
Icarus 376 (2022) 114849

A
0
(

Contents lists available at ScienceDirect

Icarus

journal homepage: www.elsevier.com/locate/icarus

Research Paper

A machine learning toolkit for CRISM image analysis
Emanuele Plebani a, Bethany L. Ehlmann b, Ellen K. Leask b,c, Valerie K. Fox d, M. Murat Dundar a,∗

a Computer and Information Sciences Department, Indiana University - Purdue University, Indianapolis, 46202, IN, USA
b Div. of Geological & Planetary Sciences, California Institute of Technology, Pasadena, 91125, CA, USA
c John Hopkins University Applied Physics Laboratory, Laurel, 20723, MD, USA
d Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, 55455, MN, USA

A R T I C L E I N F O

Dataset link: https://cs.iupui.edu/~mdundar/C
RISM.htm

Keywords:
Machine learning
Hyperspectral image
Mars
Hierarchical Bayesian
CRISM

A B S T R A C T

Hyperspectral images collected by remote sensing have played a significant role in the discovery of aqueous
alteration minerals, which in turn have important implications for our understanding of the changing
habitability on Mars. Traditional spectral analyzes based on summary parameters have been helpful in
converting hyperspectral cubes into readily visualizable three channel maps highlighting high-level mineral
composition of the Martian terrain. These maps have been used as a starting point in the search for specific
mineral phases in images. Although the amount of labor needed to verify the presence of a mineral phase in an
image is quite limited for phases that emerge with high abundance, manual processing becomes laborious when
the task involves determining the spatial extent of detected phases or identifying small outcrops of secondary
phases that appear in only a few pixels within an image. Thanks to extensive use of remote sensing data and
rover expeditions, significant domain knowledge has accumulated over the years about mineral composition
of several regions of interest on Mars, which allow us to collect reliable labeled data required to train machine
learning algorithms. In this study we demonstrate the utility of machine learning in two essential tasks for
hyperspectral data analysis: nonlinear noise removal and mineral classification. We develop a simple yet
effective hierarchical Bayesian model for estimating distributions of spectral patterns and extensively validate
this model for mineral classification on several test images. Our results demonstrate that machine learning
can be highly effective in exposing tiny outcrops of specific phases in orbital data that are not uncovered
by traditional spectral analysis. We package implemented scripts, documentation illustrating use cases, and
pixel-scale training data collected from dozens of well-characterized images into a new toolkit. We hope that
this new toolkit will provide advanced and effective processing tools and improve community’s ability to map
compositional units in remote sensing data quickly, accurately, and at scale.
1. Introduction

The Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) on board the Mars Reconnaissance Orbiter has enabled the
discovery and mapping of a broad array of aqueous minerals on the
surface of Mars (Murchie, Mustard, et al. 2009; Viviano-Beck et al.
2014). Hyperspectral data collected by CRISM have revolutionized
our understanding of the planet and have been instrumental in the
selection of landing sites for Mars rover exploration missions. Tens
of thousands of images are available for analysis to understand the
geologic history and habitability of Mars by identifying minerals and
mapping mineral-bearing units.

∗ Corresponding author.
E-mail address: mdundar@iupui.edu (M.M. Dundar).
URL: https://cs.iupui.edu/~mdundar (M.M. Dundar).

1.1. Traditional methods and limitations

Direct automated matching of minerals from spectral libraries mea-
sured on Earth to CRISM data is not possible due to the fact that
the observation is of large scale geologic materials representing a
mix of minerals, which possess distinctive spectral properties, and
because of the complexity of the dataset’s signal processing. Summary
parameters (Pelkey et al., 2007; Viviano-Beck et al., 2014), derived
from key wavelengths that capture spectral features characteristics of
specific mineral phases, form the essence of traditional CRISM mineral
identification methods. These parameters can be used for high-level
mineralogical mapping of CRISM images. Different combinations of
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summary parameters are used to characterize each image in terms of
oxidized iron minerals, mafic mineralogy, hydroxylated silicates, and
ice content. More specific mineral identification often requires filtering
noise to enhance spectral features. This is performed by finding the
ratio of the average spectrum from an area of interest (numerator) and
the average spectrum derived from a spectrally homogeneous ‘‘bland’’
region along-track the area of interest (denominator). Spectral ratioing
reduces multiplicative noise while spatial averaging filters additive
noise.

Summary parameters are also useful in ratioing for identifying
candidate regions for the numerator and denominator by highlighting
pixels of strongest signal to contribute to the former and pixels not
highlighted in any summary parameter to contribute to the latter.
Finding the right pair of numerator and denominator may require
multiple trials. Although this amount of labor may be acceptable when
determining the presence or absence of a specific mineral in an image,
manual ratioing becomes a tedious task when it has to be done at
many locations in the image to determine the spatial extent of one or
more mineral phases. Summary parameters become less useful during
ratioing when the region of interest spans only a limited number of
not necessarily contiguous pixels or when the scene is mineralogically
diverse, leaving few to no options for denominator pixels. When the
average spectrum is computed over a small number of pixels, key
spectral features may remain suppressed under random noise, and
summary parameters may end up capturing artificial features that
arise due to noise. Another limitation of summary parameters appears
when key absorption bands of two spatially co-occurring minerals are
within few channels of one another (such as alunite and kaolinite).
The 6.55 nm increments between two channels in CRISM offer enough
spectral resolution to differentiate between such phases in ideal con-
ditions. However, considering the practical limitations of CRISM data
and the occurrence of phases in mixtures, such a distinction may not be
possible without harnessing a large amount of data from many images
to identify less obvious spectral features characterizing these phases in
different locales, a task for which machine learning methods are ideally
suited.

1.2. Potential utility of machine learning in CRISM image analysis

Machine learning has the potential to improve CRISM image anal-
ysis in various tasks. Mineral identification and classification at pixel
scale (Dundar and Ehlmann, 2016; Dundar et al., 2019b,a; Caggiano
et al., 2019), outlier detection (Dundar et al., 2013; Leask et al., 2018),
spectral and spatial denoising (Parente et al., 2014; Itoh and Parente,
2021; Arun and Parente, 2017; Kreisch et al., 2017; He et al., 2019;
Saranathan and Parente, 2021) are some of the areas where machine
learning has already shown some promise toward automating CRISM
image analysis.

The algorithms that eventually became part of this toolkit have
been validated and refined in multiple projects demanding automated
analysis of CRISM imagery. We demonstrated the utility of machine
learning algorithms in detecting small outcrops of mineral phases in
images with extensive traditional spectral analyzes by reporting new
geologic discoveries from NE Syrtis area and Jezero crater (Dundar
et al., 2019b,a). Jezero crater and NE Syrtis are regions of high interest
as places where the Mars-2020 rover will conduct its in situ exploration.
Our algorithms detected a new hydrated iron oxide phase in NE Syrtis,
attributed elsewhere on Mars to akageneite, along with several new
rare phases including Al clays, jarosite, chlorite/smectite, and hydrated
silica in Jezero. At Jezero and NE Syrtis, small detections of rare phases
are crucial for guiding the Mars-2020 rover and for contextualizing
its discoveries. In another project we studied stratigraphies with Al
phyllosilicates on Mars to determine the implications for near-surface
habitability during the Noachian and Hesperian eras. Several new
jarosite and alunite regions have been identified in Nili Fossae, Terra
2

Sirenium, and Mawrth Vallis (Ehlmann and Dundar, 2015; Leask et al., s
2019). As part of this verification process that included an effort to map
occurrences of perchlorate, a salt that had been previously reported in
CRISM data and is a freezing point depressant, we have discovered a
previously unidentified artifact at 2.1 μm in CRISM I/F data that mimics
the appearance of certain minerals, including perchlorate. Upon further
verification with CRISM radiance data we showed that none of the
perchlorate detections reported in the literature remain robust in these
data sets (Leask et al., 2018).

