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There have been increasing concerns over the air quality inside buildings as high levels of bio-effluents can
cause nausea, dizziness, headaches, and fatigue to the people working in those spaces. First published in
2004 as Standard 62.1, ASHRAE Standard 62.2-2019 requires highly occupied spaces to implement heating,
ventilation, and air conditioning (HVAC) that can dilute contaminants produced by occupants. In this regard,
occupant-centric ventilation control has been regarded as an effective practice to maintain a satisfactory indoor
air quality (IAQ) when dealing with highly variable occupancy environments. However, few established models
in current literature and practice consider dynamic occupancy behavior and adaptive IAQ control. To address
this gap, a dynamic indoor CO2 model is constructed using machine learning algorithms to forecast CO2
concentrations across a range of forecasting horizons. Herein, we tuned and compared six state-of-the-art
learning algorithms—including Support Vector Machine, AdaBoost, Random Forest, Gradient Boosting, Logistic
Regression, and Multilayer Perceptron. The algorithms’ performances are validated using CO2 and historical
meteorological data collected from a campus classroom with a variable occupancy rate. Simulation results
showed that Multilayer Perceptron can strongly predict the volatile CO2 behavior and also outperforms other
algorithms in terms of accuracy. Furthermore, a control strategy capable of modeling and detecting dynamic
patterns of CO2 level is utilized to modulate the ventilation rate in real-time and also reduce the energy
consumption. The proposed controller reduced the HVAC fan’s energy consumption by 51.4% and provided
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ventilation as needed per the ASHRAE standards.

1. Introduction

Per the US Energy Information Administration (EIA), the building
sector accounts for over 33% of final energy consumption in residen-
tial, commercial, and industrial settings [1]. In particular, heating,
ventilation, and air conditioning (HVAC) systems are responsible for
the largest category of end-use energy consumption in buildings, more
than lighting, refrigeration, and water heating [2]. As such, HVAC
systems are a source of unexploited, avoidable energy loss, and their
improper operation leads to excessive greenhouse gas emissions, an
inordinate waste of energy, and occupant thermal discomfort. To op-
erate HVAC with increased energy efficiency without compromising a
satisfactory indoor environment, it is crucial to monitor its performance
and optimize the operation. The HVACs’ efficient operation is mostly
determined by its control and optimization parameters, as discussed
in [3]. In this regard, authors in [4] have indicated that improving
the HVAC’s control algorithm is far more reliable and profitable than
replacing HVAC equipment to achieve higher efficiency. A recent study
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has revealed that proper control of HVAC can deliver energy-savings
of 30% while preserving comfort [5]. Many researchers have given
importance to advanced control algorithms whenever improving HVAC
energy efficiency is desirable [6,7].

A good number of control methods for HVAC systems has been
addressed in previous studies. These control strategies can be clas-
sified into three major categories: classical control methods, intelli-
gent control approaches, and model predictive control (MPC). Classical
methods include on-off, proportional, proportional-integral (PI), and
proportional-integral derivative (PID) controllers. They are utilized
for indoor temperature control [8], dynamic control of supply air
pressure [9], cooling coil unit control [10], management of supply air
temperature [11], evaporator supply heat control [12], and control
of variable air volume unit temperature [13]. Despite being intu-
itive and easy to install, on/off and PID methods cannot deal with
temporal-dependent processes with time delays, leading to an incon-
sistent performance with such systems. To account for this problem,
intelligence and predictive-based techniques are adapted [14,15].
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Intelligent control models are usually based on artificial intelligence
(AD), Fuzzy Logic (FL), and Genetic algorithms. FL is commonly em-
ployed to tune PID controller gain and to optimize its response on a
global scale. The FL controller can overcome contradictions between lo-
cal and global controller goals by prioritizing pre-determined individual
controllers over others to minimize energy usage and preserve thermal
comfort. In this context, a three-level supervisory FL architecture is
incorporated [16] to control the setpoints of the lower-level controllers
of water and air subsystems. An FL-based controller is designed in [17]
to control humidity, air velocity, and temperature in an air handling
unit (AHU). Moreover, artificial neural networks (ANNs) are usually
trained on the performance data of HVAC systems to learn nonlinear
and time-varying dynamics associated with the system. ANN is consid-
ered a black-box approach that does not need an understanding of the
process’s underlying physics. ANN is commonly used in feedforward
control, and it can be trained to explore a relationship between input(s)
and output(s) using mathematical techniques. For instance, a predicted
mean vote thermal comfort controller is designed in [18] to predict
occupancy behavior and conduct a multi-zone temperature control.
In another study, ANN is applied along with a genetic algorithm
to optimize an HVAC system with several chillers in a residential
building [19]. A detailed review of the existing literature associated
with HVAC control techniques and their associated performance can
be found in [20-23].

