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In this paper we analyze the homogenization of the wave equation with bounded variation
coefficients in time, generalizing the classical result, which assumes Lipschitz-continuity.
We start showing a general existence and uniqueness result for a general sort of hyperbolic
equations. Then, we obtain our homogenization result comparing the solution of a
sequence of wave equations to the solution of a sequence of elliptic ones. We conclude the
paper making an analysis of the corrector. Firstly, we obtain a corrector result assuming
that the derivative of the coefficients in the time variable is equicontinuous. This result
was known for non-time dependent coefficients. After, we show, with a counterexample,
that the regularity hypothesis for the corrector theorem is optimal in the sense that it does
not hold if the time derivative of the coefficients is just bounded.
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1. Introduction

For a bounded open set Ω ⊂ R
N and a positive number T , we are interested in the present paper in the homogenization

and corrector for the wave problem⎧⎨
⎩

∂t
(
ρn(t, x)∂t un

) − divx
(

An(t, x)∇xun
) = Fn in (0, T ) × Ω,

un = 0 on (0, T ) × ∂Ω,

un(0, x) = u0
n(x), (ρn∂t un)(0, x) = ϑ1

n (x) in Ω.

(1.1)

The homogenization of (1.1) has been carried out in [6] (see also [2] for the case of periodic coefficients) assuming ρn ≡ 1
and the symmetric matrix functions An uniformly elliptic, bounded and Lipschitz with respect to the time variable. The
construction of correctors for problem (1.1) can be found in [3] (see also [9]) for the case where the coefficients do not
depend on t . Our purpose here is to extend these results to more general coefficients and second members. We remark that
some smoothness in the time variable is needed in order to assure the existence and uniqueness of solution for problem
(1.1). In this way, we recall the following results: It is proved in [11] that (even with zero second member) problem (1.1)
has not a solution in general for ρn ≡ 1 and An constant in the two sides of a hyperplane not parallel to {t = 0}. In [8] it
is obtained a non-existence result for coefficients in C0,α(Ω̄ × [0, T ]), for every α ∈ (0,1). Moreover, if the coefficients are
rapidly oscillating then even if there exists a solution, it can be not bounded. An example of such phenomenon is considered
in [7] where the matrices An are supposed of the form An(t, x) = A(nt, x) with A smooth and periodic in the time variable
(and ρn ≡ 1). Then, it is proved the existence of very smooth initial conditions such that the solutions of (1.1) with vanishing
second member are not bounded in the space of distributions. In [19] (see also [13]), it is considered the homogenization
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of problem (1.1) for coefficients of the form A(nt,nx), with A periodic, but the existence and boundness of the solutions is
assumed by hypothesis.

Taking into account the above remarks, let us assume in the present paper that ρn and An are bounded in
BV(0, T ; L∞(Ω)) and BV(0, T ; L∞(Ω;Ms

N )) respectively (so, in particular, they are not continuous in general with respect
to t), the initial conditions u0

n and ϑ1
n are bounded in H1

0(Ω) and L2(Ω) respectively and the second member Fn is of
the form Fn = fn + gn with fn bounded in the space of measures M([0, T ]; L2(Ω)) and gn bounded in BV(0, T ; H−1(Ω))

(and satisfying the compact assumption in the spatial variable given by (3.9)). With these assumptions it is possible to
prove that there exists a unique solution un of problem (1.1). Moreover un and ∂t un are bounded in L∞(0, T ; H1

0(Ω))

and L∞(0, T ; L2(Ω)) respectively. Although the ideas to prove this existence and uniqueness result are classical (see e.g.
[10–12,14] for related results), we have not found it in the literature in all of its generality. Thus, we give in Section 2 a
sketch of the proof.

In Section 3 we carry out the homogenization of problem (1.1). Our main result (Theorem 3.4) establishes that, for a
subsequence, the solution un of (1.1) converges weakly-∗ in L∞(0, T ; H1

0(Ω)) to the solution of a similar problem where ρn

is replaced by its weak-∗ limit ρ in L∞((0, T ) × Ω) and An by the matrix A such that A(t, .) is the H-limit of An(t, .) for
every t ∈ (0, T ) up to a countable set. This theorem generalizes the results obtained in [3] (where it is considered the case
ρn(t, x) and An(t, x) independent of t and gn = 0) and in [6] (where it is considered the case ρn = 1, An(t, x) uniformly
Lipschitz in t and gn = 0).

Section 4 is devoted to give a corrector result for the solution of (1.1), i.e. an approximation of un in the strong topol-
ogy of H1((0, T ) × Ω). Our aim is to generalize the following corrector result proved in [3]: Assume that ρn and An do
not depend on the time variable, the second member Fn converges weakly in L2((0, T ) × Ω), the sequence ϑ1

n converges
strongly in L2(Ω) and the sequence u0

n converges weakly in H1
0(Ω) and it is such that −divx An∇xu0

n converges strongly in
H−1(Ω). Then the corrector for ∇xun is given by the corrector corresponding to the elliptic operators −divx An∇x , while
∂t un converges strongly in L2(0, T ; L2(Ω)). Here, we generalize this result for coefficients depending on t , but satisfying
smoothness in the time variable than in Section 3. Namely, we assume that ∂tρn and ∂t An are continuous on [0, T ] with
values in L∞(Ω) and L∞(Ω;Ms

N ) respectively, with a modulus of continuity uniform in n. This smoothness hypothesis may
seem very restrictive, but it is optimal such as we will see in Section 5. There, we prove that even for ρn ≡ 1, An bounded
in C1([0, T ]; L∞(Ω;Ms

N )) and converging strongly in C0([0, T ]; L∞(Ω;Ms
N )), Fn ≡ 0, u0

n ≡ 0 and ϑ1
n equals to a function in

C∞(Ω) independent of n, we have that the solution un of (1.1) does not converge in the strong topology of H1((0, T ) × Ω).
In particular this shows that the corrector for the elliptic operators −divx An∇x does not give a corrector for the space
derivatives of un , and so that the corrector result proved in [3] for the case of coefficients independent of the time variable
cannot be generalized to the framework considered in [6], where the coefficients are supposed uniformly Lipschitz in the
time variable.

1.1. Notations and recalls

• For a Banach space X , and T > 0, we denote by M([0, T ]; X) the space of bounded Borel measures from [0, T ] into X .
In the particular case X = R we just denote M([0, T ];R) as M([0, T ]).

• For a Banach space X , and T > 0, we define BV(0, T ; X) as the space of functions ζ : [0, T ] → X such that

V T (ζ ) = sup
{t0=0<t1<···<tm=T }

m∑
i=1

∥∥ζ(ti) − ζ(ti−1)
∥∥

X < +∞.

This implies in particular that ζ is continuous up to a countable set. Changing the values of ζ in this set, we can always
assume that ζ is right-continuous of [0, T ) and left-continuous on {T }. This gives a unique representative for a function
in BV(0, T ; X). Along the paper we will usually consider this representative. It is also known (it follows for example
from the structure theorem for BV functions given in [4]) that for every ζ ∈ BV(0, T ; X), there exists a nonnegative
measure μ ∈ M([0, T ]), with ‖μ‖M([0,T ];X) = V T (ζ ), such that

∥∥ζ(t) − ζ(t̂)
∥∥

X � μ
([t, t̂]), ∀t, t̂ ∈ [0, T ], t < t̂.

Moreover, if X is reflexive, the distributional derivative ∂tζ belongs to M([0, T ]; X) and satisfies

ζ(t) = ζ(0) + ∂tζ
(
(0, t]), ∀t ∈ (0, T ).

• We denote by MN and Ms
N the spaces of squared matrices of order N and symmetric matrices of order N respectively.

• Sometimes, for functions depending of the time and space variables (t, x) we only specify the dependence in t in order
to write shorter expressions.

• We will denote by C a nonnegative generic constant which can change from line to line.
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2. Existence and uniqueness of weak solution

In this section we prove an abstract result for the existence and uniqueness of solution of a hyperbolic equation, which
in particular can be used for the hyperbolic problem whose homogenization is the goal of this paper.

As usual, we consider two separable Hilbert spaces V and H , such that V ⊂ H , with continuous injection and V dense
in H . Identifying H with its dual H ′ we obtain

V ⊂ H ⊂ V ′.

The scalar product in H is denoted by (·,·) = (·,·)H and the duality between V ′ and V is denoted by 〈·,·〉 = 〈·,·〉V ′,V .
For T > 0 we consider two operators:

R ∈ BV
(
0, T ;L(H, H)

)
, A ∈ BV

(
0, T ;L(

V , V ′)) (2.1)

satisfying the symmetry assumption:{(
R(t)h1,h2

) = (
R(t)h2,h1

)
, ∀h1,h2 ∈ H, a.e. t ∈ (0, T ),〈

A(t)v1, v2
〉 = 〈

A(t)v2, v1
〉
, ∀v1, v2 ∈ V , a.e. t ∈ (0, T ),

(2.2)

and the hyperbolic assumption: There exists α > 0 such that{(
R(t)h,h

)
� α‖h‖2

H , ∀h ∈ H, a.e. t ∈ (0, T ),〈
A(t)v, v

〉
� α‖v‖2

V , ∀v ∈ V , a.e. t ∈ (0, T ).
(2.3)

For

f ∈ M
([0, T ]; H

)
, g ∈ BV

(
0, T ; V ′), u0 ∈ V , ϑ1 ∈ H, (2.4)

we will study the initial boundary value problem for the hyperbolic equation{(
R(t)u′(t)

)′ + A(t)u(t) = f (t) + g(t) in (0, T ),

u(0) = u0,
(
Ru′)(0+) = ϑ1.

