
IMPROVING THE DETERMINATION OF
MINIMAL HITTING SETS IN MODEL-BASED

DIAGNOSIS USING CONSTRAINT
DATABASES

M. T. Gómez-López, R. M. Gasca and C. del Valle ∗,1

∗ Escuela Técnica y Superior de Ingenieŕıa Informática de
Sevilla, Spain

{mayte, gasca, carmelo} @lsi.us.es

Abstract: In model-based diagnosis, minimal hitting sets are usually used to
identify which components may fail in a system. This work presents a set of
algorithms to improve the determination of all Minimal Hitting Sets. Our proposal
uses the minimal conflict sets to obtain, in an efficient way, the diagnosis of a
system. The improvement consists of three algorithms which analyse only the
relevant options. This proposal builds an equivalent system in order to obtain all
minimal hitting sets depending on the location of the sensors. At the same time,
all the information of the process is stored in a Constraint Database, keeping
the information persistent and recoverable. Some empirical results are presented
in order to show how the proposal improves the process in order to obtain all
minimal hitting sets.Copyright

Keywords: Model-based Diagnosis, Constraint Databases, minimal hitting sets.

1. INTRODUCTION

A lot of theoretical and practical problems can
be partly reduced to an instance of the minimal
hitting set problem, as in model-based diagnosis
how it is explained in (Reiter, 1987). Model-based
diagnosis allows the identification of the parts
which may fail in a system using a model. The
models are based on the knowledge of the system
to be diagnosed, and it can be represented by
constraints associated to the components. Inputs
and outputs of components are represented as
variables in the constraints, and they can be
observable and non-observable, depending on the
allocation of the sensors. In function of the value
of these sensors, it is possible to know which

1 This work has been funded by the Ministerio de Ciencia
y Tecnoloǵıa of Spain (DPI2003-07146-C02-01) and the
European Regional Development Fund (ERDF/ FEDER).

groups of components are failing looking for the
minimal hitting sets. In this work, a new approach
is proposed in order to automate and to improve
the determination of all minimal hitting sets.

There are a significant amount of works that deals
with minimal hitting sets, but most of them are
only interested in finding single minimal hitting
sets and for special types of problems. Our mo-
tivation is to find all minimal hitting sets, single
or multiple. Another advantage of our technique
is the possibility to store all the diagnosis process
information using the relational calculus.

One of our previous works (Gómez-López et al.,
2004) shows how to obtain the possible minimal
conflict sets in an efficient way. This paper starts
at this point, and some algorithms are developed
and implemented to obtain the minimal diagnosis.
In this paper, we present how some issues concern-

ing Constraint Databases (CDBs) can improve the
efficiency in some stages of the model-based diag-
nosis. A novel methodology is presented in order
to promote the advantages of this technology and
its usage in industrial diagnosis problems.

Moreover the relational model is not able to
represent the scientific and engineering data. For
this reason, we consider CDBs as a good tool for
our reasoning process. There are lots of works,
as (Revesz, 2002) and (Kuper et al., 1998), that
utilise CDBs, but neither of them uses them for
diagnosis. CDBs permit to treat and store the
continuous information, as the behaviour of a
system. It allows the use of all the power of
relational databases in model-based diagnosis.

Our paper has been organised as follows: Sec-
tion 2 presents other relevant proposals. Section
3 reviews some definitions in order to introduce
the model-bases diagnosis. Section 4 explains how
it is possible to take advantage of CDBs in the
determination of minimal hitting sets. Section 5
describes the algorithms to improve the diagno-
sis, showing some empirical results. Finally the
conclusions are presented.

2. BACKGROUND

Reiter (Reiter, 1987) presented one of the first
solutions for the determination of minimal hitting
sets using the so-called HS-trees. The problem
with complete HS-trees is that the size of the
tree grows exponentially with the size of the
collection of sets. Minimal hitting sets can be
efficiently obtained by a pruned HS-tree, but the
construction of pruned HS-trees is complex due
to unnecessary results are generated. The HS-tree
was revised by Greiner (Greiner et al., 1989) into
an HS-DAG using a graph. Among the solutions
that use trees, it is possible to find the BHS-trees
that compute the hitting sets with a binary-tree,
or the Wotawa’s proposal (Wotawa, 2001), where
the HST-tree algorithm is presented. The HST-
tree algorithm constructs the tree in a unique
way, where nodes are ordered from left to right
depending on the size of their edge labels.