Here, we present a new machine learning toolkit for advanced
CRISM processing to improve the community’s ability to map discrete
compositional units in remote-sensing data to more accurately identify
mineral phases on Mars. The toolkit contains Python scripts, pixel-scale
training data collected from dozens of well-characterized images, and
documentation illustrating use cases of the algorithms on several test
images. In this toolkit we tackle two specific tasks by machine learning,
namely, bland region identification and mineral classification at pixel
scale. The first task requires robust estimation of the distribution of
bland pixels and the second task requires a generalizable supervised
classifier, both of which in turn depend on the availability of a large
amount of labeled data from a representative set of well-characterized
CRISM images. Collection of these labeled data is hard because of
the aforementioned challenges involving manual analysis. Fortunately,
ever since the first set of CRISM data became available in 2006, CRISM
images have been used in numerous studies, accumulating enough
domain knowledge in the literature to obtain a relatively large set
of labeled data from well-characterized CRISM images. Although the
current set of images studied in the literature may not be spatially or
spectrally representative of all mineral phases on Mars, the amount of
labeled data we can obtain based on this domain knowledge is still
sufficiently large enough to train basic machine learning algorithms.
This first generation machine learning models implemented with lim-
ited labeled data may become instrumental in facilitating the collection
of more labeled data on a larger scale, but more importantly may help
compellingly demonstrate the utility of machine learning in planetary
exploration and pave the way for development of more advanced and
effective second-generation algorithms.

2. Training data collection and labeling

In the first phase of data collection a small subset of relatively
well-characterized CRISM images from Nili Fossae and Mawrth Val-
lis regions were processed by a nonparametric Bayesian clustering
technique (Yerebakan et al., 2014; Dundar and Ehlmann, 2016). This
method generates a few hundred spectra per processed image, which
are visually inspected and classified into the mineral phases already
reported in the literature in these images to create an initial spectral
training library. Detections with limited spatial extent and other de-
tections with ambiguous average spectra are ignored. Spectra with no
conspicuous spectral features are added into the training set to repre-
sent the bland category. Selection is performed in a semi-automated

ay; spectra are extracted algorithmically while assignment to the
land category is performed manually.

In the second phase, this training library is used to implement two
odels: a bland pixel scoring function for column-wise ratioing and a

lassifier model that operates on the ratioed data to predict mineral
hases associated with each pixel, which are described in detail in
ection 5. Both the scoring function and the classifier use our two-layer
ayesian Gaussian mixture model, which is described in Section 3.

We then obtain a more representative training library using these
odels in an active learning scheme. After each new image is classified

y the current version of the classifier, detections are visually veri-
ied at the connected-component level,1 and unambiguous detections,

1 A connected component in an image is defined as a group of pixels
onnected to each other by 8-pixel connectivity. For low quality images this
estriction is relaxed to have near contiguous pixels, which are pixels that are
eparated by 1–3 pixels.
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consistent with detections reported in the literature, are added to the
training library. The updated training library is used to train a new
version of the classifier, which in turn is used to classify future images.
Using this active learning framework we processed over five hundred
CRISM images over time, mainly from Nili Fossae, Mawrth Vallis, Terra
Sirenum, Valles Marineris, Libya Montes, the polar regions, and select
craters on Mars. As only detections with unambiguous spectra and
those consistent with mineral detections reported in the literature are
included, our current spectral training set includes labeled data from
over seventy well-characterized images.

2.1. List of mineral phases and training images

The list of CRISM images, their regions, and mineral phases detected
in these images is shown in Table 1. The number of labeled pixels
for each phase and the number of images from which these data are
collected are shown in Table 2. Images of segmentation masks and
plots of average spectra for each phase detected are provided as a
supplementary document. This mineral training set contains ratioed
data at pixel scale, which is used to train the mineral classifier. We
also maintain a separate training set with unratioed data from only
bland pixels collected from over three hundred images. This data is
used to estimate the distribution of the bland class, which is then used
to evaluate the bland likelihood of a pixel when ratioing new images
as described in Section 4. Both training datasets are included with the
toolkit.

2.2. Dataset structure

The variables stored in the datasets are reported in Table 3. Pixel-
scale spectra, class labels, and image identifiers are stored in the
pixspec, pixlabs, and pixims variables, respectively. Spectra
contain data from 350 channels, which include the ranges 1.0210
μm–2.6483 μm and 2.8070 μm–3.4769 μm. However, the channels cor-
responding to ranges 1.6447 μm–1.7303 μm and 1.9741 μm–2.0600 μm
are excluded because of known artifacts, and channels corresponding
to 2.8070 μm–3.4769 μm are excluded because data in these channels
do not offer much additional information for classifying minerals of
interest and the longer wavelengths show low data quality and residual
artifacts (Murchie et al., 2009). Coordinates of pixels are stored in
pixcrds. The ratioed spectra (Table 3b) also include a numeric ID
in the variable pixpat to uniquely determine connected components
for each image. The image IDs vary between one and the number of
images in the dataset. The variable im_names maps this image ID to
the last five digits of the CRISM image identifier of the source image.
The coordinates are relative to the Targeted Reduced Data Record
(TRDR) images, i.e., without geometric correction. Each mineral phase
is associated with a unique numeric class label; Table 2 shows the
correspondence between class labels and mineral phases.

3. Hierarchical Bayesian model

At the core of our machine learning approach is a hierarchical
Bayesian Model (HBM), illustrated in Fig. 2, to estimate the spectral
distributions of mineral classes. HBM uses a Gaussian mixture model
(GMM) to model pixel-scale training data for each mineral class. The
number of Gaussian distributions in the mixture model for a given
mineral class is determined by the number of images in which that
mineral class is detected. The model has thus a two-layer structure:
the lower layer models spectral variations of the same class across
images whereas the upper layer models spectral variations across dif-
ferent classes. This two-layer structure gives flexibility and robustness
in modeling spectral distributions of mineral classes. Our approach
is motivated by the observation that different instances of the same
3

mineral class detected across different images exhibit varying spectral t
properties due to differences in atmospheric effects and viewing ge-
ometry, as well as inherent differences in spectral properties of the
surface materials. Fig. 1 shows the average spectra and individual pixel-
scale spectra for a randomly selected ten pixels for two mineral phases
(Alunite and Jarosite) to highlight the spectral variations within and
between mineral phases.

The model is based on the principles of Bayesian inference (Gelman
et al., 1995), where the data is assumed to be produced by a generative
model, i.e., a specific distribution (a mixture of Gaussian mixtures in
our case) but the parameters of the distribution, i.e., the means and
covariances of single Gaussian components, are themselves considered
random variables with their own distributions. These vaguely defined
distributions of the parameters (the prior) when combined with the
training dataset by Bayes rule gives rise to a more informative distribu-
tion with lower variance and uncertainty compared to the prior, called
the posterior.

