
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Entity Linking for the Biomedical Domain

A thesis submitted in fulfillment of the requirements for the degree of
Master of Computer Science

BY

Sahar Nassimi
Matriculation number: 10027234

E-mail: s.faghihinezhad@stud.uni-hannover.de

First evaluator: Prof. Dr. Maria-Esther Vidal
Second evaluator: Prof. Dr. Sören Auer

Supervisor: M.Sc. Ahmad Sakor

February 10, 2023

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Sahar Nassimi, declare that this thesis titled, ’Entity Linking for the Biomedical
Domain’ and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Sahar Nassimi

Signature:

Date:

I

Acknowledgements

I would first like to thank Prof. Dr. Maria-Esther Vidal, who let me write my
master thesis at the Scientific Data Management research group of the TIB-Leibniz
Information Center of Technology and Natural Sciences at Leibniz University. The
door to Prof. Vidal office was always open whenever I ran into a trouble spot or
had a question about my research or writing. She consistently allowed this work to
be my own work, but steered me in the right the direction whenever she thought I
needed it.

I would also like to thank my supervisor Mr. Ahmad Sakor whose insight and
knowledge into the subject matter steered me through this research. He has sup-
ported me throughout my thesis and provided guidance and feedback throughout
this project. Without his passionate participation and input, the validation survey
could not have been successfully conducted.

Finally, I must express my very profound gratitude to my family and to my
beloved husband-I simply couldn’t have done this without you, special thanks. Thank
you for providing me with unfailing support and continuous encouragement through-
out my years of study and through the process of researching and writing this thesis.
This accomplishment would not have been possible without you.

II

Abstract

Entity linking is the process of detecting mentions of different concepts in text
documents and linking them to canonical entities in a target lexicon. However, one of
the biggest issues in entity linking is the ambiguity in entity names. The ambiguity
is an issue that many text mining tools have yet to address since different names
can represent the same thing and every mention could indicate a different thing.
For instance, search engines that rely on heuristic string matches frequently return
irrelevant results, because they are unable to satisfactorily resolve ambiguity. Thus,
resolving named entity ambiguity is a crucial step in entity linking. To solve the
problem of ambiguity, this work proposes a heuristic method for entity recognition
and entity linking over the biomedical knowledge graph concerning the semantic
similarity of entities in the knowledge graph. Named entity recognition (NER),
relation extraction (RE), and relationship linking make up a conventional entity
linking (EL) system pipeline (RL). We have used the accuracy metric in this thesis.
Therefore, for each identified relation or entity, the solution comprises identifying the
correct one and matching it to its corresponding unique CUI in the knowledge base.
Because KBs contain a substantial number of relations and entities, each with only
one natural language label, the second phase is directly dependent on the accuracy of
the first. The framework developed in this thesis enables the extraction of relations
and entities from the text and their mapping to the associated CUI in the UMLS
knowledge base. This approach derives a new representation of the knowledge base
that lends it to the easy comparison. Our idea to select the best candidates is to
build a graph of relations and determine the shortest path distance using a ranking
approach. We test our suggested approach on two well-known benchmarks in the
biomedical field and show that our method exceeds the search engine’s top result and
provides us with around 4% more accuracy. In general, when it comes to fine-tuning,
we notice that entity linking contains subjective characteristics and modifications
may be required depending on the task at hand. The performance of the framework
is evaluated based on a Python implementation.

III

Contents

1 Introduction 1
1.1 Motivating Example . 2
1.2 Contributions . 3
1.3 Document Structure . 4
1.4 Summary of the Chapter . 4

2 Background 5
2.1 Knowledge Base . 5
2.2 Ontology . 7
2.3 Natural Language Processing (NLP) 8
2.4 Named Entity Recognition . 9
2.5 Entity Linking . 10

2.5.1 Two ways of Entity Linking 11
2.5.2 Biomedical Entity Linking . 11

2.6 Machine Learning . 12
2.6.1 Deep Learning . 13

2.7 Word Embedding . 16
2.7.1 Word2Vec . 17

2.8 (BERT) . 17
2.9 Ranking in Information Retrieval . 18

2.9.1 Ranking Models . 18
2.10 Graph Theory . 19
2.11 Similarity Measure . 20

2.11.1 String metric . 20
2.11.2 Types of string similarity . 20
2.11.3 Shortest path algorithms . 22
2.11.4 Cosine Similarity . 24

2.12 Search Engine . 25

IV

2.12.1 The Elasticsearch engine . 26

2.12.2 Term Frequency (TF) . 31

2.12.3 Inverse Document Frequency (IDF) 31

2.13 Stop Words in NLP . 31

2.14 Summary of the Chapter . 32

3 Related Work 33

3.1 Rule-Based Systems . 33

3.2 Machine Learning Approaches . 35

3.3 Hybrid Models . 37

3.4 Deep Learning Based Systems . 38

3.5 Heuristic Approaches . 40

3.6 Summary of the Chapter . 41

4 Approach 42

4.1 Problem Definition . 43

4.2 Proposed Approach: Lumos . 47

4.3 The Lumos Architecture . 48

4.3.1 Pre-processing . 49

4.3.2 Candidate Recognition and Generation Stage 49

4.3.3 Collecting Results . 50

4.3.4 Candidate Selection . 50

4.4 Summary of the Chapter . 52

5 Implementation 53

5.1 Software Methodology . 53

5.2 Design, Structure, and Dependencies 54

5.3 Approach’s Workflow . 55

5.3.1 Graph Generation . 55

5.4 NetworkX . 56

5.5 Neo4j . 56

5.5.1 Read the Input Text . 59

5.5.2 Entity Recognition . 60

5.5.3 Generating candidates and calculation of scores 62

5.5.4 Entity Linking . 63

5.6 Summary of the Chapter . 64

V

6 Experimental Evaluation 65
6.1 Experimental Setup . 65

6.1.1 Metrics . 65
6.1.2 Benchmarks . 66
6.1.3 Baseline . 67
6.1.4 Experiment 1 . 68
6.1.5 Experiment 2 . 69

6.2 Accuracy and Execution time Result of two Experiments 71
6.3 Summary of the Chapter . 72

7 Conclusions and Future Work 73
7.1 Conclusion . 73
7.2 Limitations . 74
7.3 Future Work . 74

Bibliography 76

VI

List of Figures

1.1 Motivating Example. Given two sentences, which both have the word
”temperature”, the challenge is to correctly link the ”temperature”, to its
correct concept unique identifier (CUI) in the Unified Medical Language Sys-
tem [69] knowledge base. All other highlighted entities are used to find the
semantically similar contexts in each sentence and link the mention ”temper-
ature” to its correct counterpart, with the help of other semantically similar
entities . 3

2.1 Knowledge-Base Concept Definition [1], Knowledge bases give the data
a semantic model that consists of rules for interpreting the data as well as
a formal classification with classes, subclasses, relationships, and instances
(ontologies and dictionaries). 6

2.2 Overview of the DBpedia components. It gives a general overview of
the information extraction process used by DBpedia and demonstrates how
the data is presented on the internet. Virtuoso [79] and MySQL are now
used as the storage back-ends for these primary DBpedia interfaces. [66] . . 7

2.3 UMLS Graph Three UMLS Knowledge Sources are available: over one
million biomedical concepts from more than 100 source vocabularies are
included in the Metathesaurus.For labeling the biomedical domain, the Se-
mantic Network defines 133 broad categories and 54 relationships between
categories. The SPECIALIST Lexicon & Lexical Tools offer lexical informa-
tion and language processing software.[3] . 8

2.4 What are Ontologies A formal description of knowledge as a collection
of concepts within a domain and the relations between them is known as an
ontology. We need to formally identify elements like individuals (instances
of objects), classes, attributes, and relations as well as constraints, rules,
and axioms to enable such a description. As a result, ontologies introduce a
reusable and transferable knowledge representation as well as the potential
to incorporate additional domain-specific knowledge.[4] 9

VII

2.5 Named entity recognition (NER)s. With the use of NER, named en-
tities in a text can be automatically recognized and categorized into prede-
termined groups. Entities include names of people, groups, places, dates,
amounts, monetary values, percentages, and more. [5] 10

2.6 An example of a biomedical entity, in this case, the highlighted
word is the extracted mention, the pink boxes indicate the top can-
didate entities that were obtained from the biomedical as knowledge-
base, and the green box represents the ground truth item for this
mention. The text in the given example is from [6] 13

2.7 Deep Learning learns hierarchical representation from the data it-
self, and scales with more data. Before data can be fitted into a model
that can make decisions based on these characteristics in a machine learning
technique, an engineer or expert must design features that can distinguish
between Target 1’s and 0’s. Handcrafting these features presents an inher-
ent hurdle for engineers. A model’s features would not need to be manually
defined for deep learning because it does not necessarily require structured
data. Here, each network structure chooses the particular traits or qual-
ities that define the target. Now, a range of potential dangers, including
potentially highly innovative ones, can be found using this model. [7] 14

2.8 Brain neuron, the left. Simple neural network on the right.. Artifi-
cial neural networks are created to resemble how the human brain functions.
The dendrites of the human brain serve as the artificial neural network’s in-
put, as shown in the image. The output of the neural network is then
represented by the axion terminals. The network shown on the right only
has one hidden layer. A deep neural network is a network that has numerous
hidden layers.[8] . 15

2.9 Graph Convolutional Network’s representation, A multi-layer Graph
Convolutional Network (GCN) with C input channels and LARGEF feature
mappings in the output layer is shown schematically. Layers share a common
graph structure (edges are displayed as black lines, and labels are indicated
by Yi).[9] . 16

2.10 In vector space, similar words are arranged closely together. For
Frog and Litoria, the angle q tends to zero [10] 17

2.11 Vector Space Model. Documents are modeled as vectors using the Vector
Space Model (with TF-IDF counts). As a result, we can calculate how
similar several documents are in this area. [12] 19

2.12 An example of the Levenshtein distance. As is clear, if we add one ‘r’
in string 2 i.e. ‘arow’, it becomes identical to string 1. The edit distance is
therefore 1. We can produce a bounded similarity score between 0 and 1,
comparable to hamming distance. There is an 80% similarity rating. [18] . 21

VIII

2.13 Jaccard index. By default, we tokenize strings using spaces to turn the
words into tokens. Next, we determine the similarity score. As both words
are present in both strings in the first example, the score is 1. The score
would be quite low if an edit-based algorithm were used in this situation. [19] 22

2.14 Dijkstra’s Algorithm Pseudo-code[23] 23

2.15 Cosine Similarity. The angle between the two vectors A and B decreases
as the cosine similarity value approaches 1. A and B are more similar to one
another in this situation. [26] . 25

2.16 Search Engine Diagram. Utilizing its web crawlers, search engines scan
hundreds of billions of pages. Search engine bots or spiders are frequent
names for these web crawlers. By downloading online pages and using links
on those pages to find newly available pages, search engines surf the web.
The objective of the search engine algorithm is to provide a relevant group
of excellent search results that will promptly answer the user’s query or
question. [27] . 26

2.17 Code snippet of sending the query to the Elasticsearch engine. This
code snippet shows how can we interact with Elasticsearch using REST API,
’hits’ means the number of returned results from Elasticsearch API call. [29] 27

4.1 Approach’s Pre-Processing Step. Extracting relations table from UMLS
and building up the graph of relations in UMLS using Neo4J 42

4.2 Approach’s Processing Step. It consist of Lumos stages. It gets the
input sentence (mention, input sentence without mention), Lumos approach
then process the mention and entities throughout the stages. Finally, it gives
a candidate CUI as the output for the mention. 43

4.3 Example of entity recognition approach. Text from [41]. As is shown
in the figure, with the help of an entity recognition tool, we can find the
CUIs for each word, that exists in the entity recognition tool’s database. . . 44

4.4 A basic entity linking model [123]. The basic model of an entity linking
system consists of candidate entity generation, candidate entity disambigua-
tion, and result selection. 46

4.5 Framework architecture. This figure represents the whole architecture
of the Lumos approach, as shown, the work is divided into two major steps:
pre-processing and processing step. 49

5.1 The Spiral Model[49]. It captures the key elements of the spiral model,
including cyclic concurrent engineering, risk-driven process and product se-
lection, risk-driven system growth, and cost-saving early exclusion of un-
workable alternatives and rework avoidance. [70] 54

IX

5.2 Proposed Approach with Example. Given our motivating example to
the Lumos approach, we aim to find correct CUIs for the mentions ”temper-
ature” and ”extreme-temperatures”. As the result of the Lumos approach,
we get as the output a list consisting of mentions and entities with their
corresponding CUIs. 55

5.3 Example of the graph of relations between two entities. As shown
in the figure the entity with CUI = ”C0018843” and entity with CUI =
”C0002871”, are related to each other via other nodes and edges in between.
And the distance between these two nodes = 4. 57

5.4 The Annotations Interface of MedCATTrainer[55]. The interface dis-
plays the clinical text currently being reviewed, the currently selected con-
cept details taken from MedCAT, as well as a document summary and its
annotation status. 61

X

Chapter 1

Introduction

Entity linking is the task of identifying mentions of named entities (or other terms)
in a text document and disambiguating by mapping them to canonical entities (or
concepts) listed in a reference knowledge graph[89]. The goal of entity linking, also
known as entity disambiguation, is to link the mentions in text, like ”Steve”, to the
correct entity in the knowledge graph, like ”Steve Jobs” on Wikipedia. The mention
is always ambiguous, for example, ”Steve” can also be Steve Wozniak or many other
entities. Thus, how to use the context to disambiguate the mention is the major
problem in entity linking. Entity linking for text is quite important [72]. A wide
range of web corpora is in the form of text, such as Question-Answer (QA) queries,
search queries, and news titles. The applications on these texts such as question-
answering systems and search engines cannot function normally if the mentions are
not correctly linked. Therefore, the challenge of text entity linking lies in making
full use of context words.[72]. In the biomedical domain, entity linking connects
references to diseases, drugs, and treatments to normalized entities in standard vo-
cabularies. It is a critical part of automation, in the fields of public health, research,
and clinical practice. Since there are different names for the same entities in Medical
Information Systems, using and integrating medical data is challenging. If a drug
has multiple names, researchers are unable to evaluate its effects, and patients face
the risk of accidentally taking the same medication more than once [71].
Since a word often only relates to one entity, ambiguity is not the main problem with
biological entity linking. The complexity lies in the fact that the surface forms vary
significantly as a result of abbreviations, morphological changes, synonymous words,
and different word orders. For instance, ”Hepatitis C virus” and ”stomach cancer”
are both abbreviated as ”HCV” and ”Malignant Gastric Neoplasm,” respectively.
There are so many different surface forms that it is impossible to predict all the

1

Chapter 1. Introduction

various representations of an object in advance. Because these systems assume that
all possible forms of an entity are known, they cannot be used in our circumstances.
As a result of this challenge, entity-linking techniques have been developed specifi-
cally for biomedical entity-linking. Generally, existing approaches in this field have
limitations: In earlier biomedical research, string similarities of mentions and entity
names were captured using rule-based systems that require manual rule definition,
and the rules were tied to an application. Existing entity linking approaches are
unable to efficiently find semantically related words. The state-of-the-art approaches
heavily depend on training the data, and if the data is not available, they cannot
operate well. The well-annotated linking data rely on lots of manpower and is time-
consuming. In the related work section, we will discuss in detail the state-of-the-art
approaches for entity linking in the biomedical domain.

1.1 Motivating Example

We explore a motivating example to provide a clear picture of the issue that this
thesis attempts to resolve.
In this work, we focus on extracting and linking entities and relations for medical
texts in Unified Medical Language System (UMLS) [69]. In this scenario, as the
Figure 1.1 shows, the input text is typically a sentence like ”The doctor checks his
heart rate, blood pressure, and temperature because of his fever.” and ”The doctor
told him to stay at home in extreme-temperatures such as Miliaria, heat exhaustion,
etc.” The temperature in the first sentence is inferred from words like ”heart rate”
”blood pressure” and ”fever” to be about body temperature, so it should be linked
to a cluster of concepts about the human body. While the temperature in the latter
sentence is inferred from words like ”extreme-temperatures”, ”Miliaria” and ”heat
exhaustion” to be related to weather temperature, and it should be linked to a clus-
ter of concepts about the weather.
Regarding our motivating example, it can be problematic if the disambiguation and
linking are handled incorrectly because different biomedical concepts may have men-
tions that are quite similar to one another. If this happens, the context as a whole
might be incorrectly interpreted. In contrast to earlier methods, in this work, we
build the whole graph of relation in UMLS in the pre-processing stage, where the
nodes represent the context surrounding the target mention and the relevant knowl-
edge base entries, and the directed edges stand in for the reference dependencies
between the nodes. We then assign a higher rank to semantically similar entities
based on the context in which the entity is presented.

2

1.2. Contributions

Figure 1.1: Motivating Example. Given two sentences, which both have the word
”temperature”, the challenge is to correctly link the ”temperature”, to its correct concept
unique identifier (CUI) in the Unified Medical Language System [69] knowledge base. All
other highlighted entities are used to find the semantically similar contexts in each sentence
and link the mention ”temperature” to its correct counterpart, with the help of other
semantically similar entities

1.2 Contributions

This thesis contributes to the integration of the semantic web and natural language
processing (NLP) as two distinct computer science fields. We propose a framework
focusing on Named Entity Recognition (NER), and Entity Linking (EL) tasks. The
main contributions of this work are: 1. Introducing an entity linking method within
the graph-based framework. 2. Developing a new heuristic strategy to detect enti-
ties and relations in a text by using similarity measures like shortest path length
between two words. 3. Creating a new representation of the knowledge base by using
the labels of the data and placing them in an indexed-based database. 4. Using
the heuristic method and ”Elasticsearch”, to do entity disambiguation and relation

3

Chapter 1. Introduction

linking. 5. Establishing criteria for candidates ranking, that can be applied to rank
the Concept Unique Identifier (CUIs) of entities and relations linked to their KB.

1.3 Document Structure

This thesis consists of seven chapters. Chapter 1, provides an overview of the whole
document. We give the reader a motivating example, a list of the major contributions,
and a description of the problem that is being addressed in this work. Chapter 2
covers the background, and the fundamental principles required to understand the
subsequent chapters. After acquiring the essential concepts, in Chapter 3 we dis-
cuss the related papers to this work, review the state-of-the-art while referring to
relevant publications, and position the thesis concerning them. The approach, as
well as the formal problem definition, and the proposed solution, are discussed in
detail in Chapter 4. The motivating example is presented as a running example to
illustrate the approach for a better understanding of the approach. In Chapter 5, the
implementation of the approach highlights the different modules and development de-
cisions. In Chapter 6, the implementation’s performance is evaluated concerning its
performance based on a popular benchmark in the biomedical domain. Eventually,
in Chapter 7, we wrap up our thesis work and talk about the method’s limitations
as well as future works.

1.4 Summary of the Chapter

In conclusion, this chapter introduces the entity linking for texts in the biomedical
domain. To better understand the problem that has to be addressed, the chapter
also offers a motivating example. In addition, this chapter described the contribution
of this thesis.

4

Chapter 2

Background

This chapter presents the terminology and concepts required to understand the prob-
lem tackled in this thesis. The principles of entity linking and its definition in the
biomedical domain, numerous types of entity linking, deep learning techniques, and
various technical domains where these concepts are applied are all attempted to be
well understood in the section that follows.