(2.5)

Theorem 2.1. Under the above assumptions (2.1), (2.2), (2.3), (2.4), there exists a unique u ∈ L∞(0, T , V ) with u′ ∈ L∞(0, T , H),
solution of (2.5) in the sense that{(

R(t)u′(t), v
)′ + 〈

A(t)u(t), v
〉 = (

f (t), v
) + 〈

g(t), v
〉

in D′(0, T ), ∀v ∈ V ,

u(0) = u0,
(
Ru′)(0+) = ϑ1.

(2.6)

Moreover, we have the following estimate∥∥u′(t)
∥∥2

H + ∥∥u(t)
∥∥2

V � C
(∥∥u0

∥∥2
V + ∥∥ϑ1

∥∥2
H + ‖ f ‖2

M([0,T ];H) + ‖g‖2
BV(0,T ;V ′)

)
, a.e. t ∈ (0, T ), (2.7)

where the constant C depends continuously on α,‖R‖BV(0,T ;L(H;H)) and ‖A‖BV(0,T ;L(V ,V ′)) .

Remark 2.2. Since u′ is in L∞(0, T ; H), the initial condition u(0) = u0 has a sense at least in H . Moreover, from (2.6) (or
(2.5)) we have that Ru′ belongs to BV(0, T ; V ′) and therefore the initial condition (Ru′)(0+) = ϑ1 has a sense at least in V ′ .
If in Theorem 2.1 we assume f ∈ L1(0, T ; H) then Ru′ is in W 1,1(0, T ; V ′) and therefore we can just write (Ru′)(0) = ϑ1

at the place of (Ru′)(0+) = ϑ1.

Proof of Theorem 2.1. When R is the identity operator, Theorem 2.1 is proved in [1] (see also [10–12,14] for related results).
For the sake of completeness we give here a sketch of the proof of Theorem 2.1 which is valid for a general operator R.

Part I: Existence. Taking into account the existence of Rn ∈ W 1,1(0, T ;L(H, H)), An ∈ W 1,1(0, T ;L(V , V ′)), fn ∈ L1(0, T ; H)

and gn ∈ W 1,1(0, T ; V ′) such that

Rn → R in L1(0, T ;L(H, H)
)
, ‖Rn‖W 1,1

(
0,T ;L(H,H)

) → ‖R‖BV(0,T ;L(H,H)),

An → A in L1(0, T ;L(
V , V ′)), ‖An‖W 1,1

(
0,T ;L(V ,V ′)

) → ‖A‖BV(0,T ;L(V ,V ′)),

fn
∗
⇀ f in M

([0, T ]; H
)
, ‖ fn‖L1(0,T ;H) → ‖ f ‖M([0,T ];H),

gn → g in L1(0, T ; V ′), ‖gn‖W 1,1(0,T ;V ′) → ‖g‖BV(0,T ;V ′),
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with Rn , An satisfying (2.2) and (2.3) (with α independent of n), we can always assume in the following that R ∈
W 1,1(0, T ;L(H, H)), A ∈ W 1,1(0, T ;L(V , V ′)), f ∈ L1(0, T ; H) and g ∈ W 1,1(0, T ; V ′).

Along the proof, we denote by C a generic nonnegative constant which depends continuously on α, ‖R‖BV(0,T ;L(H,H))

and ‖A‖BV(0,T ;L(V ,V ′)) , and can change from line to line.

Step 1. Galerkin approximations. Let {wi, i = 1,2, . . .} be a basis of V and therefore of H . For a positive integer k we take
Wk = span{w1, . . . , wk}, and we consider the problem{(

R(t)u′
k(t), w

)′ + 〈
A(t)uk(t), w

〉 = (
f (t), w

) + 〈
g(t), w

〉
in D′(0, T ), ∀w ∈ Wk,

uk(0) = u0
k , R(0)u′

k(0) = ϑ1
k .

(2.8)

where u0
k , ϑ1

k ∈ Wk converge to u0, ϑ1 in V and H respectively. Thanks to (2.2) and (2.3), the standard theory of ODE
provides a unique solution uk ∈ W 2,1(0, T ; Wk).

Step 2. Energy estimate. We write uk = ∑k
j=1 dkj w j , with dkj ∈ W 2,1(0, T ), j = 1, . . . ,k. Then, taking in (2.8) w = w j , multi-

plying by d′
kj(t) and adding in j we get((

R(t)u′
k(t)

)′
, u′

k(t)
) + 〈

A(t)uk(t), u′
k(t)

〉 = (
f (t), u′

k(t)
) + 〈

g(t), u′
k(t)

〉
, t ∈ (0, T ), (2.9)

which implies

E ′
k(t) = (

f (t), u′
k(t)

) + 〈
g(t), u′

k(t)
〉 − 1

2

(
R′(t)u′

k(t), u′
k(t)

) + 1

2

〈
A′(t)uk(t), uk(t)

〉
, (2.10)

with

Ek(t) = 1

2

((
R(t)u′

k(t), u′
k(t)

) + 〈
A(t)uk(t), uk(t)

〉)
, t ∈ [0, T ]. (2.11)

Using (2.3) and the inequality

(
f (t), u′

k(t)
)
� C

∥∥ f (t)
∥∥

H

√
Ek(t) � C Fδ

∥∥ f (t)
∥∥

H + C

Fδ

∥∥ f (t)
∥∥

H Ek(t), ∀t ∈ [0, T ], (2.12)

in (2.10), with Fδ = ‖ f ‖L1(0,T ;H) + δ, δ > 0, we get

E ′
k(t) � C Fδ

∥∥ f (t)
∥∥

H + 〈
g(t), u′

k(t)
〉 + C

(‖ f (t)‖H

Fδ

+ μ(t)

)
Ek(t), (2.13)

with

μ(t) = ∥∥R′(t)
∥∥

L(H,H)
+ ∥∥A′(t)

∥∥
L(V ,V ′). (2.14)

Applying Gronwall’s inequality to (2.13) we deduce

e−mδ(t)Ek(t) � Ek(0) +
t∫

0

(
C Fδ

∥∥ f (s)
∥∥

H + 〈
g(s), u′

k(s)
〉)

e−mδ(s) ds, ∀t ∈ (0, T ) (2.15)

with mδ defined as

mδ(s) = C

s∫
0

(‖ f (r)‖H

Fδ

+ μ(r)

)
dr, ∀r ∈ [0, T ]. (2.16)

If g ≡ 0, inequality (2.15) shows that uk and u′
k are bounded in L∞(0, T ; V ) and L∞(0, T ; H) respectively. In the general

case (g �≡ 0), we use the following estimate for the last term in (2.15).
We denote Gδ = ‖g′‖L1(0,T ;V ′) + δ. Integrating by parts, taking into account that e−mδ(t) � 1, using ‖g(t)‖V ′ �

C‖g‖W 1,1(0,T ;V ′) , for every t ∈ [0, T ], and reasoning similarly to (2.12) with 〈g′(s), uk(s)〉, we have

t∫
0

〈
g(s), u′

k(s)
〉
e−mδ(s) ds

= 〈
g(t), uk(t)

〉
e−mδ(t) − 〈

g(0), uk(0)
〉 −

t∫ 〈
g′(s) − C g(s)

(‖ f (s)‖H

Fδ

+ μ(s)

)
, uk(s)

〉
e−mδ(s) ds
0
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� 1

2
Ek(t)e−mδ(s) − 〈

g(0), uk(0)
〉 + C‖g‖2

W 1,1(0,T ;V ′) + C Gδ

t∫
0

∥∥g′(s)
∥∥

V ′ ds

+ C‖g‖2
W 1,1(0,T ;V ′)

t∫
0

(‖ f (s)‖H

Fδ

+ μ(s)

)
ds + C

t∫
0

(‖g′(s)‖V

Gδ

+ ‖ f (s)‖H

Fδ

+ μ(s)

)
Ek(s)ds.

Using in (2.15) the above estimate, applying Gronwall’s inequality and making δ converging to zero we conclude∥∥u′
k(t)

∥∥2
H + ∥∥uk(t)

∥∥2
V � CeC(T +∫ T

0 μ(s)ds)(∥∥u0
k

∥∥2
V + ∥∥ϑ1

k

∥∥2
H + ‖ f ‖2

L1(0,T ;H)
+ ‖g‖2

W 1,1(0,T ;V ′)
)
, (2.17)

for every t ∈ [0, T ], where C depends continuously on α.

