censoring (see Section 3.1). Aside from explaining the effect of a
weight function alone on IF, this approach has two advantages: (1) Without considering the effect
of censoring, IF can be derived analytically; (2) It represents maximum IF and minimum IF under
late separation and early separation, respectively. In the second step, we estimate the effect of cen-
soring realized through enrollment, LTFU and TTE distributions (see Section 3.2). The intuition
for the effect of censoring on IF is as follows: FH weights are function of the survival function S(·);
and censoring causes a larger drop in S(·) following an event. In this context, we define “censoring
distribution against events” (CDE) as the distribution of censored patients observed between two
successive events. The advantage of using CDE is that it reduces the three dimensional distribu-
tional problem of enrollment, TTE and LTFU into a single dimension. As it turns out, the additional
effect of censoring on IF is relatively smaller than the effect of variable weighting alone, which in
turn helps to construct reasonable and practically feasible range for IF.

In this paper, we focus on estimating IF for the FH test with emphasis on late separation; however, the
same principle applies to any WLR test and the findings extend to early separation. In Section 2, we
describe the clinical trial setting, and give an overview of the FH test and group-sequential monitoring.
Determination of IF due to variable weighting without censoring is described in Section 3.1. The
effect of censoring on IF, along with CDE, is presented in Section 3.2. The proposed approach is
illustrated in Section 4 and simulation results are presented in Section 5. The overall implementation
strategy of FH test in a group-sequential clinical trial design is presented in Section 6. The R codes
to calculate the IF for FH tests and CDE are presented in the Appendix.

2 Preliminaries

2.1 Group-sequential setting

Consider a typical two-armed, randomized, group-sequential, clinical trial that compares a treatment
arm with a control arm using time-to-event as a primary variable of interest. Altogether N patients
are enrolled and randomized with a : 1 (treatment to control) allocation ratio in the study during
the time interval [0, E], measured in months, say. For simplicity, we assume equal allocation ratio
between the arms. The data are analyzed not just at the planned end of the study, but also at M ≥ 1
earlier time-points during the course of the study. At each of the M + 1 analysis time-points, the
following hypotheses are tested:

H0 : θ(t) = 1 vs. H1 : θ(t) < 1 for all t

where θ(t) denotes the treatment-to-control HR at time t after randomization. When θ(t) ≡ θ (i.e.,
HR is constant over time), SLR test would be most powerful. However, SLR test may not be the
most powerful when HR varies over time. The mth (m = 1, · · · ,M) interim analysis is carried out
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after observing DIAm events. After each interim analysis, a decision is made either to stop the study
due to early efficacy; or to continue the trial on to the next analysis. The final analysis is conducted
after observing DFA events. In principle, we have DIA1 < · · · < DIAM

< DFA. The total study
duration is L (i.e., time between enrollment of first patient and observation of DFA events). Further,
assume that the events in the study are observed at follow-up times t1 < t2 < · · · < tK , with nk
patients at risk and dk events observed at time tk (k = 1, · · · ,K).

2.2 A brief review of Fleming-Harrington (FH) test

Let’s assume that at the time of analysis, the distributions of observed events on the two arms are
as follows: At time tk, d0k events were observed from n0k patients at risk on the control arm, and
d1k events were observed from n1k patients at risk on the treatment arm. Let d0k + d1k = dk and
n0k + n1k = nk. Then any WLR test statistic can be expressed as (e.g., see [21])

WLR test statistic = SWL√
V ar(SWL)

,

where SWL =
∑
k

W (tk)[d1k − E(d1k)] with E(d1k) = n1kdk
nk

and V ar(SWL) =
∑
k

W 2(tk)V ar(d1k), with V ar(d1k) = n0kn1kdk(nk − dk)
n2
k(nk − 1)

For an FH test with weight FH(ρ, γ), an event observed at time t is given the weight

W (t) = [S(t)]ρ [1− S(t)]γ , with ρ, γ ≥ 0 (1)

where S(t) is the estimated survival probability at time t in the pooled population (both arms
combined). Clearly, when ρ = γ = 0, the FH test reduces to the SLR test with weight W (t) ≡ 1.
To account for late separation, FH(ρ = 0, γ > 0) is used to put greater weights on the later events.
Similarly, FH(ρ > 0, γ = 0) is used to put greater weights on the earlier events. As noted earlier, the
FH test maintains type I error probability when ρ and γ are pre-specified and can achieve substantial
gain in power under a non-PH scenario.

2.3 Group-sequential monitoring

The key to formulating a group-sequential testing in a clinical trial design is to approximate the test
statistic over time by the partial sum of independent and identically distributed random variables
(that is, S-processes)[17]. Tsiatis [15] has shown that such an S-process can be constructed in the
context of FH test which can be defined at the kth observed event time-point as

SWL, k =
k∑
r=1

W (tr)[d1r − E(d1r)]

where W (t) is defined in (1). The next step is to define a Brownian motion process with independent
increments, as in [24], as

Bk = SWL, k√
Ik

, with Ik = V ar(SWL, k)

4



where Ik is the information accrued upto kth observed event; and it equals V ar(SWL, k). Accordingly,
information fraction (IF) after observing the kth event is expressed as

IF (k) = Ik
IK

where IK is the maximum information available after observing all DFA events in the study. Of the
many approaches to compute the group-sequential boundaries based on IF accrued at each analysis
timepoint that preserve the overall type-I error probability, the error spending function of Lan and
DeMets [25] is the most popular.