2.1 Knowledge Base

A knowledge base is a set of interlinked representations of entities, such as real-
world objects, incidents, situations, or abstract concepts, linked together to enable
the storage, evaluation, and reuse of this knowledge in a machine-interpretable way.
The Wikidata [122], Amazon, Netflix, Industry-scale Knowledge Graphs [112] (such
as Microsoft, Google (FANGs) and Facebook) have long ago realized this and use
knowledge bases.
Knowledge bases vary from a simple database to providing a structured data col-
lection that is more similar to how the human brain arranges information. They
rely on semantic models that consist of rules for interpreting the data as well as a
formal classification with classes, subclasses, relationships, and instances (e.g., on-
tologies and dictionaries). Figure 2.1 shows the general concept of a knowledge base.
The DBpedia [66] project derives a data corpus from the Wikipedia encyclopedia.
DBpedia works on converting Wikipedia content into structured data, so Semantic
Web techniques can be used against it, such as running complex queries against
Wikipedia, connecting it to other online datasets, or developing new applications
or interactive content. Figure 2.2 provides a summary of the information extrac-
tion process used by DBpedia and demonstrates how the data is presented on the

5

Chapter 2. Background

Figure 2.1: Knowledge-Base Concept Definition [1], Knowledge bases give the data a
semantic model that consists of rules for interpreting the data as well as a formal classifi-
cation with classes, subclasses, relationships, and instances (ontologies and dictionaries).

web. The structured information includes graphics, geographic locations, external
links, and some other items. The host for the DBpedia RDF dataset is OpenLink
Virtuoso [2]. The data can be accessed either by SPARQL queries or HTTP re-
quests. DBpedia 2014, which is released on May 2014, consists of 2.46 billion RDF
(Resource Description Framework) triples obtained from Wikipedia’s other language
editions and 3 billion RDF triples which were extracted from 580 million pages from
the English version of Wikipedia1. One example of the knowledge base is UMLS
[69], or Unified Medical Language System, which is a set of files and software that
brings together many health and biomedical vocabularies and standards to enable
interoperability between computer systems. The purpose of the National Library of
UMLS is to facilitate the development of computer systems that behave as if they
”understand” the meaning of the language of biomedicine and health. The UMLS
provides data for system developers and search and report functions for less techni-
cal users. The graph representation of UMLS is shown Figure 2.3. There are three
UMLS Knowledge Sources[3]:

• The Metathesaurus, which contains over one million biomedical concepts from
over 100 source vocabularies

• The Semantic Network, which defines 133 broad categories and fifty-four rela-
tionships between categories for labeling the biomedical domain

1http://wikidata.dbpedia.org/about

6

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
http://wikidata.dbpedia.org/about

2.2. Ontology

Figure 2.2: Overview of the DBpedia components. It gives a general overview of
the information extraction process used by DBpedia and demonstrates how the data is
presented on the internet. Virtuoso [79] and MySQL are now used as the storage back-
ends for these primary DBpedia interfaces. [66]

• The SPECIALIST Lexicon & Lexical Tools, which provide lexical information
and programs for language processing

They are distributed with flexible lexical tools and MetamorphoSys, the UMLS install
and customization program. An entity name can be considered as anything referred
to with a proper noun and is tied to a particular kind of lexical unit connected to
specific domains that have a proper name, such as people, places, organizations,
and more. It also contains numerical phrases and the names of specific categories
such as pharmaceuticals, illnesses, works of art, etc. The phrase ”entity name” has
traditionally been used to refer to a person, place, or organization. Later, the word
was expanded to cover date, time, and quantity.

2.2 Ontology

An ontology is a formal representation of attributes, groups, and relationships of
concepts in a domain. To enable such a description, components need to be speci-
fied as individuals (instances of objects), classes, properties, and relations as well as
constraints, rules, and axioms. As a result, ontologies introduce a transferable and
reusable knowledge representation as well as the ability to incorporate new domain-

7

Chapter 2. Background

Figure 2.3: UMLS Graph Three UMLS Knowledge Sources are available: over one million
biomedical concepts from more than 100 source vocabularies are included in the Metathe-
saurus.For labeling the biomedical domain, the Semantic Network defines 133 broad cate-
gories and 54 relationships between categories. The SPECIALIST Lexicon & Lexical Tools
offer lexical information and language processing software.[3]

specific knowledge.
A knowledge graph, which is a collection of entities in which the types and relation-
ships between them are represented by nodes and edges between these nodes, can
be created by applying the ontology data model to a set of individual facts. The
ontology creates the framework for the knowledge graph to capture the data in a
domain by describing the structure of the knowledge in that domain.2 Figure 2.4
generally depicts the meaning of an ontology.

2.3 Natural Language Processing (NLP)

NLP could be referred to as one of the branches of artificial intelligence (AI). With
the help of statistical, machine learning, and deep learning, it mainly focuses on pro-
cessing human language in the form of text or spoken words and trying to understand
the full meaning of the speaker’s or writer’s sentence. Some tasks of NLP are:
Word sense disambiguation (WSD): With the help of semantic analysis, which
chooses the word that is mostly correct in a given context, selects the correct mean-
ing of a word among multiple meanings. For example, word sense disambiguation
helps to differentiate the meaning of the verb ’make’ in ‘Just make sure our asses are
protected’ (to take special care about something) vs. ‘make plans’ (decide).
Named entity recognition (NER): Is the task of identifying words or phrases as

2https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/

8

https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/

2.4. Named Entity Recognition

Figure 2.4: What are Ontologies A formal description of knowledge as a collection of
concepts within a domain and the relations between them is known as an ontology. We
need to formally identify elements like individuals (instances of objects), classes, attributes,
and relations as well as constraints, rules, and axioms to enable such a description. As a
result, ontologies introduce a reusable and transferable knowledge representation as well
as the potential to incorporate additional domain-specific knowledge.[4]

valuable entities to help find the words that are the most informative in the sentence.
NEM recognizes ‘Laptop’ as a device or ‘Paris’ as a location.
Sentiment analysis aims to make the most use of the meaning of a text, i.e., by
taking out the subjective qualities, purposes, feelings, confusion, suspicion, and other
elements from the text.

2.4 Named Entity Recognition

NER, also known as entity identification or entity extraction, is an NLP technique
that automatically recognizes named entities in a text and organizes them into prede-
fined categories. Entities include things like names of people, organizations, places,
times and dates, quantities, monetary values, percentages, and more. As shown in
Figure 2.5, specific mentions such as ”WeWork” as an organization or ”Adam Neu-
mann” as a person are highlighted in the sentence.[W]ith named entity recognition,
the essential information can be extracted to determine what a text is about, or
simply used to gather crucial information to store in a database.

9

Chapter 2. Background

Figure 2.5: Named entity recognition (NER)s. With the use of NER, named entities in
a text can be automatically recognized and categorized into predetermined groups. Entities
include names of people, groups, places, dates, amounts, monetary values, percentages, and
more. [5]

2.5 Entity Linking

Entity linking is the task of identifying mentions of named entities (or other terms)
in a text document and disambiguating them by mapping them to canonical entities
(or concepts) listed in a reference knowledge graph [116]. EL or named entity disam-
biguation is the process of linking or mapping entity names. To detect named entities
from a text using the distinctive graph-based formal entity names in a knowledge
base like Wikipedia, WordNet, and so on, EL employs parametric learning mod-
els. However, the parametric learning technique does not generalize the data well
when there are more than a thousand formal entity names. Therefore, EL also em-
ploys deep learning structures to analyze entity names with Wikipedia references. In
practice, many entity linking systems rely on the following resources or assumptions
[102]:

• Single entity set This assumes that there is a single comprehensive set of
entities E shared between training and test examples [102].

• Alias table An alias table contains entity candidates for a given mention
string and limits the possibilities to a relatively small set. Such tables are
often compiled from a labeled training set and domain-specific heuristics [102].

• Frequency statistics Many systems use frequency statistics obtained from
a large labeled corpus to estimate entity popularity and the probability of a
mention string linking to an entity. These statistics are very powerful when
available [102].

• Structured data Some systems assume access to structured data such as
relationship tuples (e.g., (Barack Obama, Spouse, Michelle Obama)) or a type
hierarchy to aid disambiguation [102].

10

2.5. Entity Linking

2.5.1 Two ways of Entity Linking

Solutions for entity linking can be divided into two categories [72, 84]:

• Local approaches [114]: Tries to disambiguate each mention in a document
separately, utilizing clues such as the textual similarity between the mentioned
context and the candidate entity information. local approaches handle men-
tions separately and employ local features for mention disambiguation, such as
contextual words or named entities. Generally, candidates are ranked based
on how similarly their feature vectors resemble those of the mentioned article.
A drawback of local approaches is that they ignore the semantic correlation
[107] between features and mentions, which can assist in resolving the feature
sparsity issue. For instance, despite their semantic similarities, the spellings of
Big Apple and New York City will make them less likely to be related.

• Global approaches [114]: Utilizes relations of entities in the context to estimate
coherence. These methods[75, 87] perform entity linking on all mentions col-
lectively while taking into account the semantic relatedness between mentions.
Utilizing semantic similarity can give context information, for instance, con-
necting the USA to the United States of America will make it simpler to rec-
ognize the mention of ”New York City”. These methods help to determine an
allocation for mentions that has the highest level of internal coherence among
all potential assignments, as well as entities that are coherent with the men-
tions. Since it is an NP-Hard problem to find an assignment with the maximum
possible coherence, all global approaches rely on approximation algorithms.

2.5.2 Biomedical Entity Linking

Biomedical entity linking aims to map biomedical mentions, such as diseases and
drugs, in biomedical literature, to medical entities in a standard knowledge base such
as UMLS [69]. The specific challenge in this context is that the same biomedical en-
tity can have a wide range of names, including synonyms, morphological variations,
and names with different word orderings[73]. In the healthcare field, accurate entity
disambiguation is essential for understanding the biomedical context. Since many
different biomedical concepts might be mentioned in very similar ways, failing to
resolve these conflicts will result in the wrong perception of the whole context. This
will greatly increase the risks involved in making medical-related decisions. Addition-
ally, many other applications that require automatic text indexing can benefit from
biomedical entity linking. For example, healthcare professionals can use it to auto-
matically link a patient’s medical record to various medical entities. These entities

11

Chapter 2. Background

can then be utilized for other activities including diagnosis and medical decision-
making, health analytics and demographic trends, predictive analysis[68], medical
information retrieval, feature extraction[88], and question answering[126]. In many
cases, entity linking in biomedical literature is different from entity linking in other
types of text. Consider the example in Figure 2.6, where Antihistamines are a men-
tion of the entity Histamine Antagonists, and other entities are the top candidates
found in the UMLS. The following are the common issues of entity linking in the
biomedical domain: 1. The mentions can be misleading. In this example, almost
every other candidate, in this case, has terms that properly reflect those in the men-
tion. If we only employ surface-level features, it will be difficult to link the mention
to the appropriate entity. As a result, the mention and its context must be fully
understood by the model in terms of semantics. 2. The candidates may be similar to
one another not just on the surface, but also in terms of semantic content. Additional
information, such as fine-grained types, is therefore helpful in identifying the correct
entity. 3. The mentions and context in medical entity linking are typically longer
than those in the general domain, which presents another difficulty. As a result,
linking medical content with traditional techniques is less effective. 4. Finally, there
are several many domain-specific terms, abbreviations, and typos in the biomedical
field. The efficiency of neural models is subsequently degraded as a significant pro-
portion of concepts are outside the lexicon of popular pre-trained embeddings like
GloVe[113].

2.6 Machine Learning

Machine learning (ML) is one of the subjects of artificial intelligence, which is widely
considered the ability of a machine to mimic intelligent human behavior. Machine
learning is used to accomplish the goal of AI, which is to carry out complicated tasks
in a way that is similar to how humans solve issues. There are three main categories
of machine learning:

• In supervised learning, labeled data are utilized to train algorithms to classify
data or predict outcomes with greater accuracy. Supervised learning is used in
many domains such as spam detection, face detection, signature recognition,
and weather forecasting.

• In unsupervised machine learning, algorithms explore unlabeled data for pat-
terns. In other words, unsupervised learning models can recognize patterns or
trends without the need for human interventions. This strategy is perfect for

12

2.6. Machine Learning

Figure 2.6: An example of a biomedical entity, in this case, the highlighted word
is the extracted mention, the pink boxes indicate the top candidate entities
that were obtained from the biomedical as knowledge-base, and the green box
represents the ground truth item for this mention. The text in the given example
is from [6]

exploratory data analysis, cross-selling strategies, market characteristics, and
image and pattern recognition since it can find similarities and differences in
data.

• Semi-supervised learning stands somewhere between the two. During train-
ing, it leverages a smaller labeled data set to enable classification and feature
extraction from a larger, unlabeled data set. Semi-supervised learning can han-
dle the problem of not having sufficient labeled data for a supervised learning
algorithm. It is a particularly efficient strategy when labeling data is time-
consuming or costly.

2.6.1 Deep Learning

Deep learning is a type of ML, which uses artificial neural networks and algorithms
that are designed to mimic the functions of the human brain to learn from vast
amounts of data. Figure 2.7 shows a general schematic of deep learning.

13

Chapter 2. Background

Figure 2.7: Deep Learning learns hierarchical representation from the data itself,
and scales with more data. Before data can be fitted into a model that can make
decisions based on these characteristics in a machine learning technique, an engineer or
expert must design features that can distinguish between Target 1’s and 0’s. Handcrafting
these features presents an inherent hurdle for engineers. A model’s features would not need
to be manually defined for deep learning because it does not necessarily require structured
data. Here, each network structure chooses the particular traits or qualities that define
the target. Now, a range of potential dangers, including potentially highly innovative ones,
can be found using this model. [7]

How does deep learning work?

Deep learning is powered by neural network layers, which are algorithms based on
human brain function. Training with large amounts of data is what creates the neu-
rons in the neural network. The outcome is a deep learning model that, after being
trained, can process new (unseen) data. Without the need for human intervention,
deep learning models gather data from various sources and assess it in real time.
Since graphics processing units (GPUs) can do several operations simultaneously,
they are the best for training models. Most AI solutions that can enhance automa-
tion and analytical processes are powered by deep learning. People frequently come
across deep learning, when they use their smartphones or the internet. Some gen-
eral uses of deep learning are for example creating subtitles for YouTube videos,
executing speech recognition on smartphones and smart speakers, performing facial
identification for pictures, and enabling self-driving automobiles.

14

2.6. Machine Learning

Figure 2.8: Brain neuron, the left. Simple neural network on the right.. Artificial
neural networks are created to resemble how the human brain functions. The dendrites
of the human brain serve as the artificial neural network’s input, as shown in the image.
The output of the neural network is then represented by the axion terminals. The network
shown on the right only has one hidden layer. A deep neural network is a network that
has numerous hidden layers.[8]

Introductory to (Deep) Neural Networks

Artificial neural networks are created to resemble how the human brain functions.
As shown in the Figure 2.8, the dendrites of the human brain serve as the artificial
neural network. The output of the neural network is then represented by the axiom
terminals. The figure on the right shows a network that has only one hidden layer.
A deep neural network can be defined as a network that has many hidden layers.

Convolutional Neural Network

Convolution Neural Networks (CNNs) are multi-layered artificial neural networks
that are capable of extracting features from picture and text data. CNNs have mostly
been utilized for computer vision tasks like object detection, image classification, and
text extraction. Typically, a convolutional neural network has two main layers:

1. A convolution layer to extract features from the data.

2. A pooling layer to make the feature map smaller.

15

Chapter 2. Background

Figure 2.9: Graph Convolutional Network’s representation, A multi-layer Graph
Convolutional Network (GCN) with C input channels and LARGEF feature mappings in
the output layer is shown schematically. Layers share a common graph structure (edges
are displayed as black lines, and labels are indicated by Yi).[9]

Graph Convolutional Network

A Graph Convolutional Network (GCN), is a method for semi-supervised learning
on graph-structured data. It is an effective version of convolutional neural networks
that function directly on graphs. To design the convolutional architecture, a local-
ized first-order approximation of spectral graph convolutions has been taken into
account. The model learns hidden layer representations that encode both local net-
work structure and node attributes and scales linearly as the number of graph edges
increases.

2.7 Word Embedding

In general, word embeddings are a kind of word representation that links the human
comprehension of language to that of a computer. Word embeddings have achieved
text representations in an n-dimensional space, where words with the same meaning
have similar representations. This means that two related words are represented
by almost similar same vectors. As a result, when utilizing word embeddings, each
word is represented by a real-valued vector in a specified vector space. Each word
is mapped to a single vector, and the values of the vectors are learned in a way
simulating a neural network. Word2Vec is one of the most popular methods for

16

2.8. (BERT)

Figure 2.10: In vector space, similar words are arranged closely together. For
Frog and Litoria, the angle q tends to zero [10]

learning word embeddings using basic neural networks.

2.7.1 Word2Vec

Word2vec uses a two-layer neural network to effectively create word embeddings. As
input, word2vec gets a text corpus, which produces a set of feature vectors, or vectors
that represent words in the corpus. Word2vec converts text into a numerical form
that deep neural networks can understand, even if it is not a deep neural network.
The goal of Word2Vec is to have similar word embeddings when the contexts are
similar. These words are therefore quite close together in this vector space. According
to mathematics, the angle (Q) between these vectors should have a cosine value that
is close to 1, or close to 0. Figure 2.10 illustrates that for frog and Litoria, the angle
q tends to be zero.

2.8 (BERT)

”BERT (Bidirectional Encoder Representations from Transformers) is a recent pa-
per [78] published by researchers at Google AI Language. It has caused a stir in the
Machine Learning community by presenting state-of-the-art results in a wide vari-
ety of NLP tasks, including Question Answering (SQuAD v1.1), Natural Language
Inference (MNLI), and others. BERT’s key technical innovation is applying the bidi-
rectional training of Transformer, a popular attention model, to language modeling.
This is in contrast to previous efforts, which looked at a text sequence either from
left to right or combined left-to-right and right-to-left training. The paper’s results
show that a language model which is bi-directionally trained can have a deeper sense
of language context and flow than single-direction language models. In the paper,

17

Chapter 2. Background

the researchers detail a novel technique named Masked LM (MLM) which allows
bidirectional training in models in which it was previously impossible.”[11]

2.9 Ranking in Information Retrieval

One of the essential issues in information retrieval (IR), the scientific and technical
field that underlies search engines, is ranking a query. Given a query q and a col-
lection D of documents that match the query, the goal is to order the documents
in D according to some criterion so that the ”better” results appear first in the list
of results sent out to the user. Search engine queries and recommender systems
are just two examples of how ranking in information retrieval is employed in many
different contexts. To give users accurate and appropriate results, the majority of
search engines use ranking algorithms.

2.9.1 Ranking Models

There are three types of ranking models: Boolean models (BIR), Vector Space Mod-
els, and Probabilistic Models.

Boolean Model

The Boolean model applies the AND, OR, and NOT conditions mentioned in the
query to find all the related documents. For instance, given the sentence below, it
returns only documents that include all occurrences of the terms alumni, graduates,
and either company or college. By using this model, the search engine eliminates
any documents that cannot possibly match the query.

alumni AND graduates AND (university OR college)

Vector Space Model

In a vector space, words, sentences, and even documents are represented numerically
as a group of objects called vectors. Compared to a simple vector like map coordi-
nates, which only have two dimensions, those used in natural language processing can
have thousands of dimensions. A vector space model is an algebraic approach that
treats entities (like text) as vectors. This makes it easy to evaluate word similarity or
the relevancy of a search query and document. Cosine similarity is frequently used,
to compare two vectors. To calculate the continuous degree of similarity between

18

2.10. Graph Theory

Figure 2.11: Vector Space Model. Documents are modeled as vectors using the Vector
Space Model (with TF-IDF counts). As a result, we can calculate how similar several
documents are in this area. [12]

two items, such as a query and documents, as well as partial matching, the vector
space model uses linear algebra with non-binary term weights. Figure 2.11 shows a
general understanding of this model.

Probabilistic Model

Probabilistic models simulate an event or phenomenon using random variables and
probability distributions. A probability model provides a probability distribution as
a solution, whereas a deterministic model provides a single possible outcome for an
event. These models consider the reality that we can hardly ever know everything
about a situation, and there is almost always some element of randomness to consider.
For instance, health insurance is premised on the idea that, while it is known that a
person will need his insurance (in case of a disease for example), the exact moment
is unknown. These models can be entirely random, partially deterministic, or both.

2.10 Graph Theory

The area of mathematics known as graph theory studies networks of points connected
through lines. The history of graph theory dates back to 1735 when the Swiss
mathematician ”Leonhard Euler” [13] found an answer to the Königsberg bridge [14]

19

Chapter 2. Background

dilemma. An old puzzle known as the Königsberg Bridge Problem attempted to find
a path over each of the seven bridges that cross a branched river that flows by an
island without having to traverse any of them more than once. Euler argued that
such a road does not exist. His proof essentially proved the first theorem in graph
theory, however, it only made passing reference to the physical arrangement of the
bridges. The term ”graph” referred to a set of vertices (also known as points or
nodes) and edges (also known as lines) that connect the vertices. A graph is referred
to as a multigraph when any two vertices are connected by more than one edge. A
simple graph is one without loops and with no more than one edge between any two
vertices. The graph is said to be complete when each vertex has an edge connected to
every other vertex. A directed graph, also known as a digraph, is created by giving
each edge a direction when it is appropriate to do so.