Step 3. Passing to the limit. Thanks to (2.17), up to a subsequence, there exists u ∈ L∞(0, T ; V ), with u′ ∈ L∞(0, T ; H) such
that

uk
∗
⇀ u in L∞(0, T ; V ), u′

k
∗
⇀ u′ in L∞(0, T ; H).

Thanks to the linearity of the problems satisfied by uk it is easy to show that u is a solution of (2.6), which satisfies (2.7).

Part II: Uniqueness. By linearity, it is enough to prove that the problem of finding u ∈ L∞(0, T ; V ) with u′ ∈ L∞(0, T ; H)

solution of{(
R(t)u′(t)

)′ + A(t)u(t) = 0 in (0, T ),

u(0) = 0,
(
Ru′)(0+) = 0,

(2.18)

has the unique solution u ≡ 0. For this purpose, given h ∈ L1(0, T , H), we take vh ∈ L∞(0, T , V ), with v ′
h ∈ L∞(0, T , H)

solution of{(
R(t)v ′

h(t)
)′ + A(t)vh(t) = h(t) in (0, T ),

vh(T ) = 0,
(
Rv ′

h

)(
T −) = 0.

This function exists by the first part of the proof, using the change of variables s = T − t . Taking vh as a test function (2.18)
we get (the integrations by parts can be easily justified)

T∫
0

(
u(t),h(t)

)
dt = 0, ∀h ∈ L1(0, T , H),

and thus u ≡ 0. �
3. Homogenization

In this section we analyze the homogenization of a wave equation with BV coefficients in time. The main strategy in
order to compute the homogenized problem consists in an appropriated application of results of homogenization for elliptic
problems.

As we said in the introduction, let us consider the following wave equation with Dirichlet boundary condition:⎧⎨
⎩

∂t
(
ρn(t, x)∂t un

) − divx
(

An(t, x)∇xun
) = fn + gn in (0, T ) × Ω,

un = 0 on (0, T ) × ∂Ω,

un(0) = u0
n, (ρn∂t un)

(
0+) = ϑ1

n in Ω,

(3.1)

where ρn ∈ BV(0, T ; L∞(Ω)) and An ∈ BV(0, T ; L∞(Ω;Ms
N )) satisfy the following hypotheses

ρn is bounded in BV
(
0, T ; L∞(Ω)

)
, An is bounded in BV

(
0, T ; L∞(

Ω;Ms
N

))
. (3.2)

There exists α > 0 such that

ρn(t, x) � α, a.e. (t, x) ∈ (0, T ) × Ω, (3.3)

An(t, x)ξ · ξ � α|ξ |2, ∀ξ ∈ R
N , a.e. (t, x) ∈ (0, T ) × Ω. (3.4)

Let us prove in the present section that the limit problem of (3.1) has the same structure with ρn and An respectively
replaced by the weak-∗ limit of ρn in L∞((0, T ) × Ω) and the H-limit of An respectively.
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We recall the definition of H-limit:

Definition 3.1. We consider a bounded sequence Mn in L∞(Ω;MN ) such that there exists α > 0 satisfying

Mn(x)ξ · ξ � α|ξ |2, ∀ξ ∈ R
N , a.e. x ∈ Ω. (3.5)

We say that Mn H-converges to M ∈ L∞(Ω;MN ), which also satisfies (3.5), if for every F ∈ H−1(Ω), the solution zn of{−divx(Mn∇xzn) = F in Ω,

zn = 0 on ∂Ω,

satisfies

zn ⇀ z in H1
0(Ω), Mn∇xzn ⇀ M∇xz in L2(Ω;R

N)
,

where z is the solution of{−divx(M∇xz) = F in Ω,

z = 0 on ∂Ω.

It is proved in [15] (and [18] for the case of symmetric matrices) the following compactness theorem for the H-
convergence: Every sequence of matrices Mn which is bounded in L∞(Ω;MN ) and satisfies (3.5) admits a subsequence
which H-converges to some M ∈ L∞(Ω;MN ).

In the case of the sequence of matrices An which we consider in (3.1), we have

Proposition 3.2. For every sequence An which is bounded in BV(0, T ; L∞(Ω;Ms
N )) and satisfies (3.4), there exist a subsequence of n,

still denoted by n, and a matrix function A ∈ BV(0, T ; L∞(Ω;Ms
N )) such that

An(t, .)
H
⇀ A(t, .), ∀t ∈ (0, T ) \ N, (3.6)

with N ⊂ (0, T ) a countable subset.

Remark 3.3. The properties of the H-limit [15,18] imply that (3.4) is still satisfied with An replaced by A.
Since ρn is bounded in BV(0, T ; L∞(Ω)) and satisfies (3.3), there exist a subsequence of n still denoted by n and a

function ρ ∈ BV(0, T ; L∞(Ω)) satisfying (3.3), with ρn replaced by ρ such that

ρn
∗
⇀ ρ in L∞(

(0, T ) × Ω
)
. (3.7)

Taking into account Proposition 3.2 we can also assume that this sequence is chosen in such way that (3.6) is satisfied.
Therefore, to assume that An and ρn satisfy (3.6) and (3.7) respectively, is not a restriction because it always holds for a
subsequence.

The main result of the present section is the following homogenization result for problem (3.1).

Theorem 3.4. We consider An and ρn which satisfy (3.2), (3.4), (3.3), (3.6) and (3.7). Then, for every fn ∈ M([0, T ]; L2(Ω)), gn ∈
BV(0, T ; H−1(Ω)), u0

n ∈ H1
0(Ω), ϑ1

n ∈ L2(Ω) such that there exist f ∈ M([0, T ]; L2(Ω)), g ∈ BV(0, T ; H−1(Ω)), u0 ∈ H1
0(Ω) and

ϑ1 ∈ L2(Ω) satisfying

fn
∗
⇀ f in M

([0, T ]; L2(Ω)
)
, (3.8)

gn is bounded in BV
(
0, T ; H−1(Ω)

)
,

s∫
r

gn(t)dt →
s∫

r

g(t)dt in H−1(Ω), ∀r, s ∈ (0, T ), (3.9)

u0
n ⇀ u0 in H1

0(Ω), ϑ1
n ⇀ ϑ1 in L2(Ω), (3.10)

we have that the unique solution un of (3.1) satisfies

un
∗
⇀ u in L∞(

0, T ; H1
0(Ω)

)
,

∂t un
∗
⇀ ∂t u in L∞(

0, T ; L2(Ω)
)
,

where u is the unique solution of⎧⎨
⎩

∂t
(
ρ(t, x)∂t u

) − divx
(

A(t, x)∇xu
) = f + g in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(0) = u0, (ρ∂t u)
(
0+) = ϑ1 in Ω.

(3.11)
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Proof of Proposition 3.2. We take μn ∈ M([0, T ]) such that ‖μn‖M([0,T ]) = V T (An) and∥∥An(t) − An(t̂)
∥∥

L∞(0,T ;Ms
N (Ω))

� μn
([t, t̂]), ∀t, t̂ ∈ [0, T ], with t < t̂.

Since μn is bounded, up to a subsequence, there exists μ ∈ M([0, T ]) such that μn converges to μ weakly-∗ in the mea-
sures.

On the other hand, since An ∈ BV(0, T ; L∞(Ω;Ms
N )), we can always assume An continuous on the right in [0, T ) and

on the left in T , and then that An is well defined in every point t ∈ [0, T ]. We consider a countable dense set {tk}k∈N in
(0, T ) such that μ({tk}) = 0, for every k ∈ N. Using the H-convergence compactness theorem and reasoning by a diagonal
argument we can extract a subsequence of n, still denoted by n, such that there exists A : {tk}k∈N → L∞(Ω;Ms

N ) satisfying

An(tk, .)
H
⇀ A(tk, .), ∀k ∈ N.

This subsequence of n will be the subsequence which appears in the statement of Proposition 3.2.
By Lemma 3.5 below, for ti < t j , we have∥∥A(ti, .) − A(t j, .)

∥∥
L∞(Ω;Ms

N )
� C lim inf

n→∞
∥∥An(ti, .) − An(t j, .)

∥∥
L∞(Ω;Ms

N )

� C lim inf
n→∞ μn

([ti, t j]
)
� Cμ

([ti, t j]
)
. (3.12)

Using this property, we define A ∈ L∞((0, T ) × Ω;Ms
N ) by

A(t, x) = lim
s↘t

s∈{tk}
A(s, x). (3.13)

Let us see that A satisfies the thesis of Proposition 3.2. First, we prove that the limit on the right-hand side of (3.13) exists.
This is a simple consequence of the fact that thanks to (3.12), for every ti , t j , with t < ti < t j , we have∥∥A(ti, .) − A(t j, .)

∥∥
L∞(Ω;Ms

N )
� Cμ

([ti, t j]
)
� Cμ

(
(t, t j]

)
,

where the right-hand side tends to zero when t j tends to t .
On the other hand, (3.12) easily implies∥∥A(t, .) − A(t̂, .)