In HBM the Gaussian distributions corresponding to the observed
instances of the same mineral class across all images are regulated
by a shared local prior in the lower layer, and local priors associated
with each mineral class are in turn modeled by a global prior in the
upper layer. In this context the local prior can be thought of as a
template distribution for the distribution of the mineral classes and the
global prior in turn can be interpreted as a template distribution for the
distribution of the local priors. A template Gaussian component is the
one that combines spectral characteristics of all mineral classes sharing
the same prior in a single Gaussian distribution. Spectral signatures
describing mineral phases are highly structured and continuous signals
with high levels of correlation across certain ranges of bands. The prior
can be considered as a template Gaussian that captures this structure
and correlation in viable signals so that informative signals a priori can
be chosen over non-informative ones (such as random noise) by the
model.

We use the following generative model to fit spectral data available
in our training set:

Data model: 𝒙𝑖𝑗𝑘 ∼  (𝝁𝑗𝑘, 𝛴𝑘) (1)

Local prior: 𝝁𝑗𝑘 ∼  (𝝁𝑘, 𝛴𝑘𝜅
−1
1 ) (2)

Global prior: 𝝁𝑘 ∼  (𝝁0, 𝛴𝑘𝜅
−1
0 ) (3)

𝛴𝑘 ∼ (𝛴0, 𝑚) (4)

where the indices 𝑘, 𝑗, and 𝑖 enumerate mineral classes, the instances
(images) for class 𝑘, and individual pixels inside image 𝑗 and from class
𝑘, respectively.  (𝝁, 𝛴) denotes the Normal distribution with mean
𝝁 and covariance matrix 𝛴, whereas (𝛴0, 𝑚) denotes the inverse
Wishart distribution, with scale matrix 𝛴0 and degrees of freedom 𝑚.
The inverse Wishart distribution is a multivariate generalization of the
inverse Gamma distribution, and it can be thought as a distribution
over covariances (Nydick, 2012). The prior mean 𝝁0 and covariance 𝛴0
are the average of all class means and covariances estimated for each
training image in the dataset. The hyperparameters 𝜅0 and 𝜅1 control
he amount of dispersion of the class means and the means of the
ntra-class Gaussian components respectively; see the supplementary
ocument for a more detailed discussion.

The posterior distribution allows us to compute the likelihood of a
ew pixel belonging to a specific mineral class. For our choice of priors
his step can be computed in closed form by evaluating the Bayes rule to
roduce a multivariate Student-t distribution as the posterior predictive
istribution:

(𝒙|) = 𝑇 (𝒙𝑗𝑖|�̄�𝑘, �̄�𝑠, �̄�𝑠) (5)

Now the likelihood of a new pixel represented by a spectrum 𝒙
epends only on the training dataset  and hyperparameters of the
odel. The parameters �̄�𝑘, �̄�𝑠 and �̄�𝑠 depend on sample means, covari-

nces, sizes, and hyperparameters; see the supplementary document for

echnical details.
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Table 1
List of CRISM images included in the training set. The first column shows the last five digits of the CRISM image IDs, the
middle column shows the names of regions from which respective images are taken, the last column shows mineral detections
included in the training set from the respective imagesa. Segmentation maps and average ratioed spectra for each mineral
detection are provided in the supplementary material.

ID Region Mineral detections

098B2 Aram Chaos Ferric hydroxysulfate, monohydrated sulfate
09312 Baldet crater Analcime, hydrated silica
02885 North Circumpolar dunes H2O ice, gypsum
096BF Robert Sharp crater Akaganeite
0634B Claritas rise Serpentine, illite, chlorite
062B6 Columbus crater Jarosite, alunite, kaolinite, polyhydrated sulfate 2, monohydrated sulfate
0750A Columbus crater Alunite, kaolinite, polyhydrated sulfate
07D87 Columbus crater Kaolinite, polyhydrated sulfate 1, polyhydrated sulfate 2
08565 Columbus crater Alunite, kaolinite, polyhydrated sulfate 1, monohydrated sulfate
1212A Columbus crater Polyhydrated sulfate 1, polyhydrated sulfate 2
12C19 Columbus crater Kaolinite, polyhydrated sulfate 1, polyhydrated sulfate 2
13D1F Columbus crater Alunite, kaolinite, polyhydrated sulfate 2
13EEF Columbus crater Alunite, kaolinite, polyhydrated sulfate 1
167FA Columbus crater Alunite, kaolinite, polyhydrated sulfate 1, polyhydrated sulfate 2
0987B Cross crater Alunite
0B252 Cross crater Alunite, kaolinite
0CC44 Cross crater Alunite, kaolinite
1187B Cross crater Alunite, kaolinite
12E09 Cross crater Alunite
137C2 Cross crater Alunite
21B59 Cross crater Alunite, kaolinite
0B385 Eos Chasma Monohydrated sulfate, hematite
096FE Eridania Basin Fe smectite, jarosite
0BABA Gale crater (Artifact)
09036 Huygens crater Ca/Fe carbonate, illite, prehnite
027E2 Ius Chasma Jarosite
0A91C Ius Chasma Jarosite, monohydrated sulfate
20AE1 Ius Chasma Polyhydrated sulfate 2, monohydrated sulfate
05814 Juventae Chasma Hydrated silica, ferricopiapite
0BAD4 Kunowsky crater Mg Olivine
0C26C Kunowsky crater Mg Olivine
0285A Mawrth Vallis Fe smectite, jarosite, Al smectite
03BFB Mawrth Vallis Fe smectite, alunite, Al smectite
043EC Mawrth Vallis Fe smectite, Al smectite
0863E Mawrth Vallis Fe smectite, jarosite, Al smectite
09326 Mawrth Vallis Fe smectite, bassanite, Al smectite
0A2C2 Mawrth Vallis Fe smectite, jarosite, Al smectite
0A425 Mawrth Vallis Fe smectite, jarosite, Al smectite
0C467 Mawrth Vallis Fe smectite, alunite, Al smectite
173F4 Mawrth Vallis Fe smectite, Al smectite
19AA0 Mawrth Vallis Fe smectite, Al smectite
20BF9 Mawrth Vallis Fe smectite, jarosite, Al smectite
21D02 Mawrth Vallis Fe smectite, jarosite, alunite, Al smectite
0AD3D Melas Chasma Jarosite, monohydrated sulfate
13F5B Melas Chasma Jarosite, monohydrated sulfate
08F68 NE Syrtis Mg smectite, Ca/Fe carbonate, illite, chlorite
19538 NE Syrtis Akaganeite, Mg smectite, Mg CO3
19DAA NE Syrtis Mg smectite, akaganeite, Mg CO3
0B8C2 NE Syrtis Jarosite, Mg CO3
0CBE5 NE Syrtis Mg smectite, epidote
03E12 Nili Fossae Mg smectite, Mg CO3, Fe Olivine
03FB9 Nili Fossae Mg smectite, Al smectite, Mg CO3
050F2 Nili Fossae Mg smectite, prehnite, Ca/Fe carbonate, illite, chlorite
064D9 Nili Fossae Mg smectite, low-Ca pyroxene
093BE Nili Fossae Mg smectite, hydrated silica, Mg CO3
09786 Nili Fossae Prehnite, analcime, chlorite, high-Ca pyroxene
097E2 Nili Fossae Mg smectite, kaolinite, hydrated silica, Mg CO3, Fe olivine
09971 Nili Fossae Mg smectite, jarosite, analcime, low-Ca pyroxene
0A053 Nili Fossae Mg smectite, jarosite
0A09C Nili Fossae Mg smectite, Al smectite, Mg CO3
0A4FC Nili Fossae Mg smectite, Fe olivine
0AA03 Nili Fossae Mg smectite, Al smectite, Mg CO3
0B438 Nili Fossae Mg smectite, Mg CO3, Mg Olivine
21C5A Nili Fossae Low-Ca pyroxene
0CA5C North Polar area Gypsum
0A546 Schroefer crater Ca/Fe carbonate, illite, chlorite
36F60 Sirenum Fossae Kaolinite
3703F Sirenum Fossae Kaolinite
07E26 South pole CO2 ice, H2O ice
081CF South Syrtis Ca/Fe carbonate, illite