2.11 Similarity Measure

The similarity measure is a function that assesses how similar two phrases or things
are to one another. Depending on the nature of the two objects, this function changes.
The cosine similarity function, for instance, may be used if the objects are vectors.
And the function could be Hamming distance[15], Levenshtein distance[16], or Jaro
Winkler[17] distance function if the two items are strings.

2.11.1 String metric

A string metric (also known as a string similarity metric or string distance function)
is a metric that estimates the distance between two text strings for estimating string
matching or comparison. For example, the strings ”Tom” and ”Tommy” are simi-
lar. A string metric presents a number that indicates an algorithm-specific distance
measurement.

2.11.2 Types of string similarity

String similarity algorithms can be categorized into several domains based on the
properties of operations. Let us talk about some of them:

• Edit distance based: These algorithms aim to determine how many operations
are required to change one string into another. The similarity between two
strings decreases with the number of operations. One thing to keep in mind is
that each index character in the string is given equal weight in this case.

20

2.11. Similarity Measure

Figure 2.12: An example of the Levenshtein distance. As is clear, if we add one ‘r’
in string 2 i.e. ‘arow’, it becomes identical to string 1. The edit distance is therefore 1. We
can produce a bounded similarity score between 0 and 1, comparable to hamming distance.
There is an 80% similarity rating. [18]

Some known edit distance-based algorithms are: the Hamming distance [15],
the Levenshtein distance [16], and Jaro-Winkler distance [17]. Let us take a
look at the Levenshtein distance as an example.

Levenshtein Distance

The number of modifications needed to change one string into another is used
to calculate the Levenshtein distance. The permitted transformations are in-
sertion, which adds a new character, deletion, which removes a character, and
replacement, which swaps one character for another. The method attempts to
change the first string to match the second one by carrying out these three op-
erations. Finally, we are given an edit distance. As it is shown in Figure 2.12,
string 2 becomes identical to string 1 if we add one ”r” to make it ”arow.”
The edit distance is therefore 1. We can produce a bounded similarity score
between 0 and 1, comparable to hamming distance. The similarity rating is
80%, which is pretty a good score [18].

• Token-based: Instead of entire strings, a collection of tokens is requested as
input in this category. The goal is to identify tokens that are similar in both
sets. The similarity of sets increases with the number of shared tokens. By
dividing a string with a delimiter, sets can be generated. In this method, a
sentence can be broken down into tokens of words or n-grams. Note that tokens
of all lengths are treated equally here. Some of the known token-based methods
are the Jaccard index [19] and Sorensen-Dice [20]. In the following, the Jaccard
index is explained with an example.

21

Chapter 2. Background

Figure 2.13: Jaccard index. By default, we tokenize strings using spaces to turn the
words into tokens. Next, we determine the similarity score. As both words are present
in both strings in the first example, the score is 1. The score would be quite low if an
edit-based algorithm were used in this situation. [19]

Jaccard Index

The formula, which belongs to the set similarity domain, is to calculate the
proportion of common tokens to all unique tokens. [21]

Jaccard(U, V) =
|U ∩ V |
|U ∪ V |

=
|U ∩ V |

|U |+ |V | − |U ∩ V |
(1)

It is expressed mathematically, where the denominator is the union and the
numerator is the intersection of the tokens (unique tokens). The second sce-
nario is when there is considerable overlap, in which case we must eliminate
the common terms because adding up all the tokens from both strings will
result in their double addition. Tokens rather than whole strings are required
as input, hence it is up to the user to tokenize their text effectively and wisely
depending on the use case. To create tokens for the words in the strings in
the example in Figure 2.13, we first tokenize the string using the default space
delimiter. Next, the similarity score is calculated. As both words are present
in both strings in the first example[19], the score is 1.

2.11.3 Shortest path algorithms

in graph theory, the shortest path algorithms [22] are employed to automatically
determine the paths between two vertices (or nodes) such that the total of the weights
of its edges is minimized. Dijkstra’s algorithm, A* search algorithm, and Bellman-
Ford algorithm are the most frequently used to solve this issue. In Figure 2.14, we
discuss how Dijkstra’s algorithm works.

22

2.11. Similarity Measure

Dijkstra’s algorithm

Dijkstra is a graph search algorithm that builds a shortest path tree to solve the
single-source shortest path problem for a graph with non-negative edge path costs.
The algorithm determines the shortest path–or path with the lowest cost– between
each vertex in the network and a specified source vertex (or node). It begins at the
selected node (also known as the source node). The algorithm records the shortest
path between each node and the source node that is currently known. If a shorter
path is discovered, the path values are updated. A node is added to the path and
labeled as ”visited” when the algorithm determines the shortest path between it and
the source node. Until every node has been added to the path, this process is re-
peated. The algorithm’s output is a path that follows the shortest route between each
node in the graph to connect the source node to every other node. The algorithm’s
pseudo-code is shown in Figure 2.14.

Figure 2.14: Dijkstra’s Algorithm Pseudo-code[23]

23

Chapter 2. Background

Bellman-Ford algorithm

A graph algorithm called the Bellman-Ford algorithm [24] determines the shortest
paths between a particular start node and all other nodes. Although this approach is
similar to Dijkstra’s, it can also control negative edge costs and spot negative cycles.
The algorithm operates by initially overestimating costs from the start node to all
other vertices and iteratively decreasing the cost as additional paths are discovered.
It takes at most V-1 iterations to discover the shortest cost between the start and
all other vertices since V-1 is the longest the shortest path may be. A negative cycle
occurs in a graph when the sum of the edge costs is less than zero. If there are
negative cycles, there can never be the shortest path because repeating the cycle
could result in even lower numbers. Therefore, a negative cycle must exist if the cost
drops after the previously completed V-1 iterations. The algorithm’s pseudo-code is
shown in 2.1:

Code Listing 2.1: Bellman-Ford-pseudocode [25]

1 func t i on bellmanFord (G, S)
2 f o r each ver tex V in G
3 d i s t ance [V] <− i n f i n i t e
4 prev ious [V] <− NULL
5 d i s t ance [S] <− 0
6
7 f o r each ver tex V in G
8 f o r each edge (U, V) in G
9 tempDistance <− d i s t anc e [U] + edge weight (U, V)
10 i f tempDistance < d i s t anc e [V]
11 d i s t ance [V] <− tempDistance
12 prev ious [V] <− U
13
14 f o r each edge (U, V) in G
15 I f d i s t anc e [U] + edge weight (U, V) < d i s t anc e [V}
16 Error : Negative Cycle Ex i s t s
17
18 re turn d i s t ance [] , p rev ious []

2.11.4 Cosine Similarity

A measure called cosine similarity [26] determines the cosine of the angle formed by
two vectors created in a multidimensional space. The two vectors are counted as
similar if the angle between them is small. In the Figure 2.15, the angle between the
two vectors A and B decreases as the cosine similarity value approaches 1, so A and

24

2.12. Search Engine

Figure 2.15: Cosine Similarity. The angle between the two vectors A and B decreases
as the cosine similarity value approaches 1. A and B are more similar to one another in
this situation. [26]

B are more similar to one another in this situation. The mathematical definition of
cosine similarity is the division between the dot product of vectors and the product
of the Euclidean values or magnitude of each vector. In Figure 2.15 A and B are
vectors in a multidimensional space, respectively. Given that cos(θ) has a value
between [−1,1]:

• −1: this value denotes strongly opposing vectors or a lack of similarity.
• 0: denotes orthogonal (or independent) vectors.
• 1: implies that the vectors are highly similar.

cos =
−→a .

−→
b

∥−→a ∥∥
−→
b ∥

∥−→a ∥ =
√

a21 + a22 + a23 + . . .+ a2n

∥
−→
b ∥ =

√
b21 + b22 + b23 + . . .+ b2n

(2)

2.12 Search Engine

A typical search engine performs web searches to gather data relevant to the query.
Some search engines can retrieve data from their data repository before even scanning
the web. The indexed documents that are kept in a relevant database are searched by
a search engine. The materials are indexed to improve the efficiency and effectiveness

25

Chapter 2. Background

Figure 2.16: Search Engine Diagram. Utilizing its web crawlers, search engines scan
hundreds of billions of pages. Search engine bots or spiders are frequent names for these
web crawlers. By downloading online pages and using links on those pages to find newly
available pages, search engines surf the web. The objective of the search engine algorithm
is to provide a relevant group of excellent search results that will promptly answer the
user’s query or question. [27]

of finding the right documents. The Boolean model is used by search engines to match
documents. A formula called the practical scoring function is used to determine
relevance. This equation depends on the vector space model, Term Frequency (TF),
and Inverse Document Frequency (IDF). In Figure 2.16 the concept of a search engine
is illustrated.

2.12.1 The Elasticsearch engine

Elasticsearch [28] is a cutting-edge search and analytics engine that was first intro-
duced in 2010 and is based on Apache Lucene. Elasticsearch is a Java-based, fully
open-source NoSQL database. It cannot be queried with SQL since it maintains data
in an unstructured way. It is a RESTful search and analytics engine that can be uti-
lized to address an increasing number of use cases. Elasticsearch centrally stores
data, making it possible to look for and analyze the data that has been indexed.
It gives the results for each query together with the relevant relevance score. The
value of the relevance score is influenced by several factors, including field length
norm, inverse document frequency, and term frequency. We use the Elasticsearch
python library to access the Elasticsearch engine, and we utilize the python library

26

2.12. Search Engine

Figure 2.17: Code snippet of sending the query to the Elasticsearch engine. This
code snippet shows how can we interact with Elasticsearch using REST API, ’hits’ means
the number of returned results from Elasticsearch API call. [29]

Figure 2.17 to send the queries to the Elasticsearch server (it uses Restful API in the
backend).

How does Elasticsearch work?

Elasticsearch [30] receives raw data from many different sources, such as logs, system
metrics, and web applications. Before being indexed in Elasticsearch, this raw data
is parsed, standardized, and enhanced through a process called data ingestion. Users
can use aggregations to get complex summaries of their data once it has been indexed
in Elasticsearch and can run complex queries against it.

What is an Elasticsearch index?

A group of related documents is referred to as an Elasticsearch index [30]. Elas-
ticsearch uses JSON documents to store data. A set of keys (names of fields or
characteristics) and their corresponding values are correlated for each document.
An inverted index is a type of data structure that Elasticsearch uses to provide ex-
tremely quick full-text searches. Every unique term that appears in each document
is recorded in an inverted index, along with the documents in which it appears.
Elasticsearch stores documents and creates an inverted index during the indexing
process to enable a fast search of the document data. The index API is used to start
indexing, and it allows you to add or modify JSON documents in particular indexes.

27

Chapter 2. Background

What is Elasticsearch Score?

Elasticsearch uses the score to rate how relevant a match is to the query. Elastic-
search, which is based on Lucene, uses Lucene’s built-in default scoring mechanism
as its default scoring algorithm. This similarity model makes use of Term Frequency
(TF) Subsection 2.12.2 and Inverse Document Frequency (IDF) Subsection 2.12.3
and the Vector Space Model (VSM) Section 2.9.1 for multi-term queries [31].

What is a fuzzy query?

Fuzzy query [32] returns information that is related to the search term in the docu-
ments, as determined by the Levenshtein edit distance. An edit distance is known as
the number of one-character modifications required to change one term into another.
These alterations could involve:

• Changing a character (man → fan)

• Removing a character (laptop → lapop)

• Inserting a character (tal → tall)

• Transposing two adjacent characters (flow → wolf)

The fuzzy query builds a set of all potential extensions, or variations, of the search
phrase within a given edit distance to locate terms that are related. Then, exact
matches for each expansion are returned by the query.

How to Use Fuzzy Searches in Elasticsearch

Fuzzy queries in Elasticsearch [33] do not require an exact match between the terms
in the queries and the terms in the Inverted Index. Elasticsearch makes use of the
Levenshtein Distance Algorithm to measure the distance between queries. The Fuzzy
query feature in Elasticsearch [34] is an effective tool for many different situations.
This unique query can frequently be used to fix username searches, misspellings, and
other odd issues.

Executing a fuzzy query in Elasticsearch [33]

A common ElasticSearch search query can be executed similarly to a fuzzy query.
Even though it is optional, it is crucial to provide the fuzziness parameter in the
JSON request along with the maximum Levenshtein distance you wish to tolerate.
Assume we have the typo word “Gppgle”.

28

2.12. Search Engine

Code Listing 2.2: Elasticsearch with exact match Query [33]. As is shown in the code
snippet, when we look for the exact match the Elasticsearch will return us just 1 successful
case.

Request
``` sh
cu r l −−r eque s t POST \

−−URL http : // l o c a l h o s t : 9200/ fuzzy−query/ doc / s ea r ch \
−−header ' content−type : app l i c a t i o n / json ' \
−−data ' {

”query” : {
”match” : {

” text ” : {
”query” : ” gppgle ”

}
}

}
} '
```
Response
``` sh
{

” took” : 4 ,
” t imed out ” : f a l s e ,
” shards ” : {

” t o t a l ” : 1 ,
” s u c c e s s f u l ” : 1 ,
” skipped ” : 0 ,
” f a i l e d ” : 0

} ,
” h i t s ” : {

” t o t a l ” : {
” value ” : 0 ,
” r e l a t i o n ” : ”eq”

} ,
”max score ” : nu l l ,
” h i t s ” : [ ]

}
}
```

When using a standard Match Query, Elasticsearch will first examine the query
”gppgle” before searching for it. The only term that matches the term ”gppgle”
is ”google,” which is the single term in the inverted index. Elasticsearch will not
generate any matches as a result. Let us attempt the fuzzy in Match Query in
Elasticsearch now.

29

Chapter 2. Background

Code Listing 2.3: Elasticsearch’s fuzzy in Match Query [33]. As is shown, when the
fuzziness=AUTO, the number of returned result and the max score increases, because we
not only look for the exact match for the word, but also get all other words that are written
similar with the word, for example, if the query=”gppgle”, we will have the ’hit’=”google”
as the related fuzzy result.

Request

``` sh
cu r l −−r eque s t POST \

−−URL http : // l o c a l h o s t : 9200/ fuzzy−query/ doc / s ea r ch \
−−header ' content−type : app l i c a t i o n / json ' \
−−data ' {

”query” : {
”match” : {

” text ” : {
”query” : ” gppgle ” ,
” f u z z i n e s s ” : ”AUTO”

}
}

}
} '
```
Response

``` sh
{

” took” : 8 ,
” t imed out ” : f a l s e ,
” shards ” : {

” t o t a l ” : 1 ,
” s u c c e s s f u l ” : 1 ,
” skipped ” : 0 ,
” f a i l e d ” : 0

} ,
” h i t s ” : {

” t o t a l ” : {
” value ” : 1 ,
” r e l a t i o n ” : ”eq”

} ,
”max score ” : 0 . 19178805 ,
” h i t s ” : [

{
” index ” : ” fuzzy−query” ,
” type ” : ” doc ” ,
” i d ” : ”w8YOCXUBHf9qB4Apc0Cz” ,

30



2.13. Stop Words in NLP

” s c o r e ” : 0 . 19178805 ,
” s ou r c e ” : {

” text ” : ” goog l e ”
}

}
]

}
}
```

As you can see, Elasticsearch responded to fuzzy by returning a result. Previously,
we discovered that the distance between ”gppgle” and ”google” is 2. We used ”fuzzi-
ness”: ”AUTO” instead of a number in the query. The reason it is working is that
Elasticsearch will decide what fuzziness distance is acceptable if we use the ”AUTO”
value in the ”fuzziness” field. Although ”AUTO” fuzziness is preferred, if desired,
we can tune it with an exact number.

2.12.2 Term Frequency (TF)

Term frequency [35] concept means the number of times a term occurred in a docu-
ment. The simplest calculation is to count the occurrences of each word. However,
there are ways to change that value based on the length of the document or the
frequency of the term that appears most often.

TF =
number of times the term appears in the document

total number of terms in the document
(3)

2.12.3 Inverse Document Frequency (IDF)

Inverse Document Frequency (IDF) [35] is a metric that shows how frequently a word
is used. A low score indicates the word is frequently used across documents. The
term is considered to be less important if it has a low score.

IDF = log(
number of documents in the corpus

number of documents in the corpus contain the term
) (4)

2.13 Stop Words in NLP

Many words in the English language, such as ”I,” ”the,” and ”you,” are used fre-
quently in texts yet do not offer any significant information for NLP operations and

31

Chapter 2. Background

modeling. These words are called stopwords[36] and they are almost always recom-
mended to be eliminated as part of text preparation. When we exclude stopwords
it results in a smaller text corpus and improves the performance and robustness of
the NLP model. However, sometimes eliminating stopwords could have a negative
impact if it modifies the sentence’s meaning. For instance, we consider the exam-
ple “This is not a good way to start” as an example of a negative statement. This
sentence becomes a positive phrase when the stopwords are removed: “good way
start”.

2.14 Summary of the Chapter

This chapter covered essential concepts and technologies that help in understanding
the motivation of this thesis, and the issue that we want to address. We also discussed
some fundamental evaluation measures to understand the concept of similarity, how
it can be adapted to our work, and the reasoning for our choice of measure.

32

Chapter 3

Related Work

We discuss earlier research that is related to our hypothesis in this chapter. This
chapter is divided into four sections, and in each one, we discuss the most recent
research about the highlights and drawbacks of each paper that is relevant to the
elements of our framework.

3.1 Rule-Based Systems

There are previous works focused on rule-based methods for short text entity linking,
in the following, we will discuss some of them: This paper [117] presents Falcon 2.0,
an entity and relation linking tool that uses rule-based techniques to identify entities
& relations in short texts and map them to the existing knowledge graph, such as
DBpedia and Wikidata. Although there are several methods for linking entities and
relations to DBpedia, Falcon 2.0 is one of the tools that specifically target Wikidata.
Falcon 2.0 extracts several entities and relations from short input texts, and each
extracted entity and relation in the output is linked to a particular Internationalized
Resource Identifier (IRI) in Wikidata. It uses Background Knowledge (BK), a set
of rules for executing entity and relation linking, which combines Wikidata labels
with their related aliases. Falcon 2.0 analyzes a natural language text and uses three
modules—POS tagging, tokenization & compounding, and N-Gram tiling—to iden-
tify the entities or relationships. The performance of Falcon 2.0 on sentences with
little context is constrained, which is one restriction of the Falcon 2.0 method. Falcon
is a rule-based approach and these methods have general limitations when the senten-
tial context is sparse. Users-created nonstandard relations like ”Which is CIQUAL
2017 ID for cheddar?” clearly fall outside the scope of rule-based approaches. In
paper [81] a system named TAGME, which can efficiently and judiciously augment a

33

Chapter 3. Related Work

plain-text with pertinent hyperlinks to Wikipedia pages, is presented. The specialty
of TAGME is that it may annotate texts which are short and poorly composed, such
as snippets of search engine results, tweets, news, etc. This annotation is extremely
informative, so any task that is currently addressed using the bag-of-words paradigm
could benefit from using this annotation to draw upon (the millions of) Wikipedia
pages and their interrelations. But its disambiguation strategy merely relies on a
global voting mechanism of other mentions in the context, which incurs the same
problem of global approaches, that they are not effective for short text entity link-
ing. In [72] a comprehensive approach for short text entity recognition and linking
is introduced. This approach is capable of detecting local topics in short texts and
linking entities to a knowledge base with extremely little context. Authors introduce
concepts of entities as explicit fine-grained topics to solve the sparsity and the noisy
problem of short text. Although this study represents the state of the art in the
field of entity linking for short texts, annotating datasets is labor-intensive, costly,
and time-consuming because it depends on volunteers for some of the datasets. Au-
thors of paper [77] have introduced a Sieve-Based approach for entity linking in the
biomedical domain. They tried to advance the state of the art in normalizing disorder
mentions in documents from two genres, clinical reports, and biomedical abstracts,
so they proposed a sieve approach, which is composed of one or more heuristic rules.
In the context of normalization, each rule normalizes (i.e., assigns a concept ID to)
a disorder mention in a document. Sieves are ordered by their precision, with the
most precise sieve appearing first. To normalize a set of disorder mentions in a doc-
ument, the normalizer makes multiple passes over them: in the ”i-th” pass, it uses
only the rules in the ”i-th” sieve to normalize a mention. If the ”i-th” sieve cannot
normalize a mention unambiguously (i.e., the sieve normalizes it to more than one
concept in the ontology), the sieve will leave it unnormalized. When a mention is
normalized, it is added to the list of terms associated with the ontology concept to
which it is normalized. This way, later sieves can exploit the normalization decisions
made in earlier sieves. Although this paper has the advantage of simplicity and
modularity, it fails to resolve ambiguous normalization, where a disorder mention is
mapped to more than one concept. The [74] paper is a novel approach to Wikification
by incorporating, along with statistical methods, a richer relational analysis of the
text. The authors have provided an extensible, efficient, and modular Integer Linear
Programming (ILP) formulation of Wikification that incorporates the entity-relation
inference problem, and demonstrates how finding relationships in the text is quite
helpful for both candidate creation and ranking Wikipedia titles. However, since this
paper is a labor-intensive approach, it requires a set of hand-crafted rules and a KB
containing relations between entities. So on the one hand it is hard to generalize to

34

3.2. Machine Learning Approaches

other languages which do not have such KBs, and on the other hand, it mainly relies
on experts to design the rules.
Rule-based methods capture string similarity of mentions and entity names by using
hand-crafted rules with manually assigned weights, string similarity algorithms, and
domain-specific knowledge. While efficient, this method has some clear drawbacks.
At first, semantic relatedness is not addressed when utilizing string similarity algo-
rithms with no consideration for context. Second, defining a new set of rules and
weights for each pair in the dataset may be required, which is usually a tedious and
time-consuming task that hurts scalability. Our approach gets over these issues by
employing similarity measures to identify semantic relatedness without defining rules
over the dataset.