3 Information fraction for a Fleming-Harrington test

As noted in Section (2.3), the pivotal component in group-sequential monitoring is to estimate the
IF at each analysis time-point. Under the assumptions [21] of (a) no ties (i.e., dk = 1), and (b) the
ratio of individuals at risk on the two treatment arms at each observed event time is close to the
original allocation ratio (i.e., n0k/n1k ≈ 1/a), the expression of V ar(d1k) simplifies to

V ar(d1k) = n0k
nk
· n1k
nk
≈ 1
a+ 1 ·

a

a+ 1 = a

(a+ 1)2

and, therefore, the expression of SWL, k simplifies to

Ik = V ar(SWL, k) ≈
a

(a+ 1)2

k∑
r=1

W 2(tr)

Thus, the information contributed by the kth event, after substituting FH weights in Eq. (1), is

Information contributed by kth event: a

(a+ 1)2 W 2(tk) = a

(a+ 1)2 [S(tk)]2ρ[1− S(tk)]2γ (2)

Consequently, given DIA and DFA events at interim and final analysis respectively, the IF becomes

IF (DIA, ρ, γ) =
∑DIA
k=1 [S(tk)]2ρ[1− S(tk)]2γ∑DF A
k=1 [S(tk)]2ρ[1− S(tk)]2γ

(3)

For the SLR test (i.e., ρ = 0, γ = 0 =⇒ W (t) ≡ 1), the IF in Eq. (3) reduces to DIA/DFA. For the
FH test, the IF can be very different from DIA/DFA as the observed events do not contribute to the
information equitably. For example, if we weight the later events more heavily than the earlier events
to account for late separation, information accrues at a slower rate compared to the equal weight sce-
nario resulting in IF < DIA/DFA. Similarly, when we account for early separation, IF > DIA/DFA.

One way to estimate the IF is by plugging in the KM estimate of S(·) in Eq. (3). Let tk denote the
observed time of the kth event and nck denote the number of patients censored in (tk−1, tk]. Then the
KM estimate of S(·) at time tk is

Ŝ(tk) = Ŝ(tk−1)
(

1− 1
N − k − nck + 1

)
=

k∏
r=1

(
1− 1

N − r − ncr + 1

)
(4)

Since censoring affects S(·), it should also affect expression of IF in Eq. (3). Therefore, IF for FH test,
is impacted by two factors: (a) non-uniform weighting of events, and (b) censoring of patients. We
separate the effect of these two factors and are described in Section 3.1 and Section 3.2, respectively.
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3.1 Information fraction under variable weighting, without the effect of censoring

To evaluate the sole effect of the weight function on IF, we assume that minimum censoring time
is greater or equal to maximum follow-up time at final analysis (say, LFA) in the study implying
nck = 0,∀k = 1, · · · , DFA. Under this assumption,

Ŝ(tk) = Ŝ(tk−1)
(

1− 1
N − k + 1

)
=

k∏
r=1

(
1− 1

N − r + 1

)
= N − k

N
(5)

Substituting Eq. (5) into Eq. (3), we obtain the IF with FH(ρ, γ) without censoring as

IF0(DIA, ρ, γ) =
∑DIA
r=1 (N − r)2ρr2γ∑DF A
r=1 (N − r)2ρr2γ

(6)

Clearly, the IF without censoring can be derived analytically based on N , DIA and DFA. Further-
more, when accounting for late separation [i.e., ρ = 0], the IF depends only on DIA and DFA, but
not on N , since

IF0(DIA, ρ = 0, γ) =
∑DIA
r=1 r

2γ∑DF A
r=1 r2γ

(7)

The R code to calculate IF without considering the effect of censoring is presented in Appendix 1.

3.2 Information fraction with censoring

3.2.1 Effect of censoring on information fraction

Patients might experience potentially two types of censoring—administrative censoring due to stag-
gered enrollment, and LTFU censoring due to patients dropping out. If the final analysis time is L,
patients who enrolled at the start can have follow-up time upto L, whereas patients who enrolled
at time E can only have a shorter follow-up time up to (L − E). Therefore, no patients would be
administratively censored before a follow-up time of L−E. Let l0 be the earliest follow-up time when
censoring starts affecting Ŝ(t), as shown in Figure 1. This l0 can be interpreted as smallest censoring
time as well. In the absence of LTFU censoring, l0 = L − E. However in presence of LTFU, l0 can
be much smaller than L− E.

The estimated survival function Ŝ(t) is affected by censoring because it reduces the pooled risk set,
with heavier censoring resulting in a larger drop in Ŝ(·) at each observed event time. If nck patients
are censored during time interval (tk−1, tk] and Nk patients are at risk after the (k− 1)st event, then

Ŝ(tk|nck > 0) = Ŝ(tk−1) 1− 1
Nk − nck

)
< Ŝ(tk−1)

(
1− 1

Nk

)
= Ŝ(tk|nck = 0)

Thus, any censoring in (tk−1, tk] decreases Ŝ(tk). Now, to understand the impact of censoring on
subsequent events, we consider a scenario where nck patients are censored in (tk−1, tk] and there were
no more censoring in the interval (tk, tk+l] until l additional events are observed. In this case,

Ŝ(tk+l|nck > 0) = Ŝ(tk−1) 1− 1
Nk − nck

)(
1− 1

Nk − nck − 1

)
· · · 1− 1

Nk − nck − l

)
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Figure 1: Impact of administrative censoring on K-M curve (l0 = smallest censoring time, LIA =
maximum follow-up time at interim analysis, LFA = maximum follow-up time at final analysis). In
absence of any lost to follow-up (LTFU) drop out, l0 = L− E where L is total study duration, and
E is enrollment duration. With LTFU drop out, l0 can be much smaller than L− E.

It is easy to see that

Ŝ(tk+l|nck = 0)− Ŝ(tk+l|nck > 0) > Ŝ(tk|nck = 0)− Ŝ(tk|nck > 0) (8)

That is, nck > 0 causes a greater drop in Ŝ(tk+l) compared to that in Ŝ(tk). Thus, each censoring
affects Ŝ(·) at all subsequent events with increasing drops in Ŝ(·) at later events. Furthermore, any
censoring impacts only subsequent events, but not the previous events. These two impacts together
imply that the drop in Ŝ(·) due to censoring is greater at later events compared to earlier events.