∥∥
L∞(Ω;Ms

N )
� Cμ

([t, t̂]),
for every t, t̂ ∈ (0, T ), with t < t̂ and therefore A belongs to BV(0, T ; L∞(Ω;Ms

N )).
In order to finish the proof of Proposition 3.2, it only remains to show that (3.6) is satisfied. For this purpose we take N

as the countable set of t ∈ (0, T ) such that μ({t}) > 0. For t ∈ (0, T ) \ N and f ∈ H−1(Ω), we define zn, z ∈ H1
0(Ω) as the

solutions of{−divx
(

An(t, x)∇xzn
) = f in Ω,

zn = 0 on ∂Ω,

{
−divx

(
A(t, x)∇xz

) = f in Ω,

z = 0 on ∂Ω.

We must show that zn converges weakly to z in H1
0(Ω). Since zn is bounded in H1

0(Ω), it is enough to check that zn

converges to z in L2(Ω). For ti > t , we define zi
n, zi ∈ H1

0(Ω) as the solutions of{
−divx

(
An(ti, x)∇xzi

n

) = f in Ω,

zi
n = 0 on ∂Ω,

{−divx
(

A(ti, x)∇xzi) = f in Ω,

zi = 0 on ∂Ω.

Taking zi
n − zn as a test function in the difference of the equations satisfied by zi

n and zn , we have∫
Ω

An(t, x)∇x
(
zn − zi

n

) · ∇x
(
zn − zi

n

)
dx =

∫
Ω

(
An(ti, x) − An(t, x)

)∇xzi
n · ∇x

(
zn − zi

n

)
dx

� μn
([t, ti]

)∥∥zi
n

∥∥
H1

0(Ω)

∥∥zn − zi
n

∥∥
H1

0(Ω)
,

which, using that ‖zi
n‖H1

0(Ω) is bounded and the uniform ellipticity of An , implies

lim sup
n→∞

∥∥zn − zi
n

∥∥
H1

0(Ω)
� Cμ

([t, ti]
)
.

Analogously, we have∥∥z − zi
∥∥

1 � Cμ
([t, ti]

)
.
H0(Ω)
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Therefore, using that zi
n converges to z in L2(Ω), we get

lim sup
n→∞

‖zn − z‖L2(Ω) � lim sup
n→∞

∥∥zn − zi
n

∥∥
L2(Ω)

+ lim sup
n→∞

∥∥zi
n − zi

∥∥
L2(Ω)

+ ∥∥zi − z
∥∥

L2(Ω)

� Cμ
([t, ti]

)
.

Since μ({t}) = 0 we have that μ([t, ti]) tends to zero when ti converges to t and so zn converges to z in L2(Ω). �
Lemma 3.5. We consider two sequences of matrix functions M1

n , M2
n in L∞(Ω;MN ), such that∥∥Mi

n

∥∥
L∞(Ω;MN )

� β, Mi
n(x)ξ · ξ � α|ξ |2, ∀ξ ∈ R

N , a.e. x ∈ Ω, i = 1,2,

which H-converge to M1 and M2 respectively. Then, for a constant C > 0, which only depends on β/α, we have∥∥M1 − M2
∥∥

L∞(Ω;MN )
� C lim inf

n→∞
∥∥M1

n − M2
n

∥∥
L∞(Ω;MN )

. (3.14)

Proof. For the case where Mn are symmetric this lemma can be found in [5]. We present here a more direct proof which
also does not need to assume Mn symmetric.

Extracting a subsequence if necessary, we can always assume that the liminf in (3.14) is a limit.
We consider ξ ∈ R

N and ui
n , i = 1,2, the solutions of{

−divx
(
Mi

n∇xui
n

) = −divx
(
Miξ

)
in Ω,

ui
n = ξ · x on ∂Ω,

then (see e.g. [15]) ∇xui
n and Mi

n∇xui
n converge respectively to ξ and Miξ in L2(Ω;R

N ) weakly, for i = 1,2.
Now, for ϕ ∈ C∞

c (Ω), ϕ � 0 in Ω , the div-curl lemma [16] shows

lim
n→∞

∫
Ω

(
M1

n∇xu1
n − M2

n∇xu2
n

) · ∇x
(
u1

n − u2
n

)
ϕ dx = 0, (3.15)

lim
n→∞

∫
Ω

M1
n∇xu1

n · ∇xu1
nϕ dx =

∫
Ω

M1ξ · ξϕ dx. (3.16)

Thanks to (3.15), we have

lim sup
n→∞

∫
Ω

M2
n∇x

(
u1

n − u2
n

) · ∇x
(
u1

n − u2
n

)
ϕ dx

� lim sup
n→∞

∫
Ω

(
M2

n − M1
n

)∇xu1
n · ∇x

(
u1

n − u2
n

)
ϕ dx + lim

n→∞

∫
Ω

(
M1

n∇xu1
n − M2

n∇xu2
n

) · ∇x
(
u1

n − u2
n

)
ϕ dx

= lim sup
n→∞

∫
Ω

(
M2

n − M1
n

)∇xu1
n · ∇x

(
u1

n − u2
n

)
ϕ dx,

and hence, by (3.16), we get

lim sup
n→∞

∫
Ω

∣∣∇x
(
u1

n − u2
n

)∣∣2
ϕ dx � β

α3
|ξ |2 lim

n→∞
∥∥M1

n − M2
n

∥∥2
L∞(Ω;Ms

N )

∫
Ω

ϕ dx. (3.17)

By the semicontinuity of the norm for the weak convergence in L2(Ω;R
N ), (3.16) and (3.17) we get∫

Ω

∣∣(M1 − M2)ξ ∣∣2
ϕ dx � lim inf

n→∞

∫
Ω

∣∣M1
n∇xu1

n − M2
n∇xu2

n

∣∣2
ϕ dx

� 2 lim inf
n→∞

(∫
Ω

∣∣(M1
n − M2

n

)∇xu1
n

∣∣2
ϕ dx +

∫
Ω

∣∣M2
n∇x

(
u1

n − u2
n

)∣∣2
ϕ dx

)

� 2
β

α

(
1 + β2

α2

)
|ξ |2 lim

n→∞
∥∥M1

n − M2
n

∥∥2
L∞(Ω;Ms

N )

∫
Ω

ϕ dx, ∀ϕ ∈ C∞
c (Ω),

and therefore (3.14). �
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We are now in position to prove Theorem 3.4.

Proof of Theorem 3.4. A simple application of Theorem 2.1 with V = H1
0(Ω), H = L2(Ω) proves that there exists a unique

solution of (3.1), which is bounded in L∞(0, T ; H1
0(Ω)) and is such that ∂t un is bounded in L∞(0, T ; L2(Ω)). Therefore, up

to a subsequence there exists u ∈ L∞(0, T ; H1
0(Ω)), with ∂t u ∈ L∞(0, T ; L2(Ω)), such that

un
∗
⇀ u in L∞(

0, T ; H1
0(Ω)

)
,

∂t un
∗
⇀ ∂t u in L∞(

0, T ; L2(Ω)
)
.

Let us prove that u is the unique solution of (3.11). For this purpose, we need to compute the limits of the products ρn∂t un
and An∇xun .

We take μn ∈ M([0, T ]) such that

‖μn‖M([0,T ]) � V T (ρn) + V T (An),∥∥ρn(t) − ρn(t̂)
∥∥

L∞(Ω)
+ ∥∥An(t) − An(t̂)

∥∥
L∞(Ω;Ms

N )
� μn

([t, t̂]),
for every t, t̂ ∈ [0, T ] with t < t̂ . Since μn is bounded in M([0, T ]), extracting a subsequence if necessary, we can assume
that there exists the weak-∗ limit μ of μn in M([0, T ]).

Since ρn∂t un is bounded in L2(0, T ; L2(Ω)), we can assume that there exists the weak limit z of ρn∂t un in
L2(0, T ; L2(Ω)). In order to characterize z, we consider τ ∈ (0, T ), h ∈ (0, T − τ ). For ϕ ∈ C∞

c (τ , τ + h), ϕ � 0, we have, in
the sense of L2(Ω)

τ+h∫
τ

ρn(t)∂t un(t)ϕ(t)dt =
τ+h∫
τ

(
ρn(t) − 1

h

τ+h∫
τ

ρn(s)ds

)
∂t un(t)ϕ(t)dt

−
(

1

h

τ+h∫
τ

ρn(s)ds

) τ+h∫
τ

un(t)ϕ
′(t)dt. (3.18)

Using that ∂t un is bounded in L∞(0, T ; L2(Ω)), the first term on the right-hand side of the above equality can be estimated
by ∥∥∥∥∥

τ+h∫
τ

(
ρn(t) − 1

h

τ+h∫
τ

ρn(s)ds

)
∂t un(t)ϕ(t)dt

∥∥∥∥∥
L2(Ω)

� Cμn
([τ , τ + h])

τ+h∫
τ

ϕ(t)dt,

while for the second one, using the weak-∗ convergence of ρn in L∞((0, T ) × Ω), the strong convergence of un to u in
L2(0, T ; L2(Ω)), and an integration by parts, we get

(
1

h

τ+h∫
τ

ρn(s)ds

) τ+h∫
τ

un(t)ϕ
′(t)dt ⇀ −

(
1

h

τ+h∫
τ

ρ(s)ds

) τ+h∫
τ

∂t u(t)ϕ(t)dt in L2(Ω).