Other previous works have been centered in cir-
cuits diagnosis, as (Hou, 1994) or (Stumptner and
Wotawa, 1997). (Hou, 1994) shows how to avoid
visiting all subsets. The problem was that this
proposal skips over some possible solutions, and it
was corrected in (Han and Lee, 1999), where the
number of subsets required to be explored was also
reduced. The algorithm called structured-based
abduction (SAB) of (Fattah and Dechter, 1995)
is improved in (Stumptner and Wotawa, 1997),
descending into the tree to find the possible com-
binations which can be responsible of an incorrect
behaviour.

The determination of minimal hitting sets has
also been approached without using trees. (de la
Banda et al., 2003) presents algorithms for the
determination of all the minimal unsatisfiable sub-
set of constraints. They use preprocessing steps to
reduce the size of the set of constraints, allowing
them to solve larger problems than other tech-
niques.

3. DEFINITIONS

In order to obtain the minimal hitting sets, some
definitions are necessary:

Definition 1. Context Set (CS): Any subset of
components which compose the system. There are
2ncomp − 1 possible CSs, where ncomp is the
number of components of the system.

Definition 2. Context Network (CN): A graph
formed by all the CSs according to the way
proposed by ATMS (Kleer, 1986).

Definition 3. Context Analytical Redundancy
Constraint (CARC): A constraint derived from
the system, in such a way that only observable
variables (variables with sensors) are related.

Definition 4. Observational Model (OM): A set
of values for the observable variables.

Definition 5. Possible Minimal Conflict Contexts
(PMCC): CSs which have one or more than one
CARC associated, where its subcontexts are not
PMCCs.

Definition 6. Minimal Conflict Context (MCC):
A PMCC whose CARCs are unsatisfiable for
an OM . The MCCs help us to find out which
components are failing.

Definition 7. Hitting Set (HS) for a collection of
sets C is a set H ⊆ ⋃

S∈C S such that H contains
at least one element for each S ∈ C. A HS of C
is minimal iff no proper subset of it is a HS of C.
The minimal HSs for a set of MCCs are formed
by {H1,H2, . . . Hn}, where Hi is a minimal HS
of components. The cardinality of Hi (|Hi|) is the
number of components of Hi.

In order to know the MCC, it is necessary to
obtain the CARCs of the system. Our proposal
uses Gröbner Bases theory (Buchberger, 1985),
which is the origin of many symbolic algorithms
used to manipulate multiple variable polynomials.
The main idea is to have the set of equality poly-
nomial constraints of the form P = 0, Gröbner
bases theory produces an equivalent system G = 0
which has the same solution as the original one,
but substituting some variables for others.

In order to understand the Gröbner Bases’ tech-
nique better, Figure 1 shows a well-know exam-
ple, where Mi are multipliers, Ai are adders, and

{a, b, c, d, e, f, g} are the observable variables. In
this case, using Gröbner Bases, an equivalent set
of constraints is obtained:

• CARC−1 {f = a ∗ c + b ∗ d}: Generated from the

constraints of the components {M1, M2, A1}
• CARC−2 {g = b ∗ d + c ∗ e}: Generated from the

constraints of the components {M2, M3, A2}
• CARC−3 {f − g = a ∗ c− c ∗ e}: Generated from the

constraints of the components {M1, M3, A1, A2}

If a CARC is unsatisfiable for an OM , it means
than one or more than one component related
with this CARC is wrong.

M1

M2

M3

A2

A1

a
b

c
d

e

x

y

z

f

g

Fig. 1. A Well-known example of Model-based
Diagnosis

4. CONSTRAINT DATABASES

One of the difficulties in model-based diagnosis is
handling all the information, making the informa-
tion persistent and recoverable. In this paper we
propose to store all the information in a Relational
CDB, facilitating the diagnosis process. It will
allow us to store partial results and improve the
diagnosis task.