(continued on next page)
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Table 1 (continued).
ID Region Mineral detections

14703 SW Syrtis Ca/Fe carbonate, chlorite
02FC5 Syrtis Major Prehnite, illite, chlorite
0454E Syrtis Major Prehnite, illite, chlorite
0B868 Syrtis Major Prehnite, high-Ca pyroxene
0CBAC Syrtis Major Analcime, hydrated silica
0AB81 Terra Sirenum Chloride, Mg smectite
0AA7D Mawrth Vallis Fe smectite, jarosite, alunite

aThe list of detections reported for each image is not an exhaustive list of all detections. For most of the images only detections
that were previously reported in the literature are included in the training set.
Fig. 1. Sample pixel spectra for alunite (a) and jarosite (b). Average spectra shown in solid black and spectra of individual pixels from each image are shown by gray. Both
arosite and alunite exhibit variation not only across different images but across different pixels of the same image as well.
. Spectral ratioing

To compute the likelihood of individual pixels originating from a
land category the HBM model described in Section 3 is employed to
stimate a distribution of bland pixels as part of the training phase.
nratioed training I/F data collected as described in Section 2 are used

or this purpose. During the testing phase, this distribution is evaluated
n pixels to generate likelihood scores, which in turn are used to
dentify denominator regions for use during column-wise ratioing. For
pixel of interest the denominator is obtained from the same column

s the pixel of interest. The average spectrum of three pixels with the
ighest blandness score lying within a ±𝑤 row neighborhood of the

pixel of interest is used as the denominator. These three pixels are
selected based on the ‘‘relative blandness’’ score of the pixels in that
column. As a result, even when there is no ‘‘truly bland’’ pixels, the
scoring function can select pixels that have relatively less conspicuous
spectral features compared to other pixels in the column. Although
this may not constitute the ideal scenario for ratioing for reducing the
nonlinear noise, as long as the spectral features in the denominator
signal are weaker than those of the numerator, the ratioing may still
serve for its intended purpose. The current implementation uses 𝑤 = 50
as the default window size, but 𝑤 is added as an external parameter
to the ratioing algorithm as the optimum value often depends on the
5

signal-to-noise ratio (SNR) and mineralogical composition of the image.
Restricting the search to a small window is important as the nonlinear
noise component of pixels will be most similar when they are spatially
closer. Using the average spectrum of pixels farther away from the pixel
of interest as the denominator can produce large spikes in the ratioed
spectrum and suppress key spectral features used for identification,
especially in images with poor SNR.

One trivial approach to identify a column-specific bland signal for
automated ratioing is to use the median of pixel spectra from each
column in the image as the bland signal. In what follows we use the
column-median approach as a baseline to evaluate HBM ratioing on
four single-pixel mineral detections. The first pixel is obtained from
a jarosite outcrop detected in Mawrth Vallis (0AA7D, x = 201, y
= 429) (Ehlmann and Dundar, 2016). The second pixel is obtained
from an Al clay outcrop detected in Jezero Crater (040FF, x = 201,
y = 428) (Dundar et al., 2019b). The third pixel is obtained from
an alunite outcrop recently detected in Eridania Basin (09E4C, x =
451, y = 380) (Leask et al., 2019). The fourth one is a pixel of Fe
smectite (0A425, x = 98, y = 93), also used in the CRISM Type Spectra
Library (Pelkey et al., 2007; Viviano-Beck et al., 2014). In the case
of the jarosite pixel in 0AA7D, the column 𝑥 = 201 contains a large
number of Fe and Al smectite pixels in addition to jarosite. In the case
of the kaolinite pixel in 040FF, the column 𝑥 = 286 is mainly dominated
by Mg carbonate pixels. In the case of the alunite pixel in 09E4C,
the spatial extent of Fe smectite in column 𝑥 = 451 is significantly
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Fig. 2. Two-layer Bayesian Gaussian Mixture Model Training and Classification. Each training image contains detections from one or more mineral classes. Solid contours of the
same color show the observed spectral distribution of the same mineral class detected across different images. Colored contours with dashed lines indicate unobserved spectral
distributions of mineral classes from which all observed distributions assumed to originate. Black contour with dashed line is the global prior, which can be considered as the
distribution of viable mineral spectral patterns. Training the model involves estimating the posterior predictive distribution (PPD) of unknown spectral distributions, i.e., colored
dashed contours, for each mineral class using labeled pixel data in training images. A pixel in a new test image is classified by evaluating PPDs of each mineral class for this pixel
and assigning the pixel to the mineral class that generates the maximum probability. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
larger than that of alunite. In the case of the Fe smectite pixel in
0A425, the column 𝑥 = 98 is dominated by Al smectite pixels. The
ratioed signals obtained by the column-median and HBM approaches
on four pixels are shown in Fig. 3. The ratioed spectra obtained by
HBM consistently enhances spectral features in all four cases making
identification (even at pixel-scale) easier. The column-median approach
generates deformed versions of spectra where key diagnostic features of
these phases are distorted. In the cases of jarosite, kaolinite, and alunite
pixels, the column-median generates a denominator with a higher
albedo than the numerator. In the case of Fe smectite, the denominator
generated by the column-median has lower albedo than the numerator
but has strong spectral features characteristic of Al smectite, which
lead to significant deformations during ratioing. For this specific pixel
the unratioed spectrum already show strong spectral features of Fe
smectite, which mostly disappear after ratioing by the column-median
approach.

Overall this level of deformation in spectra may still be accept-
able for manual analysis as the expert can still accurately identify
mineral phases from distorted versions of spectral features. However,
for automated analysis, significant distortions in the shape of spectra
generate spatial discontinuities in the ratioed image causing automated
classifiers to generate classification maps with large semantic gaps or,
in more severe cases, scattered detections that appear as speckle noise.
A machine-learning-based approach for ratioing can help eliminate
these problems to a greater extent and help discover small outcrops
of mineral phases even in images with extensive traditional analysis as
has been demonstrated for the kaolinite outcrop in 040FF.