3.2 Machine Learning Approaches

Entity linking algorithms can be considered as two main categories: non-collective
and collective inference techniques. Non-collective approaches often rely on prior
popularity and context similarity with supervised models [105, 106]. Each concept
mention’s ranking score is calculated separately. On the other hand, collective ap-
proaches utilize the global coherence between concept mentions through supervised
or graph-based re-ranking algorithms [96, 101, 83]. Collective inference methods
handle the linking problem by maximizing the agreement between the text of the
mention document and the context of the entities of the knowledge base. Graph-
based re-ranking models typically obtain linking agreement information from train-
ing data and propagate the agreement information to other nodes. Both existing
non-collective and collective algorithms require large amounts of a manually-labeled
entity mention to reach high linking accuracy. The [124] paper introduces a concep-
tually simple, scalable, and highly effective BERT-based entity linking model, along
with an extensive evaluation of its accuracy-speed trade-off. The authors present a
two-stage zero-shot linking algorithm, where each entity is defined only by a short
textual description. The first stage does retrieval in a dense space defined by a
bi-encoder that independently embeds the mention context and the entity descrip-
tions. Each candidate is then re-ranked with a cross-encoder, that concatenates the
mention and entity text. This paper however is limited to working well when the
cross-encoder possibly makes mistakes because of misleading context cues. In [82] a
novel framework called Multi-turn Multiple-choice Machine reading comprehension
(M3) to solve the short text EL from a new perspective: a query is generated for
each ambiguous mention exploiting its surrounding context, and an option selection
module is employed to identify the golden entity from candidates using the query. In

35

Chapter 3. Related Work

this way, the M3 framework sufficiently interacts with limited context with candidate
entities during the encoding process, as well as implicitly considering the dissimilar-
ities inside the candidate bunch in the selection stage, but its efficiency decreases
when it wants to extract relations between entities or explicit type information. In
[109] Babelfy is presented, which is a unified graph-based approach to EL and WSD
based on a loose identification of candidate meanings coupled with the densest sub-
graph heuristic which selects high-coherence semantic interpretations. To lower the
degree of ambiguity in the initial semantic interpretation of a directed graph G, a
novel densest sub-graph heuristic was developed in this study. The fundamental
argument is that the densest region of the graph will contain the meanings of each
text fragment that are most suitable. Finding the densest sub-graph of size at least
k is an NP-hard issue [80]. A 2-approximation greedy approach for arbitrary graphs
[93] was the foundation for the author’s definition of a heuristic for k-partite graphs.
Their modified approach relies on the iterative removal of low-coherence vertices,
or fragment interpretations, to choose a dense sub-graph of the G. The joint solu-
tion is based on three key steps: i) the automatic creation of semantic signatures,
i.e., related concepts and named entities, for each node in the reference semantic
network; ii) the unconstrained identification of candidate meanings for all possible
textual fragments; iii) linking based on a high-coherence densest sub-graph algo-
rithm. One limitation of this paper is that the semantic analysis of small contexts
can be improved by leveraging the coherence between concepts and named entities.
MedCAT is the open-source Medical Concept Annotation Toolkit (MedCAT) which
is introduced in [95] provides a) a comprehensive self-supervised machine learning
algorithm for identifying concepts by employing any concept vocabulary such as
UMLS/SNOMED-CT.; b) an annotation interface with several features for modify-
ing and training information extraction models.; and c) integrations to the wider
CogStack ecosystem for vendor-agnostic organizations and health systems deploy-
ment.
In conclusion, machine-learning approaches to automatically learn the correct sim-
ilarity measures between mentions and entity names from training sets are being
presented to replace the necessity for manual rules. However, these methods are un-
able to identify keywords that are semantically related. In our approach, we address
this issue by building a graph of relationships and employing similarity metrics to
identify commonalities between mentions.

36

3.3. Hybrid Models

3.3 Hybrid Models

These models make use of rule-based models as well as machine-learning models. In
[127] explore Knowledge-RIch Self-Supervision (KRISS) for entity linking, by lever-
aging readily available domain knowledge to compensate for the lack of labeled infor-
mation. In training, it generates self-supervised mention examples on unlabeled text
using a domain ontology and trains a contextual encoder using contrastive learning.
For inference, it samples self-supervised mentions as prototypes for each entity and
conducts linking by mapping the test mention to the most similar prototype. This
approach subsumes zero-shot and few-shot methods, and can easily incorporate en-
tity descriptions and gold-mention labels if available. One drawback of this paper is
that its accuracy falls for some datasets in their experiment. In [115] ChemSpot, a
named entity recognition (NER) tool for identifying mentions of chemicals in natu-
ral language texts is presented, which includes trivial names, drugs, abbreviations,
molecular formulas and International Union of Pure and Applied Chemistry entities.
Since the different classes of relevant entities have rather different naming characteris-
tics, ChemSpot uses a hybrid approach, combining a Conditional Random Field with
a dictionary. However, ChempSpot missed some entity mentions where either they
were absent in the dictionary or the fact that they were not recognized by the CRF
(a probabilistic undirected graphical model). A supervised Deep Learning ontology
alignment method called VeeAlign was developed in [91] paper. It aligns classes and
attributes based on context-driven structural similarity as well as semantic similar-
ity. Thus, based on the type of neighborhood, the method integrates an innovative
manner of modeling context by dividing it into different components. Some of these
facets just take into account nearby one-hop nodes, while others additionally take
into account the paths that lead from the root to these nodes, depending on their
relative importance. The authors use a new dual attention technique that combines
path-level attention and node-level attention to overcome this difficulty. The former
aids in identifying the most crucial path out of all those that are available, whilst
the latter identifies the node with the most influence on the alignment of the central
concept. This paper has low recall due to the lack of incorporation of a translator
in some datasets. As well as its performance decreases in property matching on the
conference tracks.
Hybrid models combine rule-based and machine-learning models, therefore the effec-
tiveness of both techniques affects the hybrid model’s performance. Due to rule-based
methods, hybrid models may be laborious, time-consuming, and domain-specific, but
they also run the risk of performing poorly due to a lack of data needed to accom-
plish machine learning tasks. To address common problems of hybrid methods, we

37

Chapter 3. Related Work

use some heuristics such as string similarity in our benchmark, and also build the
graph of relations in the pre-processing step.

3.4 Deep Learning Based Systems

Deep Learning (DL) has three key benefits in solving the EL task. First off, DL
can use the given texts and KBs to automatically find several levels of distributed
representations to improve the disambiguation without human interaction, whereas
standard ML-based methods require substantial feature engineering and analysis.
The second advantage of DL is that it is more transferable, allowing deep neural
networks to learn representations that are more transferable and that separate the
exploratory factors of variations underlying the data samples and organize features
into hierarchical groups based on how they relate to invariant factors. A complex
and advanced EL method may be motivated by the fact that DL may learn feature
representations and accomplish classification or regression in an end-to-end manner.
Graph representation learning is one of the most promising ways in various fields like
classification, link prediction, and matching. Generally, graph learning methods ex-
tract relevant features of graphs by taking advantage of machine learning algorithms
and achieving promising results in various domains over graph-structured data [85,
94, 121, 99, 125]. In [85] they presented GraphSAGE, a general inductive framework
that leverages node feature information (e.g., text attributes) to efficiently generate
node embeddings for previously unseen data. This paper lacks efficiency for directed
or multi-modal graphs and does not perform for non-uniform neighborhood graphs.
In [94] a scalable approach for semi-supervised learning on graph-structured data is
presented, which is based on an efficient variant of convolutional neural networks
which operate directly on graphs. This paper has some limitations like (1) a Mem-
ory Problem for large graphs, (2) did not support edge features, and is limited to
undirected graphs. Authors of [121] proposed GAT, a novel convolution-style neural
network that operates on graph-structured data, leveraging masked self-attentional
layers. The graph attentional layer utilized throughout these networks is compu-
tationally efficient (does not require costly matrix operations, and is parallelizable
across all nodes in the graph). Although this paper revealed promising results, it suf-
fers to efficiently work on larger batch sizes. This paper [99] studied feature learning
techniques for graph-structured inputs. The result is a flexible and broadly useful
class of neural network models that has favorable inductive biases relative to purely
sequence-based models (e.g., LSTMs) when the problem is graph-structured. The
limitations of this work are that (1) the presented task translation does not incor-
porate temporal order of inputs or ternary and higher order relations, and (2) have

38

3.4. Deep Learning Based Systems

difficulties handling less structured input representations. In [125] authors study the
graph-to-sequence problem, introducing a new general and flexible Graph2Seq model
that follows the encoder-decoder architecture. They showed that using our proposed
bidirectional node embedding aggregation strategy, the graph encoder could success-
fully learn representations for three representative classes of directed graphs, i.e., di-
rected acyclic graphs, directed cyclic graphs, and sequence-styled graphs. However,
the proposed approach does not perform well, a pooling-based graph embedding
method like Graph2Seq-PGE performs better than Graph2Seq-NGE (node-based
graph embedding). One potential reason is that the node-based graph embedding
method artificially added a super node in the graph, which changes the original
graph topology and brings unnecessary noise into the graph. This work [97] uses
convolutional neural networks to structure biomedical entity linking as a ranking
problem (CNNs). Two limitations of this paper are, candidate generation depends
on handcrafted rules, which determine the upper threshold of the CNN-based rank-
ing system, that is the percentage of accurate entities in all candidate sets. Also, the
CNN-based ranking method completely disregards vague entity mentions. In paper
[67] authors presented a novel method, SNERL, to simultaneously predict entity link-
ing and entity relation decisions. SNERL can be trained without any mention-level
supervision for entities or relations, and instead relies solely on weak and distant
supervision at the document level, readily available in many biomedical knowledge
bases. This method has difficulty when for example the candidate set itself is not
accurate and since this method rely on the candidate set to filter the annotations for
the documents, it might end up with significant annotations that are not present in
the title and abstract. In [71] authors proposed a novel methodology, which models
the latent type of mentions and entities, to improve the biomedical entity linking
task. They incorporate this methodology in LATTE, a novel neural architecture
that jointly performs fine-grained type learning and entity disambiguation. To the
best of our knowledge, this is the first work to propose the idea of latent type mod-
eling and apply it to biomedical entity linking. Since many KBs also fit under the
broad definition of heterogeneous graphs, heterogeneous graph embedding has also
recently attracted attention from the scientific community. In paper [119] authors
introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to
two standard knowledge base completion tasks: Link prediction (recovery of miss-
ing facts, i.e. subject-predicate-object triples) and entity classification (recovery of
missing entity attributes), however, their work is not well suited for modeling asym-
metric relations. This paper [128], tries to solve the problem of heterogeneous graph
representation learning and introduce a heterogeneous graph neural network model
(HetGNN), which encodes the content of each node into a vector and then adopts

39

Chapter 3. Related Work

a node type-aware aggregation function to collect information from the neighbors.
HetGNN also uses attention over the node types of the neighborhood node to get the
final embedding. However, its performance can deteriorate when the neighbor size
exceeds a certain number. The recommended neighbor size in the paper is 20 to 30.

Although deep learning algorithms are very robust in the field of natural language
processing, they are quite expensive to train due to complicated data models and
require very large amounts of data to outperform other approaches. Deep learning
also needs hundreds of machines and expensive GPUs. The cost to users goes up
as a result. In our approach, we do not use a large amount of data. In contrast to
DL approaches, our method is therefore simpler to understand and does not require
expensive machines to function.

3.5 Heuristic Approaches

A heuristic approach[37] is an approach that employs practical strategies based on
prior knowledge. A heuristic method does not, however, ensure that it will produce
the best result. It is applied When classic methods take too long to address an issue.
Additionally, it is utilized to find approximations of solutions when the traditional
approaches fail to yield an accurate result. Two examples of heuristic approach are
search optimization [38] and traveling salesman [39] issue. Heuristic approaches find
solutions more quickly than traditional methods since they are based on practical
information that produce accurate answers, as opposed to traditional extensive ways
that produces results but take a long time to complete.
According to this paper[90], entity linking can be adapted for new domains by using
contextual knowledge related to the textual content to assess and the assignment that
will employ the extracted information. The authors look into how contextual adap-
tation, or the combining of semantic knowledge from a domain-specific knowledge
base with evidence from extra information sources (the text to analyze and the job to
address), can improve the cross-domain performance of entity linking. By utilizing
a set of contextual adaption heuristics, the suggested method seeks to improve the
cross-domain performance of a hybrid language and graph-based entity linking mod-
ule. These heuristics take into account the text’s processing order, entity mentions’
co-references, the topical domain’s significance, and semantic type. One limitation
of this paper is that the results are made worse by the semantic type heuristic. This
is disappointing because authors believe that semantic typing gives the entity linking
procedure a unique new perspective. However, in actual use, the semantic typing
heuristic is susceptible to two significant elements that have a direct impact on how

40

3.6. Summary of the Chapter

well it performs: First, the hybrid module’s automatic semantic typing of the entity
about its textual context; second, the accuracy of the entity types in DBpedia[40]
(if any). Paper [76] tries to solve the problem of entity linking in QUOTEBANK,
which is a large collection of speaker-attributed quotes from the news, by utilizing
heuristics that depend on simple signals in the context of mentions and the reference
KB. The proposed heuristics could be considered as strong baselines for unsuper-
vised entity linking in large datasets as they perform very well on QUOTEBANK,
have minimal computational complexity, and achieve competitive performance on
the AIDA-CoNLL benchmark. One limitation of this paper is that a term is not
seen as important because they give it no weight to indicate its significance. So
authors intend to utilize additional signals from the KB to remedy this issue.
We can classify our approach as a heuristic approach since we build the entire graph
of particular relations in the knowledge base, traverse the graph in the following steps
to determine the minimum distance between the nodes, and then prioritize the nodes
with the smallest average distance as being the most relevant to one another. What
makes our approach better are: 1. our approach performs efficiently in cases where
mentions are ambiguous and in most cases can link the mentions to their correct
counterpart in the knowledge base. 2. It does not need any training data in advance,
which means in cases where there is no data at hand, it can perform well.

3.6 Summary of the Chapter

This chapter reviewed some work related to this thesis. Additionally, they were
compared to the work of this project. The process of connecting entities mentioned
in the text to their knowledge base equivalents is known as entity linking. Entity
linking is a popular issue in real-world applications including information retrieval,
content analysis, and question-answering, as well as in the research field. What we
can conclude from this chapter is that there are different ways to entity linking and
there is no ideal way to use entity linking. In some situations, rule-based models
may perform better, whereas, deep-learning techniques may perform best in other
scenarios. Because the context, entity types, knowledge base, datasets, and other
metrics all play a role in entity linking.

41

Chapter 4

Approach

In this section, we first formalize the problem of entity linking for texts in the biomed-
ical domain. Then we present, Lumos, the framework of our solution. In this thesis,
we examine entity linking for the English language, rather than cross-lingual entity
linking. The following Figure 4.1 and Figure 4.2 represent the architecture of our
framework.

Figure 4.1: Approach’s Pre-Processing Step. Extracting relations table from UMLS
and building up the graph of relations in UMLS using Neo4J

42

4.1. Problem Definition

Figure 4.2: Approach’s Processing Step. It consist of Lumos stages. It gets the
input sentence (mention, input sentence without mention), Lumos approach then process
the mention and entities throughout the stages. Finally, it gives a candidate CUI as the
output for the mention.

4.1 Problem Definition

The problem in this work is twofold. The first part is to find entities in the text.
Afterward, link each mention and entity to their counterparts in the knowledge
graph. Then find the minimum average distance between the mention and other
nodes, which have relations with each other. The problem is formally defined as
follows: each document D ∈ D, has a set of tokens T (D) = {td1, td2, ..., tdN}, and the
knowledge graph has a set of resources R. The task of entity linking is to map the
set of tokens in the text tk to the set of resources rk in the knowledge graph. The
mapping function is: f : F(tk) → F(rk). Let acc(., .) be a utility function that gives
the linking determined by f a value of accuracy. let p be a function that represents
the list of correctly associated sets of tokens (mentions) with resources/entities. The
following optimization criteria should be resolved by the function :

arg max
token∈F(T)

acc(p(token), f(token)) (5)

43

Chapter 4. Approach

Figure 4.3: Example of entity recognition approach. Text from [41]. As is shown in
the figure, with the help of an entity recognition tool, we can find the CUIs for each word,
that exists in the entity recognition tool’s database.

In the following 4.1 and 4.1, we explain in detail the problem of entity recognition
as well as entity linking.

Named Entity Recognition

Named entity recognition is known as the task of finding significant nouns in the
text. People, organizations, places, and all other entities with names are considered
to be important nouns since they are essential for readers to comprehend the text’s
meaning. In a contrast to entity linking, named entity recognition simply is used
for the identification of named entities in the text and the determination of their
categories. It is not required for it to comprehend the meanings of these terms
or to use a knowledge base to differentiate between them. While named entity
disambiguation is regarded as a crucial step that can influence the outcome of entity
linking when performing the task of entity linking [104]. In practical applications,
the entity recognition step always comes before the entity linking task. It is our task
to identify entity mentions in a text input and link them to the correct entities in
the knowledge base. An example of entity recognition is given in Figure 4.3. the
problem of entity recognition as well as entity linking.

Entity Linking

Most of the information we obtain is in the form of texts. These texts contain a
large number of named entities, which compromise the fundamental components of
texts. These entities, however, are vague, therefore we must link them to an existing
knowledge base to help readers understand what the entities refer to and interpret
the text more clearly. The process of disambiguating these extracted entities and
connecting them to their counterparts in the knowledge base is called named entity

44

4.1. Problem Definition

linking or entity linking. Entity linking is the task of linking named entities in texts
to their corresponding entities in a knowledge base (Wikipedia [42], WordNet [43] and
Unified Medical Language System(UMLS) [44]). For instance, given the text ”Sarah
eats an apple a day and enjoys the taste of it.” entity linking will link the query
mention apple to her corresponding entity apple (the fruit) in the knowledge base
rather than apple (Apple Inc. technology company) using a variety of algorithms.
In this thesis, we work on the biomedical named entity linking, which is extracting
mentions from biomedical texts and linking them to their counterparts in biomedical
knowledge bases. Biomedical Entity Liking is difficult due to the high ambiguity of
entity mentions, which are [110]:

• Ambiguity: abbreviations are the biggest source of ambiguity. Depending on
the context, a single abbreviation can be seen as two distinct things. For
instance, ”BCa”[45] stands for either breast cancer or bladder cancer.