ContextNetWork

(k)IdContext: int
IdComponent: int

Component

(k)IdComponent: int
Name: String
ErrorProbability: intConstraintContext

(k)IdContext: int
 (k)IdConstraint: int

CARC

(k)IdConstraint: int
Constraint:Constraint ObservationalModel

(k)IdOM: int
 ObsModel: String

UnsatisfiableCARC

(k)IdOM: int
(k)IdConstraint: int

1..n

 1..n

1..n

1..n
1..n

1..1

 1..1

0..n

 0..n

1..1

HittingSet

(k)IdHittingSet: int
(k)IdComponents: int
IdMO: int

1..n

1..1

1..n

 0..n

Fig. 2. Tables of the Constraint Database

In the Figure 2, the tables of the CDB are shown,
and how the information is stored. The semantics
of these tables are:

(1) Component: This table contains the names,
the identifiers and the probability of error of
each component.

(2) ContextNetwork: This table represents
the CSs relating the Components. The table
has potentially 2ncomp − 1 combinations of
elements, but all of them do not have to be
studied.

(3) CARC: This table stores all the constraints
derived from the system.

(4) ConstraintNetwork: This table relates the
CSs and the CARCs. For example, the con-
text {M1,M2, A1} has the CARC {f = a ∗
c − b ∗ d} associated.

(5) ObservationalModel: This table contains
the values of all the observable variables.

(6) UnsatisfiableCARC: This table stores what
CARCs fail for each OM .

(7) HittingSet: This table stores the compo-
nents related to the minimal HSs for an OM .

The use of CDBs in the diagnosis process is a
good decision because there are characteristics of
model-based diagnosis related to the relational
calculus used in relational databases. For exam-
ple, the components are related among them us-
ing variables, the CSs and the HSs are formed
by components, the CSs can have associated
CARCs . . . All these relations can be represented
and treated in an easy way using CDBs. Also,
it is possible to store all the possible failures of
the CARCs. It means that the determination of
the minimal HSs will be linear in function of
the number of CARCs. Fist of all, we can think
that it is necessary to store all the possible values
of OMs. But it is not true, because we only
need to store the different types of failures. For
the example shown in Figure 1, there are only
three types of CARCs’ failures for whatever OM :
{CARC − 1; CARC − 3}, {CARC − 2; CARC − 3} or
{CARC − 1; CARC − 2; CARC − 3}, other options are
impossible. This process can be off-line and the
diagnosis for an OM can be on-line and immedi-
ate.

5. THE IMPROVEMENTS

In this Section, we propose some improvements
to avoid the study of all minimal HSs once we
have the MCCs for an OM . The PMCCs are
only created once and stored in the CDB. In order
to obtain the MCCs, the algorithms described in
(Gómez-López et al., 2004) are used, where only
the relevant contexts are analysed.

In order to determine all the minimal HSs in an
efficient way, we build a bidimensional table that
represents the relations between the components
and the MCCs (tableCompsMCCs). If the CDB
had not been used, the obtaining of the informa-
tion would be much more difficult.

The tableCompsMCCs for the example of Figure
1 is shown in Table 1, where the MCC-i is related
to the CARC-i. For this example, all the PMCC
are MCCs, it means that all the CARCs are
unsatisfiable for an OM . The table has 1 in the
position {i, j} if the MCC-i is related to the
component j, and 0 in otherwise.

M1 M2 M3 A1 A2

MCC-1 1 1 0 1 0

MCC-2 0 1 1 0 1

MCC-3 1 0 1 1 1

Table 1. Table of Figure 1

5.1 First Improvement: Searching the Representa-
tive Components

In this subsection, we will study how to determine
equivalent components, proposing the following
definitions:

Definition 8. MCCs affected by a component c
(MCCsAffect(c)) are the set of MCCs that can
fail when the behaviour of component c is wrong.

Lemma: If a component A affects the same
MCCs than another one B, it means that if there
exists a minimal HS M such as M = A ∪ N (N
is a set of components where neither A nor B is
included in N) another minimal HS M ′ = B ∪N
exists. In this case, it is not necessary to study
both possibilities, only one.