Therefore, using the semicontinuity of the norm for the weak convergence, we deduce from (3.18)∥∥∥∥∥
τ+h∫
τ

z(t)ϕ(t)dt −
(

1

h

τ+h∫
τ

ρ(s)ds

) τ+h∫
τ

∂t u(t)ϕ(t)dt

∥∥∥∥∥
L2(Ω)

� Cμ
([τ , τ + h])

τ+h∫
τ

ϕ(t)dt,

which implies

z(t) = ρ(t)∂t u(t) for a.e. t ∈ (0, T ). (3.19)

This characterizes the weak limit in L2(0, T ; L2(Ω)) of ρn∂t un .
In order to characterize the weak limit in L2(0, T ; L2(Ω;R

N )) of An∇xun , we first remark that (3.19), ∂t(ρn∂t un) bounded
in M([0, T ]; H−1(Ω)) and Lemma A.1 in Appendix A prove that

ρn(t)∂t un(t) converges to ρ(t)∂t u(t) in H−1(Ω), ∀t ∈ (0, T ) \ N, (3.20)

with N the countable set of t ∈ (0, T ) such that μ({t}) > 0.
We take τ ∈ (0, T ) and h as above such that τ , τ + h /∈ N. Integrating Eq. (3.1) in (τ , τ + h] and dividing by h, we have,

in the sense of H−1(Ω)
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−divx
(

An(τ )∇xūn(τ )
) = 1

h

∫
(τ ,τ+h]

dfn + 1

h

τ+h∫
τ

gn(t)dt

− ρn(τ + h)∂t un(τ + h) − ρn(τ )∂t un(τ )

h

− divx

(
1

h

τ+h∫
τ

(
An(τ ) − An(t)

)∇xun(t)dt

)
, (3.21)

with

ūn = 1

h

τ+h∫
τ

un(t)dt.

We also define ū and ũn by

ū = 1

h

τ+h∫
τ

u(t)dt,

{−divx
(

An(τ )∇xũn
) = −divx

(
A(τ )∇xū

)
in Ω,

ũn = 0 on ∂Ω.
(3.22)

Since An(τ ) H-converges to A(τ ), we get that ũn converges weakly to ū in H1
0(Ω). Taking into account that the weak-∗

convergence of un to u in L∞(0, T ; H1
0(Ω)) also implies that ūn converges weakly to ū in H1

0(Ω), we then deduce that
ūn − ũn converges weakly to zero in H1

0(Ω). Taking this sequence as a test function in the difference of (3.21) and the
equation defining ũn and taking into account that the first, second and third terms in the right-hand side of (3.21) converge
strongly in H−1(Ω) thanks to (3.20), (3.8), (3.9) we deduce

lim sup
n→∞

∫
Ω

An(τ )∇x(ūn − ũn) · ∇x(ūn − ũn)dx

� lim sup
n→∞

∫
Ω

(
1

h

τ+h∫
τ

(
An(τ ) − An(t)

)∇xun(t)dt

)
· ∇x(ūn − ũn)dx

� C lim sup
n→∞

μn
([τ , τ + h]) lim sup

n→∞
∥∥∇x(ūn − ũn)

∥∥
L2(Ω)N ,

which proves

lim sup
n→∞

∥∥∇x(ūn − ũn)
∥∥

L2(Ω)N � Cμ
([τ , τ + h]). (3.23)

Denoting by σ the weak limit of An∇xun in L2(0, T ; L2(Ω;R
N )), which exists at least for a subsequence, and taking into

account that An(τ )∇xũn converges weakly in L2(Ω;R
N ) to A(τ )∇xū, we can use (3.23) and the lower semicontinuity of the

norm for the weak convergence in L2(Ω;R
N ) to deduce from

1

h

τ+h∫
τ

An(t)∇xun(t)dt − An(τ )∇xũn = 1

h

τ+h∫
τ

(
An(t) − An(τ )

)∇xun(t)dt + An(τ )∇x(ūn − ũn)

that ∥∥∥∥∥1

h

τ+h∫
τ

σ (t)dt − A(τ )∇xū

∥∥∥∥∥
L2(Ω)N

� Cμ
([τ , τ + h]),

which, passing to the limit when h tends to zero implies

σ(τ ) = A(τ )∇xu(τ ) for a.e. τ ∈ (0, T ). (3.24)

We have then proved that ρn∂t un converges weakly to ρ∂t u in L2(0, T ; L2(Ω)) and An∇xun converges weakly to A∇xu in
L2(0, T ; L2(Ω)N ). This permits to pass to the limit in Eq. (3.1) to deduce that u is the unique solution of (3.11). �
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4. Corrector result

The purpose of this section is to prove a corrector result for problem (3.1). We will need smoothness for the coefficients
in the time variable than in Section 3.

We consider two bounded sequences ρn ∈ C1([0, T ]; L∞(Ω)), An ∈ C1([0, T ]; L∞(Ω;Ms
N )) which satisfy (3.4), (3.3) and

are such that ∂tρn , ∂t An are uniformly equicontinuous with respect to t , i.e. they satisfy that for every ε > 0, there exists
δ > 0 such that∥∥∂tρn(t, .) − ∂tρn(t̂, .)

∥∥
L∞(Ω)

+ ∥∥∂t An(t, .) − ∂t An(t̂, .)
∥∥

L∞(Ω;Ms
N )

< ε, ∀n ∈ N, ∀t, t̂ ∈ [0, T ], with |t − t̂| < δ.

(4.1)

We also assume (this always holds for a subsequence) that there exist ρ ∈ L∞(0, T ; L∞(Ω)), A ∈ L∞(0, T ; L∞(Ω;Ms
N )) such

that for every t ∈ [0, T ] we have

ρn(t, .)
∗
⇀ ρ(t, .) in L∞(Ω), An(t, .)

H
⇀ A(t, .). (4.2)

Our main result is the following one:

Theorem 4.1. We consider ρn ∈ C1([0, T ]; L∞(Ω)), An ∈ C1([0, T ]; L∞(Ω;Ms
N )) bounded, which satisfy (3.4), (3.3), (4.1) and (4.2).

We take fn ∈ L1(0, T ; L2(Ω)), gn ∈ W 1,1(0, T ; H−1(Ω)), such that

fn ⇀ f in L1(0, T ; L2(Ω)
)
, lim

h→0
sup

n→∞
∥∥ fn(t + h) − fn(t)

∥∥
L1(0,T −h;L2(Ω))

= 0, (4.3)

gn → g in W 1,1(0, T ; H−1(Ω)
)
, (4.4)

and u0
n ∈ H1

0(Ω), ϑ1
n ∈ L2(Ω) satisfying

u0
n ⇀ u0 in H1

0(Ω), ϑ1
n ⇀ ϑ1 in L2(Ω). (4.5)

We define un and u as the respective solutions of (3.1) and (3.11) and ûn, ũn by{−divx
(

An(t)∇xûn(t)
) = −divx

(
A(t)∇xu(t)

)
in Ω,

ûn(t) = 0 on ∂Ω,
∀t ∈ [0, T ], (4.6)⎧⎨

⎩
∂t(ρn∂t ũn) − divx(An∇xũn) = 0 in (0, T ) × Ω,

ũn = 0 on (0, T ) × ∂Ω,

ũn(0) = u0
n − ûn(0) in Ω, ρn(0)∂t ũn(0) = ϑ1

n − ϑ1 in Ω.

(4.7)

Then, we have

un − ûn − ũn → 0 in L∞(
0, R; H1

0(Ω)
)
, (4.8)

∂t un − ∂t u − ∂t ũn → 0 in L∞(
0, R; L2(Ω)

)
, (4.9)

for every R ∈ (0, T ).

Remark 4.2. Theorem 4.1 generalizes the corrector result proved in [3] where it is considered the case where the coefficients
of Eq. (3.1) are independent of t (and assumptions in the second members). In the case where the initial conditions are
“well prepared” in the sense that they satisfy that

divx
(

An(0)∇xûn(0)
)

is compact in H−1(Ω), ϑ1
n → ϑ1 in L2(Ω),

we have that ũn and ∂t ũn converge strongly to zero in L∞(0, T ; H1
0(Ω)) and L∞(0, T ; L2(Ω)) respectively. Therefore, Theo-

rem 4.1 gives in this case

un − ûn → 0 in L∞(
0, R; H1

0(Ω)
)
, ∂t un − ∂t u → 0 in L∞(

0, R; L2(Ω)
)
, ∀R ∈ (0, T ),

i.e. the corrector ûn for the elliptic case provides a strong approximation of ∇xun , and ∂t un converges strongly to ∂t u. If the
initial conditions are not well prepared this is not true and we need to add the sequence ũn in order to have a corrector for
the derivatives of un .

