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ABSTRACT Hybrid energy storage systems (HESS), i.e., the combination of two different energy storage
technologies, are widely discussed as a promising solution for energy storage problems. A common control
scheme to allocate the power between these storages and the subject of this study is filter-based control,
where a filter splits the input signal into a low-frequency and high-frequency part. It provides robust results
and easy implementation, although more advanced strategies may perform better. Many publications use this
controller for specific problems, but a structured analysis of this controller type that quantifies the advantages
and disadvantages, traits, and setbacks is missing. This work fills this gap and structures, summarizes, and
provides mathematical background and guidelines on filter-based control of hybrid energy storage systems.
Numerical simulations are performed to quantify the impact of design variables, parameters, or the input
signal by using a linear storage model with efficiency and self-discharge rate and a low-pass filter controller
with constant energy feedback as a representative subtype of this control scheme. The present work proves
the high cycle-reduction capabilities of filter-controlled HESS at the cost of overdimensioning compared
to more advanced control strategies. It demonstrates that using a high-efficiency, high-power storage with
a low self-discharge rate and high-energy storage leads to smaller overall dimensioning and losses than a
single storage system. The study identifies the feedback factor of the controller as the most impacting design
variable.

INDEX TERMS Energymanagement, energy storage, hybrid energy storage systems, low-pass filters, power
control, simulation, statistical analysis, systems modeling.

I. INTRODUCTION
The subject of the present work is the investigation of filter-
based control strategies for hybrid energy storage systems
(HESS). A HESS combines two different energy storage
technologies into a single storage system to increase the
performance of the overall storage system, decrease costs
and dimensions and increase the overall system’s lifetime,
efficiency, and response time. It is mandatory for a proper
functioning HESS that the power is distributed correctly
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approving it for publication was Lei Wang.

between the two storage technologies, i.e., the control
strategy or energy management the HESS operates with is
crucial [1], [2], [3], [4], [5], [6], [7], [8], [9]

There are various classes of control schemes for HESS:
rule-based or fuzzy-logic-based control, filter-based control,
online (model predictive) and offline optimization-based
control or control with the help of neural networks [1], [4],
[5], [6], [7], [8], [10], [11]. Note that this study deals with
control as an energy management strategy that allocates the
power flow to and between the two storages at a system level.
It does not deal with closed-loop control at the implementa-
tion level, eliminating the error between a setpoint and the
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actual state at a current or voltage level. I.e., common linear
proportional-integral control (e.g. [11]), two-point control
(e.g. [11]), or advanced and robust control such as (adaptive
terminal) sliding mode control (e.g. [12], [13], [14], [15]),
observer-based control (e.g. [16], [17]), variable voltage
control (e.g. [18]) or droop control (e.g. [11]), that all have
been introduced for HESS, do not fall into the introduced
categorization and scope of the analysis. Moreover, the
present study makes no assumptions on the architecture of
the storage system or controller implementation, i.e., Single-
Hess vs. Multi-HESS or centralized vs. distributed control
(e.g. [19], [20]).

Filter-based control is an extensive subset within the
different control paradigms, and it is widely implemented [9],
[21], [22], [23], [24]. It is relatively simple but offers robust
performance and achieves good results on dynamics and
cycle reduction [9], [21], [22], [25], [26], [27], [28]. There
is no explicit or generalized analysis of the design of filter-
based control strategies, although it is often implemented
and used in case studies (e.g. [21], [22], [23], [25], [27],
[28], [29], [30], [31], [32], [33]), Either the choice of values
of design variables of this controller type is undocumented
(e.g. [25], [26], [27], [33], [34], [35]), or it is a consequence
of a (meta-)heuristic optimization (e.g. [22], [32], [36], [37],
[38]). The influence and sensitivity of these design variables
or the influence of other parameters, such as the input power
profile, on the performance of the filter-based control are not
investigated holistically. It is left unanswered how, when, and
in which cases it is reasonable to use a HESS with filter-
based control. Mentionable previous work is done in [21],
which also studies the aspects of overdimensioning and losses
for filter-controlled HESS and identifies phase shift and
unnecessary energy exchange as a source. However, this work
falls short of investigatingmultiple design parameters besides
the filter’s cutoff frequency and multiple characteristics
and derives results from only one case study. In [9],
different kinds of filter-based control are reviewed, and the
performance is evaluated and compared in a case study,
but it falls short of providing sufficient verification and
analysis on the design parameters, too. A more thorough
discussion and review on filter-based control will follow in
Section II.

The present study aims to find and generalize insights
from previous case studies for filter-based control strategies
for HESS and back them up through numerical experiments,
extensive and structured parameter studies, and statistical
analysis. The study includes the investigation of the influence
of control parameters and the choice of the input signal
and storage parameters. Also, the study presents condensed
advice and conclusions when designing and choosing a
filter-based controller for HESS. Specifically, this includes
answering the following research questions:
• How do design parameters such as feedback factor
or cutoff frequency influence characteristics such as
dimensions, losses, cycles, or dynamic stress of the
individual storages?

FIGURE 1. General layout of filter-based control strategies. An input
signal with a broad frequency spectrum is low-pass filtered, and the
controller feeds the result to the first storage and the difference between
the input and filtered signal to the second storage. Most implementations
utilize an additional state of charge feedback loop for the second storage
(shown in gray).

• How do load profile characteristics, such as mean
value or frequency spectrum, influence the above
characteristics?

• How do storage parameters such as efficiency or self-
discharge rate influence the above characteristics?

The following Section II provides a literature review on
filter-based control strategies. Section III covers the used
model andmethodology and introduces output characteristics
of interest. Section IV defines a reference case with reference
input and a reference parameter set for the storages and the
controller. The section also presents and detailly describes
arising results. Section V extends the previous elaborations
by introducing parameter variations of the input signal, the
storage model, and the control strategy. Section VI gathers
insights from the generated data, extracts results, and derives
key findings and design guidelines. Section VII summarizes
the paper.