Since censoring affects Ŝ(·), consequently, censoring also affect the information contributed by each
event, a

(a+1)2 [Ŝ(·)]2ρ[1 − Ŝ(·)]2γ (see Eq. (2)). For ρ = 0 (i.e., when accounting for late separation),
censoring increases the information a

(a+1)2 [1 − Ŝ(·)]2γ accrued by each event. Similarly, censoring
decreases the information accrued by each event when accounting for early separation (i.e., γ = 0).
In both the cases, changes in information due to censoring is greater at later events compared to
earlier events. The effect of censoring is also controlled by the degree of weighting as determined by
ρ and γ with greater weight resulting in more effect of censoring.

3.2.2 Comparison between IF with and without censoring

As before, let l0 be the smallest censoring time, LIA be the maximum follow-up time at interim
analysis and LFA be the maximum follow-up time at final analysis (see Figure 1). For now assume,
l0 ≤ LIA. Further assume D0, DIA and DFA events were observed by time l0, LIA and LFA,
respectively. Denote the three disjoint contiguous time intervals as: T0 = (0, l0], T1 = (l0, LIA] and
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T2 = (LIA, LFA]. Further, denote the information accrued in T0, T1 and T2 without censoring as x0,
x1 and x2, respectively, and the change in information due to censoring as ∆x1 and ∆x2 in T1 and
T2, respectively. In other words, x0 is the information from subjects with event times not exceeding
the smallest censoring time, x1 is the information from subjects with event times greater than the
smallest censoring time but not exceeding the event time of DIA

th event, and x2 is the information
from subjects with event times beyond that of DIA

th event. Note that censoring does not affect
information accrued in T0. Denoting IF without considering the effect of censoring as IF0 ≡ IF0(ρ, γ)
and with censoring as IFc, we have

IF without censoring: IF0 = x0 + x1
x0 + x1 + x2

IF with censoring: IFc = x0 + x1 + ∆x1
x0 + x1 + x2 + ∆x1 + ∆x2

Note that IF does not change due to censoring (that is, IFc = IF0)) as long as the relative increase
in information in (0, LIA] and (0, L] are equal; that is, when

∆x1
x0 + x1

= ∆x1 + ∆x2
x0 + x1 + x2

We can express the difference in IF as

IF0 − IFc =
( ∆x1
x0 + x1 + x2 + ∆x1 + ∆x2

)
· [IF0 ·∆x2 − (1− IF0) ·∆x1] (9)

For ease of discussion, consider the weighting for late separation only. Under late separation, censor-
ing reduces the information (see Section 3.2.1) and thus both ∆x1 and ∆x2 are positive. Therefore,
both IF0 ·∆x2 and (1− IF0)∆x1 are positive. Hence, IFc cannot differ much from IF0. Moreover,
the quantity IF0 ·∆x2 is larger than (1− IF0)∆x1 if the following two conditions are satisfied:

(a) IF0 > (1− IF0); or equivalently, IF0 > 0.5, and

(b) ∆x1 < ∆x2, which holds if the number of events in T2 (i.e., DFA − DIA) is greater than the
number of events in T1 (i.e., DIA −D0) (see Eq. (8)).

If the above two conditions are not met, we can not make a definitive statement whether or not
IF0 ·∆x2 is bigger than (1− IF0) ·∆x1. We note that the above two conditions cannot both fail, as
explained in the two points below:

1. Condition (a) may not be satisfied when either DIA/DFA < 0.5 is small implying that only
relatively fewer events contribute to x1, or γ is relatively large (i.e., steep increase in weight
towards later events), implying that ∆x1 << ∆x2 favouring IF0 · ∆x2 to be greater than
(1− IF0)∆x1.

2. Condition (b) may not be satisfied if DIA/DFA is close to 1 or γ is relatively small. A value
of DIA/DFA closer to 1 implies IF0 >> (1 − IF0), again favoring IF0 · ∆x2 to be greater
than (1 − IF0)∆x1, whereas a smaller value of γ limits the overall impact of censoring (see
Section 3.2.1).
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Therefore, the quantity IF0 · ∆x2 would either exceed or be very close to (1 − IF0)∆x1 in most
practical cases. Consequently, under late separation, IFc is likely to be smaller than IF0 under
almost every reasonable censoring. In fact, it would be challenging to construct a censoring pattern
that would lead IFc greater than IF0. Therefore, we conclude that IF0 ' IFc under late separation.
Recall at the beginning of this sub-section, we assumed l0 ≤ LIA. Now if l0 > LIA, then clearly,
∆x1 = 0 implying IFc < IF0, since ∆x2 > 0 under late censoring. Hence, our conclusion that
IF0 ' IFc under late separation is well justified.

Similarly, under early separation, both ∆x1 and ∆x2 are negative quantities, and hence, IF0 / IFc.
In summary, these are the major takeaway lessons from the above discussion:

1. Usually, censoring works in the same direction of the weight function when accounting for either
late or early separation. That is, censoring further reduces (increases) IF when accounting for
late (early) separation. Therefore, IF0 represents the maximum (minimum) IF under late
(early) separation.

2. IF with censoring (IFc) cannot differ much from IF without censoring (IF0).

3. The following relationship holds when accounting for late separation

IF for the SLR
test (DIA/DFA) >

IF for FH test
without censoring (IF0) '

IF for FH test
with censoring (IFc)

4. The following relationship holds when accounting for early separation

IF for SLR
test (DIA/DFA) <

IF for FH test
without censoring (IF0) /

IF for FH test
with censoring (IFc)

Thus ignoring the effect of censoring might inflate the probability of type I error under late separation
and may compromise the interim power under early separation.