Although the aforementioned control methodologies have empha-
sized the overall energy efficiency in HVAC operation, dynamic occu-
pancy trends have been largely ignored. This is because energy-saving
targets often interfere with occupant comfort and indoor air quality
standards, creating complex optimization issues. To account for this
problem, multi-objective optimization can be incorporated to consider
both energy saving and thermal comfort goals simultaneously [24].
However, to achieve a balance between both goals, extensive knowl-
edge regarding occupant activities is crucial. Information on occupation
states might be used to regulate setback temperatures to conserve
energy throughout unoccupied hours or to maintain an adequate degree
of comfort for occupants upon arrival. To monitor occupancy behav-
ior, information from a wide range of tools like Wi-Fi and Bluetooth
systems, infrared sensors, power meters, and CO2 sensors can be used.
Among all these options, CO2 sensor data has become a focus of recent
attention as it has a high correlation with the presence/absence of
occupants, and it also preserves people’s privacy [25].

Moreover, there have been increasing concerns over the air quality
inside buildings as traditional HVAC control strategies might not com-
ply with the new ventilation requirements of ASHRAE Standard 62.1
2019 [26]. For example, a recent study shows that many educational
environments in the US might not have sufficient ventilation to cope
with the CO2 levels when the classrooms are full of students [27].
The CO2 concentration level above 1000 ppm is deemed to be high
and associated with discomfort or health-related issues like nausea,
dizziness, headaches, and fatigue [28].

To model CO2 level in buildings, authors in [29] proposed a ma-
chine learning (ML) algorithm, namely decision trees, trained with
indoor and outdoor CO2 concentration data. A Markov Chain model is
implemented afterward, resulting in 90% accuracy for occupancy state
estimation. Using historical CO2 concentration info, another ML algo-
rithm called long-short term memory is trained in [30] to predict CO2
concentration level in a short-term forecasting horizon. By examining
the association between CO2 predictions and occupant numbers, they
calculated the number of inhabitants as a function of CO2 concentration
with more than 70% accuracy. In Ref. [31], an occupancy behavior
recognition model is developed based on CO2 concentration, motion
detectors, and lighting sensors. Based on this information, a Markov
Chain is employed for occupancy. Although using ML algorithms for
CO2 prediction has proven beneficial, there is a lack of a comprehensive
study to compare the state-of-the-art algorithms on such a task. Also, it
is necessary to show whether environmental features have some effect

on model prediction results. In [32], a vision-based machine learning
method is presented that allows the detection and identification of
occupant activity inside building areas. Through the development of
occupancy heat emission profiles, the data may be fed into building
energy management systems, assisting in the reduction of excessive
HVAC energy loads and the efficient control of interior conditions.

In this context, Ref. [33] proposes a combined machine learning
and ventilation model for enhancing indoor environmental quality. A
gray box model based on CO2 concentration prediction is proposed
in [34] to enhance the ability of predictive models in model predictive
control environment. [35] used a deep Q-network to provide model-
free optimum control balancing across several HVAC systems. The
optimization objective was to reduce the building’s energy consumption
while keeping the interior Co2 levels below a certain threshold. [36]
used machine learning algorithms to investigate CO2 prediction. There
are, however, numerous significant variations between the Ref. [36]
and our work. The primary contribution of their study is to determine
which feature sets are appropriate for a CO2 prediction study utilizing
machine learning algorithms. These feature sets could include the
following: (I) historical CO2 values; (II) historical CO2 and passive
infrared (PIR) sensor values; (III) historical CO2, PIR, temperature, and
humidity values; and (IV) historical PIR, temperature, and humidity
data. Our work, on the other hand, tries to tune/optimize several
machine learning algorithms using a fixed feature set (past PIR, temper-
ature, Dewpoint, and humidity). Second, whereas the Ref. [36] employs
MAE as an accuracy statistic, we employ MAE, MAPE, R2, and RMSE.
We believe that utilizing many performance metrics is useful because,
for example, the MAE metric is scale- and size-dependent. Furthermore,
while the machine learning techniques utilized in Ref. [36] are tuned
for predicting horizons of 5, 10, and 15 min, we forecast CO2 in
advance of 1, 6, and 24 h. When it comes to practical applications,
we believe that longer forecasting horizons with high accuracy metrics
are the most desirable.