II. REVIEW ON FILTER-BASED CONTROL FOR HESS
Filter-based control strategies are the focus of this study.
Fig. 1 shows the typical structure of this controller type. The
first step discusses only the open loop behavior without the
gray feedback branch. The filter splits the input signal ps
for a single storage into a low-frequency signal pb and a
high-frequency signal pp, which is the difference between the
input signal and low-frequency signal. This implementation
is the most straightforward but exposes poor performance,
as the energy content of the high-frequency storage may drift
due to losses as time passes. The gray proportional feedback
branch is introduced to prevent this drift. It compares the
current energy content ep(t) to a reference setpoint energy
content Eref and adjusts the power input for the peak storage
accordingly. The notation will be discussed in Section III.
The filter output power pf(t) is derived from the chosen

filter. The filter black box is generally implemented as a
simple low-pass of first order (e.g. [7], [21], [22], [23], [29],
[34], [38]), shown in Fig. 2a. It removes or drastically damps
all frequencies above a cutoff frequency fc. Fig. 2b illustrates
the behavior of a low pass for an arbitrary signal and cutoff
frequency fc. This study also uses this filter type and the
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FIGURE 2. Block diagram of a first-order low-pass filter (a) and the
corresponding behavior (b).

control strategy’s structure in Fig. 1 as the reference. A set
of equations is presented in Section III-B.
The introduced controller design, whether in the open or

closed loop variant, is the most common implementation for
HESS with filter-based control and can be found in many
publications (e.g. [7], [9], [21], [22], [24], [25], [26], [27],
[28], [29], [32], [34], [35], [38]). Other subvariants have
been introduced, but the performance of these subvariants is
comparable to the reference design. The assessment that these
do not show superior performance ormay even performworse
is supported by [9]. This study implemented four different
filter-based control strategies based on literature: adaptive
filter, filter combined with rule-based energy management,
filter with power sharing coefficient, and filter with constant
feedback. It concludes that the implemented version in this
study, i.e., filter with constant feedback factor, shows the
best performance, as it is the only one to adequately control
the energy content ep of the peak storage to compensate
losses. The study derived its results from only a single
synthetic benchmark signal, and it falls short of backing up
the conclusions with multiple test cases. Also, it provides
no guidelines on how to design and parameterize a specific
implementation. Other subvariants of filter-based control for
HESS include:

A. ADAPTIVE REFERENCE ENERGY Eref OR NONLINEAR
FEEDBACK k
In this category, the reference energy Eref of the feedback
loop, or the constant feedback factor k , is replaced by a
more advanced set of equations or rules. In [39], a piecewise
linear functional relationship is introduced that increases the
constant feedback factor k for higher deviations from the
setpoint. A similar approach is considered in [34], which
introduces a polynomial relationship instead of a constant
or piecewise linear functional relationship. The authors
in [26] introduce an exponential functional relationship with
different exponential gains, which the authors name artificial
potential field. They also introduce an adaptive reference
energy Eref based on the energy content eb and ep of both
storages.

B. ADAPTIVE CUTOFF FREQUENCY fc
This variant introduces a variable cutoff frequency fc as a
function of the current energy content ep to mitigate the
problem of finding the right cutoff frequency fc. Further,

it allows better control of the energy content ep [9]. The filter
bandwidth is increased for a high energy content ep of the
peak storage or decreased if the energy content is low for a
positively signed input signal and vice versa for a negatively
signed input signal [26], [31]. In [23], three references are
introduced and compared: energy-based, voltage-based, and
SOC-based reference calculation. In [30], the powers of base
and peak storage are preallocated based on their energy
content, and this information is used to tune the bandwidth of
the low-pass filter. A fuzzy controller is used in [38] and [40]
to determine the right cutoff frequency fc. The former uses
the input signal and energy contents eb and ep as input for
the fuzzy network. The latter uses the input signal and the
derivative of the input signal as input. In [41], an offline
optimization is performed to find the best cutoff fc for every
time step.

C. OTHER FILTER TYPES
In this category, the first-order low pass is replaced by
another filter type. All presented filter types show similar
behavior. A wavelet filter is introduced in [33] and [37]. The
input signal is decomposed through cascaded downsampling
by a discrete haar-wavelet filter and then reconstructed by
assigning the different wavelets to the different storages.
In [28] and [39], a moving average filter is utilized, which
smoothes the signal by calculating the mean value over
a preceding time horizon of defined length. In discrete
time-space, the equations for moving average and low-pass
filters of the first order can be reformulated into each
other [42]. A cascade of low-pass filter and slew-rate limiter
is introduced in [27].

D. COMBINATION WITH OTHER CONTROL STRATEGIES
The filter-based control is combined with other control
strategies in various publications. In [29], it is overlayed by a
rule-based strategy, which considers the energy contents eb
and ep and driving conditions in a vehicle application.
A similar approach is presented in [43], which implements
a trailing fuzzy controller considering the mentioned inputs.
A trailing fuzzy controller is also introduced in [44] to reduce
the battery peak current. In [38], a rule-based controller
complements the filter, which reacts to external event triggers
in a wind farm application. In [45], a rule set is built on
top of the filter that defines an energy reserve based on
the energy content ep of the peak storage and reallocates
low-frequency components to the peak storage to increase
its utilization. An additional rule set is defined in [46] to
prevent unnecessary power flow between the storages due to
phase shift which leads to unnecessary losses and increased
capacity. In [15], the filter-based control is complemented by
anMPC to adequately set the energy referenceEref to increase
stability and prevent system failure.

III. MODEL AND METHODOLOGY
The first subsection introduces and discusses the used storage
model and HESS model. The next one introduces the
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equations for the control strategy. The following subsection
outlines the simulation setup, and the last subsection defines
the analyzed output characteristics.

A. STORAGE MODEL
A storage is implemented as a unified storage model [47].
This model is technology agnostic and only characterizes
a storage by high-level data sheet values: Minimum and
maximum power rating P+s and P−s , maximum energy capac-
ity Es, a linear and constant charge or discharge efficiency η+s
and η−s , where conversion losses are proportional to the
current power ps and linear or constant self-discharge rate τs,
where self-discharge losses are proportional to current energy
content es. Variables es and ps are both functions of time t .