5. Mineral classification

An ensemble of 𝑁 = 15 submodels is constructed to classify
ratioed data at the pixel scale. Ensemble models mitigate noise in the
data by using only a subset of the available data to construct each
submodel (Breiman, 2001; Agjee et al., 2018). These subsets are created
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by subsampling either the number of available samples, features or
both. Training submodels with low correlation is the key to construct a
diverse and robust ensemble. In our ensemble classifier, each submodel
uses an HBM trained on the same set of training pixels but with
channels selected from different ranges of the spectrum. Each submodel
evaluates 𝐾 class conditional probabilities of a pixel, where 𝐾 is the
number of mineral classes defined during training. These probability
values are weighted differently for each class to account for the relative
importance of each spectral range for each mineral. As a comparison
a single model trained on the whole spectral range classifies pixels to
specific classes with almost certainty, making false positive mitigation
by probability-based thresholding less useful. Detailed results of this
experiment is available in the supplementary document.

If we denote the probability computed by the submodel 𝑖 for class
𝑗 by 𝑝𝑖𝑗 and the weight assigned to the output of the submodel 𝑖 for
class 𝑗 by 𝑤𝑖𝑗 , the ensemble probability for class 𝑗 can be computed by
𝑝𝑗 =

∑𝑁
𝑖=1 𝑤𝑖𝑗𝑝𝑖𝑗 . Probabilities 𝑝𝑖𝑗 follows a multinomial distribution,

i.e., ∑𝑁
𝑖=1 𝑝𝑖𝑗 = 1, and weights assigned for each mineral class satisfies

∑𝑁
𝑖=1 𝑤𝑖𝑗 = 1. Thus, these two constraints ensure that 𝑝𝑗 ≤ 1. The

higher the 𝑝𝑗 , the higher the confidence that the pixel is classified
correctly. The ranges of wavelengths used in each submodel are shown
in Table 4. The first four submodels use channels covering the entire
spectrum from 1.0 μm to 2.65 μm, subsampled at every fourth channel.
The sub-sampling rate was found through experimentation; increasing
the number of channels makes the model slightly more susceptible to
noise and other numerical issues. The remaining eleven models use
ranges of wavelengths covering the key absorption features of phases
detected on Mars. The weights 𝑤𝑖𝑗 assigned to each submodel/class
pair is determined based on whether the spectral range the submodel
is trained on contains a key absorption band of the mineral class,
in which case a higher weight is assigned. For example as shown in
Table 4, submodels 6, 10, and 11, which are trained on spectral ranges
of 1.7–1.9 μm, 2.17–2.36 μm, and 2.23–2.43 μm, respectively, receive
the highest weights for jarosite. Similarly, submodels 5 and 9, which
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Fig. 3. Comparing ratioed spectra obtained by HBM (a–d) and column-median technique (e–h) on four pixels: jarosite in 0AA7D (a, e), Al clay in 040FF (b, f), alunite in 09E4C
(c, g) and Fe smectite in 0A425 (d, h). HBM automatically selects three pixels within ±50 rows along-track the column of the numerator pixel and uses the average of these pixels
as the denominator. In the top panel in figures (a)–(d) thick darker lines show the unratioed numerator pixel, thinner lines the unratioed denominator pixels. In the top panel in
figures (e)–(h) thick darker lines show the unratioed numerator pixel, thinner line the column median. The median is computed using all the pixels along-track the column of the
numerator pixel.
are trained on spectral ranges of 1.3–1.5 μm, 2.1–2.3 μm receives the
highest weights for kaolinite. The entire weight matrix is provided as
a spreadsheet file in the supplements. For every pixel, 𝐾 probability
values are computed, one for each mineral class, and the pixel is
assigned to the class with the highest probability subject to additional
filtering and validation as described next.

5.1. Spike removal

Spectra in the ratioed data are preprocessed to remove large spikes
that may affect the robustness of the distribution estimated by the HBM
model. Spikes are removed by a repeated application of a moving me-
dian filter with decreasing window sizes and replacing only the spikes
that exceed the median by a threshold. In each pass, the difference
between the original spectrum and the median-filtered version of it is
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computed, and the spike is only replaced by the median if the difference
is found to be larger than five standard deviations away from the mean
difference. Both mean and standard deviations are computed over all
the channels and averaged over all available pixel spectra. The choice
of the window size for the median filter is critical, because repeated
smoothing may remove spectral features and affect accuracy of the
classifier. We choose to filter with windows of 11, 7 and 3 channels
in this specific order. All plots generated in Section 6 use ratioed data
without despiking or any other post processing applied.

5.2. False positive mitigation

The HBM model always predicts a mineral class for a pixel as it
is designed in a closed-set classification setting (Cheng et al., 2019;
Dundar et al., 2012). However, in some cases there could be new
mineral phases in tested images that were not included in the training

data, or the spectrum may be too noisy to be identified unambiguously.
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Table 2
List of mineral phases in the training set. The first column on the left shows class
labels associated with each mineral phase. The second column shows names of phases.
The third column shows the number of labeled pixels for each phase. The last column
shows the number of images from which the labeled data are collected.

Label Mineral # pixels # images

1 CO2 Ice 17 297 1
2 H2O Ice 5 947 2
3 Gypsum 32 163 2
4 Ferric Hydroxysulfate 1 195 1
5 Hematite 666 1
6 Fe smectite 77 556 14
7 Mg smectite 110 935 18
8 Prehnite 7 715 6
9 Jarosite 13 133 17
10 Serpentine 1 893 1
11 Alunite 10 323 17
12 Akaganeite 819 3
13 Ca/Fe CO3 8 113 6
14 Al smectite 1 311 4
15 Kaolinite 40 555 17
16 Bassanite 130 1
17 Epidote 189 1
18 Al smectite 2 8 781 12
19 Polyhydrated sulfate 47 675 10
23 Illite 8 613 8
25 Analcime 1 308 4
26 Monohydrated sulfate 26 441 8
27 Hydrated silica 21 946 5
29 Ferricopiapite 10 559 1
30 MgCO3 37 473 10
31 Chlorite 57 935 8
33 Low Ca Pyroxene 32 130 3
34 Mg Olivine 80 2
35 High Ca Pyroxene 849 2
36 Fe Olivine 2 098 4
37 Chloride 1 262 1
38 2.1 μm artifact 509 1
39 Bland 5 814 24

The latter is quite common in CRISM images as many rare phases have
their distinctive spectral features within few channels of other common
phases and they are often formed as part of alteration assemblages.
In images with poor SNR, spatially co-occurring and spectrally mixed
mineral phases may not be uniquely identified at the pixel scale. The
classifier assigns such spectrally mixed pixels to the class with the high-
est probability, but since the total probability is shared between two or
more spectrally similar classes these pixels are eventually assigned to
their respective classes with low probabilities. A large number of low-
confidence pixel detections can dominate the average spectrum and can
have a smoothing effect on key spectral features or distort the spectrum
expressed by a small number of high-confidence detections in other
ways. Thus, removal of these low confidence pixel detections is crucial
for more accurate identification of mineral phases.

As CRISM images exhibit different SNR levels and some mineral
classes are more represented in the training set than others, a single
probability threshold that works for all images and for all mineral
classes may not be attainable. Pixels classified with higher probabil-
ities produce average spectra with sharper features. However, as the
probability threshold increases, the number of pixels used in computing
the average decreases, and the average signal becomes noisier. For
well-represented mineral classes the optimum probability threshold
usually varies between 0.5 and 0.7 for good quality images and between
0.3 and 0.5 for poor quality images. We consider a mineral class
well-represented if there are at least five instances of that mineral
phase in the training set, where detection from each different image
is considered an instance in this context. The number of instances
of each mineral phase is shown in Table 2. If a mineral phase is
not well-represented in the training set a probability threshold of
0.7 or higher might be needed irrespective of the image quality, to
8

Fig. 4. Processing stages involved in the classification of an image. Numbers next to
each block indicate processing time in seconds.

reduce false positives. Using probability thresholds converts the closed-
set classification setting into an open-set one where pixels with low
confidence predictions are ignored as originating from unknown classes
not represented during training.