To control the HVAC system based on CO2 prediction, an internal
model control in conjunction with PID-controller was used and resulted
in desired ventilation air quality (80% of the time) at lower costs [37].
The work validated that the IMC-PI controller has a faster response to
the changes in CO2 level when compared to the conventional PI CO2
control. This study lacked model validation and did not compare their
proposed controllers with the traditional ON-OFF controllers. Multi-
objective optimization MPC and PI controllers were used by other
investigators to maintain the air quality of a full-fledged HVAC model
with ventilation [38]. This implementation is case-specific and cannot
be generalized for other models due to the integrated nature of the
model and control. Discrete On/Off and Fuzzy Logic controller tech-
niques were simulated using Matlab & Simulink, and the results were
shown based on occupancy reflected by the collected rooms’ CO2 data
for energy reduction and system performance. It indicated 62.8% re-
duction in fan energy consumption using a Fuzzy Logic controller [39].
The investigators [40] have used DCV (demand-controlled ventilation)
to change the fan speed according to the change in the room’s CO2.
Most of these approaches show significant energy savings; however,
they either lack full model validation, fail to compare results with
the conventional ON-OFF control, or propose complex control systems
that demand heavy computation power and are neither versatile nor
general in nature. Most of these models have a severe shortcoming
of slow response time compared to the existing system or are highly
complex, thereby increasing the computation time [41]. Thus, a simple
model is needed to capture the CO2 dynamics in the space and to be
used as a reference for the control system design. This paper addresses
those gaps by starting with the indoor CO2 model, validating it, using
a simple yet robust control strategy, and comparing it to the more
common ON-OFF control strategy. The development of an adaptive
control algorithm allows the ventilation rate to be predicted and tuned
ahead of changes in CO2 concentration and occupancy rates. Based
on the above discussion, the major contributions of this study can be
summarized as follows:
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« It is necessary to adjust and compare a number of learning-based
models of CO2 concentration prediction. We aim to rank a large
number of machine learning algorithms with varying capacities
on such a job in order to extract a customized model from a
potentially endless number of alternatives (Section 2).

It is suggested to use an occupant-centric control method to pro-
duce ventilation that not only satisfies the new ASHRAE standard
in terms of CO2 concentration level but also consumes the least
amount of energy. The effectiveness of the suggested control
method is shown by embedding it into an existing HVAC system
and comparing its performance to that of the conventional control
technique (Section 3).

The paper continues as follows:Section 2 details the representative
CO2 data with features and characteristics. Then, six machine learning
methods are tweaked and compared using multiple performance crite-
ria spanning different predicting horizons. Section 3 goes into detail on
the occupancy and demand control models. Finally, Section 4 draws the
conclusion and suggests several potential research directions.

2. General structure of the proposed algorithm

This section describes the step-by-step framework used for demand-
controlled ventilation (DCV) based on CO2 concentration prediction.
The machine learning algorithms used for CO2 prediction are then
described along with the performance metrics used to evaluate the
accuracy thereof.

2.1. Occupancy-based demand controlled ventilation

As already mentioned, DCV is capable of maintaining the needed
indoor air quality while reducing energy usage. Indoor CO2 levels
are employed as a measure of indoor air quality in the environment,
and people are assumed to be the primary producer of CO2 indoors,
resulting in an increase in indoor concentrations relative to outside
levels. The air conditioning system can modify ventilation rates in
response to variations in indoor CO2 production, i.e., the rate of
ventilation is regulated over time in response to signals from the
indoor CO2 concentration. Using this method, we can reduce energy
waste by catering to the ventilation needs based on the occupancy
levels/number. In some ventilated areas like classrooms, banquet halls,
and auditoriums, the number of occupants and their actions can be
monitored to validate the CO2 prediction models. In this study, one of
the most consistently occupied classrooms was chosen to conduct the
CO2 data collection and model validation experiment. The occupancy
number was monitored based on the class schedules from Monday
through Friday. It was assumed that more than 50% of the students
would arrive within 10 min of the class start time and that all students
would leave within 3 min of the class end time.

To ensure sufficient IAQ, the ventilation device should optimize its
decision before the CO2 level exceeds its steady-state value. Therefore,
the control algorithm must predict the CO2 concentration level in
advance and must control the fan ahead of steady-state conditions.
The current system considers a fixed number of inhabitants while the
proposed system is based on the introduced real-time indoor occupancy
estimation algorithm. It is assumed that the number of occupants is
constant over short-term periods, such as 10 min, and it changes over
lengthy periods, such as one hour. Accordingly, we use the actual CO2
generation rate to predict the number of occupants and total CO2
generation rate in the zone for a future time, say the next 10 min.
Since the data resolution for the MLP process is 1 min, we average the
following ten predictions at each step. This will also help to reduce the
noise associated with the MLP predictions. Other input features of the
MLP algorithm are also calculated using persistence forecasting [42]
which relies on past observations to predict the following values.