With these parameters, by implicitly holding the limits

P−s ≤ ps(t) ≤ P+s ∀t (1)

0 ≤ es(t) ≤ Es ∀t (2)

the following ordinary differential equation (ODE) can be
derived [47]:

d
dt
es(t) =

 η
+
s · ps(t) if ps(t) ≥ 0
1

η−s
· ps(t) if ps(t) < 0

−
1
τs
es(t) (3)

Note that the index ‘‘s’’ denotes ‘‘single storage’’. The
equations are also valid for the indices ‘‘b’’ and ‘‘p’’, denoting
‘‘base storage’’ and ‘‘peak storage’’, which are introduced
at the end of the section. The boundary conditions in
Equation (1) and Equation (2) are not enforced or considered
by the storage model in Equation (3) itself. The superordinate
solving algorithm will ensure to fulfill these limits by
adjusting the initial conditions of the ODE iteratively. Further
explanation in greater detail follow in Section III-C.
There are a few advantages to justify this approach:

The model is easy to parameterize for any relevant storage
technology, linear, easy to implement and compute, and only
takes a few parameters easily derived from datasheets. Also,
it is sufficiently accurate for the high-level nature of the
present study. More detailed models, which might include
nonlinearities, degradation, temperature effects, or transient
limitations, would not add any extra value.

Energy capacities are interpreted as net capacities, i.e., the
usable amount of energy in a storage. E.g., the state of charge
of a battery needs to be restricted within a specified window,
which would lead to a larger gross capacity. Trailing steps
need to consider this, but the usable net capacity is unaffected
by this.

In this study, the storage system is not allowed to curtail
the power and must completely fulfill the input power profile
requirements. Both a single storage system and a HESS must
be dimensioned in a way to ensure this. Mathematically, this
is expressed by setting the input power profile p(t) to the
storage power profile ps(t) of the single storage system:

p(t) = ps(t) ∀t (4)

From a system point of view, the HESS shall substitute
a single storage system, and this substitution shall be
transparent, i.e., the behavior of both systems shall be
identical. Therefore:

ps(t) = pb(t)+ pp(t) ∀t (5)

Variable pb denotes the power of the first storage, further
called base storage, and pp denotes the power of the second
storage, further called peak storage. This naming convention
hints at the idea that one storage shall be responsible for a
steady power supply with slow variation, i.e., a base load in
a broader sense. The other one shall be responsible for high
power fluctuations and peaks within a power profile. Power
profiles, or more generally quantities as a function of time,
are furtherly called signals.

B. CONTROL STRATEGY
Fig. 1 on page 126270 shows the structure of a filter-based
HESS controller. This block diagram represents the following
set of equations, including the gray feedback loop:

pb(t) = pf(t)+ k(ep(t)− Eref) (6)

pp(t) = ps(t)− pf(t)− k(ep(t)− Eref) (7)

Variable k is the gain, and pf is the filter output power. The
current energy content ep is derived from Equation (3). The
reference energy content Eref is usually set to Eref = 1

2Ep to
compensate charge and discharge events [22] equally.

The first-order low-pass filter in Fig. 2a on page 126270
can be mathematically expressed as follows [42]:

1
2π fc

d
dt
pf(t) = ps(t)− pf(t) (8)

This specific implementation is chosen because it is the most
common implementation within literature (see Section II).

C. SIMULATION SETUP
The algorithm outlined in Fig. 3 solves the previously
introduced model and the underlying dimensioning problem
for a specific parameter set and input signal. The used
parameter values and input signals are introduced and
reasoned in Section IV. The parameter set for the storage
model is defined as a prerequisite, i.e., the variables ηs and τs.
Further, the initial condition for the energy content es,0 arising
from the first order ODE in Equation (3) must be set, and zero
is arbitrarily chosen in the beginning. The energy capacity Es
and rated power Ps are undetermined as they are not a part of
the ODE, but they will be a result at the end of the calculation
(see also Section III-D). Then, the model is simulated for a
chosen input signal. This step ignores the storage limits in
Equation (1) and Equation (2). They will be the result at the
end of the algorithm. The energy signal es(t) will drop below
zero violating the limit in Equation (2). The loop adjusts
the initial condition es,0 by adding the offset |min(es(t))|.
This adjustment would be exact for a storage with an infinite
self-discharge rate τs. The algorithm repeats the simulation
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until it converges iteratively to min(es(t)) = 0 within a
predefined precision. Then, the characteristics of interest
(see following Section III-D) can be calculated from the
resulting signals ps(t) and es(t). Besides others, the needed
dimension of the storage, i.e., the energy capacityEs and rated
power Ps are determined as a characteristic, and the limits of
Equation (1) and Equation (2) will be fulfilled implicitly by
this means.

Afterward, the algorithm in Fig. 3 solves the dimensioning
problem for the HESS and calculates the output character-
istics of base and peak storage similarly. I.e., the storage
parameters for efficiency and self-discharge rate of base and
peak storage ηb, τb, ηp, and τp are set. Additional parameters
for the control strategy, namely cutoff frequency fc and
feedback factor k , also need to be set. Again, the initial
conditions eb,0 and ep,0 are arbitrarily set to zero in the
beginning. The system is simulated again, and the limits of
Equation (1) and Equation (2) will be violated again. The
initial conditions will be adjusted iteratively, repeating the
simulation until both boundary conditionsmin(eb(t)) = 0 and
min(ep(t)) = 0 are met within precision.

The output characteristics for base and peak storage
defined in Section III-D are computed from the resulting
signals pb(t) and eb(t) and pp(t) and ep(t). Following, they can
be compared with the results of the single storage. Comparing
means building a fraction of base to single and peak to single
results to quantify and normalize changes.

