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ABSTRACT 

The selection of attributes used to construct a classification model is crucial in machine learning, in particular with 
instance similarity methods. We present a new algorithm to select and rank attributes based on weighing features 
according to their ability to help class prediction. The algorithm uses the same structure that holds training records for 
classification. Attribute values and their classes are projected into a one-dimensional space, to account for various 
degrees of the relationship between them. With the user deciding on the degree of this relation, any of several potential 
solutions can be used as criterion to determine attribute relevance. This low complexity algorithm increases classification 
predictive accuracy and also helps to reduce the feature dimension problem. 
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1.  INTRODUCTION 

Two well-known problems arise when building classifiers which use decision tree structures and instance-
based methods. First, the input order of attributes determines heavily the predicting skills of the algorithm. 
Choosing the wrong order of attributes (or features) could move apart in the hyperspace, values that 
otherwise would be closer.  Secondly, some attributes contribute more than others in building the prediction 
hypothesis [Aha, 1994]; attributes considered irrelevant increase the computational cost and can mislead 
distance metrics calculations [Indyk, 2000]. This is particularly true for nearest neighbour algorithms, which 
find the class of unknown instances using the geometric concept of proximity or similarity built around the 
notion of distance between points in an n-dimensional space. As the position of any instance is defined by the 
value of its attributes, if these are not relevant, then the basic assumption is violated. Based on these, 
attributes are classified as relevant or irrelevant, in terms of their degree of contribution to the classification 
model [Kohavi et al., 1997; Lebowitz, 1985]1. Feature selection is used for this reason, and is defined as the 
process of identifying and removing as much irrelevant and redundant information as possible with the goal 
of improving classification accuracy.  Because we use a tree structure to hold instances, our method requires 
first setting in the input order, attributes with larger discriminatory power with respect to classes, as done in 
some rule induction algorithms [Quinlan, 1986; Cover et al., 1997]. 

The complexity of feature selection algorithms depends on the number and quality of its attributes. 
Searching relevant attributes cannot be exhaustive in many cases. The dimension of datasets is exponential in 
the number of attributes. Hence, verifying every possible combination of attributes is, in many cases, out of 
the question [Lesh et al., 1998].  Because of this, we developed a low computational algorithm with the 
following goals: a) Es tablish a criterion to determine relevant attributes. b) Rank attributes at preprocessing 
time based on this relevance and c) Reduce the number of attributes. The overall goal is to diminish the 
                                                                 
1 These authors still identify redundant attributes, a situation which we do not address here. 
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algorithm's complexity as well as to increase or at least preserve its predictive skills.  Our results show a 
steady improvement of our classification algorithm when ordered features are used with this simple method. 

2.  DEFINITIONS 

2.1 Basic definitions 

Notation  {r∈ R, c ∈ L|∀  exp(r) • exp1(r)} stand for the set of values of exp1 when r and c take values in R 

and L, and exp is true. If exp1(r) = r then the expression is reduced to  {r∈ R | ∀  exp(r)}. 

Let’s assume the existence of a data set R composed of a finite set of N records r of type: 

r =  <v1, v2,.., vi,.., vn, c >, vi ∈ Ti, c ∈ L and vi(r) = vi . (1) 

Each record is formed by the Cartesian product of a finite sequential set of attributes Ai, belonging to set S 
having vi values ∈Ti. Each record is associated with one of m classes c1, c2,..,cm, belonging to set L. Each 
attribute’s domain is partitioned into a finite number of user-defined intervals within domain Ti.  These 
intervals are represented by integers with values from 1 to si.  We assume the existence of function ordi(), 
which converts an attribute value into the corresponding interval value: 

pi = ordi(vi), vi ∈ Ti . (2) 

 Using function ordi in (2), every attribute value vi ∈ Ti is converted into a pattern element with value pi.. 