Proof of Theorem 4.1. Along the proof, we denote by C a generic nonnegative constant which does not depend on the
parameters n or h (which will be introduced later) and by O h a function which tends to zero when h tends to zero and
satisfies O h � h. The constant C and the function O h can change from line to line.
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We divide the proof in five steps:

Step 1. Let us first assume gn ≡ 0, divx(A(0)∇xu0) ∈ L2(Ω), ϑ1/ρ(0, x) ∈ H1
0(Ω) and

−divx
(

An(0)∇xu0
n

) = −divx
(

A(0)∇xu0) in Ω, ∀n ∈ N, (4.10)

ϑ1
n = ϑ1, ∀n ∈ N. (4.11)

For t ∈ (0, T ) and h ∈ (0, T − t), we define ρh
n , Ah

n , f h
n and uh

n as the regularizations of ρn , An , fn and un given by

ρh
n (t) = 1

h

t+h∫
t

ρn(s)ds, Ah
n(t) = 1

h

t+h∫
t

An(s)ds, f h
n (t) = 1

h

t+h∫
t

fn(s)ds, (4.12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t
(
ρh

n ∂t uh
n

) − divx
(

Ah
n∇xuh

n

) = f h
n in (0, T − h) × Ω,

uh
n = 0 in (0, T − h) × ∂Ω,

uh
n(0) = u0

n in Ω,
(
ρh

n ∂t uh
n

)
(0) = ρh

n (0)

ρ(0)
ϑ1 in Ω.

(4.13)

Let us show that in these conditions we have∥∥∂t uh
n

∥∥
L∞(0,T −h;L2(Ω))

+ ∥∥uh
n

∥∥
L∞(0,T −h;H1

0(Ω))
� C, (4.14)

lim sup
n∈N

(∥∥∂2
tt uh

n

∥∥
L∞(0,T −h;L2(Ω))

+ ∥∥∂t uh
n

∥∥
L∞(0,T −h;H1

0(Ω))

) = O h

h
. (4.15)

Inequality (4.14) follows from (2.7) applied to problem (4.13).
In order to prove (4.15), the idea is to derive with respect to t in problem (4.13) to show that ∂t uh

n satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t
(
ρh

n ∂t(∂t uh
n)

) − divx
(

Ah
n∇x

(
∂t uh

n

)) = fn(t + h) − fn(t)

h
− ∂t

(
∂tρ

h
n ∂t uh

n

) + divx
(
∂t Ah

n∇xuh
n

)
in (0, T − h) × Ω,

∂t uh
n = 0 on (0, T − h) × ∂Ω, ∂t uh

n(0) = ϑ1

ρ(0)
in Ω,

∂t
(
ρh

n ∂t uh
n

)
(0) = divx

(
Ah

n(0)∇xuh
n(0)

) + fn(0) = divx
(

A(0)∇xu0) + fn(0) in Ω.

(4.16)

Therefore, estimate (2.7) shows that for τ ∈ (0, T − h) one has∥∥∂2
tt uh

n

∥∥
L∞(0,τ ;L2(Ω))

+ ∥∥∇x∂t uh
n

∥∥
L∞(0,τ ;L2(Ω;RN ))

� C

(
1

h

∥∥ fn(t + h) − fn(t)
∥∥

L1(0,τ ;L2Ω)
+ ∥∥∂t

(
∂tρ

h
n ∂t uh

n

)∥∥
L1(0,τ ;L2(Ω))

+ ∥∥divx
(
∂t Ah

n∇xuh
n

)∥∥
W 1,1(0,τ ;H−1(Ω))

+ ∥∥ϑ1/ρ(0)
∥∥

H1
0(Ω)

+ ∥∥divx
(

A(0)∇xu0)∥∥
L2(Ω;RN )

+ ∥∥ fn(0)
∥∥

L2(Ω)

)
. (4.17)

In order to estimate the second term in the right-hand side of (4.17), we use∥∥∂t
(
∂tρ

h
n ∂t uh

n

)∥∥
L1(0,τ ;L2(Ω))

� C
∥∥∂2

ttρ
h
n

∥∥
L∞((0,τ )×Ω)

∥∥∂t uh
n

∥∥
L∞(0,τ ;L2(Ω))

+ ∥∥∂tρ
h
n

∥∥
L∞((0,τ )×Ω)

∥∥∂2
tt uh

n

∥∥
L1(0,τ ;L2(Ω))

,

which using (4.14), ρn bounded in C1([0, T ]; L∞(Ω)),

∂2
ttρ

h
n (t) = ∂tρ

h
n (t + h) − ∂tρ

h
n (t)

h
, a.e. in [0, T − h] × Ω,

and (4.1) gives∥∥∂t
(
∂tρ

h
n ∂t uh

n

)∥∥
L1(0,τ ;L2(Ω))

� O h

h
+ C

∥∥∂2
tt uh

n

∥∥
L1(0,τ ;L2(Ω))

, ∀τ ∈ [0, T − h],
with O h independent of n. A similar proof also shows the following estimate for the third term on the right-hand side of
(4.17) ∥∥divx

(
∂t Ah

n∇xuh
n

)∥∥
W 1,1(0,τ ;H−1(Ω))

�
∥∥∂t Ah

n∇xuh
n

∥∥
W 1,1(0,τ ;L2(Ω;RN ))

� O h + C
∥∥∇x∂t uh

n

∥∥
L1(0,τ ;L2(Ω;RN ))

, ∀τ ∈ [0, T − h],

h
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with O h independent of n. Therefore, inequality (4.17) reads as

∥∥∂2
tt uh

n

∥∥
L∞(0,τ ;L2(Ω))

+ ∥∥∇x∂t uh
n

∥∥
L∞(0,τ ;L2(Ω:RN ))

� O h

h
+ C

(∥∥∂2
tt uh

n

∥∥
L1(0,τ ;L2(Ω))

+ ∥∥∇x∂t uh
n

∥∥
L1(0,τ ;L2(Ω;RN ))

)
,

for every τ ∈ [0, T − h], with O h independent of n, which by Gronwall’s inequality proves (4.15).

Step 2. In the assumptions of Step 1, let us prove

lim
h→0

lim sup
n→∞

(∥∥∂t
(
uh

n − un
)∥∥

L∞(0,T −h;L2(Ω))
+ ∥∥uh

n − un
∥∥

L∞(0,T −h;H1
0(Ω))

) = O h. (4.18)

We use that the sequence zh
n = uh

n − un satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t
(
ρn∂t zh

n

) − divx
(

An∇xzh
n

) = ∂t
((

ρn − ρh
n

)
∂t uh

n

) − divx
((

An − Ah
n

)∇xuh
n

) + f h
n − fn in (0, T − h) × Ω,

zh
n = 0 on (0, T − h) × ∂Ω,

zh
n(0) = 0 in Ω, ρn(0)∂t zh

n(0) =
(

ρn(0)

ρ(0)
− 1

)
ϑ1

n in Ω.

Therefore, estimate (2.7), ρn , An bounded in C1([0, T ]; L∞(Ω)) and C1([0, T ]; L∞(Ω;Ms
N )) respectively, and estimate (4.15)

give ∥∥∂t zh
n

∥∥
L∞(0,T −h;L2(Ω))

+ ∥∥zh
n

∥∥
L∞(0,T −h;H1(Ω))

� C

(∥∥∂t
((

ρn − ρh
n

)
∂t uh

n

)∥∥
L1(0,T −h;L2(Ω))

+ ∥∥(
An − Ah

n

)∇xuh
n

∥∥
W 1,1(0,T −h,L2(Ω;RN ))

+
∥∥∥∥
(

ρn(0)

ρ(0)
− 1

)
ϑ1

n

∥∥∥∥
L2(Ω)

)
= O h,

which implies (4.18) taking the limit first in n and later in h.

Step 3. In the assumptions of Step 1, let us prove that

un − ûn → 0 in L∞(
0, R; H1

0(Ω)
)
, ∂t un → ∂t u in L∞(

0, R; L2(Ω)
)
, ∀R ∈ (0, T ). (4.19)

For h ∈ (0, T ), estimates (4.14) and (4.15) show that, up to a subsequence, there exists uh ∈ W 1,∞(0, T − h; H1
0(Ω)), with

∂2
tt uh ∈ L∞(0, T ; L2(Ω)), such that

uh
n

∗
⇀ uh in W 1,∞(

0, T − h; H1
0(Ω)

)
, ∂2

tt uh
n

∗
⇀ ∂2

tt uh in L∞(
0, T − h; L2(Ω)

)
. (4.20)

Thanks to the compact embedding of H1
0(Ω) into L2(Ω), this implies in particular (see e.g. [17]) that

∂t uh
n → ∂t uh in C0([0, T − h]; L2(Ω)

)
. (4.21)

By (4.18) and its consequence∥∥∂t
(
uh − u

)∥∥
L∞(0,T −h;L2(Ω))

= O h,

we then get

lim sup
n→∞

‖∂t un − ∂t u‖L∞(0,T −h;L2(Ω)) � lim sup
n→∞

∥∥∂t un − ∂t uh
n

∥∥
L∞(0,T −h;L2(Ω))

+ lim sup
n→∞

∥∥∂t uh
n − ∂t uh

∥∥
L∞(0,T −h;L2(Ω))

+ ∥∥∂t uh − ∂t u
∥∥

L∞(0,T −h;L2(Ω))
= O h.

