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a b s t r a c t 

Coalitional control is a type of distributed control characterized by the dynamic adjustment of the overall 

controller structure so that only strongly coupled agents interact with each other. In particular, local con- 

trollers merge into cooperative coalitions (or clusters) only when it improves global performance, thus 

reducing the overall cooperation burden. This paper proposes a novel coalitional model predictive con- 

trol (MPC) approach in which coupled variables are decomposed into a public part, which is optimized 

by the neighboring agents, and a private one, which is locally controlled by the agent that owns it. The 

bounds on these variables are negotiated in a distributed manner, and a threshold is established to trigger 

different interaction modes, including the classical decentralized and distributed approaches, and flexible 

modes of cooperation. Finally, to illustrate the benefits of this control scheme, results on a simulated 

eight input-coupled tanks plant are provided. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

During the last years, different distributed control approaches 

hat promote the formation of dynamic clusters of local controllers 

ave been proposed [10,12–14] . The underlying idea is to use co- 

rdination mechanisms based on information exchange only when 

hey generate a meaningful increment of performance. Otherwise, 

t might be preferable to have controllers working in a decen- 

ralized manner, i.e., without communication, to save communica- 

ion and coordination costs. Nevertheless, this approach leads to 

 problem formulation that is typically casted as a mixed-integer 

ptimization problem, for the state of the links of the communica- 

ion network is discrete. In this article, a new method where local 

ontrollers solve a quadratic program is proposed. To this end, cou- 

ling variables are partitioned and assigned to the corresponding 

gents, leading to different types of inter-agent interaction modes 

hat range from decentralized to distributed control. The switching 
� This work has received funding from the European Research Council (ERC) under 

he European Union’s Horizon 2020 research and innovation programme (OCON- 

SOLAR, grant agreement No 789051), the Spanish Training Program for Academic 
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etween these modes of interaction is regulated by decision vari- 

bles whose value is decided in a distributed fashion. 

From the different control frameworks available, we focus on 

odel predictive control (MPC), which is a continuous replan- 

ing method that recalculates control actions at each time step in 

 receding horizon fashion. This framework has been applied in 

ultiple industrial applications for decades [21–23] . The need for 

istributed implementations of MPC stems from problems where 

here are constraints that impede or limit the implementation of 

 centralized control strategy. For example, it may not be pos- 

ible to solve the optimization problem for a large-scale system 

uch an industrial plant within the timing constraints imposed by 

he sampling time. Other times the system is naturally distributed, 

.g., power grids [25] and traffic networks [5] , and it is preferable 

o have several independent controllers that coordinate their ac- 

ions for reasons such as scalability and redundancy. Whatever the 

eason is, the overall control problem is partitioned into a set of 

oupled smaller pieces, which are assigned to local controllers or 

gents that communicate to agree on how they mutually interact 

ith each other. Multiple methods to achieve coordination have 

een introduced during the last years and are surveyed in [17,20] . 

A significant amount of work has also been dedicated to min- 

mize communication burden, for the amount of data transferred 

etween controllers can be considerable. For example, as it is 

hown in [16] , a distributed multiple shooting scheme is required 

o exchange more than 6 million floats per time instant. Whether 
l Association. This is an open access article under the CC BY-NC-ND license 
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his is a limiting issue depends on the application considered, but 

t invites questioning if that amount of information exchanged is 

orth to increase performance. For example, flexibility regarding 

he extent of coupling is exploited in [24] , where local controllers 

roadcast information regarding how much of their constraint 

pace they are using to improve performance in a distributed tube- 

ased MPC. Coalitional control promotes data exchange only when 

t leads to a significant increment of performance, for communi- 

ation is no longer assumed to be costless [1,6,9–11] . To this end, 

 cost is assigned either to the use of links of the communication 

etwork or to the effort necessary to coordinate a certain num- 

er of cooperating agents. As a consequence, the control network 

opology changes dynamically, leading to dynamic partitioning of 

gents into disjoint clusters known as coalitions [7] . This goal can 

e achieved either in a top-down, e.g., [6,11] , or bottom-up man- 

er, e.g., [1,9] . 