Every pi value will fit into one of si partitions belonging to attribute Ai. Together, all pi elements form a vector 
called pattern p containing n element values. We call P the set of all patterns p obtained from R. 

p = <p1, p2,.., pi,.., pn>,∀ p ∈ P,∀ pi ∈ (1..si) where  p i = ord i(vi(r)) . (3) 

Notice that the number of partitions si is not the same for all attributes2.  
We define functions pat(r) and label( r)  such that: 

pat(r) = p and label(r) = c if r = <v, c>, v= <v1,v2,..,vn> . (4) 

In every pattern p from (3) we find n sub-patterns qi, which correspond to its prefix: 

qi  = <p1, p2,.., pi >, i =(1..n).  So p= <qi, u> where u is the suffix portion. (5) 

We define function freq(p), which returns the number of records exhibiting pattern p: 

freq (p) = # {r∈ R |  pat(r) = p} . (6) 

Function freq can be equally applied to a sub-pattern qi: 

freq (qi) = # {r∈ R |  pat(r) =<qi,, u>} . (7) 

We define function freq(), which is applied to the kth interval from attribute Ai, giving the total number of 
records in k . A variation of this function includes restricting the number of objects belonging to class c.  

                                                                 
2 This is due to changes in the number of partitions for selected attributes as we show later in section 6.   
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freq(Ai, k) = #{r ∈ R | ord i(vi(r)) = k }                                                                                                  

freq(Ai, k, c) =#{r ∈ R | ord i(vi(r)) = k ∧  label(r) = c }  
(8) 

Assuming that partition granularity is such that allows all patterns to have a given label, we define 
function labels(p) , which return the set of labels associated with the subset of records with pattern p. 

labels(p) = {r∈ R, c∈ L |  pat(r) = p ∧  label(r) = c • c }  . (9) 

The number of class labels attached to a given pattern  p is:  

nlabels(p) = # labels(p) .   (10) 

Using the Equation in (10) we define the strength of a pattern  as: 

strength(p) = # { i∈ (1..n) | nlabels(qi) = 1 } (11) 

2.2 Other definitions 

Definition 1. Attribute Ai is said to be semi-exclusive for partition k, iff function semk() is true. Function 
semk() is defined as: 

semk(Ai, k, ϕ) =∃ c∈ L • ((freq(Ai, k, c) / freq(Ai, k)) ≥ ϕ) (12) 

Parameter ϕ  is a user-defined value representing the fraction of records in interval k with class c. The 
special case when ϕ  = 1, is referred to as an exclusive interval, meaning that all Ai values in this interval 

belongs to the same class. Attributes exhibiting this type of value are also described in the literature as 
primary [Turney, 1996], [Kohavi et al., 1997].  

Definition 2. The degree of exclusiveness of a pattern corresponds to the fraction of pi elements within 
pattern p conforming to the exclusive values property. It is calculated with the following function: 

Semp(p, ϕ) =  # {i∈ (1..n) | semk(Ai, pi, ϕ)} / n . (13) 

Definition 3 . The degree of relevance of attribute i denoted with δ i, is the ratio between the total number 
of records in semi-exclusive partitions and N. Large values of d mean a more relevant attribute. 

δ i =  # {r∈ R,  k ∈ (1..si) | semk(Ai, k, ϕ ∧  ord i(vi(r)) = k • r} / N . (14) 

The opposite represents irrelevant attributes.  
Definition 4. The shape of a pattern is defined as: 

2 1 n n-1shape(p)=(p -p),..,(p -p )  (15) 

And the distance between two patterns is: 

d(p, p’) = ∑i | pi – pi’| (16) 

Using equations from Definition 4 we can define the following: 
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Definition 5 . The shape similarity function between shapes is defined as: 

1 2 1 2sf(p,p )=d(shape(p ), shape(p ))  (17) 

In Figure 1 we show semi -exclusive intervals and the calculation of d for two attributes, A1 and A2. An 
asterisk means more than one class for a given partition; i.e. nlabels (pi) > 1. 

  s i   0   1  2   3  4   5   6 7  8 9 total δ  
  freq   77     32  62  49  79  20  12 23  11   43 408 A1 
class  *    * *  *  *  *  * *  4  4   54 

54/408=0.132 

 
   s i 0 1 2 3 4 5 6 7 8 9 total δ  
A2 freq 227  23   35  17    17  14  12  13   5 45 408 112/408=0.274 
 class * 2 * * 4 4 * 4 * 4 112  

                            Figure 1. Attribute projection in one-dimensional space for attributes A1 and A2. 