Proof: Let us reason by contradiction. If M is a
minimal HS, it means that A affects some MCCs
which are not affected by neither component of N .
If B does not affect the same components than A,
it means that B could affect more MCCs than
A (M ′ would not be minimal), less or different
MCCs than A (M ′ would not be a HS). Contra-
diction.

Definition 9: Group of Equivalent Components
(GEC) is a set of components which affects the
same MCCs. Therefore, it is only necessary to
study one component for each GEC.

If all the possible minimal HSs are studied, it will
be necessary to analyse 2ncomp − 1 possibilities.
However, using this improvement, the number of
possible minimal HSs can be reduced. Figure 3
shows for several random examples, the percent-
age of the possibilities eliminated, studying only
one component of each GEC.

0
5

10
15

20

0
20

40
60

0

20

40

60

80

100

Number of MCCsNumber of Components

P
er

ce
nt

ag
e

of
 p

os
si

bl
e

M
in

im
al

 H
itt

in
g

S
et

s
el

im
in

at
ed

 (
%

)

Fig. 3. Percentage of possibilities eliminated

When the percentage is zero, it means that all
the GECs have only one component, and there
are not components which affect the same MCCs.
Figure 3 also shows how the percentage of elim-
inations decreases when the number of MCCs
increases. It can be explained, due to if there are
few components and a lot of MCCs will be less
probable that two components affect the same
MCCs.

5.2 Second Improvement: Searching Single Mini-
mal HSs

Before starting the analysis of the next proposal,
a new case of study is going to be introduced,
because the example shown in Figure 1 is not
big enough to see all the types of problems that
can happen in real systems. The Table 2 shows
the ComponentsMCCs table for the new example.
There are 8 GECs: {{s0}, {s1}, {s2, s3, s7, s8, s11},
{s4}, {s5, s9, s12, s14}, {s6}, {s10, s13}, {s15}}.

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

MCC-1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1

MCC-2 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1

MCC-3 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1

MCC-4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

MCC-5 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

Table 2. Table Example

There is another solution (de la Banda et al.,
2003), that looks for minimal single HSs at the
beginning of the HSs determination. This so-
lution determines the HSs of one component
studying if there is a component c such as {C −
c} is satisfiable, where C is the set of unsatisfi-
able constraints. Our solution does not need to
study the satisfiability of the constraints, only
determines if there is a component which affects
all the MCCs. Thereby if a column j only has
1s, it means that the component represented by
the column j affects every MCCs and it forms
a minimal HS of only one component (single
minimal HS). Therefore this component will not
be involved in any other minimal HSs. In our
example there is a single minimal HS ({s15}).
Therefore, our problem has been reduced from
16 to 7, and the representative components are:
{s0, s1, s2, s4, s5, s6, s10}.

5.3 Third improvement: To avoid studying redun-
dant or unpromising combinations of components

Before continuing the study of minimal HSs,
it is possible to know the greatest number of
components of the minimal HSs of a system (Max
(|Hi|)). Using the example of Table 2 again, it
is possible to know that the biggest size of any

minimal HS for the example is 3, because the
components that less affect the MCCs are s0, s1

and s6. For example s0 does not affect MCC-1 or
MCC-3, meaning that in the worst case only two
components more would be necessary.

For this reason, it is possible to guarantee that:

Let H = {h1, . . . , hx} be hitting sets and
C = {c1, . . . , cn} be components then

Max(|hi |) =
Number of MCCs−Min(|MCCsAffected(cj) |) +1

for i in 1 . . . x, j in 1 . . . n

Starting with the representative components of
each GEC, we need to combine these components
to know if they make up a minimal HS, but
these combinations will not be a blind search. Let
{r1, r2, . . . , rn} be the representative components,
the following pseudo-code helps to store in the
variable H all the minimal HSs of two compo-
nents, and in the queue Q the couples of promising
components which are not HSs will be stored.