The additional degree of freedom gained with the network 

opology, which becomes another variable into the optimization 

roblem, has a cost in terms of additional complexity. For ex- 

mple, top-down coalitional strategies usually resort to solving 

ixed-integer optimization problems that consider the network 

inks state as a discrete variable. Alternatively, it is also possible to 

onsider that links are activated randomly and only those leading 

o an increasing performance remain active. Both approaches are 

ot without their problems. The first type of approach increases 

he computation burden and usually requires to change the net- 

ork topology at a lower rate by a supervisory control layer to 

eep the problem feasible. As for bottom-up methods, they incor- 

orate a certain degree of suboptimality into the problem due to 

he heuristics used in the activation of links. 

In this paper, we propose a new approach to coalitional MPC 

or systems coupled through system variables. The idea is to dis- 

ribute coupling variables sharing a common constraint space be- 

ween agents. Each part of the coupling variable is associated with 

 different mode of interaction, and the amount of constraint space 

or each of these modes is to be decided by agents in a decentral-

zed manner. In this way, agents can switch from decentralized to 

ull communication control using a convex optimization problem. 

his decomposition into private and shared variables is also pro- 

osed in [2] to reject large disturbances, where the upper layer 

f a hierarchical MPC may force agents to share part of their lo- 

al inputs to assist other subsystems. Similarly, a hierarchical MPC 

or electricity networks where a set of generators, storage systems, 

nd loads are dynamically partitioned into locally controlled clus- 

ers is presented in [14] . In this case, the supervisory layer comes 

nto play when some of these clusters need support from their 

eighbors to achieve the control goals. Unlike [2,14] , our approach 

oes not rely on a supervisory layer and seeks to optimize in real 

ime the coordination structure between local controllers so as to 

alance performance and communication costs. 

The outline of the rest of this work is organized as follows. 

ection II presents the model of the system and the basic prob- 

em setting for coalitional MPC. Section III describes the decompo- 

ition in private and public variables. Moreover, the dual decom- 

osition algorithm is integrated within the negotiation of shared 

ariables. In Section IV, the proposed control scheme is introduced. 

ection V includes simulation results on a simulated eight input- 

oupled tanks benchmark. Finally, conclusions are given in Sec- 

ion VI. 

. Problem setting 

Without of loss of generality, we will focus on input-coupled 

ystems, but the same approach can be applied in case of state 

oupling. Consider a system divided into a set N={ 1 , 2 , . . . , N} of
2 
nput-coupled subsystems with LTI dynamics: 

x i (k + 1) = A ii x i (k ) + B ii u i (k ) + d i (k ) , 
with d i (k ) = 

∑ 

j∈N i B i j u j (k ) , 
(1) 

here x i ∈ R 

n x i and u i ∈ R 

n u i are respectively the state and in-

ut vector of subsystem i ∈ N , and variable d i ∈ R 

n x i represents

he input coupling with neighboring subsystems N i = { j ∈ N : B i j � =
 , j � = i } . Also, assume that the subsystems’ states and inputs are

ubject to the following constraints: x i (k ) ∈ X i and u i (k ) ∈ U i , for

ll k ≥ 0 , where X i and U i are convex sets. 

To describe the centralized model, the overall state and in- 

ut vectors are defined as the aggregation of all subsystems’ 

tates and inputs, i.e., x = [ x i ] i ∈N = [ x T 
1 
, . . . , x T 

N 
] T and u = [ u i ] i ∈N =

 u T 
1 
, . . . , u T 

N 
] T , leading to: 

 (k + 1) = Ax (k ) + Bu (k ) , (2)

here global matrices A = [ A ii ] i ∈N and B = [ B i j ] i, j∈N are defined by

ggregating (1) for all subsystems. 

Hereon, assume that the subsystems in N are managed by a 

et of local controllers or agents, which, in turn, can communi- 

ate through a data network. This network is described as an undi- 

ected graph G = (N , L ) , where L is the set of links, i.e., L ⊆ L 

N =
{ i, j} | i, j ∈ N } , and the set of nodes N represents the agents. In

oalitional control, the state of the links are dynamically switched 

etween enabled and disabled so that the set of agents can be par- 

itioned into disjoint communication components or coalitions. In 

articular, let P(k ) = {C 1 , C 2 , . . . , C |P(k ) | } be the partition imposed

t time instant k , where C i represents each of the resulting coali- 

ions (or clusters) and |P(k ) | denotes the cardinality of P(k ) . Note

hat C i can represent from a singleton to the grand coalition. For 

xample, in the decentralized configuration there are |N | coalitions 

hat are singletons, whereas the centralized configuration groups 

ll agents into the grand coalition, and hence |P(k ) | = 1 . Inside

ach coalition, agents share data and coordinate their actions, but 

ote that there is no inter-cluster communication. 