No cyclic boundary condition is implied within the
simulation and dimensioning problem, i.e., the energy content
of the storage at the beginning does not equal the energy
content at the end. Also, it is not implied that the storage is
fully charged at the beginning and empty at the end, as the
input signal may start and end with a charging event. The
only boundary condition is that the storage is fully charged
and discharged at least once, which the loop ensures by tuning
the initial conditions.

These calculations are performed for a single parameter set
for single, base, and peak storage and controller, including a
single cutoff frequency fc of the low pass filter. The diagrams
in the following chapters show the output characteristics,
defined in Section III-D, as a function of the cutoff
frequency fc. An outer loop repeats the programflow depicted
in Fig. 3 for a series of cutoff frequencies fc. The chosen
values are within a logarithmic range of fc ∈ [0.01, . . . , 1] ·
fmax, where fmax corresponds to the maximum occurring
frequency within the frequency spectrum of the input signal.
Moreover, for statistical analysis, this is repeated for a
predefined set of signals. The following section introduces
the input signals and setup of the numerical experiments.

D. OUTPUT CHARACTERISTICS
The simulation results can be analyzed with respect to
various output characteristics to quantify the impact of
input parameter variations and to make them comparable.
The analyzed characteristics include dimensions, losses, and
lifetime characteristics, the latter in the form of qualitative

FIGURE 3. Pseudo code and algorithm of the simulation setup and
program flow. First, the algorithm simulates the single storage with a
specific parameter set and initial conditions in a loop. The loop repeats
the simulation and tunes the initial conditions until the energy content
boundaries are fulfilled. The same is applied to the HESS. Afterward,
characteristics of Section III-D are computed and compared.

measures. The different characteristics are explained in the
following.

Dimensional output characteristics include energy capac-
ity E and rated power P. These are easily determined with

E = max(e(t)) (9)

and

P = max(|p(t)|). (10)

Moreover, the specific power ω

ω =
P
E

(11)

defined as the ratio of the two above is of interest. The specific
power is a fixed value for a specific application and also
fixed for most storage technologies [48]. As a result, a storage
system must be overdimensioned in either power or energy to
meet both requirements if the storage technology’s specific
power does not fit the application. A HESS combines two
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storage technologies to create a system with a specific power
that lies between the specific power of both technologies,
which better meets the specific power of the application [48].
The specific power of a storage is similar to the C-rate of a
battery but is defined more generally.

Losses are another essential characteristic. The total
losses L

L = ηL + τL (12)

having the unit of energy can be divided into conversion
losses ηL

ηL =
∫ tend

0

 p(t)(1− η+) for p(t) ≥ 0

p(t)(
1
η−
− 1) for p(t) < 0

dt (13)

and self-discharge losses τL

τL =
∫ tend

0

1
τ
e(t) dt. (14)

The quantification of a system’s lifetime is more challeng-
ing for both specific technologies and technology agnostic
approaches as performed in the present study. Therefore,
two characteristics are introduced that considerably impact
a storage’s lifetime. The first one is the number of equivalent
full cycles C which is proportional to the energy throughput
of a storage [47]:

C =
1
E

∫ tend

0
p(t) ·2(p(t)) dt (15)

where 2 is the Heaviside step function. The second
characteristic is the dynamic stress S, which is proportional
to changes of a power signal, i.e., its derivative, and defined
as follows:

S =
1
P

∫ tend

0

∣∣∣∣ ddt p(t)
∣∣∣∣ dt (16)

Both equivalent full cycles C and dynamic stress S are
dimensionless.

Besides lifetime, it is also difficult to quantify costs in
this study, as all input data and parameters are normalized
or dimensionless. Furthermore, a cost model depends on a
specific technology. Nevertheless, costs are addressed indi-
rectly by the introduced output characteristics. Capital costs
are primarily influenced by the dimensions of the storages,
i.e., energy capacity E and rated power P. Operational costs
are primarily influenced by losses L, cycles C , and dynamic
stress S.

IV. REFERENCE CASE
This chapter introduces the reference case as a basis for
parameter variations and studies in the next chapter. The first
subsection introduces and defines the reference input signals,
and the next specifies the reference model parameterization.
The last one shows and explains the arising results as further
studies build on these findings and representations.

FIGURE 4. Reference input signals in time and frequency domain and
probability distribution of the signals.

A. DEFINITION OF INPUT SIGNALS
The signal characteristics of the input signals are carefully
chosen to ensure an exploitable output of the simulation
studies. Moreover, to allow statistical analysis, 50 input
signals were used to ensure that results are generalizable
and not a statistical artifact or coincidence. The number
50 was chosen as a tradeoff between statistical validity
and computational burden. The study’s design leads to
approximately 2000 individual simulations per signal and
approximately 105 simulations in total to raster all signals and
parameter variations.

Fig. 4 depicts the signals. Fig. 4a shows a section of
the signals and Fig. 4b shows the corresponding frequency
spectra. The probability distribution of the signal values is
shown in Fig. 4c. Signals are dimensionless and have 1000
sampling points. It is up to the reader to interpret the sampling
rate in seconds, minutes, quarter hours, or anything else.
The signals are generated with a random Gaussian white
noise filtered by a linear phase finite impulse response (FIR)
lowpass with a steep cutoff at 1/5 of the sampling rate. I.e., if
the sampling rate is interpreted as 1 s, the signal is a limited
white noise with 0.2Hz cutoff.

The generated signals were scaled and transformed to
enforce a mean value of 0 and a rectified value of 1. With
this normalization, the root mean square value, maximum
value, and derived signal characteristics as form or crest
factor of the signals would still reveal a Gaussian distribution.
The 50 input signals were filtered and selected out of
105 generated signals. Those signals with identical (within
precision) root mean square and maximum value at the
peak of the Gaussian distribution were selected to normalize
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TABLE 1. Characteristics of input signals used to perform simulation.

these signal characteristics. This measure asserts that the
characteristics of all signals are (nearly) equal and do not
show variance anymore. It ensures that statistical deviations
shown in the output are not a consequence of statistical
deviations of the input propagated through the simulation.
The root mean square value is 1.252 and the maximum value
is 4.2. Table 1 summarizes the properties of the signals.