• Polysomy: a term that can be used to describe several things. For example,
“wing” might mean ”one of the bird’s wings is broken = parts of a bird for
flying” or ”the hospital is building a new wing = a new part of a building” [46].

• Synonyms: an entity can be denoted by multiple names or aliases. For example,
Charles Dickens or Boz both refer to Charles John Huffam Dickens[47], who is
a popular writer.

• Multi-word in the biomedical domain: most of the words in the biomedical
domain are multiple words like follicular lesion of undetermined significance.

• Nested words: a word in the biomedical domain may be a part of a longer
word. For example, ”CBC (Complete blood count)” may occur in ”controlling
CBC” which is a laboratory check.

With the help of entity linking [123], we can retrieve information and disambiguate
them in a way that the correct results are chosen for specific entities. In Figure 4.4
we illustrate the general schematic for entity linking. As shown each entity linking
system consist mainly of three parts: generating a candidate set, disambiguating
candidate entities, and linking results. In the following, we will describe these three
parts. Definition 1. Entity linking’s formal description: Given a text sequence s, the
goal is to detect all the entity mentions in s as entity mentionsM = {m1,m2, ...,mN}
in document D and link each mention mi to a single entity ẽi in KG or represent it
as NIL, which indicates the mention mi cannot be successfully linked to any corre-
sponding entity in ε. We use ε(mi) to refer to ground truth entity of mention mi and

45

Chapter 4. Approach

Figure 4.4: A basic entity linking model [123]. The basic model of an entity linking
system consists of candidate entity generation, candidate entity disambiguation, and result
selection.

êi to refer to the predicted entity. In general, EL approaches often have two steps:
entity recognition stage and candidate disambiguation stage.
Definition 2. An entity mention is a fragment of text that refers to an entity in the
knowledge base.
Definition 3. A segmentation p of a text s is a sequence of text fragments

p = {ti|i = 1, ..., l} (6)

such that:

• text fragments cannot overlap with each other.

• concatenation of all text fragments in p equals s.

The candidate generation module: Here, candidate entities for each query mention
in the text will be identified. Once the named entity mentions are recognized using
named entity recognition tools, discussed in Subsection 5.5.2, the candidate entities
are then located in the knowledge base using the entity names in conjunction with
additional features.
The candidate disambiguation module: This module is a crucial part of the entity

46

4.2. Proposed Approach: Lumos

linking process. It uses several techniques that combine distinct entity properties to
rank the candidate entities. Two features are used in the candidate disambiguation
phase: the similarity between a query mention and the candidate entity’s name and
the context of the candidate entity.
The linking result module: In this module, the target entity is selected with the help
of the ranking result of the candidate entity disambiguation phase. The system will
return NIL when all candidate entities’ scores fall below the threshold. However, the
threshold is typically set manually.

4.2 Proposed Approach: Lumos

Lumos covers the problem mentioned in the problem definition. Our basic idea
to tackle the problem of extracting and linking entities in the sentence is based
on building a graph where the nodes are the mentions and entities, and the edges
indicate the affinities between the nodes. We utilize an entity recognition tool to
find entities in the text. After having a list of all entities with their corresponding
CUIs from the KB, Lumos calculates the average distance for each mention and
extracted entities and assigns a weight to each mention based on the distance to
other nodes. Finally, Lumos chooses and links the best candidate (the one with the
minimum score) to the mention and selects this candidate as the preferred output.
To extract entities and relations from the text, Lumos employs a set of rules. The
guidelines were taken from [118], and are based on English morphological concepts.
For instance, the rule ”Verbs are not entities” causes Lumos to exclude all verbs
from the list of candidates for entities. Another rule that Lumos employs is the
removal of stopwords from the candidate list of entities, as stopwords may negatively
impact the linking task. Let us describe the Lumos method formally. We define the
parameters 4.1 in Lumos as follows: As the initial step, we get the input text from
document D and make a list of detected entities e with their CUIs S = (S(D) −→
S(detected entities), S(CUI)). Then Lumos eliminates the stopwords sw and verbs
é = (e−sw+e−verbs). Next, the candidate generation function uses a search engine,
to map each indexed-based mention to its corresponding CUI, Q = q(mention) →
q(CUI). Then, Lumos find the distance between two nodes in the graph with W :
W = Avg.dist.(é, Q,max score = 10). After that, we calculate the highest score
difference score with a function N and assign the value to parameter B : N = (ER−
AR) → B. Afterward, Lumos ranks the candidates, in the way that, it adds up two
values avg. dist. value from function W, and N, together: K = (W + N). Next,
in the candidate selection step, it chooses the min value from the previous step,
L = min(K). Finally, it compares the selected candidate with the gold standard

47

Chapter 4. Approach

Table 4.1: Parameters used in Lumos
Parameters
Entity e
Mention m
Stopwords sw
Document d
Q(.) candidate generation function
S(.) entity recognition function
W(.) calculte distance function
L(.) candidate selection function
K(.) candidate ranking function
ER Elasticsearch highest score value
AR highest score difference value
B candidate value score for candidate from Elasticsearch
V(.) function for adding up two values, avg. dist. value and B, together
Z(.) compare the selected candidate with gold standard and find accuracy
Gold Standard the correct CUI

(the correct CUI) and find the accuracy: Z = ((V (CUI), Gold Standard(CUI)),
it set the accuracy to 1, if V (CUI) = Gold Standard(CUI), and accuracy = 0, if
V (CUI) ̸= Gold Standard(CUI).

4.3 The Lumos Architecture

To achieve our goals, we divide our work into two parts. The pre-processing and
processing components make up the two main parts of our framework. In addition
to that, the sub-tasks of our approach start with the pre-processing step which is
building the whole graph of relations in the UMLS knowledge base and with the
help of the search engine, creating an indexed-based representation of the knowledge
base. Here, it is important to highlight that our method is independent of any specific
search engine. We could have used any search engine that can handle fuzzy query
processing, which is discussed in Section 2.12.1, for this work, we chose Elasticsearch.
After this step, an entity recognition tool is used to extract the entities and find,
for each entity, a unique identifier in the knowledge base. Afterward, each word’s
relation is extracted and the candidates for the recognized entities are obtained by
searching the index-based knowledge base. Then, the results are collected, and the
task of ranking consists of the combination of two values. Finally, the last step
is candidate disambiguation, in which we choose the best candidate based on the
minimum score and select it as our preferred output. Also, the following Figure 4.5
represents the architecture of our framework.

48

4.3. The Lumos Architecture

Figure 4.5: Framework architecture. This figure represents the whole architecture of
the Lumos approach, as shown, the work is divided into two major steps: pre-processing
and processing step.

4.3.1 Pre-processing

In this step, Lumos generates the whole graph of relations of the UMLS dataset
and use an index-based search engine. Most of the relations and entity linking tools
require a knowledge base that will be used to link the detected relations and entities.
By generating a graph representation of the related concepts of the knowledge base
for the linking task, we can search for relations between different nodes of the graph,
i.e., look for a specific sub-graph in the whole graph, each time an entity is searched.

4.3.2 Candidate Recognition and Generation Stage

As the first step in EL tasks, since looking through the entire entity collection ε
would incur an unacceptably high computational cost, a limited list of potential
entities Ci = {ei1 , ei2 , ..., eim} ⊂ ε for the mention mi is often created. In this step,
we pass the text to the entity recognition tool and as a result of this step, the entity
recognition tool gives us the keyword with its specific CUI. A candidate generation
phase is used to limit the number of entities that are taken into consideration for a
given mention, m, to a candidate set (m). Here, we pass every recognized entity to
our database, which we have configured in 4.3.1.

49

Chapter 4. Approach

Removing Stop Words and Verbs

As discussed in Section 2.13, stopwords and verbs are not included in our method-
ology since they can deviate from the outcome of the entity linking and hurt the
calculation of the average distance. In other words, by removing these words and
not including them in the calculation of the average distance, we can link entities
more effectively because these phrases no longer have an impact on the distances
between the mention node and other candidate entities. The stopwords and verbs
are identified as a result of the previous step, and in this phase, they are removed
from the entity recognition tool’s returned results to avoid influencing the further
steps.

4.3.3 Collecting Results

We have so far looked for relations and entities in Elasticsearch. Now, we organize
the results into a list of candidates, eliminate redundant candidates to speed up the
execution of subsequent steps, and check to see if the ontology and property index
has received any hits from Elasticsearch.

4.3.4 Candidate Selection

This stage consists of two sub-tasks, namely entity linking and candidate ranking.

Candidate Ranking

To increase the final accuracy, we decided to have ranked as the sum of two values.
These two values are average distance and Elasticsearch the highest score difference.
They will be combined and make up the final weight for each mention and entity.
Compute average distance: Here we compute the average distance from the
heuristic approach proposed in this thesis. For each mention mi, the retrieved set of
candidate entities

Ck = {ck1, ck2, ..., ckl } (7)

receives a score based on the shortest path length between the entities and the target
mentions. The ranking function combines i) the shortest path length between the
source and the target entity in the knowledge base, and ii) the maximum distance
between the entities. We assign nodes with no affiliations to one another the maxi-
mum distance score, which is 10.
The code snippet for computing the avg Code Listing 4.1.

50

4.3. The Lumos Architecture

Code Listing 4.1: Function to compute the average distance between two nodes.
Given two nodes this function calculates the shortest path between two nodes using the
Dijkstra algorithm. We set the distance to 10 for the nodes having no relations with each
other.

def f i n d d i s t (cui1 , cui2 , max dist=10) :
try :

d i s t=sho r t e s t p a th l e n g th (G,
source=cui1 , t a r g e t=cui2 ,
weight=None , method= ' d i j k s t r a ')
return (d i s t)

except :
return (max dist)

The search engine the highest score difference: In this step, after getting
the highest score for the mention word from Elasticsearch output, we calculate the
difference between the highest score and other candidates’ CUI for the mention. Why
do we need the highest score difference for each candidate and not the highest score?
In Elasticsearch output, the more related results have higher scores, but in the other
ranking parameter that we use (average distance), the lowest value is considered.
So, we must convert the Elasticsearch score in a way that, the lower the better.
Therefore, we will set the highest score as the zero weight, subtract other CUI scores
from the highest score, and consider it as the weight for that CUI. For example,
consider the mention is ”temperature” and as the tables show: the top candidate is
”C0005903” with the score ”13.3073015”. As we see in the 4.2, the highest score for
the mention is considered to have the weight zero and, the result with a higher score
have a lower score difference and can bring lower weight to candidate ranking.

Candidate Disambiguation

In this stage, after having the ranking scores for each mention, we sum up all the
scores and make an average for each of them. Then, we group the mentions, which
are close to each other (have the shortest average path in the graph) based on their
relations. Finally, in our proposed approach, Lumos, we choose the lowest candidate
score as the correct candidate or NIL in some specific circumstances. The output is
the candidate for each mention.

51

Chapter 4. Approach

Label CUI score score difference
temperature C0005903 13.3073015 0
temperature C0039476 13.3073015 0
swinging temperature C0277800 12.002837 1.3044645
temperature regulation C0412806 12.002837 1.3044645
joint temperature C0427304 12.002837 1.3044645

Table 4.2: Example of Elasticsearch score. In this table, the score = ”13.3073015”,
which is the highest score, is returned for the word ”temperature”, so we consider the
CUI= ”C0005903” as the correct result for the specified word. We then subtract other
results from the highest score, to have a value that the Lumos approach will use in the
ranking stage (the other parameter used in the Lumos approach, is the minimum average
distance, i.e., the lower the distance, the more related it is.) So we need to convert the
value from the highest score, to have for both: the lower the value, the more related it is.

4.4 Summary of the Chapter

In this chapter, we gave a formal definition of entity linking and discussed how
we would address the issue in the biomedical field. We described each process’
function and demonstrated our approach with a running example to help for better
understanding.

52

Chapter 5

Implementation

This chapter goes into extensive detail about how we put our approach into practice,
the development process we used to develop our framework, and its design. We
present a running example of our methodology.

5.1 Software Methodology

The software methodology we used to build our framework is Spiral Software Model.
The Spiral framework concentrates heavily on management and risks awareness.
Following this structure, development teams work in spirals that are repeated until
the final project is ready to be released. The project is continuously improved over
time in small chunks, and teams keep updating it according to their new learnings.
Each spiral model [48] has four main distinctive quadrants:

1. Planning and identifying requirements: This entails analyzing system needs
and determining resource availability (time, effort, and cost).

2. Risk analysis: Analyze all the potential risks associated with the solutions,
such as cost and schedule delays. The development of a strategy for reducing
risk follows.

3. Development and testing: in this step the implementation, test, and deploy-
ment tasks take place.

4. Review and plan: At this point, users are taking part in the testing and giving
feedback on the solution. Teams subsequently use that feedback to plan the
future spiral.

Following Figure 5.1 visualize the model and the corresponding steps.

53

Chapter 5. Implementation

Figure 5.1: The Spiral Model[49]. It captures the key elements of the spiral model, in-
cluding cyclic concurrent engineering, risk-driven process and product selection, risk-driven
system growth, and cost-saving early exclusion of unworkable alternatives and rework avoid-
ance. [70]

5.2 Design, Structure, and Dependencies

A detailed description of the implementation is presented in this section. The most
important dependencies should be listed first. We used Python because it is simple,
highly interpreted, and compatible and has Built-in Data Structures, as it is the dom-
inant language for machine learning—the majority of machine learning frameworks
are built in Python. Following Figure 5.2 depicts the approach with an example we
are following in this thesis. We used NumPy [50] and pandas [51], as they both sup-
port high-performance matrix calculation and are capable of executing a vectorized
code[86], have a python-compatible syntax, and can be utilized for high-level data
analysis. We used two tools to create the graph and visualize it. The graph is built
using Networkx, as discussed in Section 5.4, which also calculates the distances be-

54

5.3. Approach’s Workflow

Figure 5.2: Proposed Approach with Example. Given our motivating example to
the Lumos approach, we aim to find correct CUIs for the mentions ”temperature” and
”extreme-temperatures”. As the result of the Lumos approach, we get as the output a list
consisting of mentions and entities with their corresponding CUIs.

tween the nodes. Although Networkx has significantly faster query times, we utilized
Neo4j [52], which is discussed in Section 5.5 to display the graph because Networkx
is not primarily a drawing tool and does not provide a GUI for doing so.

5.3 Approach’s Workflow

5.3.1 Graph Generation

To build the graph of relationships, we extracted the MRREL table from the UMLS
knowledge base and created indexes with Elasticsearch, the output is a JSON file
that contains the labels for each UMLS entity. For the task of relation extraction,
we are only interested in Parent (or RB) and Child (or RN) relations. So we created
a CSV file of relations that only contained the RB and RN relation to minimizing
the size of the graph. After that, we built the graph in NetworkX Section 5.4 using
this CSV file and utilized Neo4j Section 5.5 for graph visualization. In the following,
these two tools are introduced:

55

Chapter 5. Implementation

5.4 NetworkX

NetworkX [53] is a Python module for building, modifying, and researching the struc-
ture, dynamics, and objectives of complicated networks. It provides common graph
algorithms as well as data structures for graphs, digraphs, multigraphs, and multi-
digraphs. It allows you to create and evaluate network structures, load, and store
networks in a variety of data formats, generate different kinds of random or conven-
tional networks, and much more. We can use pathfinding algorithms with NetworkX.
For instance, calculating the shortest path, which is discussed in Subsection 2.11.3.

5.5 Neo4j

Neo4j is a graph database management system developed by Neo4j, Inc.[54]. A
graph database has nodes edges and properties, instead of rows and columns. It
is more effective in many use cases, including some big data and analytics applica-
tions. A graph database could be used to represent relationships. The most common
instances are relationships on social media. Figure 5.3 is an example of calculat-
ing the shortest path length between the word ”Heat Stroke”, as the source node
with the CUI=’C0018843’ and the word ”Anemia”, as the destination node with the
CUI=’C0002871’. The nodes that are in the middle, show us that the two entities
are connected through these nodes. RB relations are displayed in blue lines and
RN relations in pink lines. According to 5.2, we see that the shortest path length
between the two nodes in the given example is 4. We explain, shortly, why we used
the shortest path algorithm for finding relations between graph nodes.

Code Listing 5.1: Example of relations

from neo4j import GraphDatabase

d r i v e r = GraphDatabase . d r i v e r (” neo4j : // l o c a l h o s t : 7687”
, auth (” usr ” , ” pass ”))
s e s s i o n = dr i v e r . s e s s i o n ()
r e s u l t = s e s s i o n . run
(”match s=shorte s tPath ((s r c{CUI : ' C0018843 '})
−[∗]−(dst{CUI : ' C0002871 '})) re turn s ”)
record = r e s u l t . s i n g l e ()
print (record [” s ”])
s e s s i o n . c l o s e ()
d r i v e r . c l o s e ()

56

5.5. Neo4j

Figure 5.3: Example of the graph of relations between two entities. As shown
in the figure the entity with CUI = ”C0018843” and entity with CUI = ”C0002871”, are
related to each other via other nodes and edges in between. And the distance between
these two nodes = 4.

Code Listing 5.2: JSON format of result for the given example Figure 5.3

{
” s t a r t ” : {
” i d e n t i t y ” : 27496 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0018843”}} ,

”end” : {
” i d e n t i t y ” : 2327 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0002871”}} ,

” segments ” : [
{

” s t a r t ” : {
” i d e n t i t y ” : 27496 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0018843”}} ,

” r e l a t i o n s h i p ” : {
” i d e n t i t y ” : 120246 ,
” s t a r t ” : 62652 ,

57

Chapter 5. Implementation

”end” : 27496 ,
” type” : ”RB” ,
” p r op e r t i e s ” : {
”RELA” : ””}} ,

”end” : {
” i d e n t i t y ” : 62652 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0038819”}}} ,

{
” s t a r t ” : {

” i d e n t i t y ” : 62652 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0038819”}} ,

” r e l a t i o n s h i p ” : {
” i d e n t i t y ” : 414432 ,
” s t a r t ” : 411580 ,
”end” : 62652 ,
” type” : ”RN” ,
” p r op e r t i e s ” : {
”RELA” : ””}} ,

”end” : {
” i d e n t i t y ” : 411580 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0239930”}}} ,

{
” s t a r t ” : {

” i d e n t i t y ” : 411580 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0239930”}} ,

” r e l a t i o n s h i p ” : {
” i d e n t i t y ” : 37384 ,
” s t a r t ” : 14431 ,
”end” : 411580 ,
” type” : ”RN” ,
” p r op e r t i e s ” : {
”RELA” : ””}} ,

”end” : {
” i d e n t i t y ” : 14431 ,

58

5.5. Neo4j

” l a b e l s ” : [
”Concept”] ,

” p r op e r t i e s ” : {
”CUI” : ”C0012634”}}} ,

{
” s t a r t ” : {

” i d e n t i t y ” : 14431 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0012634”}} ,

” r e l a t i o n s h i p ” : {
” i d e n t i t y ” : 37362 ,
” s t a r t ” : 14431 ,
”end” : 2327 ,
” type” : ”RN” ,
” p r op e r t i e s ” : {
”RELA” : ””}} ,

”end” : {
” i d e n t i t y ” : 2327 ,
” l a b e l s ” : [

”Concept”] ,
” p r op e r t i e s ” : {
”CUI” : ”C0002871”}}}

] ,
” l ength ” : 4 . 0}

5.5.1 Read the Input Text

Our framework takes the dataset in JSON format as input. The input text will
be passed to our first service, which is entity recognition. Since our benchmark is
case-sensitive and this case-sensitivity can have an impact on accuracy results, we
additionally lowercase our input text.

Removing Noisy Characters

We need to eliminate all the irrelevant symbols from the text to prepare it for pro-
cessing. Noisy symbols are recognized as characters that are connected to the words
or that come at the end of the text. To save the text from having to undergo further
processing in the subsequent steps, it is beneficial to eliminate these characters. For
instance, if we leave the apostrophe s in the sentence ”Is sugar bad for human’s
health? ” because it was not in the original entity label, it will cause an issue when

59

Chapter 5. Implementation

linking the entity to a human and could reduce the accuracy of the correct matching.
We use Python string replacement to identify and remove the noisy characters. The
following characters are considered noisy characters and should be excluded from
the text: the question mark ”?”, the stop symbol ”.”, the exclamation mark ”!”,
apostrophe s ”’s”, the single quote ”’”, space, etc.