. Sharing coupling variables 

In this paper, we follow a decomposition approach where 

hared variables are partitioned into public and private parts to al- 

ow different interaction modes. As will be seen, this decomposi- 

ion changes dynamically, allowing the system to work using dif- 

erent levels of partial cooperation. In particular, a local variable u i 
s decomposed as 

 i (k ) = u 

pr 
i 

(k ) + 

∑ 

j∈M i 

u 

pu 
i j 

(k ) , (3) 

here 

(i) u 
pr 
i 

(k ) is the private part of the variable, which is controlled 

exclusively by the agent that owns it, i.e., i , and it must verify

u 
pr 
i 

(k ) ∈ αi (k ) U i with αi (k ) ∈ [0 , 1] for all k ≥ 0 . 

(ii) u 
pu 
i j 

(k ) is the public part of u i (k ) controlled by agent j and

must verify u 
pu 
i j 

(k ) ∈ αi j (k ) U i . The set of agents j that can

manipulate the public part of u i (k ) are defined as affected 

subsystems M i = { j ∈ N : B ji � =0 , j � = i } . Notice that sets N i 

and M i are not necessarily the same and depend on the dy- 

namics of the system, i.e., while N i contains the set of agents 

j which affect i , M i defines the set of agents affected by i . 

ereafter, it is considered that at each time instant k the agents 

hould decide the values of u 
pr 
i 

(k ) and u 
pu 
i j 

(k ) , for all i ∈ N and

j ∈ M i , in a manner that the following inequality is satisfied: 

i (k ) + 

∑ 

j∈M i 

αi j (k ) ≤ 1 . (4) 
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ote that if (4) holds, then input u i (k ) computed as in (3) will

atisfy the constraint u i (k ) ∈ U i given in the previous section. Also, 

e assume that local variables u 
pr 
i 

and u 
pu 
ji 

are treated respectively 

y the neighboring agents N i and by the affected agents M i as 

ounded disturbances, whose scale factor αi (k ) and α ji (k ) can be 

egotiated in case the controllers share information. 

Let us also define ᾱ as the threshold that enables the agents 

ommunication. In this regard, depending on the values of αi j (k ) , 

gents can switch between different modes of operation ranging 

etween these two extreme cases: 

• All agents work in a decentralized manner, i.e., there is no com- 

munication, which happens when αi j (k ) < ᾱ for all u 
pu 
i j 

(k ) ∈ 

αi j (k ) U i . 
• All agents work in a distributed manner, i.e., all of them share 

data if αi j (k ) ≥ ᾱ for all u 
pu 
i j 

(k ) ∈ αi j (k ) U i . Unlike standard dis-

tributed schemes, here the boundaries (and not the values) of 

coupling variables are negotiated. The rationale of this choice is 

to reduce the cooperation burden. 

ence, agents work in a flexible manner that admits partial modes 

f cooperation. That is, there may be clusters of agents that com- 

unicate, i.e., coalitions [10] , whereas others may be operating in 

 decentralized manner. 

In what follows, we introduce a dual decomposition-based al- 

orithm that exploits the concept of private and public variables 

bove described. Each agent i ∈ N will optimize the private part 

f its input variable u 
pr 
i 

and the variable αi that bounds its con- 

traints, as well as the public part of neighboring input variables 

 

pu 
ji 

, and the variable α ji that determines its constraints. To deter 

 fully cooperative operation, the use of public variables will be 

enalized with a higher cost than the private ones. Also, to pro- 

ect the agents against the neighboring uncertainty, we introduce a 

et of scenario-based constraints that aim satisfying state and in- 

ut constraints while reducing the degree of conservativeness. The 

atter is detailed in the following subsections. 