B. MODEL PARAMETERS
For simplicity, power ratings P+s and P−s are symmetrically
set to the same absolute value, leading to an identical charge
and discharge power:

P+s = Ps
−P−s = Ps (17)

The same is applied to charge and discharge efficiency:

η+s = η

η−s = η (18)

The efficiency of the storage is set to η = 0.95. This value
is more or less arbitrarily chosen, but many electrical energy
storages fall into the magnitude of this parameter. The self-
discharge rate τ is only meaningful in conjunction with the
simulation time. It is set at a value that self-discharge losses τL
and conversion losses ηL are in a comparable magnitude.
Moreover, it is determined for each signal individually to
ensure that the total losses L that result for each signal are
equal:

ηL + τL = const. ∀ signals (within precision) (19)

The total losses where set to ηL + τL = 1001 and each
individual loss component has an approximate share of 50.

The individual self-discharge rate τs is determined sim-
ilarly to the algorithm shown in Fig. 3. The storage ODE
is forward simulated, and the initial condition is adapted
until the boundary condition is met. Besides the initial
conditions, the algorithm adapts the self-discharge rate τs
and checks if the losses L meet the criteria in Equation (19).
This leads to self-discharge rates of τs = 1084 ± 2132 (std.
deviation).

The feedback factor k is set to k = 0.01. This value
is empirically determined in prestudies and found to be an
adequate choice for the reference case. The parameterization
is summarized in Table 2.

1No units, has the dimension of energy.
2No units, has the dimension of time.

TABLE 2. Reference storage and control model parameters.

FIGURE 5. Results of the reference case utilizing Table 1 and Table 2 as
input and parameter definition. Output characteristics for base, peak, and
added hybrid storage shown as a function of the cutoff frequency of the
lowpass. All characteristics are normed with respect to the value of the
corresponding single storage with ideal dimensions. Shaded areas
indicate standard deviation (equal to error bars). It can be seen that
overall dimensions (a) and (b) and losses (f) increase but specific power
(c), cycles (d), and dynamic stress (e) change beneficially.

The free parameter subject to variation is the filter
cutoff frequency fc, and the output characteristics defined
in Section III-D are a function of this cutoff frequency fc.
Changes to reference parameters are the subject of investiga-
tion in further parameter studies in the next chapter. Before,
the following section discusses the reference case.

C. SIMULATION RESULTS
Fig. 5 shows the simulation results for the reference case
defined in the previous sections. The figure consists of
six subfigures (a–f); each shows one output characteristic
defined in Section III-D. Fig. 5a and Fig. 5b on the left side
show the results for energy capacity E and rated power P,
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whereas Fig. 5c to Fig. 5f on the right side show the
output characteristics for specific power ω, equivalent full
cycles C , dynamic stress S and losses L. The x-axis of
all subfigures depicts the cutoff frequency fc of the filter
normalized by the maximum occurring frequency fmax in
the frequency spectrum of the input signal (0.2 · fsample).
The x-axis is logarithmic, ranging two decades from 0.01,
i.e., 1% of the maximum occurring frequency to 1, i.e., the
filter cutoff frequency fc coincides with maximum occurring
frequency fmax of the signal.

The output characteristics on the y−axes of base storage,
peak storage, and hybrid storage (sum of the former two)
are normalized by the corresponding value of the single
storage to show relative changes of these with reference
to the single storage. I.e., they are divided by the output
characteristic values of the single storage. Therefore, each
diagram has a horizontal black line at a value of one to
visualize the reference to the single storage. All subfigures
show a normalized output characteristic of base storage
(turquoise), peak storage (violet), and hybrid storage (if
reasonable, dashed ocher) as a function of the normalized
cutoff frequency fc of the filter. As each diagram is generated
by the results of 50 input signals, each line represents the
mean value of the results, and the shaded semitransparent
areas represent the standard deviation. For enhanced visual
clarity, this representation was chosen instead of error bars.
A Gaussian normal distribution adequately approximates
the distribution. I.e., mean and median values are almost
identical, and the distribution does not show significant
skewness or excess kurtosis.

It can be seen in Fig. 5a that the total energy capacity Eh
of the hybrid storage system is larger than that of the
single storage reference Es by 30% to 50%. This effect is
relatively independent of filter cutoff frequency fc, although
the values for peak and base storage change with varying
cutoff frequency fc. I.e., the sum of the energy capacities Eb
and Ep of base and peak storage is roughly constant. The
energy capacity Eb of the base storage alone is larger than the
capacity Es of the single storage by 5% to 30%. On the other
hand, the peak storage energy capacity Ep is only a fraction,
i.e., 5% to 40%, of the single storage energy capacity Es.
The increased capacity Eh of the hybrid storage system arises
through additional losses L due to power or energy exchange
between base storage and peak storage, which are nonexistent
in a single storage system. There is a slight tendency of larger
peak storages Ep and smaller base storages Eb towards low
filter cutoff frequencies fc, which is plausible as lower cutoff
freqencies fc lead to higher shares of the input signal for the
peak storage.

The effects on the rated power Pb and Pp of base and peak
storage are the other way around (cp. Fig. 5b).While the rated
power Pb of the base storage is drastically reduced with low
cutoff frequencies fc and tends towards 0, the rated power Pp
of the peak storage tends towards 1, i.e., the rated power Ps
of the single storage. The total rated power Ph of the hybrid
storage system is again larger than that of the single storage

system by 10% to 50%, but the overdimensioning in power
diminishes with low cutoff frequencies fc.
As a consequence of the relations shown in Fig. 5a and

Fig. 5b, the specific powers ωb and ωp of the storages
show a large deviation from the original single storage’s
specific power ωs by a factor of 2 to 10 each (cp. Fig. 5c).
For high cutoff frequencies fc, the base storage’s specific
power ωb tends towards 1, while the peak storage’s specific
power ωp tends towards 10. For low cutoff frequencies fc,
the base storage tends towards 0 while the peak storage
tends towards 1, which means that the hybrid storage system
degenerates to the properties of the single storage system.