By the arbitrariness of h, this implies the second assertion in (4.19).
In order to prove the first assertion in (4.19), we first remark that (4.15), (4.18), and the inequality∥∥un(t + h) − un(t)

∥∥
L∞(0,T −2h;H1

0(Ω))
�

∥∥un(t + h) − uh
n(t + h)

∥∥
L∞(0,T −2h;H1

0(Ω))

+ ∥∥uh
n(t + h) − uh

n(t)
∥∥

L∞(0,T −2h;H1
0(Ω))

+ ∥∥uh
n(t) − un(t)

∥∥
L∞(0,T −2h;H1

0(Ω))

prove

lim lim sup
∥∥un(t + h) − un(t)

∥∥
L∞(0,T −2h;H1(Ω))

= 0. (4.22)

h→0 n→∞ 0
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On the other hand, multiplying Eq. (3.1) by un and integrating in (0, τ ) × Ω , with τ ∈ (0, T ), we have

τ∫
0

∫
Ω

An∇xun · ∇xun dx dt =
∫
Ω

(
u(0)ϑ1 − 1

2
ρn(τ )∂t |un|2(τ )

)
dx +

τ∫
0

∫
Ω

ρn|∂t un|2 dx dt +
τ∫

0

∫
Ω

fnun dx dt,

where using the second assertion in (4.19), un converging strongly to u in C0([0, T ]; L2(Ω)) (see e.g. [17]), ρn converg-
ing weakly-∗ to ρ in L∞((0, T ) × Ω) and pointwise in [0, T ] with values in L∞(Ω), and fn converging weakly to f in
L2(0, T ; L2(Ω)), we can pass to the limit in the right-hand side to deduce

lim
n→∞

τ∫
0

∫
Ω

An∇xun · ∇xun dx dt =
∫
Ω

(
u(0)ϑ1 − 1

2
ρ(τ )∂t |u|2(τ )

)
dx +

τ∫
0

∫
Ω

ρ|∂t u|2 dx dt +
τ∫

0

∫
Ω

f u dx dt,

for a.e. τ ∈ (0, T ), but multiplying Eq. (3.11) by u, and integrating in (0, τ ) × Ω , we have that the right-hand side of this
equality agrees with

τ∫
0

∫
Ω

A∇xu · ∇xu dx dt,

and thus we have proved

lim
n→∞

τ∫
0

∫
Ω

An∇xun · ∇xun dx dt =
τ∫

0

∫
Ω

A∇xu · ∇xu dx dt, (4.23)

for a.e. (and then every) τ ∈ (0, T ).
On the other hand, homogenization theory [15,18] shows that∫

Ω

A(t)∇xu(t) · ∇xu(t)dx � lim inf
∫
Ω

An(t)∇xun(t) · ∇xun(t)dx, a.e. t ∈ (0, T ). (4.24)

Using (4.22) and An bounded in C1([0, T ]; L∞(Ω)) we deduce from (4.23) and (4.24) that

∃ lim
n→∞

∫
Ω

An(t)∇xun(t) · ∇xun(t)dx =
∫
Ω

A(t)∇xu(t) · ∇xu(t)dx, for a.e. t ∈ (0, T ),

which (see [18]) implies that

un(t) − ûn(t) → 0 in H1
0(Ω), a.e. t ∈ (0, T ).

Using then (4.22) and the analogous inequality for ûn

lim
h→0

lim sup
n→∞

∥∥ûn(t + h) − ûn(t)
∥∥

L∞(0,T −2h;H1
0(Ω))

= 0,

which can be easily shown using ûn(t + h) − ûn(t) as a test function in the difference of the equations defining ûn(t + h)

and ûn(t) and taking into account (4.1), we get the first assertion in (4.19).

Step 4. Besides of the assumptions of Theorem 4.1, we suppose that u0
n , ϑ1

n satisfy

−divx
(

An(0)∇xu0
n

) → −divx
(

A(0)∇xu0) in H−1(Ω), ϑ1
n → ϑ1 in L2(Ω). (4.25)

Let us prove that in these conditions (4.19) still holds true.
We consider qk ∈ L2(Ω), vk ∈ H1

0(Ω) and gk ∈ W 1,1(0, T ; L2(Ω)), satisfying

qk → −divx
(

A(0)∇xu0) in H−1(Ω), ρ(0)vk → ϑ1 in L2(Ω),

gk → g in W 1,1(0, T ; H−1(Ω)
)
,

and we define uk
n as the solution of⎧⎪⎨

⎪⎩
∂t

(
ρn∂t uk

n

) − divx
(

An∇xuk
n

) = fn + gk in (0, T ) × Ω,

uk
n = 0 on (0, T ) × ∂Ω,

uk(0) = ηk in Ω, ρ (0)∂ uk(0) = ρ(0)vk in Ω,

(4.26)
n n n t n
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with ηk
n the solution of the elliptic problem{

−divx
(

An(0)∇xη
k
n

) = qk in Ω,

ηk
n = 0 on ∂Ω.

Then, for every k fixed, the sequence uk
n is in the assumptions of Step 1 and so, (4.19) proves

uk
n − ûk

n → 0 in L∞(
0, R; H1

0(Ω)
)
, ∂t uk

n → ∂t uk in L∞(
0, R; L2(Ω)

)
, (4.27)

for every R ∈ (0, T ) and k ∈ N, where uk is defined as the solution of⎧⎨
⎩

∂t
(
ρn∂t uk) − divx

(
A∇xuk) = f + gk in (0, T ) × Ω,

uk = 0 in (0, T ) × Ω,

uk(0) = ηk in ∂Ω, ρ(0)∂t uk(0) = ρ(0)vk on Ω,

(4.28)

with ηk the solution of the elliptic problem{
−divx

(
A(0)∇xη

k) = qk in Ω,

ηk = 0 on ∂Ω

and ûk
n by{

−divx
(

An(t)∇xûk
n(t)

) = −divx
(

A(t)∇xuk(t)
)

in Ω,

ûk
n(t) = 0 on ∂Ω,

∀t ∈ [0, T ]. (4.29)

Applying estimate (2.7) to the difference of solutions of (3.1) and (4.28) we also have∥∥un − uk
n

∥∥
L∞(0,T ;H1

0(Ω))
+ ∥∥∂t un − ∂t uk

n

∥∥
L∞(0,T ;H1

0(Ω))

� C
(∥∥gn − gk

∥∥
W 1,1(0,T ;H−1(Ω))

+ ∥∥u0
n − uk

n(0)
∥∥

H1
0(Ω)

+ ∥∥ϑ1
n − ρ(0)vk

∥∥
L2(Ω)

)
,

which using that∥∥u0
n − uk

n(0)
∥∥

H1
0(Ω)

� C
∥∥−divx

(
An(0)∇xu0

n

) − qk
∥∥

H−1(Ω)
,

shows

lim
k→∞

lim sup
n→∞

(∥∥un − uk
n

∥∥
L∞(0,T ;H1

0(Ω))
+ ∥∥∂t un − ∂t uk

n

∥∥
L∞(0,T ;H1

0(Ω))

) = 0, (4.30)

which in particular shows

lim
k→∞

(∥∥u − uk
∥∥

L∞(0,T ;H1
0(Ω))

+ ∥∥∂t u − ∂t uk
∥∥

L∞(0,T ;H1
0(Ω))

) = 0. (4.31)

Then, taking R ∈ (0, T ), estimate (4.19) easily follows from

‖un − ûn‖L∞(0,R;H1
0(Ω)) + ‖∂t un − ∂t u‖L∞(0,R;L2(Ω))

�
∥∥un − uk

n

∥∥
L∞(0,R;H1

0(Ω))
+ ∥∥∂t un − ∂t uk

n

∥∥
L∞(0,R;L2(Ω))

+ ∥∥uk
n − ûk

n

∥∥
L∞(0,R;H1

0(Ω))
+ ∥∥∂t uk

n − ∂t uk
∥∥

L∞(0,R;L2(Ω))

+ ∥∥ûk
n − ûk

∥∥
L∞(0,R;H1

0(Ω))
+ ∥∥∂t uk − ∂t u

∥∥
L∞(0,R;L2(Ω))

,

passing to the limit first in n and then in k, using (4.30), (4.27), (4.31) and

lim
n→∞

∥∥ûk
n − ûk

∥∥
L∞(0,T ;H1

0(Ω))
= 0,

which can be proved using ûk
n − ûk as a test function in the difference of (4.29) and (4.6) and taking into account (4.31).