.1. Scenario-based MPC 

Considering (1) and (3) , the model of each subsystem i ∈ N can

e rewritten as follows: 

 i (k + 1) = A ii x i (k ) + B ii u 

pr 
i 

(k ) + 

∑ 

j∈N i 
B i j u 

pu 
ji 

(k ) 

+ 

∑ 

j∈M i 

B ii u 

pu 
i j 

(k ) + 

∑ 

j∈N i 
B i j u 

pr 
j 
(k ) 

︸ ︷︷ ︸ 
w i (k ) 

, (5) 

here w i (k ) is decomposed into a first term that contains the pub- 

ic part of u i (k ) that is managed by agents M i that are affected by

t, and the second one includes the private variables of neighbor- 

ng agents N i . Due to the definition of private and public variables, 

 i (k ) satisfies: 

 i (k ) ∈ 

⊕ 

j∈M i 

B ii W 

pu 
i j 

�

⊕ 

j∈N i 
B i j W 

pr 
j 

(6) 

here W 

pu 
i j 

and W 

pr 
j 

are polyhedral sets such that 

u 

pu 
i j 

(k ) ∈ W 

pu 
i j 

= αi j (k ) U i , 

u 

pr 
j 
(k ) ∈ W 

pr 
j 

= α j (k ) U j . (7) 

To take into account these uncertainties, it is possible to follow 

 conservative robust approach, e.g., tube-based MPC [15,19] . How- 

ver, in order to reduce conservativeness, we propose a stochastic 

pproach that generates a fixed number n s of equiprobable random 

cenarios considering different possible realizations of the distur- 

ance. 
3 
Let x i be the part of equation (5) that does not depend on the 

isturbances, i.e., x i (k ) = A ii x i (k ) + B ii u 
pr 
i 

(k ) + 

∑ 

j∈N i B i j u 
pu 
ji 

(k ) . Re-

arding n s possible realizations of the uncertainty, the state pre- 

iction using model (5) can be rewritten as 

 i (k + 1) = x i (k ) + 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j∈M i 
B ii w 

1 
i j 
(k ) + 

∑ 

j∈N i B i j w 

1 
j 
(k ) ∑ 

j∈M i 
B ii w 

2 
i j 
(k ) + 

∑ 

j∈N i B i j w 

2 
j 
(k ) 

. . . 
. . . ∑ 

j∈M i 
B ii w 

n s 
i j 

(k ) + 

∑ 

j∈N i B i j w 

n s 
j 
(k ) . 

(8) 

hat is, x i (k ) aggregates subsystems’ i state at time instant k for all

ossible scenarios, i.e., x i (k ) = [ x d 
i 
(k )] d∈ [1 , ... ,n s ] . 

The control action computed in scenario-based MPC is opti- 

ized to account for possible scenarios [3,18] , which can be used 

o obtain robustness regarding closed-loop constraint satisfaction, 

.g., following [4] . For this purpose, the performance of each sce- 

ario is defined as a quadratic function � d 
i 
(·) . Accordingly, the stage 

ost � i (·) for each subsystem i is calculated as the weighted sum of 

he performance cost of each of the scenarios, where the weights 

re the probabilities of their occurrence. As mentioned before, we 

ssume that all scenarios have the same probability p i = 1 /n s : 

 i (k ) = 

n s ∑ 

d=1 

p i � 
d 
i (k ) , (9) 

here 
∑ 

∀ n s p i = 1 and 

� d 
i 
(k ) = u 

pr 
i 

T 
(k ) R 

pr 
i 

u 

pr 
i 

(k ) + 

∑ 

j∈N i u 

pu 
ji 

T 
(k ) R 

pu 
i 

u 

pu 
ji 

(k ) + (
x d 

i 
(k + 1) − x ref 

i 
(k + 1) 

)T 
Q i 

(
x d 

i 
(k + 1) − x ref 

i 
(k + 1) 

)
. 

(10) 

lso, weighting matrices Q i , R 
pr 
i 

, R 
pu 
i 

are positive definite and sat- 

sfy R 
pu 
i 

>> R 
pr 
i 

to incentivize the use of local resources first. Fi- 

ally, x ref 
i 

(k ) represents the desired reference for subsystem i in 

ime instant k . 

Considering (9) , the centralized MPC optimization problem at 

ach time instant k is expressed by: 

U 

∗
i (k ) 

]
i ∈N = arg min 

[ U i (k )] i ∈N 

N p −1 ∑ 

t=0 

∑ 

i ∈N 
� i (t) + 

∑ 

i ∈N 
f i 

.t. 