Apart from probability thresholds, applying spatial constraints have
proved to be very useful as a false positive mitigation strategy, espe-
cially for poor quality images. For such images an average spectrum
computed over a large number of spatially-scattered, low-probability
pixel detections can mimic the appearance of a spectral signature of
a real mineral phase. To avoid such cases we seek spatial coherence
in reported detections. Any real phase detection should have spatial
continuity on the surface characterized by a group of contiguous or near
contiguous pixel detections concentrated in certain parts of the image
as opposed to being randomly distributed. More specifically, once the
image is classified, we obtain a spatial map of pixel-scale detections and
identify connected components. A connected component in an image
is defined as a group of pixels from the same class connected to each
other by 8-pixel connectivity. For low quality images this restriction
is relaxed to have near contiguous pixels, which are pixels that are
separated by 1–3 pixels. All connected components with less than a
certain size or all pixels in the same column are considered less viable
detections and are ignored from further processing. This is illustrated
in Fig. 5 for pixel detections separated by one pixel and a minimum
connected component size of five. In our approach probability thresh-
olding and spatial constraints are combined to ensure that only the most
viable detections are reported. In the next section we demonstrate the
overall utility of the machine learning toolkit and the reliability of these
specific constraints on three test images not used as part of training.
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Table 3
Structure of the datasets. (a) Unratioed spectra from bland pixels. (b) Ratioed spectra from mineral classes.
(a) Variables and their descriptions in the unratioed bland training dataset. This data is used to
estimate the probability density function of bland pixels.

Name Size Description

pixspec 337 617 × 350 Unratioed spectra
im_names 340 List of CRISM image names, mapping them to numerical IDs
pixims 337 617 Numerical ID of the image the spectrum is from
pixcrds 337 617 × 2 (𝑥, 𝑦) coordinates of the points in the original image

(b) Variables and their descriptions in the ratioed mineral dataset. This data is used to train the HBM
model for mineral classification.

Name Size Description

pixspec 592 413 × 350 Ratioed spectra
pixlabs 592 413 Mineral labels
im_names 77 List of CRISM image names, mapping them to numerical IDs
pixims 592 413 Numerical ID of the image the spectrum is from
pixpat 592 413 ID of the connected patch in the image the pixel belongs to
pixcrds 592 413 × 2 (𝑥, 𝑦) coordinates of pixels in their respective image
Table 4
Spectral ranges employed by different HBM models in the ensemble classifier for two of the minerals classified. The first four
submodels use the entire range of the spectrum subsampled at every fourth channel. The remaining eleven submodels use
specific subranges associated with key spectral features of mineral phases commonly found on Mars.
Submodels Spectral ranges Number of channels Weights

Jarosite Kaolinite

1 1.041:0.026:1.618 μm
1.737:0.026:1.948 μm
2.067:0.026:2.648 μm

55 0.05 0.05

2 1.047:0.026:1.625 μm
1.744:0.026:1.954 μm
2.073:0.026:2.629 μm

54 0.05 0.05

3 1.054:0.026:1.632 μm
1.75:0.026:1.961 μm
2.08:0.026:2.635 μm

54 0.05 0.05

4 1.06:0.026:1.638 μm
1.757:0.026:1.968 μm
2.086:0.026:2.642 μm

54 0.05 0.05

5 1.310–1.507 μm 31 0.05 0.20
6 1.704–1.902 μm 31 0.20 0.05
7 1.770–1.968 μm 31 0.10 0.05
8 2.034–2.232 μm 31 0.05 0.05
9 2.100–2.298 μm 31 0.05 0.30
10 2.166–2.364 μm 31 0.15 0.05
11 2.232–2.430 μm 31 0.15 0.05
12 2.298–2.497 μm 31 0.05 0.05
13 2.364–2.563 μm 31 0.00 0.00
14 2.430–2.629 μm 31 0.00 0.00
15 1.408–1.605 μm 31 0.00 0.00
Fig. 5. Selection of connected components. The detected regions are dilated by one
pixel on the right and on the bottom (white regions). Region 1 contains more than
5 detected pixels (11, in green) and thus it is selected; region 2 contains less than 5
detected pixels (4, in red) and thus it is discarded. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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6. Validation on test images

6.1. Offline training

During the offline training phase, PPDs are estimated for ratioing
and mineral classification using all images in their respective training
datasets. For ratioing, unratioed spectra from bland pixels are used to
estimate the PPD of bland pixels. As discussed in Section 3 and the
supplementary document, this PPD is obtained in the form of a Student-
t distribution and thus it requires estimating the degree of freedom,
location vector, and the scale matrix. The total computation time for
estimating these three parameters is 3 s. For the mineral classifier,
15 PPDs are estimated, one for each submodel, using channels from
different spectral ranges of the ratioed training data (see Table 4)
collected from 39 classes (see Table 2). The total computation time for
estimating these PPDs is 11 seconds. All processing is performed on a
single core of an Intel i9-9900 3.1 GHz CPU.

6.2. Classification of new images

A new image is processed according to the stages outlined in Fig. 4.
First, bad pixels are identified and removed. Second, the HBM model
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Fig. 6. Phases detected by HBM in HRL00016CFE. (a) alunite, (b) kaolinite and (c) polyhydrated sulfate. The classification maps on the left of each figure show the detected
pixels for a probability threshold 𝜏 of 0.3 (top), 0.5 (middle), and after spatial constraints are applied (bottom). The top three plots on the right of each figure show the average
spectra of detected pixels corresponding to each map on the left. The bottom plot shows the reference spectra of the phases most closely matching the detected phases.
pretrained on unratioed spectra from bland pixels is used to evaluate
the likelihood of a bland spectrum for each pixel. Third, these like-
lihood scores are used to ratio each and every pixel in the image as
described in Section 4. Fourth, ratioed spectra are processed to replace
large spikes by a one dimensional cascaded median filtering applied
at decreasing window sizes. Fifth, mineral classification is rendered
on the ratioed pixel-scale spectra and each pixel is assigned to the
mineral class whose distribution generates the maximum probability
for that pixel. The classifier returns the predicted class and the prob-
ability of the prediction for each pixel. Finally, probability thresholds
and spatial constraints are applied, and average spectra for detected
phases and their respective binary classification maps are produced.
The total processing time for a full resolution FRT image is around
one minute. The toolkit uses targeted, reduced data record (TRDR)
images and reports pixel x, 𝑦 coordinates to facilitate reproducibility for
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investigators seeking to replicate the findings presented here. Users can
convert binary classification maps into a map-projected product for use
in GIS programs by converting x, 𝑦 coordinates in classification maps to
latitude and longitude by accessing the latitude and longitude bands for
those x, 𝑦 pixels in the ancillary derived data record file (DDR), which
accompanies each CRISM image.