Based on MLP CO2 prediction, the ventilation system is controlled
to maintain the required indoor CO2 level. The ventilation rate of
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Fig. 1. The proposed framework for indoor air quality control using demand-controlled
ventilation.

the system is adjusted according to the occupancy prediction and
ventilation rates at different occupancy levels where E is fan energy
consumption in kWh, d,, is the total pressure of the fan (obtained from
the fan’s nameplate), and H is the hours of operation. Fig. 1 represents
the flow chart of the proposed method for the indoor air quality control
of the system.

2.2. Representative machine learning models

Based on the degree and amount of human supervision they undergo
during the training phase, machine learning (ML) models may be clas-
sified as supervised, semi-supervised, unsupervised, or reinforcement
learning. The most popular ML method is supervised learning in which
the desired labels are fed to the algorithm with the goal of estimating a
numeric value. Classification and regression are two popular supervised
learning activities. Our case is a supervised problem since we need
to predict the CO2 concentration level ahead of time and have the
requisite historical information.

To address supervised problems, many ML algorithms have been
developed, each with its own set of implications. Here, Support Vec-
tor Machine (SVM), AdaBoost (AdB), Random Forest (RF), Gradient
Boosting (GB), Logistic Regression (LR), and Multilayer Perceptron
(MLP) are adopted as representative ML models. We selected these six
algorithms for various reasons: ability to learn complex and nonlinear
interactions, adaptability to different types of problems, fast results,
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and simple interpretation [43]. Also, each of these algorithms has spe-
cific and unique capabilities, making them attractive for a comparison
study. Notice that the mathematical background of these algorithms
is extensive and out of the scope of this paper. As such, we only
reflect on the important concepts or formulas that determine unique
characteristics of each algorithm. For a detailed discussion regarding
the unique characteristics of those algorithms, interested readers are
referred to [44].

Support Vector Machine: Pioneered by Vapnik [45], SVM has
become a subject of intense research because of its effectiveness in
regression tasks. The basic principle behind SVM is to use a regres-
sor that minimizes the error between the predictions and ground
data while providing enough margin to provide higher generaliz-
ability than simple regression. Given a set of training data D as
{(X5Ly1). (X0 92) 5o (X0 31)s -+, (Xy,yn)} € D, X is the vector of
feature space X:{x; = Temperature, x, = Humidity, x; = Dewpoint},
y is the CO2 concentration level, i € {1,2,...,N} is the index for
instances included in the dataset, and N is the number of samples. The
goal is to find a function that can accurately approximate all the data.
The estimation function for SVM can be written as Eq. (1).

fX)=weX+b @

Here, (v) is the inner product, and w and b are the weighting and
bias vectors. These vectors must be computed in such a way minimize
the associated regression error. The error function is incorporated as
follows:

N
1

Crog(f) = ng(f(Xi)—yi) + 5 (Wew) @)

where S is a predetermined value and z(.) is the loss function associated

with empirical risks, as represented in (3):

0 FX) -y <e
e (F/XD) =) = { |FX) = i |—s Other|wise ®
As it is formulated, the cost function is sensitive to the value of &.
When predictions have less than a +¢ difference with the ground truth
data, the weighting and bias vectors are not updated; otherwise, the
configuration is adjusted in a way that minimizes the overall error.
Since this hyperparameter controls SVM’s accuracy, it is set as a fraction
of the standard deviation associated with the CO2 concentration. As
such, the error threshold is set to 27.8 during our experiments.

Random Forest:A typical way to enhance a machine learning al-
gorithm’s effectiveness is to average the forecasts of a set of several
predictors. This leads to obtaining superior performance compared to
a single model. This approach is called ensemble learning. RF is an
ensemble-based ML algorithm that trains each predictor on a different
data proportion. A detailed mathematical formulation and explanation
for RF can be found in [46].

Logistic Regression: As opposed to linear regression, a logistic
model computes a weighted total of the input features; however, in-
stead of outputting the raw data like regression, it outputs a logarithm
of the logistic value between zero and one as in (4).

p= o(We X) (4)

To squeeze the output between zero and one, LR uses a function
called sigmoid. For a given scalar s, the sigmoid function is expressed
as (5):

o(s) = —— (%)
l+es

AdaBoost:Another way to enhance the performance of a learning
model is to adjust the configuration based on the instances that con-
tribute more to the error. One way to do so is first to train a function
on the dataset and then to obtain the results, increase the weight of
instances, and tune a new model based on the updated weights. This
process is repeated sequentially until the final model yields a reason-
able performance. This is the central idea behind sequential-based ML

O Output Layer

/-1 [-1 /-1
KR

= -

h, -

Input Layer

Fig. 2. Multilayer perceptron schematic.

techniques like ADB. Interested readers should turn to [47] for more
information on the mathematical context of the ADB algorithm.