For each couple of components {ri, rj}|i < j.
If {ri, rj} is a minimal HS then
H := H∪ {ri, rj}

else
If ¬(MCCsAffect(ri)⊂MCCsAffect(rj)) AND
¬(MCCsAffect(rj) ⊂ MCCsAffect(ri)) then
Q := Q∪ {ri, rj}

endif
endif

endforeach

If {ri, rj} is not a minimal HS, but these two
components could participate in a minimal HS
with more components, they will be included in
Q for future searches. But if the MCCs affected
by a component are included in the influenced
MCCs for another component, it means that
these two components will never participate in a
minimal HS together, and they will not be added
to Q. If (MCCsAffect(ri) ⊂ MCCsAffect(rj)) or
(MCCsAffect(rj) ⊂ MCCsAffect(ri)), it means
that the behaviour of the component ri is included
in rj . In order to generalise this idea, it is neces-
sary the following definition.

Definition 10: Behaviour of a Component f In-
cluded in other components C={ci, . . . , cj} (Be-
haviourIncluded(f,C)) iff the behaviour of the
component f is included in the components ci or
. . . or cj .

In order to know if MCCsAffect(f) is included in
MCCsAffect(ci), we use the binary AND operator
between the columns f and ci. If (f AND ci) = f,
it means that the behaviour of f is a subset of
the ci behaviour. For example, the s0 behaviour
is included in s2, so these components are never
going to be together in a minimal HS.

In our example, some of the minimal HSs of two
components are: {(s0, s4), (s0, s5), (s1, s4), (s1, s5),

(s1, s10), (s2, s4), (s2, s5), (s2, s6), (s2, s10), (s4, s5), (s4, s6),

(s4, s10), (s5, s6), (s5, s10)}. The rest of combinations
of two components are added to the queue Q,
because perhaps they can form minimal HSs
combining them with other components. For our
example, the couples added to the queue are:
{(s0, s1), (s0, s6), (s1, s6)}.
The search will not end until Q is empty. With
the set of components taken out from Q, we try
to create minimal HSs of n+1 components, where
n is the number of components obtained from Q.
If these n + 1 components are not a minimal HS
and (n+1)=(Max (|Hi|)), these will not be added
to Q.

In order to avoid possible non minimal HSs, the
algorithm combines the components C taken out
from the queue C ={ci, . . . , cj} with another {ck}
if and only if k > j. The following algorithm is
executed for each of the mentioned possibilities
and the components obtained from the queue.

If(¬ BehaviourIncluded(ck,C))

If (MinimalHittingSet(C, ck))

H := H∪ {C ∪ ck}
else

Q := Q∪ {C ∪ ck}
endif

endif

In order to understand the above algorithm, it is
necessary to explain the following method:

The MinimalHittingSet(Components C, Compo-
nent c) method returns true if C ∪ c is a mini-
mal HS, avoiding n-tuples like {s0, s1, s4}. These
three components are a HS, but not a minimal
HS. The idea of the method is to determine if all
the components of a set C are essential to form a
minimal HS analysing each MCC. It means that
if we set aside a component, the set of remaining
components would not be a HS. For example, if
we want to know if {s0, s1, s4} is a minimal HS,
the Table 3 will be studied.

s0 s1 s4
MCC-1 0 0 1

MCC-2 1 1 1

MCC-3 0 1 1

MCC-4 1 1 0

MCC-5 1 0 1

Table 3. Example for minimal HS

In order to store the indispensable components,
we will use a set I = {I1, . . ., In}, such that if
Ii has one component, it means that this com-
ponent is indispensable. But if Ii has several
components, it means that one of these com-
ponents are indispensable. In general the set I
= {{si . . . sj}, {sk . . . sh}, . . . , {sl . . . sm}} means
that the indispensable components are {(si∨ . . .∨
sj) ∧ (sk ∨ . . . ∨ sh) ∧ (sl ∨ . . . ∨ sm)}. For each
MCC, I will be modified as follow:

• If MCC-i is affected only by one component c: It

means that this component is indispensable to obtain

a minimal HS. And I is updated as I:=I ∪ {c},
where c is the indispensable component.

• If MCC-i is affected by a set of more than one

component called C′:
· If ∀Ii :i:1...n Ii ∩ C′ �= ∅ ⇒ Ii := Ii ∩ C′

· If ∃Ii :i:1...n Ii ∩ C′ = ∅ ⇒ I := I ∪ C′

• MCC-i is affected by all the components C: Neither

of them are indispensable.