 

d 
i (0) = x i (k ) , (11a) 

 

d 
i (t +1) = x i (t ) + 

∑ 

j∈M i 

B ii w 

d 
i j (t ) + 

∑ 

j∈N i 
B i j w 

d 
j (t ) , (11b) 

 i (t) = u 

pr 
i 

(t) + 

∑ 

j∈M i 

u 

pu 
i j 

(t) (11c) 

 

pr 
i 

(t) ∈ αi U i , (11d) 

 

pu 
ji 

(t) ∈ α ji U j , ∀ j ∈ N i , (11e) 

 

d 
i (t) ∈ X i , (11f) 

 i ∈ N , (11g) 

 d ∈ [1 , 2 , . . . , n s ] , (11h) 

 t = 0 , . . . , N p − 1 . (11i) 

here N p is the prediction horizon, and U i (k ) is formed by the 

equence of control actions u 
pr 
i 

(·) and u 
pu 
ji 

(·) from instants t to t +
 p − 1 and scale factors αi and α ji . Notice that variables u 

pr 
i 

(·) and 

 

pu 
ji 

(·) vary along the prediction horizon while αi and α ji are kept 

onstant in the optimization. Additionally, function f penalizes the 
i 



A. Sánchez-Amores, P. Chanfreut, J.M. Maestre et al. European Journal of Control 68 (2022) 100676 

v

w

(  

i  

u  

α  

c

o  

a  

a

p

s

m

b

p

3

v

s  

t

t

s

t

λ
i

w

t

i

λ

N

g

t

p

p

a

s

�

i

a

�

J

T

m

w

x

(

u

x

∀

∀

λ

A

v

i

s

d

w

b

t

λ

b  

α  

a

w

t

h

d

e

t

a

t

t

t

t

Algorithm 1 Control Scheme. 

At each sample time k , each agent i ∈ N proceeds as fol- 

lows: 

1: Solve the optimization problem (16) for n s equiprobable sce- 

narios and find optimal sequence u 
pr 
i 

(k ) , u pu 
ji 

(k ) and optimal 

bounds of the variables αi (k ) , α ji (k ) , ∀ j ∈ N i . 

2: if α ji (k ) < ᾱ and α ji (k − 1) < ᾱ then 

3: Disable communication flag: f ji = 0 . 

4: Ignore the value of the public variable: u 
pu 
ji 

(k ) = 0 . 

5: else 

6: Enable communication flag: f ji = 1 . 

7: end if 

8: if f ji = 1 then 

9: while � > ε do 

10: Update local and neighboring Lagrange multipliers 

{ λi (k ) , λ j (k ) : ∀ j ∈ N i } according to (17). 

11: Compute � = max {‖ αp 
j 
(k ) − αp−1 

j 
(k ) ‖ , ‖ αp 

ji 
(k ) −

αp−1 
ji 

(k ) ‖} ∀ j ∈ N i . 

12: Set p ← p + 1 . 

13: end while 

14: end if 
alues αi and α ji , for all i ∈ N and ∀ j ∈ N i , i.e., 

f i = ρpr αi + 

∑ 

j∈N i 
ρpu α ji , (12) 

here ρpr and ρpu are positive weighting factors. The solution of 

11) provides for each i ∈ N the value of the private and public

nputs to be implemented at instant k , i.e., u 
pr 
i 

(k ) = u 
pr , ∗
i 

(0) and

 

pu 
ji 

(k ) = u 
pu , ∗
ji 

(0) , and the corresponding optimal scale factors, i.e.,

i (k ) = α∗
i 

and α ji (k ) = α∗
ji 

, for all j ∈ N i . At the same time, ac-

ording to Eq. (3) , agents will take into account the private part 

f neighboring agents u 
pr 
j 
(k ) and the public part of their local vari-

ble u 
pu 
i j 

(k ) that is controlled by the agents j ∈ M i affected by it

s bounded disturbances. Thanks to the scenario-based MPC ap- 

roach, n s possible realizations of the disturbances will be con- 

idered in the optimization problem according to (8) . Below, opti- 

ization problem (11) is distributed among the set of MPC agents 

y using the dual decomposition method. That is, the centralized 

roblem is not meant to be directly solved. 

.2. Agents negotiation based on dual decomposition 

Agents affected by the same input u i (k ) need to negotiate the 

alue of the local variables { αi (k ) , αi j (k ) } that scale the input con- 

traints sets. Condition (4) must be satisfied by agents { i, ∀ j ∈ M i }
hat carry out the negotiation. To compute the solution in a dis- 

ributed manner we apply the dual decomposition algorithm de- 

cribed in [8] . Convergence to the centralized solution is attained 

hroughout an iterative procedure in which Lagrange multipliers 

i (k ) are applied. The satisfaction of constraint (4) is achieved by 

ncorporating Lagrange multipliers into local objective functions, 

hich are constant along the prediction horizon but vary over 

ime. The goal of the agents involved in the negotiation is to sat- 

sfy: 

i (k ) 