Multilayer perceptron: An MLP is a standard neural network in
which the output is a weighted sum of inputs plus a bias squashed by
an activation function like a sigmoid function. A schematic of MLP is
shown in Fig. 2. The relationship between the input(s) and output is
determined by (6)

Jom™m

M
h;:o( w hl_1>;\7’je{1,2,...,J},VIE.Q (6)
m=1

where Q is the set of MLP hidden layers, w im 18 the connection weight
of node j in layer / coming from node m in layer I-1, M is the number of
nodes in hidden layer /-1, and J is the number of hidden layer nodes in
the hidden layer /. The parameters of the network are calculated based
on an approach called stochastic gradient descent [48].

Gradient Boosting: GB is another sequential ML model that builds
an ensemble of regression models, each of which is trained sequentially
and is dependent on the previous predictor. When all of the models are
tuned, a highly accurate generalization model is obtained on the task.
The hallmark of GB is its ability to strike the optimal balance between
model sophistication and generalization performance.

2.3. Performance metrics

Various predictive measures can be used to evaluate the efficiency
of forecasting models. Bias, variance, complexity of calibration, refine-
ment, variability, precision, and resolution are all factors that influence
the consistency of a forecasting model. The bulk of related literature has
been validated using precision metrics such as root mean squared error
(RMSE), as characterized by (7).

L
N 4

RMSE = -5 %)

||Mz

where y; and §; are the predicted and ground truth data, respectively.

Another way to assess accuracy is to average the absolute difference

between the predicted and actual values. This is called mean absolute

error (MAE) as represented in (8).

| X

MAE = — 3 |y, = 3| @®)
i=1

Forecasts that have lower MAE and RMSE values are more reliable.

However, a weakness of the MAE and RMSE metrics is that they are

not normalized in regard to the scale of the labels. To provide a better

understanding of the error scale, a performance metric based on the
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percentages of errors is incorporated as in (9). This is called mean
absolute percentage error (MAPE).

N N
1 Yi—Yi '
MAPE = — — | x 100 9
N g‘ Vi

MAPE values of less than 10% represent an extremely precise forecast,
for 11% to 20% MAPE indicates a decent forecast, 21% to 50% MAPER
specifies a fair forecast, and more than 50% indicates a highly incapable
model [49]. A problem with MAPE is that it does not consider pre-
diction variance. To cope with this, the coefficient of determination,
denoted by R? in (10), is commonly used to reflect the variance of
predictions with regard to the mean of observations (j).

>N -9
>N -9

R? is an indicator of how well the projections match the observations,
with values varying from O to 1. In other terms, it provides valuable
information regarding the forecasting model’s capacity to match, with
a value near 1 indicating greater prediction accuracy.

R®=1- (10)

3. Simulation results and discussion

In this part, we will discuss the findings of a real-world case study
that we conducted based on the proposed algorithm.

3.1. Data characteristics

The data were collected from a university campus classroom over
three months during the fall session that included 13,003 weather-
related values and a corresponding CO2 concentration with a resolution
of 1-min. Weather-related variables constitute ambient temperature,
relative humidity (RH), and dew points. Feature-output correlation is
significant for two reasons: It is critical to perform dimension reduction
on large datasets. Reduction in the number of dimensions reduces the
number of characteristics that must be tracked. Two characteristics that
have a correlation of more than 0.7 or less than —0.7 must be reduced
to one feature [50]. Heat map representation of the dataset correlation
matrix is shown in Fig. 3. Our characteristics do not have features
with correlations less than —0.7 and higher than 0.7. Also, learning
algorithms that utilize characteristics most associated with the label
are further developed based on those attributes. For example, stratified
sampling is performed for the training phase depending on the values
of the most correlated characteristic. In this research, temperature was
shown to be strongly predictive of the result (CO2). Second, knowing
which characteristics are most associated with the label is important
because these features are utilized when constructing the learning
algorithm. In this research, temperature was shown to be strongly
predictive of the result (CO2).

The correlations between the CO2 concentration and the corre-
sponding features are illustrated in Fig. 4. The features constitute
dew points, relative humidity, and temperature. All of the features
positively correlate with CO2 concentration, with temperature as the
most-correlated predictor with a correlation of 0.45, followed by dew
point and RH with correlations of 0.37 and 0.11, respectively. Although
positively correlated, it can be seen that the system has complex behav-
ior. To better understand the data intricacy, the probability distribution
functions of each feature as well as the CO2 are shown in Fig. 5. The
Gaussian or normal distribution is the most often used model for quanti-
fying the variance in original data. In this context, data are summarized
using the arithmetic mean and standard deviation. As a result, the nor-
mal distribution has become the de facto standard for describing data
and its variance. Additionally, any movement away from the symmet-
ric normal distribution toward an asymmetry perspective significantly
increases data distribution identification and interpretation quality. As
depicted, the CO2 average level is 545 ppm; however, we have a CO2

-1.0

-0.8

- 0.6

0.4

0.2

CO2

0.0

0.84 : al -0.2

DewPt

Temp RH CO2 DewPt

Fig. 3. Heat map representation of the correlation matrix for the representative dataset.

level of more than 1000 ppm for 1132 samples (8.7 percentage of the
data). The ASHRAE standard 62.2 recommends 1000 ppm of CO2 and
above as a threshold of concentration whenever ventilation correction
is needed. Noncompliance results not only in detrimental effects for
employees and students but also in increased visits from administrative
agency officials, which could result in mandates or penalties.