3.2.3 Estimation of information fraction with censoring

The realization of a censoring pattern in a study is a convolution of three distinct distributions—
enrollment, LTFU and TTE distributions. Since censoring affects IF, a precise knowledge of these
three distributions is necessary to calculate IF [18–21]. However, since these distributions cannot
be predicted precisely at the design stage, an obvious strategy would be to evaluate all possible
censoring scenarios and then to choose the minimum IF to preserve the overall size. Note that,
censoring ultimately affects Ŝ(·) (and therefore, the FH weight and IF) through the distribution of
number of censored patients (nck) within each time interval (tk−1, tk] only (see Eq. (4)). We call this
“censoring distribution against events” or CDE. Precisely speaking, CDE is defined as distribution
of nck at each observed event k and nck is defined as follows

nck =
N∑
i=1

I(ith subject is censored)× I(tk−1 < follow-up time of ith subject ≤ tk)

where I(·) is the indicator function. Since it is relatively simpler to work with a single distribution
than to work with three different distributions, we estimate the IFc using CDE. For a given CDE,
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Figure 2: Average CDE and minimum IF (i.e., IFc) for FH test and SLR test with 388 events based
on 10,000 simulated data sets as described in Section 3.2.3. The black lines (representing CDE)
should be compared with the first y-axis and all other lines (representing IF) should be compared
with the second y-axis. IF for SLR test is the ratio of events and is not impacted by censoring. IF
for FH tests without censoring are obtained using Eq. (7). Clearly, IF for FH test is smaller than IF
for SLR test. Further, censoring reduces IF for FH tests with increased effect of censoring as weight
in FH test increases. 10



IFc (i.e., IF with censoring) can be computed by plugging nck in Ŝ(tk) in Eq. (4) and then Ŝ(tk) in
Eq. (3). R codes to calculate CDE and IFc are presented in Appendix 2 and 4, respectively.

Examples of CDEs and resultant IFs are displayed in Figure 2 with uniform enrollment distribution
over an enrollment period of 20 months or 40 months, exponential TTE distribution (with a median of
14.1 months) and exponential LTFU distribution (with an overall LTFU rate of either 0% or 20%).
The total sample size was varied between 554 and 1000 with 388 final events. For each scenario,
10,000 simulated data sets were generated, CDE and IFc for FH tests were obtained for each data
set and the average CDE and the minimum IF are presented. As can be seen in Figure 2, a larger
sample size results in a relatively more administratively censored patients leading to more left-skewed
CDE. Prolongation of enrollment period can have a similar impact as larger sample size; however,
excessive prolongation of enrollment period will have a reverse effect as the targeted number of events
for final analysis may be reached before the completion of enrollment period thereby reducing the
total number of administratively censored patients. A higher proportion of LTFU patients tends to
distribute the censored patients evenly over the events compared to the no LTFU scenario, in which
case CDE tends to be relatively more left-skewed. The distribution of LTFU with a fixed overall
LTFU rate has very limited impact on CDE when compared to a uniform LTFU distribution (not
shown in the figure).

Figure 2 also displays the IF for SLR test and three FH tests (FH(0,0.2), FH(0, 0.5), and FH(0,
1.0)) accounting for late separation. Clearly, IFs for all three FH tests are much smaller than IF for
SLR test (i.e., ratio of events). Further, for each of the FH tests, IF with censoring (IFc) is smaller
than that without censoring (IF0). As the γ in FH(ρ, γ) increases, (a) both the IF(SLR) −IF0 and
IF0− IFc increase, and (b) the effect of censoring (IF0− IFc) is substantially smaller than the effect
of weighting alone (i.e., IF(SLR) −IF0). For the FH test accounting for early separation, the effect
would be almost similar, though in the reverse direction; that is, an increase in IF due to weighting
and censoring with increased effect of censoring as weighting increases.

A particular CDE is a realization of specified enrollment, TTE and LTFU distributions. Therefore,
we must evaluate an exhaustive list of all possible CDEs to determine the minimum IFc. For that,
we first take note of the following three distinct features in CDE plots presented in Figure 2:

F1: Initially, the CDE plot remains flat and very close to zero. At this stage, administrative
censoring did not begin and censoring comes primarily from LTFU.

F2: Thereafter, censoring increases with time. At this stage, aside from LTFU, effects of adminis-
tratively censored patients become more visible.

F3: There is a sharp increase in censoring towards the end because of a relatively large number of
administratively censored subjects.

We propose to mimic the above features in CDE and then to characterize all potential CDEs by
varying the timing of onset of these stages and the distribution within each stage consistent with the
above observations. We have illustrated this in Section 4 (see Eq. (10)).
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3.2.4 Factors influencing the effect of censoring on information fraction

The magnitude of contribution to IF due to censoring depends on several factors. We discuss the
impact of these factors only in the context of the FH test accounting for late separation, leaving
other contexts to the reader.

1) Number of patients censored: Quite naturally, the impact of censoring on IF will be higher when
more patients are censored. Enrollment of relatively large number of patients to reach a target
number of events in a short duration implies that large number patients would be censored
resulting in a greater impact of censoring on IF. In this context, we also note that, under late
separation, attempting to shorten the trial duration by increasing the total sample size is not
desirable, since the data may not be mature enough to manifest late separation and the overall
power of the test may be compromised.

2) Proportion of events at interim analysis: If the number of interim events are smaller than the
events at the final analysis, then impact of censoring on information accrued by interim events
could be very small compared to the that on post-interim events causing a greater effect of
censoring on IF. On the contrary, we can limit the effect of censoring on IF by conducting the
interim analysis closer to the final analysis.

3) Weight function: The quantity IF0 − IFc is largely impacted by the quantity IF0 ·∆x2 relative
to (1 − IF0) ·∆x1 (see Eq. (9)). As the imbalance in weight between earlier and later events
increases, ∆x2 also increases, resulting in smaller IFc.