( 

αi (k ) + 

∑ 

j∈M i 

αi j (k ) − 1 

) 

≤ 0 with λi (k ) ≥ 0 . (13) 

otice that every local objective function will contain as many La- 

range multipliers as the number of neighbors’ inputs that affect 

heir dynamics, as well as the one that characterizes its own in- 

ut. In other words, the corresponding Lagrange multiplier for its 

rivate and public input variables. Eq. (14) describes how these 

uxiliary variables are considered in the performance function of 

ubsystem i : 

i = λi αi + 

∑ 

j∈N i 
λ j α ji . (14) 

Finally, we formulate the objective function of each subsystem 

 as the sum of the stage cost � i (·) , penalization of scale factors f i 
nd the corresponding terms for the dual decomposition algorithm 

i , i.e., 

 ( x i , U i , [ λm 

] m ∈S ) = 

N p −1 ∑ 

t=0 

� i (t) + f i + �i . (15) 

herefore, at each iteration, agent i solves the following problem: 

in 

U i 
max 

[ λm ] m ∈S i 
J ( x i , U i , [ λm 

] m ∈S i ) 

here S i = i ∪ N i , subject to the following constraints: 

 

d 
i (0) = x i (k ) , (16a) 

3) , (8) (16b) 
4 
 

pr 
i 

(t) ∈ αi U i , u 

pu 
ji 

(t) ∈ α ji U j , ∀ j ∈ N i , (16c) 

 

d 
i (t) ∈ X i , (16d) 

 d ∈ [1 , 2 , . . . , n s ] , (16e) 

 t = 0 , . . . , N p − 1 , (16f) 

m 

≥ 0 , ∀ m ∈ S i . (16g) 

gents carry out an iterative negotiation where the values of the 

ariables involved in (14) are compared to those at the previous 

teration. Convergence is attained when the values in two con- 

ecutive iterations p and p − 1 are similar enough, measuring the 

ifference with: � = αp (k ) − αp−1 (k ) . We establish a threshold ε
here the negotiation will stop: � ≤ ε. Lagrange multipliers must 

e updated in every step of the iterative procedure according to 

he following expression: 

p+1 
i 

(k ) = λp 
i 
(k ) + γ

( 

αp 
i 
(k ) + 

∑ 

j∈M i 

αp 
i j 
(k ) − 1 

) 

, (17) 

eing γ > 0 the step size. Note that the scale factors αi (k ) and

i j (k ) in (13) are the optimal solution of (16) at instant k and iter-

tion p. 

Considering the above, Algorithm 1 presents a pseudo-code 

ith the steps that have to be followed by the different agents 

o implement the proposed coalitional MPC scheme. The idea be- 

ind it is to reduce communication in comparison with the fully 

istributed MPC approach. Coordination between agents will be 

vent-based, as communication links will be disabled if Step 2 of 

he algorithm is verified. We consider that if the public part that 

n agent can manipulate is small in two consecutive time steps, 

here is no need for communication. To avoid recomputing an op- 

imization, the implementation assumes that u 
pu 
ji 

(k ) = 0 , but note 

hat an extra step could be included here to re-optimize imposing 

hat the public variable is zero. However, if at a single time step an 
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Fig. 1. Scheme of the proposed variable decomposition for two agents. Each agent 

i manipulates its private variable u pr 
i 

and the public input u pu 
ji 

ceded by its neighbor 

in such a way that all optimized variables belong to scaled constraints sets to guar- 

antee overall constraints satisfaction. Likewise, the agents can negotiate these scale 

factors. 

Fig. 2. Scheme of the eight tanks system. The colored pipes represent the coupling 

connections. 
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Fig. 3. Evolution of the states of the lower tanks and subsystems’ inputs using 

ᾱ = 0 . 05 and n s = 20 . Solids lines represent the result using the proposed coali- 

tional algorithm, while dashed and dotted lines represent the evolution using a 

centralized and decentralized MPC respectively. 
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gent demands a greater use of the public variable, being its value 

bove the threshold ᾱ, communication is retaken. 

When communication occurs, agents follow a distributed ap- 

roach according to the dual decomposition algorithm. They share 

he values of their local variables, updating the corresponding La- 

range multiplier until convergence is attained. It is worth men- 

ioning that agents keep calculating public variables and bounds 

ji (k ) even when they are not communicating with their neigh- 

ors in case negotiation should be resumed. 