5.5.2 Entity Recognition

For named-entity recognition, which is explained in Section 4.1, we have used three
tools, to evaluate which tool performs better on our dataset. In the following, each
tool is explained:

MedCATTrainer

The Medical Concept Annotation Tool (MedCAT), is a Named Entity Recognition
+ Linking (NER+L) tool for identifying and linking clinical text concepts to existing
biomedical ontologies like UMLS or SNOMED-CT — often a first step in extracting
knowledge from the vast amounts of unstructured plain text available in clinical
EHRs.
MedCATTrainer as a web-based interface (illustrated in Figure 5.4) can be used for
biomedical NER+L models through active learning, to:

• Inspect concepts that have been identified and linked by MedCAT.

• Improve a MedCAT model by providing human annotators with some super-
vised training examples.

• Customize and collect further use-case-specific annotations training or specific
models.

MetaMAP

MetaMap [56] is a tool for recognizing UMLS concepts in a text, i.e., It maps biomed-
ical text to the UMLS Metathesaurus or it helps to find Metathesaurus concepts that
are mentioned in the text. MetaMap employs a knowledge-intensive methodology
based on symbolic, natural-language processing (NLP) and computational-linguistic
approaches.
MetaMap [56] is frequently used for Information extraction, Classification/catego-
rization, Text summarization, Question answering, Data mining, Literature-based

60

5.5. Neo4j

Figure 5.4: The Annotations Interface of MedCATTrainer[55]. The interface dis-
plays the clinical text currently being reviewed, the currently selected concept details taken
from MedCAT, as well as a document summary and its annotation status.

discovery, Text understanding, UMLS concept-based indexing, and retrieval, Natural-
language analysis of biomedical literature and clinical text.

BioFalcon

BioFalcon [118] is a relation and entity linking framework. It uses an API in two
ways:

• Relations and entities linking in a sentence

• Entities linking in a short text or term

The output is the top K results that are retrieved from the API request.

Ranking Method for Candidates of Entities After testing all three tools on
our test dataset, we got the best results from MetaMap Section 5.5.2. Since MetaMap
is a fully customizable tool created at the National Library of Medicine (NLM) to
map biomedical texts to the UMLS Metathesaurus or to find Metathesaurus con-
cepts mentioned in the text, so, we decided to use MetaMap as our primary entity
recognition tool and tested the MedMentions on MetaMap. The output from the
entity recognition step is all detected entities, that have CUI in a list in this format:

61

Chapter 5. Implementation

[[entity1, CUI1], [entity2, CUI2], [entity3, CUI3]]. In this step, we check the entities,
and if there are stop words like ”to, from, which, never, etc.” in entities, we will
eliminate them by using the stopwords list as a reference from Spacy [57] python
library. We also eliminate the verbs, because they can have a negative impact to find
the correct candidates. We use the Spacy [57] library to exclude the verbs.

5.5.3 Generating candidates and calculation of scores

After having the mentions identified by one of the entity recognition tools, Lumos uses
Elasticsearch to get all the CUI that is referred to a candidate, as discussed in 2.12.1.
It searches the mention in Elasticsearch3 and finds the first 10 records (CUIs) for
it. Elasticsearch assigns each record a score, we discussed Elasticsearch score in Sec-
tion 2.12.1. The search engine returns the CUIs for each mention. We store these can-
didates to be ranked later. We decided to use the Elasticsearch engine (as discussed
earlier, we could have used other indexed-based search engines) to find the mention
and its CUI. Two advantages of using Elasticsearch are, on the one hand, the search-
ing process in big datasets can be done very fast. And on the other hand, we are able
not only to get the exact candidate for the searched entry but also to get similar candi-
dates as well. The total performance of entity linking models depends on the recall of

3We load in the pre-processing step, the MRCONSO tables from UMLS in Elasticsearch. MR-
CONSO is the table that contains all Atoms and CUIs’ names and codes.

62

5.5. Neo4j

this step.

Code Listing 5.3: ElasticSearch Function. This figure shows, how the query is sent to
Elasticsearch via REST API, and the ’hit’ is the results, that are returned from the API
call.

def search ELASTICSEARCH(s t r i n g) :
s t r i n g=s t r i n g . s t r i p () . lower ()
l s t=[]
c l i e n t = E l a s t i c s e a r c h ([” http :// l o c a l h o s t : 9200”])
re sponse = c l i e n t . s earch (

index=” cu i ” ,
body={

”query” : {
” bool ” : {
” should ” : [{”match” : {” l a b e l ” : s t r i n g}} ,
{”match” : {” lang ” : ”ENG”}}]

}
}
, ” s i z e ” : 10

})
for h i t in re sponse [' h i t s '] [' h i t s '] :

l s t . append (h i t [' s ou r c e '] [' cu i '])
return (l s t)

5.5.4 Entity Linking

In the final step, the entity linking is a combination of two values: the first one is the
calculation of the Elasticsearch highest score difference, which is discussed in 4.3.4,
for all returned records from Elasticsearch (mention’s CUIs). The second one is the
average distance between the source node and other entities. The final weight for
each candidate is the sum of these two values. Lumos chooses the lowest distance
average record (CUI) as the candidate for the mention word.
The heuristic method used in this thesis is that, for each entity, we choose the correct
candidate by finding the lowest weight for the candidate and all other candidates.
In the end, we select and rank the candidate which has the lowest sum of average
distance and Elasticsearch score difference among all others. We calculate the dis-
tance between the nodes from the relations table (mrrel). This method could help
us find better results for the candidate node. The less the distance between nodes,
the better it is, because that means the two entities are more related to one another
and have shorter edges connecting them. We try to explain this with the help of an
example and compare it with another example, where distance is not calculated:

63

Chapter 5. Implementation

Shortest Path with the Dijkstra’s Algorithm

This algorithm [58] could be used to find the shortest path between nodes in a graph.
You can specifically determine the shortest path between a node (referred to as the
”source node”) and every other node in the graph. The algorithm keeps a record of
the shortest paths that are currently known between each node to the source node,
and it updates these values whenever a shorter path is found. Once the algorithm
has identified the shortest path between the source node and the target node, that
target node is added to the path and tagged as ”visited”. Until every node in the
graph has been added to the path, the process is repeated. In this manner, a path
that connects the source node to every other node and takes the shortest path to
each node is generated.

5.6 Summary of the Chapter

In this chapter, the approach described in Chapter 4 is implemented in a Python-
based library. Within this chapter, we discussed the software methodology used in
this work and provided a thorough explanation of how each phase of Lumos functions.
The visualization part is implemented based on the packages provided by the Neo4j
library. What we have learned in this section: we learned three recognition tools
and implemented the basis of Lumos in all of them. We decided to choose for the
heuristic approach the MetaMap entity recognition tool, regarding the number of
correct outputs returned by this tool. We realized how stopwords and verbs can
deteriorate our preferred result and how to handle them. We learned how to draw
the graph and make the database in Neo4J and import the data from UMLS raw
files in it. We get to know different forms of software development. We got to
understand different techniques for running queries in Elasticsearch, how to configure
Elasticsearch, and connect to the Elasticsearch server through HTTP protocol. We
learned different methods of calculating the shortest path distance in the graph,
like Dijkstra [58], A* search algorithm [59] and Bellman–Ford algorithm [60] and
decided to use Dijkstra in this work. Finally, through various challenges we faced
during implementation, we learned how to think progressively and, in a solution-
based manner.

64

Chapter 6

Experimental Evaluation

To evaluate our work, we are going to test our framework in terms of the system’s
accuracy. In this chapter, we start by explaining our experimental setups, and after
that, we explain the dataset utilized for this evaluation. We conclude by presenting
the returned results for the accuracy and execution time for the given dataset. We
attempt to answer the following research questions: Q1) How encoding the context
of a text can contribute to entity linking tasks? Q2) How might knowledge encoded
in domain-specific knowledge bases be applied to enhance the task of entity linking?
Q3) what is the effect of representing relations among concepts in a knowledge base
as a graph? Could it be used to measure entity similarity?

6.1 Experimental Setup

We used a virtual machine on Microsoft Azure [61] for the evaluation. The virtual
machine is a Linux server with 4 CPU cores and 16GB RAM. It hosts the Elas-
ticsearch engine and our framework in MetaMap. It connects to the Elasticsearch
server locally.

6.1.1 Metrics

In our evaluation, we employed an accuracy metric to get the number of correct
entities to the overall number of entities or relations in the dataset. Accuracy is
known as the degree to which a calculated or observed value resembles the real value.
It estimates the statistical error by comparing the measured value to the actual value.
The range of such values reveals the measurement’s accuracy. Accuracy is a key factor
for many professionals, including analysts, mathematicians, and scientists, who use

65

Chapter 6. Experimental Evaluation

it to assess the reliability of their data. For instance, by comparing experimental
results to the accepted measurement standard, a scientist might assess the validity
of their findings. Accuracy has the following definition[62]:

Accuracy =
Number of correct predictions

Total number of predictions
(8)

6.1.2 Benchmarks

MedMentions [108] is a publicly available dataset consisting of the titles and ab-
stracts of 4, 392 PubMed[63] articles. The dataset is manually labeled by annotators
and has labeled mention spans and entities linked to the 2017AA full version of
UMLS. The dataset contains 352, 496 mentions, and each mention is specified with
a single Concept Unique Identifier (CUI) and one or more semantic types indicated
by a Type Unique Identifier (TUI). Additionally, MedMentions offers a random 60%
- 20% - 20% split of the corpora into training, validation, and test sets. The test
dataset contains 12% of concepts that are excluded from the training and validation
sets. The concepts related to at least one mention in the MedMentions dataset make
up our target KB for this dataset. We selected MedMentions as our main dataset,
primarily because we wanted to understand the role of domain knowledge (UMLS is
the underlying knowledge base) in the Lumos approach. Both entities from the train-
ing set and zero-shot entities are present in the validation and test sets (never seen
at training time). We employ the author-recommended ST21pv subset, as suggested
by [108], which includes more than 42% of entities in test time. Please take note that
we ran our model on the test set to give the final findings because our model does
not require any training with sentences and associated entities. To compare fairly
with baselines, we employ both seen and unseen settings.

BC5CDR (BioCreative V CDR corpus) The BC5CDR, discussed in [98],
is another biomedical entity linking benchmark, which has a corpus made up of 1,
500 PubMed articles in English containing 4, 409 annotated chemicals and 5, 818
diseases, that have been evenly divided into training, validation, and test sets. Each
entity annotation uses Medical Subject Headings (MeSH) as the target vocabulary
and contains mention text spans as well as normalized concept identifiers. This
dataset additionally has 3, 116 chemical-disease relations in addition to entity linking
annotations.

66

6.1. Experimental Setup

6.1.3 Baseline

Scispacy: Based on the reliable spaCy library [57], authors in [111] introduced scis-
paCy, which is a specialized NLP library for processing medical texts. In this paper,
authors train spaCy models for POS tagging, dependency parsing, and NER using
datasets relevant to the biomedical text. They also improve the tokenization module
with new rules. ”en core sci sm” and ”en core sci md” are the two core released
packages found in scispaCy. Models in the ”en core sci md” package have a bigger
vocabulary and include word vectors, while those in ”en core sci sm” have a limited
vocabulary and do not include word vectors.
TF-idf: which is primarily utilized for candidate retrieval models [92, 65].
BIO-SYN: Introduced in [120], which is a novel approach for learning biomedi-
cal entity representations based on entity synonyms. The likelihood of all synonym
representations in the top candidates is maximized by this method, which learns
biomedical entity representations using the synonym marginalization technique and
iterative candidate retrieval. To capture morphological and semantic information,
the authors use both sparse and dense representations to represent each biomedical
entity.
SAPBERT: Introduced in [100], which is A self-alignment pre-training technique
for learning biomedical entity representations. The proposed method seeks to re-
solve the model entity relations issue (especially synonymy). The authors develop
this framework for metric learning that learns to self-align synonymous biomedical
entities. Both UMLS and task-specific datasets can be used with the approach for
pre-training and fine-tuning.
INDEPENDENT: In this study [103], a zero-shot entity linking task is proposed,
where mentions must be connected to hidden entities without the use of labeled data
from the domain. No metadata or alias tables are assumed because the aim is to
enable robust transfer to extremely specialized domains. In this scenario, entities
are exclusively recognized by text descriptions, and models are forced to resolve new
entities only based on language understanding. The authors demonstrate how strong
reading comprehension models may be applied to generalize entities that have not
yet been observed. The authors then go on to suggest a quick and efficient adaptive
pre-training technique they call domain adaptive pre-training (DAP) to deal with
the domain shift issue associated with linking unseen entities in a new domain.
CLUSTERING-BASED: This paper [65] tries to find relationships between the
entity mentions. It suggests a model in which linking decisions can be made by
clustering numerous mentions together and jointly producing linking predictions in
addition to simply linking to a knowledge base entity.

67

Chapter 6. Experimental Evaluation

6.1.4 Experiment 1

In the first experiment, we used MedMentions. We use MetaMap as our entity
recognition tool and We achieve an accuracy of 53.71%. We performed a series of
ablation studies to comprehend the effects of model choices and parameters. Also,
the result of ablation studies shows us, first: There is no big difference between
different algorithms for calculating the shortest path distance. The accuracy for
both Dijkstra and Bellman-Ford algorithms is the same. Bellman-ford performs
faster than Dijkstra using MedMentions. Second: when we compare the result of
Metamap and Biofalcon, as two different entity recognition tools, we see that the
accuracy for both is similar. Lumos reaches a little bit higher accuracy when it uses
Metamap.

Ablation Study 1.1: using just the search engine

use Elasticsearch: to see how our heuristic method functions and evaluate its effi-
ciency in finding the correct entity for the mention, we repeat the experiment using
just the Elasticsearch function. The accuracy result for this experiment is 50% .
The reason why we got not have very high accuracy for Elasticsearch is that, as we
explained earlier in this section, our proposed approach, Lumos, looks for the top 10
results of Elasticsearch and uses them as candidates for the mention. In some cases,
the gold standard value is not in the top 10 Elasticsearch results. This causes our
approach not to be able to detect the correct CUI for the mention word. The next
limitation is that we have used MRCONSO raw files from UMLS to load data in
Elasticsearch. MRCONSO (the file, which contains all CUIs and labels) is not com-
plete when it is compared to the UMLS web interface, and this causes Elasticsearch
not to find all CUIs.

68

6.1. Experimental Setup

Code Listing 6.1: Code snippet of using Elasticsearch with the top one result.
This is a function when Elasticsearch returns the size = 1, i.e. Elasticsearch returns the
top result.

def search ELASTICSEARCH(s t r i n g) :
s t r i n g=s t r i n g . s t r i p () . lower ()
l s t=[]
c l i e n t = E l a s t i c s e a r c h ([” http :// l o c a l h o s t : 9200”])
re sponse = c l i e n t . s earch (

index=” cu i ” ,
body={

”query” : {
” bool ” : {
” should ” : [{”match” : {” l a b e l ” : s t r i n g}} ,
{”match” : {” lang ” : ”ENG”}}]

}
}
, ” s i z e ” : 1

}
)
for h i t in re sponse [' h i t s '] [' h i t s '] :

l s t . append (h i t [' s ou r c e '] [' cu i '])
return (l s t)

Ablation Study 1.2: Use another shortest path distance algorithm

To test Lumos with another algorithm for calculating the shortest path distance,
we used the Bellman-Ford algorithm, which is introduced in 2.11.3. We calculated
accuracy and the run time. We obtain an accuracy of 53.71%.

Ablation Study 1.3: Use another entity recognition tool

To find out, if our method is dependent on an entity recognition tool, we have utilized
BioFalcon, which is introduced in Section 5.5.2. We achieved an accuracy of 53.53%.

6.1.5 Experiment 2

In this experiment, we used the BC5CDR dataset, which is a smaller dataset. We
evaluated the accuracy of Lumos in three different ablation studies. We got an accu-
racy of 59.46%. We performed a series of ablation studies for the second experiment
to understand the effects of model choices and parameters, as well. Also, the result

69

Chapter 6. Experimental Evaluation

of ablation studies shows us, first: In this experiment also, there is no big difference
between different algorithms for calculating the shortest path distance. The accu-
racy for both the Dijkstra and Bellman-Ford algorithms is the same. The Dijkstra
algorithm performs three minutes faster than the Bellman-Ford using MedMentions
(this difference in execution time is Negligible). Second: when we compare the result
of Metamap and Biofalcon, as two different entity recognition tools, we see that the
accuracy for both is similar in this experiment as well. Lumos reaches a little bit
higher accuracy when it uses Biofalcon.

Ablation Study 2.1: using just the search engine

Elasticsearch: To see how our heuristic method functions and evaluate its efficiency
in finding the correct entity for the mention, we repeat the experiment using just the
Elasticsearch function. The accuracy result for this experiment is 53.3%.

Code Listing 6.2: Code snippet of using Elasticsearch with the top one result.
This is a function when Elasticsearch returns the size = 1, i.e. Elasticsearch returns the
top result.

def search ELASTICSEARCH(s t r i n g) :
s t r i n g=s t r i n g . s t r i p () . lower ()
l s t=[]
c l i e n t = E l a s t i c s e a r c h ([” http :// l o c a l h o s t : 9200”])
re sponse = c l i e n t . s earch (

index=” cu i ” ,
body={

”query” : {
” bool ” : {
” should ” : [{”match” : {” l a b e l ” : s t r i n g}} ,
{”match” : {” lang ” : ”ENG”}}]

}
}
, ” s i z e ” : 1

}
)
for h i t in re sponse [' h i t s '] [' h i t s '] :

l s t . append (h i t [' s ou r c e '] [' cu i '])
return (l s t)

70

6.2. Accuracy and Execution time Result of two Experiments

Ablation Study 2.2: Use another shortest path distance algorithm

We run the Bellman-Ford algorithm as the algorithm for the calculation of the short-
est path distance on the BC5CDR dataset and got an accuracy of 59.46%.

Ablation Study 2.3: Use another entity recognition tool

In the second experiment, we wanted to find out whether our method is dependent
on the entity recognition tool. So, we chose BioFalcon, as another entity recognition
tool. We achieved an accuracy of 59.86%.

6.2 Accuracy and Execution time Result of two

Experiments

In the following table 6.1, we see the accuracy results for each baseline as well as
for Lumos. As is shown in Table 6.1, for the MedMentions dataset, Lumos got the
highest accuracy of 53.71% when we used Metamap as the entity recognition tool.
We notice that Lumos is independent of the shortest path distance algorithm, as we
have achieved, for both Dijkstra and Bellman-Ford algorithms, the same accuracy
result. We experimented with the performance of Lumos on the BC5CDR dataset as
well. Here Lumos achieves the highest accuracy result when we used Biofalcon as the
entity recognition tool and Dijkstra as the shortest path distance algorithm. If we
used the Ballman-Ford algorithm, when we have Biofalcon as our entity recognition
tool, we would have achieved the same accuracy result, since in the experiments
we understood that Lumos is independent of the shortest path distance algorithm.
Why Lumos is not influenced by the shortest path algorithm? Because shortest path
algorithms track the shortest known distance between each node and the source node
and update these values just when the shortest path is found, Lumos is not impacted
by shortest path algorithms. In our methodology, we have taken the MRREL table
from the UMLS knowledge base and built a graph of relations based on the MRREL
table, where the dataset’s elements are static (at the time of our evaluation, if the
dataset has updates in the future, that may be affected), i.e., the distance between
two vertices is not altering. Therefore, it is not crucial whether the shortest path
technique is used since the algorithm ultimately determines a static distance between
the vertices in the MRREL table. After conducting two experiments and ablation
studies, we understood that each of the two entity recognition tools used in Lumos
has better results in different datasets. That means, MetaMap performed better, in
case of higher accuracy 6.1, in the MedMentions dataset. It gave us more detected

71

Chapter 6. Experimental Evaluation

CUIs for entities, that were correct in the MedMentions dataset. On the other
hand, Biofalcon performed better in BC5CDR dataset. It gave us higher accuracy
than MetaMap, i.e., Biofalcon found more correct CUIs for entities in the BC5CDR
dataset 6.1. We have used MetaMap in our test dataset, the reason is explained
in Section 5.5.2. In the evaluation, both entity recognition tools, Biofalcon and
MetaMap are used. The reason we have considered the execution time was that
we wanted to see with which entity recognition tool and shortrdt path algorithm,
perform Lumos faster. In general, we have used accuracy and execution time as
parameters, to evaluate the efficiency and performance of our proposed approach.