4) Shape of the CDEs: A large number of patients censored immediately before an interim analysis
hardly impacts information accrued at interim analysis whereas the effects of such censoring is
fully realized through post-interim events. Such a censoring pattern causes a greater decrease
in IF when accounting for late separation.

4 Example

The Set-up

To illustrate the proposed method, we consider a clinical trial design in which we intend to observe
388 events at the time of final analysis. We assume an overall treatment-to-control HR of 0.75. Due
to a potential delayed treatment effect, we wish to consider the FH test for the test of HR with
a one-sided significance level of 0.025. The planned total sample size was 554; and these patients
will be assigned to the two treatment arms in the ratio 1:1. We consider only one planned interim
analysis with timing of interim analysis varied from 291 events (75% of target) to 194 events (50% of
target). The two treatment arms will be compared using the FH test accounting for late separation:
Hence, we set ρ = 0 and γ > 0 (where a larger γ represents more imbalance in weights in favor
of later events). The overall probability of type I error of testing will be split between interim and
final analysis according to Lan-DeMets O’brien-Fleming approximate spending function. We further
assume that patients will be enrolled over a period of 20 months (i.e., E = 20), and the total study
duration is expected to be 33 months (i.e., L = 33) based on an assumed control median of 11 months.

Determining IF0 (i.e., IF accounting for only variable weighting, but no-censoring)

12
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Figure 3: Some CDEs generated based on Eq. (10) and later used in calculation of IFc (i.e., IF with
censoring). The y-axis is truncated at 4 in an attempt to make the features in CDE relatively more
visible. In fact, an exhaustive list of CDEs were generated by varying σ, a, b, and h1 and h2; however,
due to space constraints only a handful of CDEs are displayed as examples.

Under late separation, IF0 can be directly obtained using the number of events at interim and
final analyses using Eq. (7). Table 1 summarizes IF0 obtained for different weight functions
FH(ρ = 0, γ > 0), as γ ranges over [0, 1]. FH(ρ = 0, γ = 0)) represents SLR test and hence, IF0
equals to the ratio of interim to final counts of events (i.e., IF0 = 0.75 at 75% events and IF0 = 0.50
at 50% events). For γ > 0, we see a drop in IF0 compared to that of SLR. This drop becomes larger
as the γ (i.e., difference in weights in favor of later events) increases due to slow accrual of information.

Estimating IFc (i.e., IF accounting for both variable weighting and censoring)

As explained in Section 3.2.3, we evaluated the effect of censoring through CDEs (i.e., distribution
of censored patients between any two successive events). In order to approximate CDE, we have first
considered an underlying functional form f(x), x ∈ (0, 1] representing the features (F1–F3) of CDEs
observed in Section 3.2.3 as follows:

f(x) ∝


h1 0 < x < a (corresponds to feature F1)
h1 + (h2 − h1) · x/b a ≤ x < b (corresponds to feature F2)
h2 + g (1− x|σ)− g (1− b|σ) b ≤ x ≤ 1 (corresponds to feature F3)

(10)

where 0 ≤ h1 ≤ h2 and g(x|σ) is the density of a log-logistic distribution with shape σ (0 < σ ≤ 1)
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Table 1: IF without censoring (IF0), minimum IF with censoring (IFc) and associated α rejection
boundaries for the FH(ρ = 0, γ) test at interim and final analysis with an overall one-sided probability
of type I error of 2.5%. The column γ = 0 represents the standard log-rank test.

Accounting for variable weighting Accounting for both variable
Fleming only (i.e., without censoring) weighting and censoring
Harrington Information α (1-sided) Information α (1-sided)
test fraction (%) Interim Final fraction (%) Interim Final

Interim analysis at 75% event
FH(ρ = 0, γ = 0) 75.00 0.0096 0.0221 75.00 0.0096 0.0221
FH(ρ = 0, γ = 0.1) 72.17 0.0083 0.0225 70.14 0.0074 0.0227
FH(ρ = 0, γ = 0.25) 66.53 0.0060 0.0232 63.14 0.0048 0.0235
FH(ρ = 0, γ = 0.5) 58.01 0.0033 0.0240 52.46 0.0020 0.0244
FH(ρ = 0, γ = 0.75) 50.70 0.0016 0.0245 43.13 0.0006 0.0248
FH(ρ = 0, γ = 1) 44.26 0.0008 0.0247 35.09 0.0002 0.0249

Interim analysis at 50% event
FH(ρ = 0, γ = 0) 50.00 0.0015 0.0245 50.00 0.0015 0.0245
FH(ρ = 0, γ = 0.1) 44.40 0.0008 0.0247 42.90 0.0006 0.0248
FH(ρ = 0, γ = 0.25) 36.26 0.0002 0.0249 33.84 0.0001 0.0250
FH(ρ = 0, γ = 0.5) 25.86 0.0000 0.0250 22.47 0.0000 0.0250
FH(ρ = 0, γ = 0.75) 18.44 0.0000 0.0250 14.73 0.0000 0.0250
FH(ρ = 0, γ = 1) 13.15 0.0000 0.0250 9.54 0.0000 0.0250
Interim and final α are determined using the gsDesign package as follows:
gsDesign(k=2, sfu=sfLDOF, test.type=1, alpha=0.025, timing=c(IF, 1))|
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and scale 1. Subsequently, nck for CDE were obtained as follows:

nck = f

(
k

DFA

)
· (N −DFA)/

DF A∑
r=1

f

(
r

DFA

)
(11)

Note that nck may be fraction representing expected number of patients censored in consistent with
CDEs observed in Figure 2. The R codes to generate CDE based on Eq. (10) and (11) is presented in
Appendix 3. In this example, we have varied σ, a, b, and h1, h2 as follows to generate a wide range of
CDEs to evaluate: σ = 0.001(.15)0.901 and 1; a=0(.15).90 and 1; b = a(.15)0.90 and 1; h1 = 0(0.5)5;
h2 = h1(0.5)5. Some of the CDEs are plotted in Figure 3. The IFc were calculated for all CDEs
described in Section 3.2.3, and only the minimum IFc over all CDEs are presented in Table 1. As
argued in Section 3.2.2, IFc is smaller than IF0 across all values of γ. Generally, IFc is close to IF0
for small γ; however, the gap increases with the increase in γ.