3.  OVERVIEW OF THE CLASSIFICATION ALGORITHM 

We have previously developed a classification algorithm for supervised learning based on instances and the 
nearest neighbour paradigm in [Serendero et al., 2001]. Classification is done extracting two nearest patterns 
p+ and p- with respect to a query pattern px. The extraction of p+ is done first in a recursive way. Any sub-

pattern iq is of the form iq =< 1qi− , k>. Starting with i = 1, assuming an empty sub-pattern q0
+= <> and 

knowing element qi-1, the problem consist in finding the next sub-pattern by calculating some value for k+, 
which satisfies the following property: 

∀ k∈ K(qi-1) • (|k + - k x| ≤ |k – k x|) . (18) 

The set K(q)is defined by: 

K(q) = { k | <q, k>∈ P}    (19) 

Hence, k+ is the closest element to k x among the elements in K(qi-1). If two values of k+ verifies Equation 
(18), then we chose the one where freq(qi

+) is a maximum. The algorithm searches next for pattern p-. The 
search mechanism is the same as for p+, but with set K(q) using this time pattern p+ previously calculated: 

K(q) = {k |<q, k> ∈ P ∧  ((nlabels(<q, k>) > 1) ∨  ((labels(<q, k>) ∩  labels(qi+)) =∅ )} (20) 

 The new pattern should have its class distinct from the p+ class.  
A final step consists in applying function merit()  to both selected patterns . The pattern with the largest 

merit(p) is the winner. This function represents an aggregation of several criteria, and is defined as: 

( ) ( )i ii
meri t p w pα= ⋅∑  (21) 

Every criterion in α i has weight wi. These criteria α i (i = 1..6), numbered in no particular order are: 
• The degree of exclusiveness of a pattern, calculated as α 1(p) = semp(p) from (13). 
• The strength of a pattern , calculated from Equation (11). So α 2(p) = strength(p). 
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• The similarity shape from Definition 5 and Equation (17) applied to a pattern against px to 
calculate the most similar shape: α 3(p) = sf(px, p). 

• A number related to the distance  to px, calculated as α 4(p)= d(px, p) from Equation (16). 
• The frequency of a pattern, where a a larger frequency is a better option, other conditions being 

equal. Function frequency is calculated as α 5(p)= freq(p) using function in (6). 
• Let be mc the majority class, the class with the largest frequency then α 6(p) equals 1 if label(p) 

= mc and 0  otherwise.   
Weights are obtained preprocessing the training dataset. The weight of each criterion corresponds to its 

degree of accuracy correctly classifying patterns. Each criterion is tested individually by setting all other 
weights to zero. The goal is to optimise T, the degree of accuracy of each criterion. It is calculated as: 

T = Nº of records correctly classified / N; and being the error ε = 1 -T (22) 

The application of function merit () at running time, allows selecting the best pattern. Its class is assigned 
to px. A more detailed explanation of this process is left for a next article.   

In the algorithm implementation all training patterns are stored into a trie [Fredkin, 1960], including 
frequencies and class information at the sub-pattern level. These structures have proven to be very fast on 
search problems [Bergman, 1994;Merret et al., 1996; Alber et al., 2001], which is one of the main problems 
in the near neighbour paradigm. The large storage required by tries is partially solved keeping the file on 
disk. Also, several known compress tools are available for tries such as Patricia trees [Gonnet et al., 1991], 
X-tree [Berchtold et al., 1996] and Burst tries [Heinz et al., 2002]. 

4.  ATTRIBUTE SELECTION 

4.1 Determining most relevant attributes 

In general, our method ranks attributes by their capacity of predicting classes without taking directly into 
consideration other attributes from the original sequence. We postulate that this capacity increases, when an 
attribute exhibits a larger degree of relevance as stated in Definition 3. For instance, attribute Ai is relevant if 
some α  percentage of its instances with value vj is associated with class cl. In this sense, we soften the 
Boolean definition found in [Kohavi et al., 1997]. Our objective is to find the most discriminative attributes 
from the point of view of usefulness to the predictor, with the purpose of improving its prediction accuracy 
[Guyon, 2001]. This heuristic criterion has been used successfully before [Liu et al., 2000].  