If after the study of all MCCs, I = C, it means
that C is a minimal HS. In other cases C would
not be a minimal HS. The trace for the example
shown in Table 3 is:

for MCC-1 : I = {s4}
for MCC-2 : I = {s4} neither component is added

because MCC-2 is affected by all components
for MCC-3 : I = {s4}
for MCC-4 : I = {s4}, {s0, s1}
for MCC-5 : I = {s4}, {s0}

As I does not have {s0, s1, s4}, it means that
not all components are indispensable, therefore
{s0, s1, s4} is not a minimal HS.

With all these improvements the number of pos-
sible minimal HSs is reduced in an important
way. Figure 4 shows the percentage of the pos-
sibilities eliminated with this technique, related
to the first improvement. And Figure 5 shows the
computational time for several random examples,
with different number of components and MCCs.

0

5

10

15

20

0

10

20

30

40

50
20

30

40

50

60

70

80

90

100

Number of MCCsNumber of Components

P
er

ce
nt

ag
e

of
 p

os
si

bl
e

M
in

im
al

 H
itt

in
g

S
et

s
el

im
in

at
ed

(%
)

Fig. 4. Percentage of possibilities eliminated

0

5

10

15

20

0

10

20

30

40

50
0

200

400

600

800

1000

1200

1400

1600

1800

Number of MCCsNumber of Components

R
un

ni
ng

 T
im

e
(m

s)

Fig. 5. Execution time(Pent. IV, 512 M memory)

6. CONCLUSIONS

Our work proposes to build an equivalent system
with observable variables, which will be gener-
ated once for each system and validated for each
OM . Moreover, three improvements have been
presented in order to avoid the study of unpromis-
ing combinations of components.

In order to store all the information, we use
a CDB. It allows us to obtain and store the
partial data and all the possible combination of
MPCCs and the minimal HSs. It makes possible
to obtain a diagnosis in linear time in function of
the number of CARCs, because the obtaining of
the minimal HSs can be an off-line process. In
run time only will be necessary to validate each
CARC to know what MCCs are failing, and to
query the database about the minimal HSs.

REFERENCES

Buchberger, B. (1985). Gröbner bases: An algo-
rithmic method in polynomial ideal theory.
D. Reidel Publishing Co.. pp. 184–232.

de la Banda, M. G., P. J. Stuckey and J. Wazny
(2003). Finding all minimal unsatisfiable sub-
sets. In: PPDP ’03. ACM Press. pp. 32–43.

Fattah, Yousri El and Rina Dechter (1995). Di-
agnosing tree-decomposable circuits.. In: IJ-
CAI. pp. 1742–1749.

Gómez-López, M. T., R. Ceballos, R. M. Gasca
and C. Del Valle (2004). Constraint databases
technology for polynomial models diagnosis..
In: 15th International Workshop on Princi-
ples of Diagnosis. pp. 215–220.

Greiner, R., B. A. Smith and R. W. Wilkerson
(1989). A correction to the algorithm in re-
iter’s theory of diagnosis. Vol. 41. Elsevier
Science Publishers Ltd. pp. 79–88.

Han, B. and S. Lee (1999). Deriving minimal
conflict sets by cs-trees with mark set in
diagnosis from first principles. Vol. 29-2.

Hou, Aimin (1994). A theory of measurement
in diagnosis from first principles. Vol. 65.
Elsevier Science Publishers Ltd.. pp. 281–328.

Kleer, J. De (1986). An assumption-based truth
maintenance system. Vol. 2. pp. 127–161.

Kuper, G., L. Libkin and J. Paredaes (1998).
Constraint Databases. Springer.

Reiter, R. (1987). A theory of diagnosis from first
principles. Vol. 1. pp. 57–96.

Revesz, P. (2002). Introduction to constraint
databases. Springer-Verlag New York, Inc..
New York, NY, USA.

Stumptner, Markus and Franz Wotawa
(1997). Diagnosing Tree-Structured Systems.
Nagoya, Japan.

Wotawa, Franz (2001). A variant of reiter’s
hitting-set algorithm.. Vol. 79. pp. 45–51.