Determining rejection boundaries based on minimum IFc

Interim and final alpha rejection boundaries using IF0 and the least IFc are also presented in Table 1.
When comparing IFc with IF0, it is clear that IF of the FH tests is significantly impacted by the
weight function; but the additional impact of censoring is relatively smaller. For example, at the
interim analysis with 75% events, the weight FH(ρ = 0, γ = 0.25) alone reduces the IF by 8.47%
(from 75% to 66.53%). Thereafter, censoring reduces the IF further by 3.39% (from 66.53% to
63.14%), which translates into a difference of only 0.0012 in the interim alpha boundary.

5 Simulation

We conducted a simulation study to evaluate the operating characteristics (size, power under PH
assumption and power under specified delayed effects) of the study design presented in Section 4.
In all cases, event times on the control arm were generated from an exponential distribution with a
median of 11 months. An enrollment period of 20 months was allowed; and within each month, the
enrollment times were generated from a uniform distribution. Each patient was assigned to either
the treatment or the control arm with probability 1/2 each. To account for LTFU, drop-out times
were generated randomly from an exponential distribution with 10% drop-out rate by 3 years.

Denoting event time by T ∗ and censoring time by C, the follow-up time was determined as T =
min(T ∗, C), and the event indicator as δ = I(T ∗ ≤ C): δ = 1 when event is observed by the time of
analysis; otherwise, δ = 0 when patient is either dropped-out or administratively censored. Empirical
size and power are reported based on proportion of rejections at interim and final analyses using the
α rejection boundaries shown in Table 1.

5.1 Size of the FH test

To evaluate the overall size of the test, survival data on the treatment arm were also generated
from an exponential distribution with median time the same as on control arm (that is, 11 months).
Results based on 100, 000 replicates are presented in Table 2. In Table 2, under both the no censoring
scenario and in presence of censoring, we see that the size of the FH test, with α determined based
on the corrected IF, is very close to nominal size of 2.5%, and comparable to the size of the SLR (i.e.,
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Table 2: Empirical size of Fleming Harrington test with 0.025 nominal type I error (1-sided)

Simulated with no censoring Simulated with censoring
FH test with α FH test with α FH test with α FH test with α
using correct IF using 75% IF using correct IF using 75% IF

Fleming Interim Overall Interim Overalll Interim Overal Interim Overall
Harrington test size size size size size size size size
FH(ρ = 0, γ = 0) 0.0093 0.0241 0.0093 0.0241 0.0100 0.0255 0.0100 0.0255
FH(ρ = 0, γ = 0.1) 0.0079 0.0244 0.0093 0.0248 0.0079 0.0255 0.0100 0.0260
FH(ρ = 0, γ = 0.25) 0.0057 0.0248 0.0096 0.0258 0.0050 0.0251 0.0102 0.0265
FH(ρ = 0, γ = 0.5) 0.0034 0.0252 0.0096 0.0268 0.0021 0.0252 0.0100 0.0271
FH(ρ = 0, γ = 0.75) 0.0016 0.0251 0.0098 0.0274 0.0007 0.0253 0.0098 0.0277
FH(ρ = 0, γ = 1) 0.0008 0.0252 0.0101 0.0278 0.0002 0.0256 0.0101 0.0281

Table 3: Empirical power of Fleming-Harrington test

Under PH model Under late separation
Fleming Interim Overall Interim Overall
Harrington test power (%) power (%) power (%) power (%)
FH(ρ = 0, γ = 0) 54.36 79.94 33.89 76.69
FH(ρ = 0, γ = 0.1) 50.05 79.71 31.52 79.00
FH(ρ = 0, γ = 0.25) 42.57 78.74 27.93 81.83
FH(ρ = 0, γ = 0.5) 28.18 75.53 20.55 84.28
FH(ρ = 0, γ = 0.75) 14.88 71.96 12.49 85.26
FH(ρ = 0, γ = 1) 7.28 67.98 7.42 85.47

FH(0,0)) test. On the contrary, if the α boundaries based on 75% IF are used for the FH(ρ = 0, γ > 0)
testing, we observe a relatively higher rejection at interim analysis causing the overall size to exceed
the nominal size, and this inflation in size increases as γ increases. If we continue to use the α
rejection boundaries with 75% IF in censoring case as well, the inflation in size worsens as censoring
further reduces IF. However, even under censoring, the FH test based on a correct IF can constrain
the overall size of the FH test. This finding validates the proposition to use an appropriate IF for
FH(ρ = 0, γ > 0) test to control overall size of test, and to carry out the FH testing accordingly.

5.2 Power under proportional hazards scenario

Under PH model, the event times in the treatment arm were generated from an exponential distribu-
tion with a median of 14.67 months, corresponding to a HR of 75%, as assumed in Section 4. Results
based on 20, 000 replicates are presented in Table 3, with α boundaries (under “With censoring”)
presented in Table 1. As expected, the power under the SLR test (i.e., FH(ρ = 0, γ = 0)) is close to
the nominal power of 80%, and the power reduces gradually as the imbalance in weights in favor of
later events increases gradually (i.e., as γ increases).
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Figure 4: Hazard rate functions of the treatment (black) and the control (red) arms, and the HR
(treatment to control) used for simulation event times under late separation in Section 5.3.