. Simulation results 

An eight input-coupled tanks plant has been used as an exam- 

le to illustrate the behavior of the proposed technique. The sys- 

em is composed by four top tanks (5, 6, 7, and 8) that discharge

nto four bottom tanks (1, 2, 3, and 4). In turn, tanks in the lower

evel discharge into a shared storage tank. The eight tanks are filled 

hanks to 4 pumps (Q a , Q b , Q c and Q d ) that carry water from the

torage tank. Moreover, four three-way valves are employed to reg- 

late the pumped flow, dividing it into two ways to fill the upper 

nd lower tanks. 

We can distinguish N = 4 subsystems formed by a top and bot- 

om tank. In this way, tanks 1 and 5 define the first subsystem; the 

econd is composed of tanks 2 and 6; tanks 3 and 7 describe the 

hird subsystem; finally, tanks 4 and 8 form the fourth one. These 

ubsystems are physically coupled through the colored pipes that 

nterconnect the tanks in Fig. 2 . Also, the following bidirectional 

inks, i.e., data connections between the corresponding local con- 

rollers, are considered: (1,2), (2,3), (3,4), and (4,1). Here, link (i, j) 

enotes that local controllers i and j can exchange information. 
5 
The objective is to regulate the four lower tanks towards their 

esired reference in the water level. For this purpose, we define 

he state of each subsystem as the water level in meters of the 

wo tanks that represent it, e.g., for subsystem one: x 1 = [ h 1 h 5 ] 
T 

. 

urthermore, inputs are given by the value of the pump flow in 

ubic meters per hour u i = Q k , with i = 1 , . . . , N and k ∈ { a, b, c, d} .
esides, the system is subject to the following constraints: 0 . 2 ≤
 i ≤ 1 . 3 , [0 , 0 , 0 , 0] ≤ u i ≤ [3 . 26 , 4 , 3 . 6 , 4] , with i = 1 , . . . , N. Lastly,

ach subsystem is characterized by the following matrices: 

A 11 = 

[
0 . 8257 0 . 1178 

0 0 . 8703 

]
, B 11 = 

[
0 . 0379 

0 

]
, B 14 = 

[
0 . 0056 

0 . 0843 

]
, 

A 22 = 

[
0 . 8163 0 . 1023 

0 0 . 8867 

]
, B 22 = 

[
0 . 0503 

0 

]
, B 21 = 

[
0 . 0053 

0 . 0916 

]
,

A 33 = 

[
0 . 8232 0 . 1077 

0 0 . 8813 

]
, B 33 = 

[
0 . 0442 

0 

]
, B 32 = 

[
0 . 0047 

0 . 0783 

]
,

A 44 = 

[
0 . 8194 0 . 1050 

0 0 . 8840 

]
, B 44 = 

[
0 . 0441 

0 

]
, B 43 = 

[
0 . 0050 

0 . 0849 

]
.

The proposed scheme has been simulated using as weight- 

ng matrices: Q i = diag (4 , 1) , R 
pr 
i 

= 0 . 1 , R 
pu 
i 

= 5 R 
pr 
i 

. As well, the

enalization of scale factors in (12) has been defined as ρpr = 

 . 1 R pr and ρpu = 0 . 1 R pu . The prediction horizon has been set to

 p = 10 , and n s = 20 scenarios have been generated following a 

andom uniform distribution. 

Fig. 3 a shows the evolution of the states towards their desired 

eferences. In Fig. 3 b, the performance of Algorithm 1 is shown in 
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Table 1 

Comparison of the performance costs for different modes of operation. 

Performance cost P 

Centralized MPC 39.4458 

Coalitional algorithm with ᾱ = 0 . 05 43.4423 

Coalitional algorithm with ᾱ = 0 . 10 46.1769 

Decentralized MPC 78.5676 

Fig. 4. Communication topology by means of the enable/disable of links using ᾱ = 

0 . 05 . 
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Fig. 5. Evolution of the optimization variables of the first subsystem u 1 = 

{ u pr 
1 

, u pu 
41 

, α1 , α41 } . 