6.3. Validation

In this section we use three images not used as part of the training
set to demonstrate the usefulness of the developed machine learning
processing pipeline. For all images we use the same set of probability
thresholds and spatial constraints. More specifically, for mineral phases
represented with fewer than five instances in the training set we use
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Fig. 7. Phases detected by HBM in FRT0001FD76. (a) Fe smectite, (b) Mg Smectite, (c) kaolinite, and (d) jarosite. The classification maps on the left of each figure show the
detected pixels for a probability threshold 𝜏 of 0.3 (top), 0.5 (middle), and after spatial constraints are applied (bottom). The top three plots on the right of each figure show the
average spectra of detected pixels corresponding to each map on the left. The bottom plot shows the reference spectra of the phases most closely matching the detected phases.
a probability threshold of 0.7 and for those represented with five
or more instances we use a probability threshold of 0.5. Connected
components are identified after dilating the binary classification map
by one pixel to the right and to the bottom to group nearby pixels in the
same connected component (see Fig. 5). Only connected components
containing more than five detected pixels are considered viable and all
other detections are ignored. The pixels added by the dilation (shown
as white pixels in Fig. 5) are not counted toward the size threshold.
11
The first image is HRL00016CFE, taken from the east crater rim of
Columbus Crater. Although alunite was previously reported in Colum-
bus crater, it was detected on the west crater wall and crater floor
(Ehlmann et al., 2016; Chaves et al., 2018). In this image our algorithm
detects small outcrops of alunite and polyhydrated sulfate along with
kaolinite. Segmentation maps and average spectra for all three phases
before and after applying probability and spatial constraints are shown
in Fig. 6. In images where kaolinite and alunite cooccur, distinguishing
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Fig. 8. Hydrated silica detected by HBM in FRT0001FD76. The classification maps on
the left show detected pixels for a probability threshold 𝜏 of 0.3 (top), 0.5 (middle),
and after spatial constraints are applied (bottom). The top three plots on the right
show the average spectra of detected pixels corresponding to each map on the left.
The bottom plot shows the reference spectra of the phases most closely matching the
detected phases.

alunite from kaolinite becomes challenging because of the spectral sim-
ilarity between the two. The validation with this image demonstrates
that our algorithm can effectively detect subtle spectral differences
between spatially cooccurring, spectrally similar phases such as the
1.75 μm feature in alunite .

The second image is FRT0001FD76, taken from the central peak
of a crater in Nili Fossae. Our algorithm detects Fe/Mg smectite,
kaolinite, jarosite, pyroxene, and hydrated silica. Fe/Mg smectites
were first reported in Ehlmann et al. (2009), albeit in a different
image (FRT0000A053). Kaolinite and pyroxene are visible in the 3-
channel image derived from summary parameters BD2300, BD2210
and BD1900. Jarosite in this crater was first detected by our algorithm
in image FRT0000A053 and was reported in Ehlmann and Dundar
(2016). The small outcrop of hydrated silica detected in this image
may require additional vetting but the broad feature at 2.2 μm suggests
a phase different than kaolinite detected in this image. Segmentation
maps and average spectra for all detected phases before and after
applying probability and spatial constraints are shown in Figs. 7 and
8.

The third image is FRT00009036, taken from the southern rim of
the Huygens crater. In this image our algorithm detects small outcrops
of prehnite, illite, and chlorite in addition to olivine. The 3-channel im-
age derived from summary parameters BD2300, BD2210 and BD1900
shows an Al phyllosilicate phase. Our algorithm more precisely detects
that phase as illite and prehnite with relatively well-defined spectral
features. In addition, our algorithm detects two small outcrops as
chlorite, one of which has a conspicuous 2.25 μm feature that appears
at higher thresholds in addition to the 2.35 μm one, which may
indeed suggest a chlorite phase. The other outcrop has only the 2.35
μm feature, which may suggest chlorite or Ca/Fe carbonate. A key
point is that the algorithm can track and classify across images any
characteristic recurring spectral shape, even if the expert user cannot
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identify it. In this case, whether the phase we are tracking is a chlorite
or an Ca/Fe carbonate is ambiguous. This actually highlights a key
advantage of the machine learning approach: the unknown spectral
type can be tracked across Mars and the geographic distribution and
geologic settings of occurrence used to determine which phase(s) are
most plausible. Segmentation maps and average spectra are shown in
Fig. 9.

7. Comparison with deep convolutional neural networks

Deep learning models pretrained on millions of images and vast of
amount of text and speech data have radically changed the way we
interact with data over the last few years. The field of hyperspectral
image analysis is no exception to this change as deep convolutional
neural networks (CNNs) that can jointly process spectral and spatial
dimensions offer a full-fledged solution to many classification and
clustering problems in hyperspectral image analysis (Li et al., 2017;
Mou et al., 2017; Min et al., 2018). Although some issues, such as class
imbalance, outliers, and missing classes are yet to be addressed, deep
CNNs are considered the state-of-the-art approach in hyperspectral im-
age classification (Audebert et al., 2019). To test the feasibility of these
deep learning approaches for CRISM image analysis we have evaluated
several recently proposed deep learning techniques implemented by the
DeepHyperX toolbox (Audebert et al., 2019) on a subset of our dataset
containing 14 images for training and 11 for testing. Based on this
preliminary evaluation we have selected the network architecture by
Ben Hamida et al. (2018) as the model with the most promising results
and put this to further testing in the same way we have tested the
proposed HBM. The model is a 3D convolutional neural network based
on 3 × 3 × 3 kernels and takes 5 × 5 image patches as input to classify
pixels. The network architecture is built from two 3D CNN layers (two
dimensions for the spatial image and one dimension for the spectral
data), each followed by a 1D CNN layer on the channel dimension,
two 1D CNN layers, and a final dense layer (each node in the layer
receives input from all nodes in the previous layer) for classification.
The model is applied in a sliding window manner on the input image to
generate pixel-level class predictions, and a special ‘‘unknown’’ class is
reserved for pixels without labels. More technical details can be found
in Ben Hamida et al. (2018).

The model is trained with the full set of 77 I/F images in Table 1,
each ratioed following the same steps outlined in Section 4. Only
labeled patches are used for training and a validation set is obtained
by sampling 5% of the patches stratified according to class sizes. The
training is performed for 50 epochs using the training parameters
from the original paper. The training time was 1 h 26 min and the
final validation accuracy, weighted by class size, was 94%. Detections
are filtered using the same post-processing steps applied for the HBM
model (see Section 5.2). As deep learning algorithms in general produce
overconfident predictions, i.e., most probabilities tend to be close to 1,
the probability thresholds for well represented and under-represented
images are adjusted differently for each image to have at most 300
high-confidence connected component detections per image. Here we
briefly evaluate the classification results.