A sub-pattern q of size i  can be a common prefix for distinct labels, i.e. when nlabels(qi) > 1, representing 
areas of larger entropy with respect to classes in the data hyperspace, not allowing any conclusion on class 
membership. Inversely, sub-patterns where nlabels(qi) = 1, represent homogeneous regions, where smaller 
values for i (shorter sub-patterns) represent larger areas. If a new instance to be classified falls into one of 
these areas, its chances of correct classification increase. Most of its neighbours will share the same label. For 
this reason, we are interested in looking at the entire data space from the viewpoint of attributes with larger 
number of examples where classes are “visible” directly from them, thus avoiding endless combination of 
possibilities as done in traditional methods [Kohavi et al., 1997; Miller, 1990; Brodley et al.,  1995]. We 
consider these attributes more relevant than others. Now, the shortest sub-pattern contains only one element 
q1 = <p1, c>, usually associated with several classes. We want to find which attributes perform better than 
others in this situation. To do this, all values of an attribute are projected into a one-dimensional space 
previously partitioned into equal interval widths. In the trie structure used for implementation this 
corresponds to build the tree with a single level. This resembles the 1R classification system [Holte, 1993] 
although in this system the ranking of features is based directly on error rates. In our case we are interested in 
the total number of sub-patterns q1, found in semi-exclusive intervals (from Definition 1), for a given attribute 
Ai and ϕ  values. Attributes showing more individual patterns in these intervals are also more relevant 

(Definition 4). Based on this, relevance can be set as a measure of attribute comparison as explained next.  
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4.2 Ranking Attributes by their relevance  

Ranking attributes is done knowing which attributes are comparatively more relevant than others. To do this 
we compute each attribute’s relevance from (14), and rank them in decreasing order according with the value 
of d, as the example shown in Fig. 1 for A1 where d  = 0.132. This ranking gives as result list ß, which 
represents all attributes ordered by their degree of relevance: 

   1 2 i n i i+1ß = < ,  ,.., ,..., >,  |  |  | | i (1.. n).δ δ δ δ δ δ≥ ∈               
(23) 

Attributes where di = 0, are orderly pushed to the list’s end. The list represents the input order of 
attributes used by the classification algorithm. As shown in Section 5 doing this improves the predictive 
accuracy of the classification algorithm. 

4.3 Reducing the number of attributes by their degree of relevance  

Reducing the number of irrelevant attributes drastically reduces the running time of a learning algorithm and 
yields a more general concept, easier to understand by the domain expert. This reduction can be achieved 
using the concept of attribute exclusiveness as defined in Section 3. This is done by eliminating from list ß in 
(23) all attributes where δ  is small or zero. This reduction, though, cannot be done without a cost. The 
trade-off is done at the expense of losing some predictive accuracy. With this constrain in mind, our goal is to 
find a minimum subset of attributes S’ such that when the classification algorithm is applied accepting some 
error e, we can obtain a new predictive accuracy T´ as S’ ⊂  S, that satisfies T’ ≤ T + e . The new set S’ 

obtained from list ß in (24) includes only relevant attributes discarding all others. The classification 
algorithm rebuilds the tree using the new sequence in S’. At running time, and using some user-user-defined 
error over the existing prediction value T from (22), a new T’ value is obtained. Error e is a function of cost 

and quality [Brodley, 1995]. If Equation (24) is satisfied and (T’ – T) ≤ e, then S’ is adopted as the new set of 

attributes. Otherwise, the threshold value of f  should be reduced and list ß rebuilt.  As a result this will 
increase the number of attributes in subset S’ and hopefully will also increase prediction accuracy T’ 
diminishing the value of e.  

5.  RESULTS 

We have tested these techniques on seven datasets from the UCI repository [Murphy et al., 1994]. All records 
with unknown attribute values were eliminated. Ten–fold cross validation was used. Accuracy results were 
averaged.  

Table 1. New Attribute Order using f = 0.75 

N. º Records Nº Number 
Attrib. 

Dataset 

Training    Test 

New Attribute Order 
Number represents original ordinal number 

(Bold face  = attribute is relevant) 

Relevant 
Attributes 

(%) 
1 24 Hypothyroid    1598       1063  18,23,21,1,20,22,7,5,13,24,19,17,16,15,14,   

  12,11,10,9,8,6,4,3 
41.7 

2 24 Dermatology       218    140  20,22,27,29,6,12,8,25,33,34,24,15,10,31,26,     
 30,14,23,7,32,28,21,19,18,17,16,13,11,9,5,4, 3,2,1 57.6 

3 33 Adult 28468    15060 3,9,14,2,4,5,7,8,13,6,1,10,11,12 71.4 
4 13 Diabetes      462    306 5,6,2,7,4,8,3,1 75.0 
5 12 Forest covert 15120  565892 1,10,5,6,4,12,8,7,9,3,11,2 83.3 
6 12 Pendigits    7494  3498 6,12,3,7,11,4,2,15,5,14,16,8,1,10,9,13 87.5 
7 16 Cancer–W.      407    273 7,2,1,8,3,9,4,6,5 100.0 