5.3 Power under late separation

Under late separation model, the event times in the treatment arm were generated from the following
generalized gamma distribution [26, 27].

fT (t|µ, σ,Q) = |Q|(Q
−2)Q−2

σ · t · Γ(Q−2)exp
[
Q−2 · {Qw − exp(Qw)}

]
where, t = exp (µ+ σw)

Event times from this generalized gamma distribution were generated using the R function rgengamma()
in the flexsurv package [27] with parameters µ = 2.9, σ = 1.271 and Q = 0.61 representing decreas-
ing hazard rate (see Figure 4). With constant hazard rate in the control arm, this also corresponds
to late separation characterized by a reduction in HR over time. These parameters were chosen to
ensure an estimated HR of 0.70 under the Cox PH model based on 1 million simulated data points
in each arm.

Summary of results based on 20, 000 replicates are presented in Table 3 with α boundaries (under
“With censoring”) presented in Table 1. As expected, the overall power of the SLR test (i.e., FH(ρ =
0, γ = 0)) is down to 76.69%. The power increases gradually as γ increases; however, the improvement
beyond γ = 0.75 is very minimal. Therefore, some of the power lost due to late separation can be
recovered by putting more weights to the later events. As γ increases, the power of the interim test
decreases because of the combined effects of (a) reduced IF at interim which translates to tighter
rejection boundaries with FH(ρ = 0, γ > 0), and (b) only a partial realization of the late separation.

17



6 Implementation of FH test in a group-sequential clinical trial
design

We now summarize the overall strategy of implementing the FH test in a group-sequential clinical
trial with a total sample size of N , the number of interim events DIA and that at final analysis DFA.

Step 1. Determine, IF0, the IF under variable weighting without censoring: IF0 can be determined
analytically using Eq. (6) with the knowledge of N , DIA and DFA. When accounting for
delayed effects, calculation of IF0 needs only DIA and DFA (see Eq. (7)).

Step 2. Determine the minimum IFc, the IF with censoring: IFc should be determined under
various plausible CDEs to identify plausible range for IF, as presented in Section 3.2.3. One
may adopt the strategy presented in Section 4 to identify various CDEs by including some other
plausible scenarios or by dropping some unlikely scenarios. As the interim analysis approaches,
we may get to see the actual accrual and drop out patterns, IFc may be updated by narrowing
down the plausible CDEs, and the α-rejection boundaries should be updated accordingly.

Step 3. Determine α rejection boundaries for interim and final analyses using minimum IFc.

Step 4. Select the weight function FH(ρ, γ) via simulation: Exhaustive simulation should be
carried out to compare the operating characteristics of FH test with the SLR test under both
PH scenario and the expected non-PH scenario. A suitable weight function should be chosen
to minimize the power loss under PH scenario and to maximize power gain under expected
non-PH scenario.

In Step 3, rejection boundaries are determined solely based on the IFc. Even though IF0 is not used
further, we strongly recommend determining IF0 because of its proximity to IFc.

The above strategy can be easily extended to implement FH test in a group sequential design with
multiple interim analyses, say with events DIA1 , DIA2 , · · · , DIAM

. In such a case, in the design stage,
one needs to calculate IFc for each interim analysis using all plausible CDEs. In order to minimize
the loss of power, one may update the IF at each interim analysis using all available information
(on pooled survival distribution, enrollment distribution and LTFU distribution) and the α-rejection
boundaries can be updated accordingly. While updating the α-rejection boundaries based on revised
IFc, one must account for the α already spent in the previous analyses in order to control the overall
type-I error of the study.

7 Discussion

Previous researches ([7, 8]) have shown that in a single look design, the FH test preserves the size
of the test; it has a minimal loss of power under the PH scenario; and it has a substantial gain in
power under the non-PH scenario. These desired properties of the FH test continue to hold under a
group-sequential design as long as IF at the interim look is determined correctly, which can be very
far from the proportion of interim events. Generally speaking, the IF under a FH test is affected
by the two factors: (a) variable weighting of events (as ascertained by the weight function); and (b)
censoring. In this paper, we have separated the effects of these two factors and have shown that
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these two factors affect IF in the same direction. That is, when accounting for late (early) separa-
tion, assigning higher weights towards the later (earlier) events reduces (increases) IF, and censoring
on top of that further reduces (increases) this IF. We further concluded that for any given weight
function, its effect on IF is much larger than the additional effect of censoring (see Section 3.2.2)
which enables us to construct a reasonable range of IF. Subsequently, the minimum IF over a set of
plausible non-PH scenarios should be used to preserve the overall type I error.

To account for the impact of weight function on IF, we have derived an analytical formula using
total sample size and numbers of events at interim and final analyses. (Moreover, under the special
case of late separation, IF does not even depend on the sample size, see Eq. (7)). But to study
the censoring effect on IF we have proceeded in a somewhat ad hoc manner. Nonetheless, we have
demonstrated that censoring has a relatively much smaller impact on IF. Because the nature of cen-
soring is uncertain at the design stage, we should usually consider all plausible censoring scenarios
and re-evaluate the IF as we get closer to the interim analysis, by which time we may acquire a rel-
atively better idea about the enrollment distribution. The knowledge of the enrollment distribution,
the projected pooled TTE distributions and, LTFU rate based on the blinded information on the
timings of the pooled events may help us rule out some implausible censoring scenarios and reduced
the number of plausible scenarios of censoring. This in turn may help to narrow down the range of IF
and ultimately avoid being overly conservative at the interim analysis, and increase the interim power.

As mentioned in Section 6, the choice of weight function FH(ρ, γ) should be driven by comparative
assessments of operating characteristics of the FH test against the SLR test both under the PH
scenario and a few anticipated non-PH scenarios. A suitable weight function should be chosen to
minimize the power loss under PH scenario, and to maximize the power gain under late separation.
As seen in our simulation study, beyond a certain point any additional increase in weight does not
enhance the power under late separation; but it can drastically decrease the power under PH scenario.
Also, assigning a very high weight to later events to account for delayed effects may severely impact
IF and reduce the chance of detecting difference at interim analysis. Hence, in general, we suggest
allowing only a modest imbalance in weighting, unless there is a strong justification to do otherwise.