3.2. Learning-based CO2 prediction

Accurate CO2 prediction is a key task in achieving demand control
ventilation (DCV) since ASHRAE 62.2 requires the outdoor air flowrate
to be calculated based on ventilation rates needed to dilute the con-
taminants produced by occupants and building materials. However, the
number of occupants and their activities are uncertain to a great extent,
leading to the poor performance of physics-based and rule-based CO2
prediction models [36]. Machine learning algorithms have proven ben-
eficial in this regard, as they are capable of learning high uncertainty
and variability associated with CO2 data. This section first describes
the representative CO2 data along with the associated features and
their characteristics. Then, six machine-learning algorithms that can
learn those characteristics are tuned and compared based on several
performance metrics over different forecasting horizons. It is necessary
to consider various time horizons for CO2 prediction as uncertainty
introduced by occupancy behavior propagates when the forecasting
horizon extends to longer-term periods. In this study, short-term (a few
minutes in advance), mid-term (a few hours in advance), and long-term
(a day in advance) are considered as representative horizons for CO2
predictions.

The data collected from a campus classroom at IUPUI (Indiana
University-Purdue University, Indianapolis) is used to evaluate the
performance of ML models. The dataset is split into two sections by
proportions of P% as the training set (TS) and (1 — P)% as the cross-
validation (CV). Random subsampling is used to divide the dataset into
training and test sets. Random samples are chosen during the training
phase. However, when evaluating the models’ performance, the cross-
validation set is retained in its original structure. As such, we may argue
that the cross-validation set reflects the model’s predictive capability
(the sequential order of the samples is maintained). Data points are
assumed to be drawn from the same likelihood distribution. We then
select P% of these samples at random for the training set and the
remaining (1 — P)% for the evaluation set. We use different P values to
assess the generalizability of the ML models over different forecasting
time horizons. For example, P = 89 means that 11% of the data (1430
samples out of 13003) is associated with CV; thus, the corresponding
forecasting horizon is approximately 1430/60 = 24 h. Herein, 1-h (P =
99.5), 12-h (P = 97.3), and 24-h (P = 89) forecasting horizons have
been selected for the experiments. Notably, it is essential to ensure
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Fig. 4. Depiction of Correlation between CO2 concentration and other variables.

that the split process does not exhibit discriminating behavior toward
certain types of samples. Python’s Stratified split function is used to
divide the data into train and test sets to reflect the frequency of
different values. This enables the creation of homogeneous training and
testing sets and the elimination of sampling bias. Additionally, missing
values are filled using the Simple-Imputer function, which substitutes
the median for missing values. Then, all the characteristics are scaled
by removing the mean value from each sample and dividing it by the
standard deviation, resulting in a distribution with unit variance. This is
referred to as “Standardization”. Table 1 shows the performance of the
proposed forecasting models for the TS and CV when a 1-h in advance
CO2 prediction is needed.

As represented, different algorithms show different characteristics
and performances as expected. Some algorithms like RF tend to perform
better during the training phase but can be/are outperformed by other
models in the validation phase. MLP, however, has shown a solid
performance for both TS and CV. The forecasting period is extended
to 6 h and 24 h to assess the generalizability. The ML algorithms’
generalizability can be regarded as the ability of the model to predict
the output accurately when the unseen feature values are fed to the
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Fig. 5. Probability distribution function of different features and CO2 concentration.

Table 1
CO2 forecasting performance of the ML models—1h-ahead horizon.
Phase Metric ~ SVM RF LR AdB MLP GB
RMSE 3473 3886 36.44 3599 33.29 3811
MAE 30.18 3322 30.22 37.37 29.14 30.16
Training MAPE 17.67 12,54 1832 1555 14.68 11.28

R? 0.931 0.944 0.887 0.906 0.952 0.924

RMSE 35.13 39.98 37.65 36.62 34.32 38.55
MAE 30.13 30.32 30.29 30.47 30.16 30.23
Cross validation =~ MAPE 19.66 15.59 21.56 18.87 16.09 13.72