The feature of differing specific powers ω can be exploited
beneficially as the specific power of the application typically
does not match the specific power of any storage technology.
Then, the specific power of the application can be represented
by two storages with varying specific power. This feature
mitigates the overdimensioning effect in Fig. 5a and Fig. 5b
to a certain extent because a single storage technology has to
be overdimensioned in either power P or energy E to meet
the requirement of the other one.

In Fig. 5d and Fig. 5e, it can be seen that cycles Cb
and dynamic stress S are drastically reduced for the base
storage, especially for lower cutoff frequencies fc, at the cost
of increased cycles Cp and stress Sp for the peak storage.
The effect on cycles C is approximately proportional to those
on specific power ω. On a linear scale, this is also true for
dynamic stress S. The reduced cycles Cb and stress Sb of
the base storage translate antiproportionally into substantially
increased lifetime, while the peak storage presumably can
cope well with the increased cycles Cp and stress Sp. This
effect is reasonable and expectable, as this is the primary
intention of the investigated filter-based control strategy.

The effect on the losses L in Fig. 5f correlates with the
relationships for the energy capacity E in Fig. 5a. The total
losses Lh of the HESS increase by 30% to 50% compared
to the losses Ls of a single storage system, independently
from the chosen cutoff frequency fc. I.e., the sum of the
losses Lb and Lp of base and peak storage is roughly constant,
although the values for peak and base storage change with
varying cutoff frequency fc. The losses Lp of the peak storage
increase towards lower cutoff frequencies fc proportionally to
the increase in energy capacity Ep (cp. Fig. 5a). It is the other
way around for the base storage.

The standard deviations of all results are between 10%
to 15%. The bootstrapped 95% confidence intervals for
the mean value are between 1% to 5% and between 15%
to 25% for the standard deviation. These quantities are
also present within the subsequent parameter variations.
On the one hand, the standard deviation is high enough to
be accounted for while dimensioning a storage system for
a real problem because the dimensioning process reveals
uncertainty to some extent. On the other hand, the deviation
is small enough to justify the generalization of the results and
findings, as the results are qualitatively equal for each input
signal.
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TABLE 3. Parameter variations and studies for input signal, storage, and
control model.

At last, it shall be stated that the results for the increased
dimensions E and P (cp. Fig. 5a and Fig. 5b) and losses L (cp.
Fig. 5f) fundamentally contradict the results stated in [48].
This paper performs an analytic derivation, proving that a
single storage can always be split into two hybrid storages
with the same total energy capacity E and total rated power P,
respecting the boundary condition of optimal control. It can
be deduced that a filter-based control paradigm is not optimal
from a dimensional viewpoint. It also contradicts the results
of papers that show smaller dimensioning for filter-controlled
HESS (e.g. [24], [36]). The reduced dimensions come from
the fact that these papers do not have an ideal single storage
as a reference but an arbitrary specific storage technology.
Also, nonlinear loss models alter the results, e.g., quadratic
loss models as in [49]. On the other hand, the results in this
study are backed up by [21], which also observes increased
dimensions E and P for filter-controlled HESS.

The presented results are only obtained by numerical
simulations and are not backed up by a physical experimental
setup. Nevertheless, numerous publications are presenting
experimental validation for filter-controlled HESS (e.g. [23],
[27], [28], [39], [40], [43], [46]), attesting a high consistency
between numerical and experimental data. I.e., it can be
assumed with a high degree of confidence that the results
obtained in this study also hold in a real-world experimental
setup.

V. PARAMETER VARIATIONS
The following parameter studies are based on the reference
case presented in the previous section. The effects of the
parameter variations are displayed in the same style and
described accordingly in the next subsections. The present
work presents four parameter studies in three categories
which are summarized in Table 3. Each row of lists provides
information about one parameter variation. The first column
‘‘Section’’ provides a name for this variation and refers to
the section within the paper describing it in detail. The
second column ‘‘Ref. value’’ repeats the reference value of
the varied parameter. The reasoning for the reference values
is provided in Section IV-A and Section IV-B. The third
and fourth columns ‘‘Variations’’ list the modification of
the reference value in the parameter variation. The values

FIGURE 6. Variation of the frequency spectrum of the input signals to
study the effect on the output characteristics (cp. Fig. 4b and Fig. 7).

of these varied parameters are empirically determined to
produce meaningful results and figures. I.e., the parameters’
magnitude and range are set so that the results significantly
change.

Firstly, the influence of the frequency spectrum is ana-
lyzed. The white noise with an equally weighted distribution
of frequencies is filtered in a way to either emphasize
lower frequency parts or higher frequency parts. The next
signal variation analyses the influence of the mean value of
the input signals by introducing an offset along the y-axis.
The next variation relates to the storage model parameters
efficiency η and self-discharge rate τ . It equips the base
storage with a better self-discharge rate but a worse efficiency
and the peak storage with a better efficiency but a worse
self-discharge rate. At last, the feedback factor k of the
control loop is varied and analyzed. The individual sections
provide further information for each parameter variation.
In the present work’s context, further studies and parameter
variations have been performed that did not show significant
insights. Therefore, they are not discussed in detail and are
only listed at the end of the section. If the reader is only
interested in the results and derived conclusions, it is possible
to skip the detailed descriptions within this section or only
view the results in Fig. 7 to Fig. 10 and continue with
Section VI on page 126281.