In image HRL00016CFE CNN detects Fe/Mg smectite, jarosite, alu-
nite, kaolinite, polyhydrated sulfate, kieserite, and low Ca pyroxene
(Fig. 10). Out of these detections only alunite, kaolinite and poly-
hydrated sulfate are correct. However, the spectra for alunite and
polyhydrated sulfate are visibly noisier than those obtained by HBM, a
sign that the areas detected by HBM are under-segmented by CNN. The
kaolinite detection is oversegmented and shows vertical patterns that
indicate a dependence of the classifier on column-specific noise. The
other detections are all considered false positives. We have investigated
all the connected components from these detections to see if there were
any connected components that were correctly classified, yet missed by
the HBM model, but there were none. The average spectra for all the
false positives were very noisy with no recognizable spectral features.
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Fig. 9. Phases detected by HBM in FRT00009036. (a) prehnite, (b) illite, (c) chlorite 1, and (d) chlorite 2. The classification maps on the left of each figure show detected pixels
for a probability threshold 𝜏 of 0.3 (top), 0.5 (middle), and after spatial constraints are applied (bottom). The top three plots on the right of each figure show the average spectra
of detected pixels corresponding to each map on the left. The bottom plot shows the reference spectra of the phases most closely matching the detected phases.
In image FRT0001FD76 CNN detects Fe/Mg smectite, jarosite, kaoli-
nite, monohydrated sulfate, Mg CO3, and pyroxene (Fig. 11). Out of
these detections Fe/Mg semectite, jarosite, kaolinite, and pyroxene are
correct while the monohydrated sulfate and Mg CO3 are false positives.
However, Fe/Mg smectite detections contained a large number of py-
roxene outcrops. Jarosite contained several connected components with
nondiagnostic spectra causing the key 1.85 μm in jarosite spectrum
to vanish. CNN does not detect any hydrated silica in this image,
which was detected by HBM. In image FRT00009036 CNN detects
Fe/Mg smectite, prehnite, Ca/Fe carbonate, polyhydrated sulfate, illite,
13
hydrated silica, ferricopiapite, and chlorite (Fig. 12). Out of these
detections prehnite, illite, Ca/Fe carbonate, and chlorite detections
can be considered correct with some reservations. Ca/Fe and chlorite
detections contain several connected components with nondiagnostic
spectra causing the 2.25 μm feature in chlorite to disappear. CNN is also
repeating the HBM mistake of mixing chlorite and Ca/Fe carbonate.
Illite detections exhibit sharp spectral features extending beyond areas
detected by HBM suggesting HBM misses some of the illite outcrops in
this image at high probability thresholds. Remaining detections that
involve Fe/Mg smectites, polyhydrated sulfate, hydrated silica, and
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Fig. 10. Phases detected by CNN in HRL00016CFE. Figures (a), (c), and (e) on the left panel show all the connected components detected by the model and the matching average
spectra for true positives. Figures (b), (d), and (f) on the right panel show the subset of connected components with recognizable spectra for true positives. Figures in the bottom
panel (g) show the average spectra for false positive detections. Probability threshold is denoted by 𝜏.
ferricopiapite exhibit flat spectra with no recognizable features, and are
all false positives.

Overall CNN classifier significantly underperforms HBM classifier
in terms of accuracy and specificity of detections. As CNN produces
overconfident predictions even for noisy and spectrally mixed patterns
not represented in training, thresholding the probabilities was not as
useful as HBM in reducing the number of false positive detections. The
ensemble aspect of HBM that weights outputs of submodels differently
14
for each mineral class seem to be effective in generating more balanced
probability values and thus significantly reducing the number of false
positive detections.

8. Limitations

Although our training set contains pixel-scale labeled spectra from
77 well characterized images, we do not believe the current set of
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Fig. 11. Phases detected by CNN in FRT0001FD76. Figures (a), (c), (e), and (g) on the left panel show all the connected components detected by the model and their matching
average spectra for true positives. Figures (b), (d), (f) and (h) on the right panel show the subset of connected components with recognizable spectra for true positives. Figures in
the bottom left panel (i) show the average spectra for false positive detections. We report kaolinite once in (j) as all detected regions are valid. Probability threshold is denoted
by 𝜏.
training images exhaustively represents all spectral patterns. Certain
spectral patterns detected in new images processed but not represented
in the training set will be incorrectly classified to a class that is most
similar to these patterns. One example of this is the 2.1 μm spectral
15
artifact that we reported earlier in Leask et al. (2018) and initially
misclassified as a monohydrated sulfate and then identified by expert
analysis as perchlorate. We could only determine that it was an over-
looked CRISM pipeline processing artifact with spatial coherence after
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Fig. 12. Phases detected by CNN in FRT00009036. Figures (a), (c), and (e) on the left panel show all the connected components detected by the model and their matching average
spectra for true positives. Figures (b), (d), and (f) on the right panel show the subset of connected components with recognizable spectra for true positives. Figures in the bottom
panel (g) show the average spectra for false positive detections. Probability threshold is denoted by 𝜏.
extensive manual vetting of the detections associated with this pattern.
A new class representing this artifact has been added to the training set,
so that when new instances of this pattern are detected in new images
they are not classified as sulfate but correctly identified as an artifact.
As the I/F data has an artifact in the 2.1 μm range, we recommend to
confirm the 2.1 μm feature with radiance data in small outcrops.

There could be additional spectral patterns not represented by the
current training set. For example, there is a vaguely characterized
pattern with a doublet 2.2 μm feature widely detected in the Mawrth
Vallis and Valles Marineris regions that is reminiscent of multiple
different phases including jarosite, hydrated silica, and Al/Fe smectite,
previously identified by Roach et al. (2010) (see Fig. 13 for sample pat-
terns). Our current version of the classifier attributes these detections to
16
classes associated with jarosite, hydrated silica, or Al smectite, as this
pattern is not included in the current version of the training set because
of the ambiguity surrounding it. Our training set may become more rep-
resentative and the classifier trained with this data may become more
robust over time once these type of ambiguous spectral patterns can
be better characterized and unequivocally identified and incorporated
into the training set of classes.

Several phases are represented in the training set only by a few
instances. The current version of the classifier generates many false
positives for some of these phases when operating at low probability
thresholds, and thus a probability threshold of 0.7 and higher is rec-
ommended for these phases. Viable pixel detections will almost always
have spatial continuity, and as a general rule of thumb, the spatial
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Fig. 13. CRISM detections with the doublet feature from Valles Marineris and Mawrth
Vallis.

extent of viable detections grows in a continuous way as the probability
threshold is gradually lowered.

The current training set includes classes with no diagnostic features
in the 1.00–2.65 μm range, such as hematite and chloride. Pixels with
no diagnostic features in this range, but with higher albedo compared
to bland pixels, are usually classified into one of these classes. Thus,
detections in these classes should only be used as a starting point for
additional analyzes to confirm phases with key diagnostic features in
the 0.36–1.00 μm (hematite) and 2.65–3.90 μm (chloride) ranges.
17
9. Conclusions

We present a new machine learning toolkit built on top of a ver-
satile two-layer Bayesian Gaussian mixture model designed to model
spectral variability within as well as between images. Using published
knowledge of detected mineral phases on Mars we have collected a
relatively large training dataset and demonstrated the utility of this
toolkit in removing nonlinear noise and detecting both high and low
abundance mineral phases in CRISM images. We believe this new
toolkit will complement traditional spectral analysis techniques and
will improve community’s ability for fast, precise, and scalable analysis
of remotely-sensed data. As more images are processed and the training
set is augmented with new detections, especially from underrepre-
sented mineral classes, the accuracy of the classifier will gradually
improve. Although the current version of the classifier is implemented
in a closed-set setting, training with data only from phases detected to
date, open-set version can be implemented by extending the training
dataset with synthesized spectra of potentially missing phases. This
could potentially open new avenues for machine learning research
toward discovering new phases.

Data availability

Training datasets and training segmentation maps can be down-
loaded from https://cs.iupui.edu/~mdundar/CRISM.htm. The toolkit
with a user friendly Python notebook, source codes, and documentation
is hosted at https://github.com/Banus/crism_ml.
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