R? 0.895 0.902 0.812 0.883 0.912 0.865
Table 2
CO2 forecasting performance of the ML models—6h-ahead horizon.
Phase Metric SVM RF LR AdB MLP GB
RMSE 3481 41.75 37.58 36.86 33.78 39.76
MAE 38.19 41.28 39.28 3343 4220 36.19
Training MAPE 19.67 15.45 21.54 18.81 18.42 19.64

R? 0.859 0.901 0.850 0.894 0.873 0.842

RMSE 46.33  43.37 49.19 48.01 44.70 46.75

MAE 0.19 0.45 0.43 0.69 0.24 0.34
Cross validation ~ MAPE 23.92 18.45 27.93 23.63 20.25 17.32

R? 0.782  0.788 0.691 0.755 0.812  0.760

algorithm. As such, the results for 6-h ahead and 24-h ahead predictions
are shown in Tables 2 and 3 respectively.

As can be seen, both MLP and SVM can reasonably tackle the non-
stationary problem associated with CO2 forecasting, with the former
outperforming the latter for different forecasting horizons on average
according to simulation performance. The better prediction accuracy of
MLP compared to SVM is also depicted in Fig. 6, where MLP follows
the pattern of CO2 changes more quickly and with higher accuracy. As
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Table 3 Table 4
CO2 forecasting performance of the ML models—24h-ahead horizon. Hyperparameters associated with the proposed MLP algorithm for CO2 prediction.
Phase Metric ~ SVM RF LR AdB MLP GB Activation function Sigmoid
RMSE  45.03 46.48 46.99 46.48 44.39  49.07 Number of hidden layers 4
MAE 4421 47.24 4926 4242 40.16  46.17 Hidden layer nodes 130
Training MAPE  21.64 1493 2242 19.06 19.45 1378 Solver AdaDelta
R2 0780 0.835 0792 0.843 0819 0.779 Learning rate 0.01
Validation fraction 0.2
RMSE 55.66 56.84 5862 57.23 5478 59.67 Random state None

MAE 52.16 57.39 53.33 51.59 55.19 57.28
Cross validation =~ MAPE 25.98 20.39  26.71 22.99 22.27 18.13
R? 0.719 0.769 0.713  0.772 0.805 0.721

DCV due to the CO2 high correlation with the volume of activities
and number of people in a particular space. ASHRAE [51] suggests the
following formula as the governing equation for the indoor CO2 models

such, MLP is used in further experiments. All the configuration files are
to calculate the relationship between CO2 concentration and number of

developed and run using Python and Tensorflow2 as backend.

Developing an efficient machine learning model is a complicated occupants:
and time-consuming process that requires selecting the right procedure dc
and adjusting the model’s hyperparameters to achieve the optimum Vd_ =06 -0C+G.P an

network. Hyperparameters are used to either setup a machine learning
model (for example, the error threshold e in SVM or the learning
rate for training the network) or to specify the algorithm used to
minimize the loss function (e.g., the activation function and optimizer
types of the networks). Hyperparameters, in general, define both the
layout and training of a neural network. The number of network

where V is the room volume [m?], C is the CO2 concentration in the
room [ppm], C, is the outdoor CO2 concentration [ppm], Q is the
fan flow rate [m3/s], G is the CO2 generation per person [ppm m?>/s],
and P is the room occupancy [number of people in the room]. Assum-
ing constant occupancy/generation and ventilation rates in time, the
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22
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layers, nodes in each layer, activation mechanism, and other ML ar-
chitectures features are all hyperparameters. Hyperparameter tuning
is the process of designing the optimum model architecture with the
optimal hyperparameter setting. Traditional methods for tuning hyper-
parameters include manual testing, grid search, and decision-theoretic
optimization. We utilized a decision-theoretic optimization method in
this research, tweaking the hyperparameters using a Python program
named “HyperOpt”. Additional information about this function and its
implementation is available in [48]. The hyperparameters associated
with the ultimate MLP model are listed in Table 4.

3.3. Model validation

The number of occupants and their activities is uncertain to a great
extent. As such, accurate CO2 prediction is a critical task in achieving

C(t)zco+%(1—e%@)

to infinity, provided by the expression in (13).