A. VARIATION OF FREQUENCY SPECTRUM OF INPUT
SIGNAL
The original input signals are filtered via a FIR filter that
skews the input signals’ original equally-weighted frequency
spectra towards low or high frequencies. The resulting
frequency spectra are depicted in Fig. 6. In Fig. 7, the
previously introduced results of the reference case (cp. Fig. 5)
are complemented by the results arising from variation of the
frequency spectrum. The color coding is retained, the results
of the signals with weight on the low-frequency components
(cp. Fig. 6a) are in brighter shades, and the signals with
weight on the high-frequency components (cp. Fig. 6b) are
depicted in darker shades. Additionally, gray arrows indicate
the change from low- to high-frequency signals. Apart from
the different frequency spectra, all other signal characteristics
shown in Table 1 remain unchanged.
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FIGURE 7. Changes in the results by varying the frequency spectrum of
the input signal (cp. Fig. 6). Representation of results equivalent to Fig. 5.
Darker coloring from low- to high-frequency spectrum of the input
signals, additionally indicated by gray arrows. For low cutoff
frequencies fc, high-frequency input signals lead to higher spreads in
specific power (c), reduced cycles for base storage (d), and smaller total
dimensioning (a), (b).

In Fig. 7a, it can be seen that the peak storage energy
capacity Ep gets smaller for input signals with pronounced
high-frequency parts, especially if low cutoff frequencies fc
are chosen for the controller. Results for base storage and
combined HESS are mixed throughout the x-axis. The spread
of the rated power P (Fig. 7b) gets more pronounced for input
signals with pronounced high-frequency parts. The overall
losses are reduced for the hybrid system for signals with
pronounced high-frequency parts.

The spread of the specific powers ω becomes more distinct
for higher frequency signals as well as the spread in full
cycles C (Fig. 7c and 7d). On the other hand, the dynamic
stress S of both storages converges to the original single
storage and becomes less distinct (Fig. 7e). The absolute
dynamic stress S increases for all storages. However, as the
single storage system’s value normalizes the results, the
curves tend toward the single storage. The effect on losses L
is mixed, but losses L are generally lower for lower cutoff
frequencies fc.

In summary, high-frequency-weighted signals offer more
potential for design (higher spread in specific power ω)

FIGURE 8. Changes in the results by varying the mean value of the input
signal from 0 to −0.1 to −0.2. Representation of results equivalent to
Fig. 5. Darker coloring indicates a higher deviation from zero of the mean
value of the input signal, additionally indicated by gray arrows. With
higher deviation, base and hybrid energy capacity (a) tend towards single
storage dimensioning. Power rating (b) is virtually unaffected. High
increase of specific power (c) and cycles (d) for peak storage.
Nonetheless, hybridization is less reasonable for high mean value signals
as base storage results tend towards single storage results.

and stronger cycle reduction Cb for the base storage and
provide higher diversion between the base and peak storage
characteristics.

B. VARIATION OF MEAN VALUE OF INPUT SIGNAL
Next, the influence of the mean value of the input signal
is investigated. The original input signals are defined with
a mean value of zero. The introduced variation shifts the
signals along the y-axis by−0.1 and−0.2 (cp. Table 3) with a
simple subtraction.With this, the signal parameters in Table 1
inevitably change, but the frequency spectrum in Fig. 4b is
reserved. Subtraction leads to a more pronounced discharging
phase with fewer intermediate charging spikes.

The mean value parameter variation results are shown in
Fig. 8. Darker shading indicates a higher deviation of the
mean value from zero. The brightest color set shows the
reference case with a mean value of zero, while the darkest
color set shows the results for a mean value of −0.2.
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The peak storage capacity Ep tends towards zero, and
the base storage capacity Eb towards one for input signals
with higher mean value offset. Hence, the hybrid system
energy capacity Eh also tends towards one (cp. Fig. 8a). The
reason is that the absolute peak storage energy capacity Ep is
unaffected by the mean value of the signal, but the absolute
base storage energy capacity Eb increases. The normalization
with the single storage energy capacity Es (which also gets
larger) leads to an equalization.

For the chosenmean value variations, the effect on the rated
power P is negligible, as the normalization with the single
storage cancels the changes (cp. Fig. 8b). For higher mean
value offsets, the power rating of the base storage Pb would
tend towards one, and the peak storage energy capacity Pp
would tend towards zero because the input signals will
degenerate to a constant signal with vanishingly small noise.

With higher mean value offsets, the specific power ωp
of the peak storage substantially increases compared to the
single storage ωs, which is again an effect of normalization
(cp. Fig. 8c). It stays essentially unaffected in absolute values.
There is only a slight effect on the normalized specific
power ωb of the base storage, which tends toward one.
The same effects can be seen for the number of cycles C
(cp. Fig. 8d).

The dynamic stress S (cp. Fig. 8e) is unaffected by an
offset of the mean value, as it vanishes through the derivative
in Equation (16). The overall losses Lh decrease and tend
towards the single storage losses Ls as the relative proportion
of power flow between storages decreases (cp. Fig. 8f).
The mean value of the signal has a significant impact

on the results. While it may seem that a high mean value
is a good indicator of the effective utilization of a HESS,
the opposite is true. Although total dimensions Eh and total
lossesLh decrease and the differences in specific powers ω
increase, the positive gains for the base storage compared
to the single storage vanish. At a certain point, the dynamic
part of the input signal becomes negligible compared to the
stationary part, and the peak storage only removes the ripple,
which does not seriously impact the base or single storage.

C. VARIATION OF LOSS MODEL OF STORAGE MODEL
This section investigates the influence of the self-discharge
rate τ and efficiency η on the results. The parameterization of
the reference case is η = 0.95 and τ = 1084± 213 for both
peak and base storage (cp. Table 3). Now, the parameters are
varied: The base storage efficiency and the self-discharge rate
are decreased, leading to higher conversion but lower self-
discharge losses. The peak storage efficiency and the self-
discharge rate are increased, leading to lower conversion but
higher self-discharge losses. However, the total losses L stay
equal, i.e., ηL+ τL = const., i.e., each storage would produce
the same total losses as the original single storage if used on
its own.

The modified pairings are

• ηb = 0.93, τb = (1853± 359),
ηp = 0.97, τp = (758± 158) and

FIGURE 9. Changes in the results by varying the loss model
parameterization of the storage model (cp. Fig. 6). Representation of
results equivalent to Fig. 5. Darker coloring implies increased efficiency
and self-discharge rate variation between base and peak storage. Distinct
loss models can lead to smaller total hybrid energy capacity (a) and
reduced losses (f) by simultaneously reducing cycles (c) and stress (d) for
the base storage. Power rating (b) is virtually unaffected.