Fig. 6. Comparison of the evolution of subsystems’ inputs when not considering 

scenarios for the fixed value of ᾱ = 0 . 05 . Regarding to Fig. 3 b the purple dot-dashed 

line represents the case where w i = 0 . 
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erms of the evolution of subsystems’ inputs. As can be seen, when 

sing ᾱ = 0 . 05 input and state trajectories with the proposed coali- 

ional algorithm follow up closely the centralized solution. To allow 

 comparison between different MPC schemes, we consider the fol- 

owing index to evaluate the system performance: 

 = 

T ∑ 

k =1 

∑ 

i ∈N 
‖ u i (k ) ‖ R pr 

i 
+ ‖ x i (k + 1) − x ref 

i (k + 1) ‖ Q i 

being T the simulation length and defining u i (k ) in the coali- 

ional approach according to (3) . Table 1 shows a comparison of 

he overall performance when using various control schemes. We 

ave provided two results for the coalitional algorithm using dif- 

erent values of ᾱ. In particular, for this simulation is considered 

hat the optimum value of ᾱ is 0.05, resulting in a decrease of the 

verall performance of a 10 . 13% concerning the centralized solu- 

ion. At the same time, when using ᾱ = 0 . 10 the loss in perfor-

ance is a 17 . 06% . As we want to reduce communication com-

ared to the centralized approach, a value of the communication 

ost has been provided. This cost is calculated as the total num- 

er of active links during the entire simulation. For this purpose, 

ll links are always active in the centralized solution, while in the 

oalitional scheme they enable or disable according to Step 2 in 

lgorithm 1 . The value of this communication cost for centralized 

PC is 240, while for the coalitional algorithm is 84 using ᾱ = 0 . 05

nd 71 when ᾱ = 0 . 10 . Using ᾱ = 0 . 05 , communication cost re-

uces in a 65% with respect the centralized approach, while with 

¯ = 0 . 10 drops to a 70% . For this simulation, choosing a higher

alue of ᾱ results in worse performance, but lower communication 

xchange. Furthermore, Fig. 4 represents the status of the commu- 

ication links throughout the simulation for the optimal value of 

¯ = 0 . 05 . 

Fig. 5 shows the evolution of the optimization variables of sub- 

ystem 1 to clarify the concepts of public and private variables. 

ariable u 
pr 
1 

is represented with a continuous blue line, while α1 is 

epresented below it in purple; note that α1 scales the constraints 

f the private part of u 1 . For this reason, the product α1 U 1 has

een represented in the graph with a purple dashed line. The same 

pplies to u 
pu 
41 

, which is the public part of input u 4 that can be

anipulated by subsystem 1. Variable α41 scales the constraints of 

he public variable, and the product α41 U 4 is represented in a gray 

ashed line together with the evolution of u 
pu 
41 

. In this case, when 

he value of α41 is below the red dotted line ᾱ = 0 . 05 , the value

f u 
pu 
41 

is set to zero because the communication link is disabled. 

n accordance with Fig. 4 , it can be seen that link 4-1 disables at

ime instant k = 41 . 
6

Finally, Fig. 6 illustrates a less conservative approach where 

gents neglect the possible coupling with their neighbors, mean- 

ng that they use (5) as prediction model with w i set to zero dur- 

ng the entire prediction horizon. Inputs reach higher values than 

efore, increasing the need for communication. This was expected 

ince in Step 2 of Algorithm 1 we are applying the same threshold 

¯ = 0 . 05 and inputs values are greater than with n s = 20 . Com-

unication cost is 61 . 9% higher than the one obtained when us- 

ng scenarios. Furthermore, the cumulative cost reaches a value of 

 = 46 . 1624 , which supposes a 6 . 26% increase. 

Being less conservative leads to an evolution of the input that 

lso follows closely the centralized trajectory, but it increases com- 

unication. (see Fig. 6 ). As we were considering random equiprob- 

ble scenarios, the controller had to calculate a trajectory suited to 

ll the possibilities. The risk of not considering uncertainties is that 

 sudden input value may violate the system’s constraints. 

. Conclusions 

In this paper, we propose a coalitional MPC approach by par- 

itioning coupling variables. These variables share a common con- 

traint space, where agents can negotiate in a distributed manner 

heir limits if needed. The different inter-agent interaction modes 

ermit flexible event-based communication, where agents coordi- 

ate only when they require it for the sake of better overall perfor- 

ance. To illustrate the proposed scheme, numerical results in an 

ight-input-coupled tanks benchmark show that this approach re- 

ults in a performance close to the centralized solution while sav- 

ng communication burden. Further research will focus on adapt- 

ng this heuristic method to robust control, providing conditions 

or stability. 
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