Step 5. Proof of (4.8), (4.9).
It is a simple consequence of Step 4, taking into account that the sequence un − ũn is in the conditions of this step. �



J. Casado-Díaz et al. / J. Math. Anal. Appl. 379 (2011) 664–681 679
5. A counterexample

In Section 4, we have obtained a corrector result for problem (3.1) assuming that ∂tρn , ∂t An are uniformly continuous
from [0, T ] into L∞(Ω) and L∞(Ω;MN ) respectively, with a continuity modulus independent of n. We give in Proposi-
tion 5.1 a counterexample showing that Theorem 4.1 is optimal in the sense that it does not hold if we just assume An and
ρn bounded in C1([0, T ]; L∞(Ω)) and C1([0, T ]; L∞(Ω;MN )) respectively. In particular the result is not true in the general
framework of Section 3 and neither in the framework of [6], where it is considered the case of Lipschitz functions in the
time variable.

Proposition 5.1. For bn ∈ C∞([0, T ] × [0,π ]), defined by

bn(t, x) = 1

n
sin(nt) cos(nx) cos(x), ∀(t, x) ∈ [0, T ] × [0,π ], (5.1)

we take un as the unique solution of⎧⎨
⎩

∂2
tt un − ∂2

xxun − ∂x(bn∂xun) = 0 in (0, T ) × (0,π),

un(t,0) = un(t,π) = 0,

un(0, x) = 0, ∂t un(0, x) = sin(x), a.e. in (0,π).

(5.2)

Then,

un
∗
⇀ u in L∞(

0, T ; H1
0(0,π)

)
, (5.3)

∂t un
∗
⇀ ∂t u in L∞(

0, T ; L2(0,π)
)
, (5.4)

with u(t, x) = sin(t) sin(x), the unique solution of⎧⎨
⎩

∂2
tt u − ∂2

xxu = 0 in (0, T ) × (0,π),

u(t,0) = u(t,π) = 0,

u(0, x) = 0, ∂t u(0, x) = sin(x), a.e. in (0,π),

(5.5)

but

‖un − u‖L2(0,T ;H1
0(Ω)) � 0,

∥∥∂t(un − u)
∥∥

L2(0,T ;L2(Ω))
� 0. (5.6)

Remark 5.2. The sequence bn defined by (5.1) is bounded in C1([0, T ]× [0,π ]) and converges strongly to zero in C0([0, T ]×
[0,π ]). This last assertion implies in particular that An(t) = 1 + bn(t) H-converges to A(t) = 1 in (0,π) for every t ∈ [0, T ],
∂x(An(0)∂xun(0)) ≡ ∂x(A(0)∂xu(0)) ∈ C∞([0,π ]), ∂t un(0) = ∂t u(0) ∈ C∞([0,π ]). Therefore, if Theorem 4.1 were true for An

just bounded in W 1,∞((0, T ) × Ω) we would get that

‖un − u‖L∞(0,T ;H1
0(Ω)) → 0,

∥∥∂t(un − u)
∥∥

L∞(0,T ;L2(Ω))
→ 0,

in contradiction with (5.6).

Proof of Proposition 5.1. Statements (5.3) and (5.4) are a simple consequence of Theorem 3.4. On the other hand, using
un − u as a test function in the difference of (5.2) and (5.5), we have

π∫
0

(
un(T ) − u(T )

)
∂t

(
un(T ) − u(T )

)
dx −

T∫
0

π∫
0

∣∣∂t(un − u)
∣∣2

dx dt

+
T∫

0

π∫
0

∣∣∂x(un − u)
∣∣2

dx dt +
T∫

0

π∫
0

bn∂xun∂x(un − u)dx dt = 0.

Since un and ∂t un are bounded in L∞(0, T ; H1
0(Ω)) and L∞(0, T ; L2(Ω)) respectively, we have that (see e.g. [17]) un(T )

converges strongly to u(T ) in L2(Ω). Therefore the first term in the above equality tends to zero. Using also that bn tends
to zero in C0([0, T ] × [0,π ]) we conclude that

lim
n→∞

( T∫ π∫ ∣∣∂t(un − u)
∣∣2

dx dt −
T∫ π∫ ∣∣∂x(un − u)

∣∣2
dx dt

)
= 0. (5.7)
0 0 0 0
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In order to prove (5.6) let us reason by contradiction. Thus, we assume that one of the assertions in (5.6) is not true and
then by (5.7), that none of these assertions are satisfied. Using the Fourier expansion of un in the space variable given by

un(t, x) =
∞∑

k=1

ϕk
n(t) sin(kx), with ϕk

n(t) = 2

π

π∫
0

un(t, y) sin(ky)dy,

we then have that

T∫
0

∣∣ϕ1
n − sin(t)

∣∣2
dt +

∞∑
k=2

k2

T∫
0

∣∣ϕk
n

∣∣2
dt → 0, (5.8)

T∫
0

∣∣(ϕ1
n

)′ − cos(t)
∣∣2

dt +
∞∑

k=2

T∫
0

∣∣(ϕk
n

)′∣∣2
dt → 0. (5.9)

But taking into account the equation satisfied by un (5.2), we easily have, for n � 2,

ϕn
n (t) = − 2

π

t∫
0

π∫
0

bn(s, y)∂xun(s, y) cos(ny) sin
(
n(t − s)

)
dy ds, ∀t ∈ [0,π ].

Using here the expression (5.1) of bn and that, by the contradiction assumption, ∂xun converges strongly to ∂xu in
L2(0, T ; L2(0,π)), we get

nϕn
n + 2

π

t∫
0

π∫
0

sin(ns) sin
(
n(t − s)

)
cos2(ny) cos2(y) sin(s)dy ds

= −2n

π

t∫
0

π∫
0

bn(s, y)
(
∂xun(s, y) − ∂xu(s, y)

)
cos(ny) sin

(
n(t − s)

)
dy ds → 0 in L∞(0, T ),

where a simple calculus shows

2

π

t∫
0

π∫
0

sin(ns) sin
(
n(t − s)

)
cos2(ny) cos2(y) sin(s)dy ds + 1

4
cos(nt)

(
1 − cos(t)

) → 0 in L∞(0, T ).

Therefore

lim
n→∞n2

T∫
0

∣∣ϕn
n (t)

∣∣2
dt = 1

16
lim

n→∞

T∫
0

cos2(nt)
(
1 − cos(t)

)2
dt = 1

32

T∫
0

(
1 − cos(t)

)2
dt �= 0,

in contradiction with (5.8). �
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Appendix A

This appendix is devoted to prove the following Lemma A.1 which was used in the proof of Theorem 3.4.

Lemma A.1. We consider two Banach spaces X, Y , with X compactly embedded in Y . Let φn be a bounded sequence in L1(0, T ; X) ∩
BV(0, T ; Y ), which converges weakly in L1(0, T ; Y ) to a function φ . The sequence φn is assumed to be continuous on the right in (0, T )

with values in Y . Taking μn ∈ M([0, T ]) such that ‖μn‖M([0,T ]) = V T (φn),∥∥φn(t) − φn(t̂)
∥∥

Y � μn
([t, t̂]), ∀t, t̂ ∈ [0, T ], t < t̂,

we denote by μ the weak-∗ limit of μn in M([0, T ]), which exists up to a subsequence. Then, φn(t) converges strongly to φ(t) in Y for
every t ∈ (0, T ) \ N, with N the countable set of t ∈ (0, T ) such that μ({t}) > 0.
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Remark A.2. Assuming in Lemma A.1 that the sequence φn is bounded in L1(0, T ; X) ∩ W 1,1(0, T ; Y ) at the place of
L1(0, T ; X) ∩ BV(0, T ; Y ), the result is a simple consequence of [17], where it is proved that in these conditions φn con-
verges strongly to φ in C0([0, T ]; Y ).

Proof of Lemma A.1. We define N as the countable set of t ∈ (0, T ) such that μ({t}) �= 0. For every t ∈ (0, T ) \ N and
h ∈ (0, T − t), we have

∥∥φn(t) − φ(t)
∥∥

Y �
∥∥∥∥∥φn(t) − 1

h

t+h∫
t

φn(s)ds

∥∥∥∥∥
Y

+
∥∥∥∥∥1

h

t+h∫
t

(
φn(s) − φ(s)

)
ds

∥∥∥∥∥
Y

+
∥∥∥∥∥1

h

t+h∫
t

φ(s)ds − φ(t)

∥∥∥∥∥
Y

. (A.1)

Taking into account that∥∥φn(t) − φn(t̂)
∥∥

Y � μn
([t, t̂]), ∥∥φ(t) − φ(t̂)

∥∥ � μ
([t, t̂]), ∀t, t̂ ∈ [0, T ], t < t̂,

the weak-∗ convergence of μn to μ in M([0, T ]) and that the weak convergence of φn to φ in L1(0, T ; X) joining to the
compact embedding of X in Y implies

1

h

t+h∫
t

(
φn(s) − φ(s)

)
ds → 0 in Y ,

we deduce from (A.1)

lim sup
n→∞

∥∥φn(t) − φ(t)
∥∥

Y � 2μ
([t, t + h]), ∀h ∈ (0, T − t),

and thus, taking the limit in this inequality for h tending to zero, we get

lim sup
n→∞

∥∥φn(t) − φ(t)
∥∥

Y � 2μ
({t}) = 0.

This finishes the proof of Lemma A.1. �
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