The average decrease in error rate after ordering attributes of 4.3% in Table 2 is similar to results reported 
for different datasets in a previous article where this technique was applied [Serendero et al., 2001]. This  
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confirms that the gain in predictive accuracy is significant and steady when applied to different data domains. 
It also confirms the need for attribute ordering when tree structures and instance-based methods are 

Table 2. Variation in predictive error rate after ordering and reduction in the number of attributes 

  Classification: Predictive Error Rate (%) Variation (%) due to: 

Nº Datasets Original (A) Ordered (B) Reduced(C)    Order 
   (B-A) 

Reduction 
   (C-B) 

1 Forest covert 28.2 20.5 23.9 -7.7 +3.4 
2 Dermatology  10.2  4.5        6.5      -5.7      +2.0 
3 Diabetes 27.8 22.2 22.5 -5.6 +0.3 
4 Pendigits  9.3  5.3        2.0      -4.0       -3.3 
5 Cancer –W. 5.5  2.2   1.8 -3.3 +0.4 
6 Adult 18.9 16.0  10.6 -2.9  -5.4 
7 Hypothyroid  1.6  0.7   1.1 -0.9  -0.4 
   Average  -4.3  

used, as is our case. Although not conclusive due to experiment size, variation in error rates after attribute 
reduction (C-B) seems to be related to the intensity of attribute “pruning” (Table 1).  As expected, a large 
reduction in the number of attributes results in greater error rates.   In 43% of cases reducing the number of 
attributes increases predictive accuracy, meaning that the ranking method works well. Attributes at the list’s 
end are indeed irrelevant for predictive purposes. Accuracy in the remaining datasets shows a small loss not 
greater than 3.3% if compared with a 56% average reduction on the number of attributes, and hence, in 
problem complexity. In the face of large datasets with high dimensions where traditional feature reduction 
methods represent very high computational costs, this method can be a fair solution. 

 Our feature selection methods integrated into the classification algorithm helps to produce competitive 
results as shows its comparison with Quinlan’s landmark tool C4.5 (also known as See5) in Table 3. In 
general, our classifier shows better performance than C4.5 for datasets with smaller number of classes and 
worse when the opposite is true. This is explained by the fact that in order to speed up the search process, our 
algorithm only looks for two close patterns accounting for only two classes. 

       Table 3. Comparing classification accuracy against the popular C4.5 

Error in accuracy (%) Nº Dataset 
C4.5 Ours 

1   Adult(Census 94,USA) 14.6 10.6 ± 1.2 
2 Forest cover 29.1 20.5 ± 2.5 
3 Cancer-W 5.8   2.2 ± 0.2 
4 Hypothyroid 0.7   0.7 ± 0.3 
5 Dermatology  3.9   4.5 ± 0.3 
6 Pima Indian Diabetes 26.8 22.2 ± 1.4 
7 Pendigits  3.4   2.0 ± 0.5 

Source for C4.5 results: [Chou et al., 2000; Li et al., 2000; Murphy et al., 1994; Chawla, et al., 2001]. 

6.  DISCUSSION 

In this article we present a simple and low-cost feature selection method, useful for algorithms using decision 
trees and instance-based methods in supervised learning. Results show on average a decrease of over 4% in 
classification predictive error when attributes are ranked by their degree of relevance. This result is consistent 
with previous results obtained on different datasets and offers a simple solution to ranking features. 

Accuracy increases even further in 43% of cases after attribute reduction. This not only confirms the 
correctness of this simple method for ranking attributes, but also the fact that it works as a good filter 
indication on the predictive skills of attributes. In the remaining 57% of cases a loss in prediction not greater 
than 3.3% did represent eliminating an average of 56% of attributes for all datasets considered. This is very 
important to help reducing algorithm complexity in high dimensional datasets and therefore the 
comprehension of the domain expert in data relations. 
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Future work includes modifying slightly the algorithm to extract as many patterns as classes exist in a 
dataset with the goal of increasing predictive accuracy in datasets with more than two classes. This should 
not significantly increase search time if we consider the excellence of tries with respect to search 
performance. 
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