Table 6.1: The accuracy result on two Biomedical datasets (MedMentions and
BC5CDR). Baseline values are from [64, 65], and the execution time is calculated in
Lumos. Other baselines did not consider the execution time, and for them, we used ”-”,
which means: there is no execution time for the given baseline. As is shown in the table, the
results for the Lumos approach are all the cases of two experiments and ablation studies.

Accuracy Execution time Accuracy Execution time
MedMentions BC5CDR

SciSpacy 38.8 - 53.9 -
N-GRAM TF-idf 50.9 - 86.9 -
BIO-SYN 72.5 - 87.8 -
SAPBERT 69.8 - 85.2 -
INDEPENDENT 72.8 - 90.5 -
CLUSTERING-BASED 74.1 - 91.3 -
DUAL 75.7 - NA -
Lumos (ours)(Metamap/Dijkstra) 53.71 14 hours and 30 minutes 59.46 3 hours and 17 minutes
Lumos(only Elasticsearch) 50.59 - 53.3 -
Lumos(Metamap/Bellman Ford) 53.71 13 hours and 35 minutes 59.46 3 hours and 21 minutes
Lumos(Biofalcon/Dijkstra) 53.53 22 hours and 17 minutes 59.86 5 hours and 11 minutes

6.3 Summary of the Chapter

In this section, we evaluated our suggested approach against one of the most known
benchmarks in the biomedical domain. We went into detail about how our strategy
operates. We calculated accuracy twice, once using our approach and once without,
to determine whether our suggested method performs better and achieves higher
accuracy or not.

72

Chapter 7

Conclusions and Future Work

This chapter provides a summary of the outcomes of this thesis, explains how the
thesis problem was resolved, and our objectives were met, and identify major limi-
tations in our work. We will also explore potential enhancements for future works
based on the aforementioned restrictions.

7.1 Conclusion

In this thesis, we proposed Lumos, an independent and functional framework that
can be used to recognize and link relations and entities in a sentence to the cor-
responding CUIs in the UMLS knowledge base. We evaluated the effectiveness of
our approach on the two biomedical datasets. We proved through analysis that,
compared to the baseline, our approach is more effective in linking mentions with
ambiguous surface forms. Our method includes a heuristic approach to deal with the
problem of recognizing and linking relations and entities in a sentence. Therefore,
when dealing with phrases that contain multiple relations and complicated entities,
our framework emphasizes the importance of heuristic approaches to handle difficul-
ties like this in real-time.
Additionally, having an indexed-based representation of a knowledge base demon-
strates how search queries can be applied to the knowledge base efficiently. Also,
combining the score variable from the search engine helped us better rank and link
the mentions to their corresponding CUIs in the knowledge graph. However, choosing
the right variables and search engine configuration has a big impact on the quality
of the results. We have achieved higher accuracy in both datasets, compared to the
accuracy results of the baseline. The achievement of higher accuracy means that our
proposed solution can handle ambiguous mentions efficiently and, in most cases, link

73

Chapter 7. Conclusions and Future Work

the mentions to their correct counterpart in the knowledge base.

7.2 Limitations

Like any other system or framework, our method has some limitations as well. In
the following, we will talk about the limitations of our work:

• entity recognition tools Sometimes entity recognition tools are unable to rec-
ognize all the entities in the text and return an incorrect CUI based on the
content. (In this case, ”entity” refers to all the text’s words, excluding the
mention). As a result, we use the incorrect CUI to calculate the distance,
which causes us to select the incorrect candidate for mention.

• One of Metamap’s limitations is that it can be applied just to English contexts.
Also, it is relatively slow and requires hours of computation. MetaMap’s re-
duced accuracy in the presence of ambiguity is possibly its worst weakness.
Although MetaMap uses a WSD algorithm to minimize ambiguity, it is ob-
vious that further disambiguation work will be required to effectively fix the
issue, especially given how ambiguous the Metathesaurus is getting.

• Limitation of knowledge graph: Since UMLS is a medical knowledge base, in
our approach we always get lower average rates for the entities with medical
backgrounds. For example: consider two words ”common cold (C0009443)”
and ”cold temperature (C0009264)”. For ”common cold”, there are 79 relations
(Broader (RB) and Narrower (RN) Concepts), but ”cold temperature” has only
11 relations (Broader(RB) and Narrower(RN) Concepts). As we traverse the
graph of relations, the probability to have a lower distance for a node with
many relations is extremely higher than the one with lower relations. So, for
the entity ranking task, we get sometimes higher ranks for the words with a
medical background, although this word might differ from the mention we are
looking for. As the result, the total accuracy could deteriorate.

7.3 Future Work

Improvement of Relation and Entity Extraction: The heuristic approach can
be strengthened by including more rules for relations and entity extraction. These
additional rules can be introduced by looking at other biomedical datasets and at-
tempting to identify patterns, which are rendered into rules in the approach.

74

7.3. Future Work

Improvement of Entity Recognition: In the scope of this work, we have studied
three entity recognition tools. In future work, we could mention that other entity
recognition tools could also be applied, and the performance of the method could be
evaluated with other tools.
Improvement of representation of the KB: For entities, there is not much room
for improvement. However, to increase the possibility that any synonym for the re-
lation would match, alternative dictionaries can be employed. Additionally, other
forms of the relation’s term may also be added to the KB. For instance, the word’s
singular or plural form, or all the tenses of the verbs in the relations.
Generalizing to other languages: The Lumos approach could be generalized to
other languages as well. Other language-specific components could be added to the
proposed heuristic method and could be validated with other datasets from other
languages.

75

Bibliography

[1] url: https://www.ontotext.com/knowledgehub/fundamentals/what-is-
a-knowledge-base/.

[2] url: https://virtuoso.openlinksw.com/.

[3] url: https://www.nlm.nih.gov/research/umls/new_users/online_
learning/OVR_001.html.

[4] url: https://www.ontotext.com/knowledgehub/fundamentals/what-
are-ontologies/.

[5] url: https://monkeylearn.com/blog/named-entity-recognition/.

[6] url: https://www.nhs.uk/conditions/antihistamines/#:~:text=
Antihistamines%5C%20are%5C%20medicines%5C%20often%5C%20used,

short%5C%2Dterm%5C%20treatment%5C%20for%5C%20insomnia..

[7] url: https : / / www . merkleinc . com / blog / dispelling - myths - deep -

learning-vs-machine-learning.

[8] url: https://cnvrg.io/cnn-sentence-classification/).

[9] url: https://paperswithcode.com/method/gcn).

[10] url: https://www.mygreatlearning.com/blog/word-embedding/).

[11] url: https://towardsdatascience.com/bert-explained-state-of-the-
art-language-model-for-nlp-f8b21a9b6270.

[12] url: https://blog.christianperone.com/tag/vector-space-model/).

[13] url: https://www.britannica.com/biography/Leonhard-Euler.

[14] url: https : / / www . britannica . com / science / Konigsberg - bridge -

problem.

[15] url: https://en.wikipedia.org/wiki/Hamming_distance.

[16] url: https://en.wikipedia.org/wiki/Levenshtein_distance.

76

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-base/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-base/
https://virtuoso.openlinksw.com/
https://www.nlm.nih.gov/research/umls/new_users/online_learning/OVR_001.html
https://www.nlm.nih.gov/research/umls/new_users/online_learning/OVR_001.html
https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/
https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/
https://monkeylearn.com/blog/named-entity-recognition/
https://www.nhs.uk/conditions/antihistamines/#:~:text=Antihistamines%5C%20are%5C%20medicines%5C%20often%5C%20used,short%5C%2Dterm%5C%20treatment%5C%20for%5C%20insomnia.
https://www.nhs.uk/conditions/antihistamines/#:~:text=Antihistamines%5C%20are%5C%20medicines%5C%20often%5C%20used,short%5C%2Dterm%5C%20treatment%5C%20for%5C%20insomnia.
https://www.nhs.uk/conditions/antihistamines/#:~:text=Antihistamines%5C%20are%5C%20medicines%5C%20often%5C%20used,short%5C%2Dterm%5C%20treatment%5C%20for%5C%20insomnia.
https://www.merkleinc.com/blog/dispelling-myths-deep-learning-vs-machine-learning
https://www.merkleinc.com/blog/dispelling-myths-deep-learning-vs-machine-learning
https://cnvrg.io/cnn-sentence-classification/)
https://paperswithcode.com/method/gcn)
https://www.mygreatlearning.com/blog/word-embedding/)
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://blog.christianperone.com/tag/vector-space-model/)
https://www.britannica.com/biography/Leonhard-Euler
https://www.britannica.com/science/Konigsberg-bridge-problem
https://www.britannica.com/science/Konigsberg-bridge-problem
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

Bibliography

[17] url: https : / / en . wikipedia . org / wiki / Jaro % 5C % E2 % 5C % 80 % 5C %

93Winkler_distance.

[18] url: https://itnext.io/string-similarity-the-basic-know-your-
algorithms-guide-3de3d7346227.

[19] url: https://itnext.io/string-similarity-the-basic-know-your-
algorithms-guide-3de3d7346227.

[20] url: https://en.wikipedia.org/wiki/S%5C%C3%5C%B8rensen%5C%E2%5C%
80%5C%93Dice_coefficient.

[21] url: https://en.wikipedia.org/wiki/Jaccard_index.

[22] url: http://wiki.gis.com/wiki/index.php/Shortest_path_problem.

[23] url: https://www.researchgate.net/figure/The-pseudo-code-of-
Dijkstras-algorithm-adapted-from-Wikipedia-2011_fig2_233025836.

[24] url: https://www.educative.io/answers/what-is-the-bellman-ford-
algorithm.

[25] url: https://www.programiz.com/dsa/bellman-ford-algorithm.

[26] url: https : / / medium . com / geekculture / cosine - similarity - and -

cosine-distance-48eed889a5c4.

[27] url: https://en.wikipedia.org/wiki/Search_engine_(computing).

[28] url: https://en.wikipedia.org/wiki/Elasticsearch.

[29] url: https : / / marcobonzanini . com / 2015 / 02 / 02 / how - to - query -

elasticsearch-with-python/.

[30] url: https://www.elastic.co/what-is/elasticsearch.

[31] url: https://www.compose.com/articles/how- scoring- works- in-
elasticsearch/.

[32] url: https://www.elastic.co/guide/en/elasticsearch/reference/
current/query-dsl-fuzzy-query.html#fuzzy-query-ex-request.

[33] url: https://hackernoon.com/how-to-use-fuzzy-query-matches-in-
elasticsearch-dh1h3167.

[34] url: https://www.elastic.co/blog/found-fuzzy-search.

[35] url: https://www.learndatasci.com/glossary/tf-idf-term-frequency-
inverse-document-frequency/.

77

https://en.wikipedia.org/wiki/Jaro%5C%E2%5C%80%5C%93Winkler_distance
https://en.wikipedia.org/wiki/Jaro%5C%E2%5C%80%5C%93Winkler_distance
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227
https://en.wikipedia.org/wiki/S%5C%C3%5C%B8rensen%5C%E2%5C%80%5C%93Dice_coefficient
https://en.wikipedia.org/wiki/S%5C%C3%5C%B8rensen%5C%E2%5C%80%5C%93Dice_coefficient
https://en.wikipedia.org/wiki/Jaccard_index
http://wiki.gis.com/wiki/index.php/Shortest_path_problem
https://www.researchgate.net/figure/The-pseudo-code-of-Dijkstras-algorithm-adapted-from-Wikipedia-2011_fig2_233025836
https://www.researchgate.net/figure/The-pseudo-code-of-Dijkstras-algorithm-adapted-from-Wikipedia-2011_fig2_233025836
https://www.educative.io/answers/what-is-the-bellman-ford-algorithm
https://www.educative.io/answers/what-is-the-bellman-ford-algorithm
https://www.programiz.com/dsa/bellman-ford-algorithm
https://medium.com/geekculture/cosine-similarity-and-cosine-distance-48eed889a5c4
https://medium.com/geekculture/cosine-similarity-and-cosine-distance-48eed889a5c4
https://en.wikipedia.org/wiki/Search_engine_(computing)
https://en.wikipedia.org/wiki/Elasticsearch
https://marcobonzanini.com/2015/02/02/how-to-query-elasticsearch-with-python/
https://marcobonzanini.com/2015/02/02/how-to-query-elasticsearch-with-python/
https://www.elastic.co/what-is/elasticsearch
https://www.compose.com/articles/how-scoring-works-in-elasticsearch/
https://www.compose.com/articles/how-scoring-works-in-elasticsearch/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html#fuzzy-query-ex-request
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html#fuzzy-query-ex-request
https://hackernoon.com/how-to-use-fuzzy-query-matches-in-elasticsearch-dh1h3167
https://hackernoon.com/how-to-use-fuzzy-query-matches-in-elasticsearch-dh1h3167
https://www.elastic.co/blog/found-fuzzy-search
https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/
https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/

Bibliography

[36] url: https://machinelearningknowledge.ai/tutorial-for-stopwords-
in-spacy/.

[37] url: https://en.wikipedia.org/wiki/Heuristic_(computer_science).

[38] url: https://en.wikipedia.org/wiki/A*_search_algorithm.

[39] url: https://en.wikipedia.org/wiki/Travelling_salesman_problem.

[40] url: https://en.wikipedia.org/wiki/DBpedia.

[41] url: https://www.news-medical.net/news/20230124/Smoking-during-
pregnancy-reduces-childhood-brain-growth-in-very-preterm-babies.

aspx.

[42] url: https://www.wikipedia.org/.

[43] url: https://wordnet.princeton.edu/.

[44] url: https://www.nlm.nih.gov/research/umls/index.html.

[45] url: https://www.ismp.org/resources/medical-abbreviations-have-
contradictory-or-ambiguous-meanings.

[46] url: https://www.studysmarter.us/explanations/english/lexis-and-
semantics/polysemy/.

[47] url: https://en.wikipedia.org/wiki/Charles_Dickens.

[48] url: https://roadmunk.com/guides/types-of-software-development-
methodologies/.

[49] url: https://en.wikipedia.org/wiki/Spiral_model#/media/File:
Spiral_model_(Boehm,_1988).svg.

[50] url: https://numpy.org/.

[51] url: https://pandas.pydata.org/.

[52] url: https://neo4j.com/.

[53] url: https://networkx.guide/algorithms/shortest-path/.

[54] url: https://en.wikipedia.org/wiki/Neo4j.

[55] url: https://towardsdatascience.com/medcattrainer-a-tool-for-
inspecting-improving-and-customising-medcat-880a11297ebe.

[56] url: https : / / www . nlm . nih . gov / research / umls / implementation _

resources/metamap.html.

[57] url: https://en.wikipedia.org/wiki/SpaCy.

78

https://machinelearningknowledge.ai/tutorial-for-stopwords-in-spacy/
https://machinelearningknowledge.ai/tutorial-for-stopwords-in-spacy/
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/DBpedia
https://www.news-medical.net/news/20230124/Smoking-during-pregnancy-reduces-childhood-brain-growth-in-very-preterm-babies.aspx
https://www.news-medical.net/news/20230124/Smoking-during-pregnancy-reduces-childhood-brain-growth-in-very-preterm-babies.aspx
https://www.news-medical.net/news/20230124/Smoking-during-pregnancy-reduces-childhood-brain-growth-in-very-preterm-babies.aspx
https://www.wikipedia.org/
https://wordnet.princeton.edu/
https://www.nlm.nih.gov/research/umls/index.html
https://www.ismp.org/resources/medical-abbreviations-have-contradictory-or-ambiguous-meanings
https://www.ismp.org/resources/medical-abbreviations-have-contradictory-or-ambiguous-meanings
https://www.studysmarter.us/explanations/english/lexis-and-semantics/polysemy/
https://www.studysmarter.us/explanations/english/lexis-and-semantics/polysemy/
https://en.wikipedia.org/wiki/Charles_Dickens
https://roadmunk.com/guides/types-of-software-development-methodologies/
https://roadmunk.com/guides/types-of-software-development-methodologies/
https://en.wikipedia.org/wiki/Spiral_model#/media/File:Spiral_model_(Boehm,_1988).svg
https://en.wikipedia.org/wiki/Spiral_model#/media/File:Spiral_model_(Boehm,_1988).svg
https://numpy.org/
https://pandas.pydata.org/
https://neo4j.com/
https://networkx.guide/algorithms/shortest-path/
https://en.wikipedia.org/wiki/Neo4j
https://towardsdatascience.com/medcattrainer-a-tool-for-inspecting-improving-and-customising-medcat-880a11297ebe
https://towardsdatascience.com/medcattrainer-a-tool-for-inspecting-improving-and-customising-medcat-880a11297ebe
https://www.nlm.nih.gov/research/umls/implementation_resources/metamap.html
https://www.nlm.nih.gov/research/umls/implementation_resources/metamap.html
https://en.wikipedia.org/wiki/SpaCy

Bibliography

[58] url: https://en.wikipedia.org/w/index.php?title=Dijkstra%5C%27s_
algorithm&oldid=1117533081.

[59] url: https://en.wikipedia.org/wiki/A*_search_algorithm.

[60] url: https://en.wikipedia.org/wiki/Bellman%5C%E2%5C%80%5C%
93Ford_algorithm.

[61] url: https://en.wikipedia.org/wiki/Microsoft_Azure.

[62] url: https : / / developers . google . com / machine - learning / crash -

course / classification / accuracy# : ~ : text = Formally % 5C % 2C % 5C %

20accuracy%5C%20has%5C%20the%5C%20following, N%5C%20%5C%2B%

5C%20F%5C%20P%5C%20%5C%2B%5C%20F%5C%20N.

[63] url: https://pubmed.ncbi.nlm.nih.gov/.

[64] Dhruv Agarwal et al. “Entity Linking via Explicit Mention-Mention Corefer-
ence Modeling”. In: Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Seattle, United States: Association for Computational Linguis-
tics, July 2022, pp. 4644–4658. doi: 10.18653/v1/2022.naacl-main.343.
url: https://aclanthology.org/2022.naacl-main.343.

[65] Rico Angell et al. “Clustering-based Inference for Biomedical Entity Linking”.
In: Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
Online: Association for Computational Linguistics, June 2021, pp. 2598–2608.
doi: 10.18653/v1/2021.naacl-main.205. url: https://aclanthology.
org/2021.naacl-main.205.

[66] S. Auer et al. “DBpedia: A Nucleus for a Web of Open Data”. In: ISWC/ASWC.
2007.

[67] Trapit Bansal et al. “Simultaneously Linking Entities and Extracting Rela-
tions from Biomedical Text Without Mention-level Supervision”. In: AAAI.
2020.

[68] Dennis Becker et al. “Predictive modeling in e-mental health: A common
language framework”. In: Internet Interventions (). doi: https://doi.org/
10.1016/j.invent.2018.03.002. url: https://www.sciencedirect.com/
science/article/pii/S2214782917301124.

[69] Olivier Bodenreider. “The Unified Medical Language System (UMLS): Inte-
grating Biomedical Terminology”. In: Nucleic acids research 32 (Feb. 2004),
pp. D267–70. doi: 10.1093/nar/gkh061.