G.P

C,=Cy+——

o

governing relationship during the transient phase is as follows:
12)

where Q/V is referred to as the building’s exterior air change volume,
and its inverse, V/Q, is referred to as the system’s time constant. If the
class starts the day with the outside CO2 concentration and is then
filled, the indoor CO2 concentration would continue to increase at a
rate determined by the ratio of fan ventilation rate to the room volume.
The room would ultimately have a steady concentration, as time goes

(13)

Fig. 7 represents the equilibrium CO2 concentration vs the fan ven-
tilation rate for different occupancy levels. As more people occupy the
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08).

space, ventilation must increase to retain the same CO2 concentration.
Egs. (11)—(13) are used to validate the occupancy estimation results for
one of the classrooms where the size of the hall, number of occupants,
and occupant activities are accessible. The Onset CO2 data logger was
used to measure the CO2 in the room with the sampling rate of 1
sample/min. The occupancy number responsible for the rate of change
of CO2 is calculated for the class timings throughout the week. The
classroom volume is 500 m? and the maximum flowrate of the HVAC
system is 0.9 m?/s. The occupancy state’s period and the pace at which
people entered and left the zone were compared to actual data to
determine the occupancy model’s performance. Fig. 8 illustrates the
occupancy estimate for a day that indicates that the occupancy rate
assumption is reasonable. From Figs. 2 and 5, it is evident that CO2
concentration exceeded 1000 ppm as the occupancy increased, making
the classroom under-ventilated. As represented, the simulation results
followed the trend of actual data. As such, the proposed model can
fairly mimic the response characteristics of the existing system. Based
on this prediction, a monitoring mechanism that ensures that the CO2
concentrations never go beyond a predetermined threshold can be put
in place.

3.4. Demand controlled ventilation
For CO2 thresholds of 600 ppm and 700 ppm, the controlled venti-

lation and indoor CO2 are shown in Fig. 9. As depicted, the controller
tries to track these setpoints by lowering the ventilation rates whenever
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Fig. 9. Controlled ventilation to maintain the necessary amount of CO2 indoors, (a)
600 ppm setpoint, (b) 700 ppm setpoint.

the occupancy drops and increasing the ventilation rate when the
number of occupants rises. The ventilation rates for the 600 ppm
threshold are usually higher than the 700 ppm threshold as the fan has
to work more to compensate for the excessive CO2 generation. This
means that the CO2 setpoint level has a massive impact on the energy
consumption level of the system. For example, for setpoints 600 ppm
and 700 ppm, the overall indoor ventilation (fresh air) for the chosen
day (11/08/2018) are 22438.8 m? and 18 860.6 m?, respectively. The
total indoor ventilation and the fan energy consumption for different
setpoints, ranging from 500 to 1000 ppm, are shown in Table 5. This
table also displays the total energy consumption difference between
the current system (with an average fan flowrate of 0.9 m?/s) and the
proposed DCV system. As can be seen, the total fresh air and energy
consumption rates are reduced in higher CO2 thresholds. Increased
energy savings can also be obtained by increasing the CO2 setpoint
values, since the fan needs to work less in this case. However, signif-
icant energy savings are anticipated as compared to the conventional
ON/OFF control scheme. This is due to the fan’s flexibility to decrease
the flowrate whenever occupancy is dropping and also the capacity of
increasing the flowrate when CO2 is highly generated. To further assess
the fan energy consumption based on the ventilation rate, Eq. (14) is
used.

E=d,xQxH (14)
4. Conclusion

This research provided a step-by-step methodology for controlling
the HVAC system of a campus classroom based on the level of CO2
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Table 5

Average fan flowrate, total fresh air, and energy consumption comparison for different DCV setpoints.

System Average fan Operation Total fresh air Energy consumption  Energy saving
flowrate [m?/s] hours [m?] [kWh] [%]

Current 0.9000 10 32400.0 36.0 -

DCV-500 ppm 0.7435 10 26766.0 29.7 17.5

DCV-600 ppm 0.6233 10 22438.8 24.9 30.8

DCV-700 ppm 0.5238 10 18860.6 21.0 41.6

DCV-800 ppm 0.4873 10 17 542.8 19.5 45.8

DCV-900 ppm 0.4513 10 16 246.8 18.1 49.7

DCV-1000 ppm 0.4366 10 15717.6 17.5 51.4

concentration in the environment. In a detailed comparison study, six
of the most advanced machine-learning algorithms in the field were
selected and fine-tuned for the purpose of CO2 prediction. As a result
of its great ability to learn nonlinearities connected with the CO2 data,
the multilayered perceptron network outperforms other representative
algorithms, according to our findings. We created an occupant-centric
control strategy for monitoring the levels of indoor air quality based
on the ultimate machine learning model. Model-based control schemes
beat conventional ON/OFF controllers in terms of control precision and
energy savings, as demonstrated by our research. The proposed model
and control technique proved to be effective in reducing total energy
usage by up to 51.4 percent, according to the results. Using the dynamic
behavior of the occupancy patterns, as well as the uncertainties and
disturbances in the system, the control strategy was able to address
the shortcomings of the current control system. Unlike other controllers
such as MPC, this control system may be constructed quickly and at a
minimal cost, and it does not necessitate the use of additional computer
power due to its simplicity of design using Hardware-in-the-Loop (HIL)
testing for validation, this control system can be connected to the HVAC
fan for full-fledged testing and validation in the future as part of a
research project.
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