Finally, although in this paper we have mainly focused on the WLR test with FH weighting because
of its popularity and flexibility to account for most common types of non-PH scenarios, the principles
discussed in this paper can be easily extended to the other WLR tests as well.
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Appendix

Appendix 1: R code to determine IF without censoring (IF0) for a given weight
of FH(ρ, γ)

IF0<− function (D.FA, D. IA , rho=0, gamma=0, N=NULL){
i f ( rho>0){

i f ( ! i s . numeric (N) ) stop ( ’ P lease s p e c i f y N when rho i s g r e a t e r than 0\n ’ )
x1<− 1 :D. IA ; x2<− 1 :D.FA
IF<− sum( (N−x1 )ˆ(2∗rho )∗x1 ˆ(2∗gamma) ) /sum( (N−x2 )ˆ(2∗rho )∗x2 ˆ(2∗gamma) )

}
else i f ( rho==0){

IF<− sum( ( 1 :D. IA )ˆ(2∗gamma) ) /sum( ( 1 :D.FA)ˆ(2∗gamma) )
}
IF

}

#−−− Examples
IF0 (D.FA=388 , D. IA=291) #IF0 under log−rank t e s t
IF0 (D.FA=388 , D. IA=291 , rho=0, gamma=0.25) #IF0 under FH(0 , 0 .25)
IF0 (D.FA=388 , D. IA=291 , rho =0.25 , gamma=0, N=554) #IF0 under FH(0 .25 , 0)
IF0 (D.FA=388 , D. IA=291 , rho =0.25 , gamma=0.25 , N=554) #IF0 under FH(0 .25 , 0 .25)
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Appendix 2: R code to determine CDE under censoring for a given dataset

l ibrary ( s u r v i v a l )
l ibrary ( rccmisc )
obs .CDE<− function (data , futime , f u s t a t ){
T <− data [ [ fut ime ] ]
d e l t a <− data [ [ f u s t a t ] ]
s u r v f i t . out<− summary( s u r v f i t ( Surv (T, d e l t a ) ˜ 1) )
D= sum( d e l t a )
tab<− data . frame (n . events= cumsum( s u r v f i t . out$n . event ) ,

new . censored=s u r v f i t . out$n . censor )
tab .dummy<− data . frame (n . events =1:D, t o t . censored=rep (0 ,D) )
tab<− merge( tab .dummy, tab , by=”n . events ” , a l l=TRUE)
tab<− transform ( tab , n . censored=psum( to t . censored , new . censored , na .rm=T) )
tab [ , c ( ”n . events ” , ”n . censored ” ) ]
}

#−−− Examples
obs .CDE(data=ovarian , fut ime=” fut ime ” , f u s t a t=” f u s t a t ” )

Appendix 3: R code to simulate CDE based on Equation (10)

l ibrary ( actuar )
sim .CDE<− function (N, D, sigma , a=0, b=0, h1=0, h2=0){
N. censor=N−D
i f ( h2>=h1 ){ #−−− pre−r e q u i s i t e cond i t i on

a1<− round( a∗D) ; b1<− round(b∗D) ; c1<− D #−−− s c a l i n g to even t s
x1<− 1 : a1 ; y1<− rep ( h1 , length=length ( x1 ) )
x2<− ( a1 +1):( b1 ) ; y2<− seq ( h1 , h2 , length=length ( x2 ) )
x3<− ( b1 +1): c1 ; x3 . mod<− 1−seq (b , 1 , length=length ( x3)+1)
y3<− h2+d l l o g i s ( x3 . mod [ 1 : length ( x3 ) ] , shape=sigma , scale=1) −

d l l o g i s (1−b , shape=sigma , scale=1)
data . frame (n . events=c ( x1 , x2 , x3 ) ,

n . censored=c ( y1 , y2 , y3 )∗N. censor/sum( y1 , y2 , y3 ) )
}

}

#−−− Examples
r e s<− sim .CDE(N=554 , D=388 , sigma =0.05 , a =0.25 , b=0.33 , h1 =0.1 , h2 =0.5)
plot ( r e s $n . events , r e s $n . censored , type=’ l ’ , col=1, l t y =1)

Appendix 4: R code to determine IF with censoring (IFc) for a given CDE and a
given weight of FH(ρ, γ)

22



IFc<− function ( cde , N, D. IA , D.FA, rho=0, gamma=0){
St<− function (prev . St , n . r i s k , new . event ) prev . St∗(1−new . event/n . r i s k )
tab<− cde
n . r i s k<− N − cumsum( tab$n . censored ) − tab$n . events
tab$n . r i s k<− c (N, n . r i s k [−c ( length (n . r i s k ) ) ] )
tab$ surv<− NA
tab$ surv [ 1 ]<− 1−1/N
for (d in 2 :nrow( tab ) ) tab$ surv [ d ]<− St ( tab$ surv [ d−1] , tab$n . r i s k [ d ] , 1)
tab$wt<− ( tab$ surv ˆ rho )∗((1− tab$ surv )ˆgamma)
tab$ i n f o<− tab$wtˆ2
sum( tab$ i n f o [ 1 :D. IA ] ) /sum( tab$ i n f o [ 1 :D.FA] )
}

#−−− Examples
l ibrary ( s u r v i v a l ) #−− f o r ovar ian d a t a s e t
IFc ( cde=obs .CDE(data=ovarian , fut ime=” fut ime ” , f u s t a t=” f u s t a t ” ) ,

N=nrow( ovar ian ) , D. IA=9, D.FA=12, rho=0, gamma=0.25)
IFc ( cde=sim .CDE(N=554 , D=388 , sigma =0.05 , a =0.25 , b=0.33 , h1 =0.1 , h2 =0.5) ,

N=554 , D. IA=291 , D.FA=388 , rho=0, gamma=0.25)
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