79

https://en.wikipedia.org/w/index.php?title=Dijkstra%5C%27s_algorithm&oldid=1117533081
https://en.wikipedia.org/w/index.php?title=Dijkstra%5C%27s_algorithm&oldid=1117533081
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Bellman%5C%E2%5C%80%5C%93Ford_algorithm
https://en.wikipedia.org/wiki/Bellman%5C%E2%5C%80%5C%93Ford_algorithm
https://en.wikipedia.org/wiki/Microsoft_Azure
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:~:text=Formally%5C%2C%5C%20accuracy%5C%20has%5C%20the%5C%20following,N%5C%20%5C%2B%5C%20F%5C%20P%5C%20%5C%2B%5C%20F%5C%20N
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:~:text=Formally%5C%2C%5C%20accuracy%5C%20has%5C%20the%5C%20following,N%5C%20%5C%2B%5C%20F%5C%20P%5C%20%5C%2B%5C%20F%5C%20N
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:~:text=Formally%5C%2C%5C%20accuracy%5C%20has%5C%20the%5C%20following,N%5C%20%5C%2B%5C%20F%5C%20P%5C%20%5C%2B%5C%20F%5C%20N
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:~:text=Formally%5C%2C%5C%20accuracy%5C%20has%5C%20the%5C%20following,N%5C%20%5C%2B%5C%20F%5C%20P%5C%20%5C%2B%5C%20F%5C%20N
https://pubmed.ncbi.nlm.nih.gov/
https://doi.org/10.18653/v1/2022.naacl-main.343
https://aclanthology.org/2022.naacl-main.343
https://doi.org/10.18653/v1/2021.naacl-main.205
https://aclanthology.org/2021.naacl-main.205
https://aclanthology.org/2021.naacl-main.205
https://doi.org/https://doi.org/10.1016/j.invent.2018.03.002
https://doi.org/https://doi.org/10.1016/j.invent.2018.03.002
https://www.sciencedirect.com/science/article/pii/S2214782917301124
https://www.sciencedirect.com/science/article/pii/S2214782917301124
https://doi.org/10.1093/nar/gkh061

Bibliography

[70] Barry Boehm and Wilfred Hansen. “The Spiral Model as a Tool for Evolu-
tionary Acquisition”. In: CrossTalk 14 (Jan. 2001).

[71] Busra Celikkaya et al. “LATTE: Latent type modeling for biomedical en-
tity linking”. In: AAAI 2020. 2020. url: https://www.amazon.science/
publications/latte-latent-type-modeling-for-biomedical-entity-

linking.

[72] Lihan Chen et al. “Short Text Entity Linking with Fine-grained Topics”. In:
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (2018).

[73] Lihu Chen, Gaël Varoquaux, and Fabian M. Suchanek. “A Lightweight Neural
Model for Biomedical Entity Linking”. In: AAAI. 2021.

[74] Xiao Cheng and Dan Roth. “Relational Inference for Wikification”. In: Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. Seattle, Washington, USA: Association for Computational Lin-
guistics, Oct. 2013, pp. 1787–1796. url: https://aclanthology.org/D13-
1184.

[75] Silviu Cucerzan. “Large-Scale Named Entity Disambiguation Based onWikipedia
Data”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL). Prague, Czech Republic: Association for Computational
Linguistics, June 2007, pp. 708–716. url: https://aclanthology.org/D07-
1074.

[76] Marko Čuljak et al. “Strong Heuristics for Named Entity Linking”. In: Pro-
ceedings of the 2022 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies: Student
Research Workshop. July 2022, pp. 235–246. doi: 10.18653/v1/2022.naacl-
srw.30.

[77] Jennifer D’Souza and Vincent Ng. “Sieve-Based Entity Linking for the Biomed-
ical Domain”. In: ACL. 2015.

[78] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. url: http://arxiv.org/abs/1810.04805.

80

https://www.amazon.science/publications/latte-latent-type-modeling-for-biomedical-entity-linking
https://www.amazon.science/publications/latte-latent-type-modeling-for-biomedical-entity-linking
https://www.amazon.science/publications/latte-latent-type-modeling-for-biomedical-entity-linking
https://aclanthology.org/D13-1184
https://aclanthology.org/D13-1184
https://aclanthology.org/D07-1074
https://aclanthology.org/D07-1074
https://doi.org/10.18653/v1/2022.naacl-srw.30
https://doi.org/10.18653/v1/2022.naacl-srw.30
http://arxiv.org/abs/1810.04805

Bibliography

[79] Orri Erling and Ivan Mikhailov. “RDF Support in the Virtuoso DBMS”. In:
Networked Knowledge - Networked Media: Integrating Knowledge Manage-
ment, New Media Technologies and Semantic Systems. Ed. by Tassilo Pel-
legrini et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 7–24.
isbn: 978-3-642-02184-8. doi: 10.1007/978-3-642-02184-8_2. url: https:
//doi.org/10.1007/978-3-642-02184-8_2.

[80] U. Feige, David Peleg, and Guy Kortsarz. “The Dense k -Subgraph Problem”.
In: Algorithmica 29 (Mar. 2001), pp. 410–421. doi: 10.1007/s004530010050.

[81] Paolo Ferragina and Ugo Scaiella. “TAGME: on-the-fly annotation of short
text fragments (by wikipedia entities)”. In: Proceedings of the 19th ACM in-
ternational conference on Information and knowledge management (2010).

[82] Yingjie Gu et al. “Read, Retrospect, Select: An MRC Framework to Short
Text Entity Linking”. In: ArXiv abs/2101.02394 (2021).

[83] Yuhang Guo et al. “A Graph-based Method for Entity Linking”. In: Pro-
ceedings of 5th International Joint Conference on Natural Language Pro-
cessing. Asian Federation of Natural Language Processing. url: https://
aclanthology.org/I11-1113.

[84] Zhaochen Guo and Denilson Barbosa. “Entity Linking with a Unified Se-
mantic Representation”. In: Proceedings of the 23rd International Conference
on World Wide Web. New York, NY, USA: Association for Computing Ma-
chinery, 2014. isbn: 9781450327459. doi: 10.1145/2567948.2579705. url:
https://doi.org/10.1145/2567948.2579705.

[85] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representa-
tion Learning on Large Graphs”. In: 2017. isbn: 9781510860964.

[86] Charles R. Harris et al. “Array Programming with NumPy”. In: (2020). url:
https://arxiv.org/abs/2006.10256.

[87] Johannes Hoffart et al. “Robust Disambiguation of Named Entities in Text”.
In: Proceedings of the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing. Edinburgh, Scotland, UK.: Association for Computational
Linguistics, July 2011, pp. 782–792. url: https://aclanthology.org/D11-
1072.

[88] Raphael Hoffmann et al. “Knowledge-Based Weak Supervision for Informa-
tion Extraction of Overlapping Relations”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA: Association for Computational Linguis-
tics, June 2011, pp. 541–550. url: https://aclanthology.org/P11-1055.

81

https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/s004530010050
https://aclanthology.org/I11-1113
https://aclanthology.org/I11-1113
https://doi.org/10.1145/2567948.2579705
https://doi.org/10.1145/2567948.2579705
https://arxiv.org/abs/2006.10256
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://aclanthology.org/P11-1055

Bibliography

[89] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Comput. Surv. 54.4 (July
2021). issn: 0360-0300. doi: 10.1145/3447772. url: https://doi.org/10.
1145/3447772.

[90] Filip Ilievski et al. “Context-enhanced Adaptive Entity Linking”. In: Proceed-
ings of the Tenth International Conference on Language Resources and Eval-
uation (LREC’16). Portorož, Slovenia: European Language Resources Asso-
ciation (ELRA), May 2016, pp. 541–548. url: https://aclanthology.org/
L16-1086.

[91] Vivek Iyer, Arvind Agarwal, and Harshit Kumar. “VeeAlign: a supervised
deep learning approach to ontology alignment”. In: OM@ISWC. 2020.

[92] Manoj Prabhakar Kannan Ravi et al. “CHOLAN: A Modular Approach for
Neural Entity Linking on Wikipedia and Wikidata”. In: Proceedings of the
16th Conference of the European Chapter of the Association for Computa-
tional Linguistics: Main Volume. Online: Association for Computational Lin-
guistics, Apr. 2021, pp. 504–514. doi: 10.18653/v1/2021.eacl-main.40.
url: https://aclanthology.org/2021.eacl-main.40.

[93] Samir Khuller and Barna Saha. “On finding dense subgraphs”. English (US).
In: Automata, Languages and Programming - 36th International Colloquium,
ICALP 2009, Proceedings. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) PART 1. Funding Information: Research supported by NSF CCF
0728839 and a Google Research Award.; 36th International Colloquium on
Automata, Languages and Programming, ICALP 2009 ; Conference date:
05-07-2009 Through 12-07-2009. 2009, pp. 597–608. isbn: 3642029264. doi:
10.1007/978-3-642-02927-1_50.

[94] Thomas N. Kipf and MaxWelling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In.

[95] Zeljko Kraljevic et al. Multi-domain Clinical Natural Language Processing
with MedCAT: the Medical Concept Annotation Toolkit. 2020. doi: 10.48550/
ARXIV.2010.01165. url: https://arxiv.org/abs/2010.01165.

[96] Sayali Kulkarni et al. “Collective Annotation of Wikipedia Entities in Web
Text”. In: isbn: 9781605584959. doi: 10 . 1145 / 1557019 . 1557073. url:
https://doi.org/10.1145/1557019.1557073.

[97] Haodi Li et al. “CNN-based ranking for biomedical entity normalization”. In:
BMC Bioinformatics 18 (2017).

82

https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://aclanthology.org/L16-1086
https://aclanthology.org/L16-1086
https://doi.org/10.18653/v1/2021.eacl-main.40
https://aclanthology.org/2021.eacl-main.40
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.48550/ARXIV.2010.01165
https://doi.org/10.48550/ARXIV.2010.01165
https://arxiv.org/abs/2010.01165
https://doi.org/10.1145/1557019.1557073
https://doi.org/10.1145/1557019.1557073

Bibliography

[98] Jiao Li et al. “BioCreative V CDR task corpus: a resource for chemical dis-
ease relation extraction”. In: Database 2016 (May 2016). baw068. issn: 1758-
0463. doi: 10.1093/database/baw068. eprint: https://academic.oup.
com/database/article-pdf/doi/10.1093/database/baw068/8224483/

baw068.pdf. url: https://doi.org/10.1093/database/baw068.

[99] Yujia Li et al. GATED GRAPH SEQUENCE NEURAL NETWORKS. 2016.

[100] Fangyu Liu et al. “Self-alignment Pre-training for Biomedical Entity Rep-
resentations”. In: CoRR abs/2010.11784 (2020). arXiv: 2010.11784. url:
https://arxiv.org/abs/2010.11784.

[101] Xiaohua Liu et al. “Entity Linking for Tweets”. In: Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). url: https://aclanthology.org/P13-1128.

[102] Lajanugen Logeswaran et al. “Zero-Shot Entity Linking by Reading Entity
Descriptions”. In: ACL. 2019.

[103] Lajanugen Logeswaran et al. “Zero-Shot Entity Linking by Reading Entity
Descriptions”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, July 2019, pp. 3449–3460. doi: 10.18653/v1/P19-1335. url:
https://aclanthology.org/P19-1335.

[104] Gang Luo et al. “Joint Entity Recognition and Disambiguation”. In: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing. Lisbon, Portugal: Association for Computational Linguistics, Sept.
2015, pp. 879–888. doi: 10.18653/v1/D15-1104. url: https://aclanthology.
org/D15-1104.

[105] Rada Mihalcea and Andras Csomai. “Wikify! Linking Documents to Encyclo-
pedic Knowledge”. In: Proceedings of the Sixteenth ACM Conference on Con-
ference on Information and Knowledge Management. 2007. isbn: 9781595938039.
doi: 10 . 1145 / 1321440 . 1321475. url: https : / / doi . org / 10 . 1145 /

1321440.1321475.

[106] David Milne and Ian H. Witten. “Learning to Link with Wikipedia”. In: Pro-
ceedings of the 17th ACM Conference on Information and Knowledge Man-
agement. New York, NY, USA, 2008. isbn: 9781595939913. doi: 10.1145/
1458082.1458150. url: https://doi.org/10.1145/1458082.1458150.

[107] David N. Milne and Ian H. Witten. “An effective, low-cost measure of semantic
relatedness obtained from Wikipedia links”. In: 2008.

83

https://doi.org/10.1093/database/baw068
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baw068/8224483/baw068.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baw068/8224483/baw068.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baw068/8224483/baw068.pdf
https://doi.org/10.1093/database/baw068
https://arxiv.org/abs/2010.11784
https://arxiv.org/abs/2010.11784
https://aclanthology.org/P13-1128
https://doi.org/10.18653/v1/P19-1335
https://aclanthology.org/P19-1335
https://doi.org/10.18653/v1/D15-1104
https://aclanthology.org/D15-1104
https://aclanthology.org/D15-1104
https://doi.org/10.1145/1321440.1321475
https://doi.org/10.1145/1321440.1321475
https://doi.org/10.1145/1321440.1321475
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150

Bibliography

[108] Sunil Mohan and Donghui Li. “MedMentions: A Large Biomedical Corpus
Annotated with UMLS Concepts”. In: CoRR abs/1902.09476 (2019). arXiv:
1902.09476. url: http://arxiv.org/abs/1902.09476.

[109] Andrea Moro, Alessandro Raganato, and Roberto Navigli. “Entity Linking
meets Word Sense Disambiguation: a Unified Approach”. In: (), pp. 231–244.
doi: 10.1162/tacl_a_00179. url: https://aclanthology.org/Q14-1019.

[110] Hamada A. Nayel et al. “Improving Multi-Word Entity Recognition for Biomed-
ical Texts”. In: CoRR abs/1908.05691 (2019). arXiv: 1908.05691. url: http:
//arxiv.org/abs/1908.05691.

[111] Mark Neumann et al. “ScispaCy: Fast and Robust Models for Biomedical
Natural Language Processing”. In: Proceedings of the 18th BioNLP Workshop
and Shared Task. Florence, Italy: Association for Computational Linguistics,
Aug. 2019, pp. 319–327. doi: 10.18653/v1/W19- 5034. url: https://
aclanthology.org/W19-5034.

[112] Natasha Noy et al. “Industry-Scale Knowledge Graphs: Lessons and Chal-
lenges: Five Diverse Technology Companies Show How It’s Done”. In: Queue
17.2 (Apr. 2019), pp. 48–75. issn: 1542-7730. doi: 10.1145/3329781.3332266.
url: https://doi.org/10.1145/3329781.3332266.

[113] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi:
10.3115/v1/D14-1162. url: https://aclanthology.org/D14-1162.

[114] Lev Ratinov et al. “Local and Global Algorithms for Disambiguation to
Wikipedia”. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies. Portland, Oregon,
USA: Association for Computational Linguistics, June 2011, pp. 1375–1384.
url: https://aclanthology.org/P11-1138.

[115] Tim Rocktäschel, Michael Weidlich, and Ulf Leser. “ChemSpot: a hybrid sys-
tem for chemical named entity recognition”. In: (). issn: 1367-4803. doi:
10.1093/bioinformatics/bts183. eprint: https://academic.oup.com/
bioinformatics/article-pdf/28/12/1633/16904367/bts183.pdf. url:
https://doi.org/10.1093/bioinformatics/bts183.

84

https://arxiv.org/abs/1902.09476
http://arxiv.org/abs/1902.09476
https://doi.org/10.1162/tacl_a_00179
https://aclanthology.org/Q14-1019
https://arxiv.org/abs/1908.05691
http://arxiv.org/abs/1908.05691
http://arxiv.org/abs/1908.05691
https://doi.org/10.18653/v1/W19-5034
https://aclanthology.org/W19-5034
https://aclanthology.org/W19-5034
https://doi.org/10.1145/3329781.3332266
https://doi.org/10.1145/3329781.3332266
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://aclanthology.org/P11-1138
https://doi.org/10.1093/bioinformatics/bts183
https://academic.oup.com/bioinformatics/article-pdf/28/12/1633/16904367/bts183.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/12/1633/16904367/bts183.pdf
https://doi.org/10.1093/bioinformatics/bts183

Bibliography

[116] Henry Rosales-Méndez, Aidan Hogan, and Barbara Poblete. “Fine-Grained
Entity Linking”. In: Journal of Web Semantics (2020). issn: 1570-8268. doi:
https://doi.org/10.1016/j.websem.2020.100600. url: https://www.
sciencedirect.com/science/article/pii/S1570826820300378.

[117] Ahmad Sakor, Kuldeep Singh, and Maria-Esther Vidal. “FALCON: An Entity
and Relation Linking Framework over DBpedia”. In: International Workshop
on the Semantic Web. 2019.

[118] Ahmad Sakor et al. “Old is Gold: Linguistic Driven Approach for Entity and
Relation Linking of Short Text”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). doi: 10.
18653/v1/N19-1243. url: https://aclanthology.org/N19-1243.

[119] Michael Schlichtkrull et al. “Modeling relational data with graph convolu-
tional networks”. In.

[120] Mujeen Sung et al. “Biomedical Entity Representations with SynonymMarginal-
ization”. In: CoRR abs/2005.00239 (2020). arXiv: 2005.00239. url: https:
//arxiv.org/abs/2005.00239.

[121] Petar Veličković et al. doi: 10.48550/ARXIV.1710.10903. url: https:
//arxiv.org/abs/1710.10903.

[122] Denny Vrandečić and Markus Krötzsch. “Wikidata: A Free Collaborative
Knowledgebase”. In: Commun. ACM 57.10 (Sept. 2014), pp. 78–85. issn:
0001-0782. doi: 10.1145/2629489. url: https://doi.org/10.1145/
2629489.

[123] Gongqing Wu, Ying He, and Xuegang Hu. “Entity Linking: An Issue to Ex-
tract Corresponding Entity With Knowledge Base”. In: IEEE Access 6 (2018),
pp. 6220–6231. doi: 10.1109/ACCESS.2017.2787787.

[124] Ledell Yu Wu et al. “Scalable Zero-shot Entity Linking with Dense Entity
Retrieval”. In: EMNLP. 2020.

[125] Kun Xu et al. “Graph2Seq: Graph to Sequence Learning with Attention-based
Neural Networks”. In: ().

85

https://doi.org/https://doi.org/10.1016/j.websem.2020.100600
https://www.sciencedirect.com/science/article/pii/S1570826820300378
https://www.sciencedirect.com/science/article/pii/S1570826820300378
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://aclanthology.org/N19-1243
https://arxiv.org/abs/2005.00239
https://arxiv.org/abs/2005.00239
https://arxiv.org/abs/2005.00239
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1109/ACCESS.2017.2787787

Bibliography

[126] Wen-tau Yih et al. “Semantic Parsing via Staged Query Graph Genera-
tion: Question Answering with Knowledge Base”. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers). Beijing, China: Association for Computational Linguistics,
July 2015, pp. 1321–1331. doi: 10.3115/v1/P15- 1128. url: https://
aclanthology.org/P15-1128.

[127] Sheng Zhang et al. “Knowledge-Rich Self-Supervised Entity Linking”. In:
ArXiv abs/2112.07887 (2021).

[128] Chuxu Zhang* et al. “Heterogeneous Graph Neural Network”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD).

86

https://doi.org/10.3115/v1/P15-1128
https://aclanthology.org/P15-1128
https://aclanthology.org/P15-1128

	Introduction
	Motivating Example
	Contributions
	Document Structure
	Summary of the Chapter

	Background
	Knowledge Base
	Ontology
	Natural Language Processing (NLP)
	Named Entity Recognition
	Entity Linking
	Two ways of Entity Linking
	Biomedical Entity Linking

	Machine Learning
	Deep Learning

	Word Embedding
	Word2Vec

	(BERT)
	Ranking in Information Retrieval
	Ranking Models

	Graph Theory
	Similarity Measure
	String metric
	Types of string similarity
	Shortest path algorithms
	Cosine Similarity

	Search Engine
	The Elasticsearch engine
	Term Frequency (TF)
	Inverse Document Frequency (IDF)

	Stop Words in NLP
	Summary of the Chapter

	Related Work
	Rule-Based Systems
	Machine Learning Approaches
	Hybrid Models
	Deep Learning Based Systems
	Heuristic Approaches
	Summary of the Chapter

	Approach
	Problem Definition
	Proposed Approach: Lumos
	The Lumos Architecture
	Pre-processing
	Candidate Recognition and Generation Stage
	Collecting Results
	Candidate Selection

	Summary of the Chapter

	Implementation
	Software Methodology
	Design, Structure, and Dependencies
	Approach's Workflow
	Graph Generation

	NetworkX
	Neo4j
	Read the Input Text
	Entity Recognition
	Generating candidates and calculation of scores
	Entity Linking

	Summary of the Chapter

	Experimental Evaluation
	Experimental Setup
	Metrics
	Benchmarks
	Baseline
	Experiment 1
	Experiment 2

	Accuracy and Execution_time Result of two Experiments
	Summary of the Chapter

	Conclusions and Future Work
	Conclusion
	Limitations
	Future Work

	Bibliography