• ηb = 0.91, τb = (5774± 1020),
ηp = 0.99, τp = (570± 121).

The results of the loss model parameter are displayed in
Fig. 9. Darker color sets indicate more distinct loss models,
while the brightest color set displays the reference case where
base and peak storage have the same loss model parameters η
and τ .

The varying parameterization of the loss models introduces
a double benefit. The increased efficiency ηp of the peak
storage reduces the conversion losses ηL of fast charging
and discharging events as the peak storage is exposed to the
high-frequency components. As it only needs a small energy
capacity Ep to handle these events, the poorer self-discharge
rate τp is negligible. It is the other way around for the base
storage: A worse efficiency ηb is more tolerable, as the
storage is not exposed to rapid charge and discharge events
due to the low-frequency parts assigned by the controller.
On the other hand, the better self-discharge rate τb leads to
lower losses for the high energy amounts Eb that the base
storage has to reserve.
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This benefit is prominently supported by Fig. 9f: Losses
for both base Lb, peak Lp and hybrid storage Lh significantly
decrease with a more distinct loss model parameterization.
At a certain point, the total losses Lh fall below the original
single storage reference Ls. Fig. 9a also reflects decreased
overall losses, which shows the energy capacities E . While
the peak storage energy capacity Ep is unaffected, the needed
base storage energy capacity Eb is significantly reduced with
a more distinct loss model parameterization. Again, at a
certain point, the energy capacity Eh of the hybrid storage
falls below the energy capacity Es of the single storage
system.

There is no change in rated power P, as it is unaffected
by the efficiency η and self-discharge rate τ (cp. Fig. 9b).
The same applies to the dynamic stress S (cp. Fig. 9e). The
specific power ωb of the base storage (Fig. 9c) increases
because the energy content Eb decreases. The specific
power ωp for the peak storage is unaffected by changes in the
loss model parameterization. The cyclesC of the base storage
(Fig. 9d) increase relative to the single storage Cs as the
energy throughput in absolute numbers is roughly the same
for all loss model parameterizations. However, the energy
content reference E in the denominator decreases.
In summary, a filter-controlled HESS that utilizes storages

with distinct loss model parameterization optimally takes
advantage of the traits of each storage, which can even lead
to smaller energy capacities Eh and lower losses Lh than the
original single storage reference Es and Ls.

D. VARIATION OF k FEEDBACK FACTOR OF CONTROL
At last, the variation of the feedback factor k is investigated.
The feedback loop is a proportional control instance for
the energy content ep of the peak storage, as described
in Section III and Fig. 1. If the energy content ep of the
peak storage deviates from a set point Eref, which is half
of its energy content Ep, the feedback loop counters these
changes. Higher feedback factors k lead to a more aggressive
compensation that diminishes the effect of the leading low-
pass filter. The main effect of the feedback loop is retained
with a reasonably tuned feedback factor k: It compensates
conversion and self-discharge losses ηLp and τLp of the peak
storage, which leads to smaller energy capacities without
introducing high-frequency power demands for the base
storage.

The reference value of the feedback factor is k = 0.01,
the investigated parameter changes are k = 0.001 and
k = 0, i.e. no feedback or open loop control (cp. Table 3).
Fig. 10 shows the results of the feedback factor k variation.
Darker coloring/shading indicates higher feedback factor k ,
i.e., more aggressive leveling, while brighter colors indicate
a gentler set point correction. The brightest color set encodes
the open loop control k = 0 while the darkest color set
encodes the reference case k = 0.1.
Higher feedback factors k lead to much smaller energy

capacities Ep of the peak storage at the cost of higher
base storage dimensioning Eb and overall dimensioning Eh

FIGURE 10. Changes in the results when varying the feedback factor k of
the control strategy. Representation of results equivalent to Fig. 5. Darker
coloring implies larger k factor (from 0 to 0.001 to 0.01.) Larger k factors
lead to smaller peak energy capacity (a) and higher specific power (c) at
the cost of higher overall energy capacity (a) and losses (f).

(cp. Fig. 10a). The total energy capacity Eh of the hybrid
system stays roughly the same. The same applies to the
losses L, as seen in Fig. 10f.

The feedback factor k does not significantly influence
the rated power P (cp. Fig. 10b). Following, the spread in
specific power ω (Fig. 10c) between base and peak storage
increases with increasing feedback factor k . The influence of
the feedback factor k on the specific power can be exploited:
By tuning the feedback factor k the designer can choose a
pairing of specific powers [ωb, ωp] for base and peak storage
that matches existing storage technologies.

The cyclesCp of the peak storage rise with increasing feed-
back factor k (cp. Fig. 10a) because the energy capacity Ep
decreases, while the absolute amount of energy throughput
is roughly constant. It is the other way around for the base
storage cycles Cb. The dynamic stress S shown in Fig. 10e is
nearly unaffected by the feedback factor k , as the feedback
loop mainly compensates losses without altering the input
signals of the storages significantly.

In summary, the feedback factor k does not significantly
influence the total dimensions Eh and Ph and losses Lh of
the hybrid system. However, a significant influence on the
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dimensions Eb and Ep of the individual peak and base storage
makes it a crucial design variable.

Special notes concerning open loop control (k = 0):
The energy capacities Eb and Ep of the open loop filter
tend toward zero and one at the edges of the normalized
cutoff frequency axis fc. This alignment is reasonable as the
controller assigns the complete signal to one storage alone
without feedback. Nevertheless, it will not reach precisely
zero, as the filter introduces a phase shift between filter output
and input. The rated powers Pb and Pp weakly correlate to the
energy capacities Eb and Ep. As a result, the spread in specific
power ω is comparably indistinctive to control strategies with
feedback. Also, the cycle reduction Cb for the base storage is
relatively small compared to the closed-loop control (k 6= 0),
and all results are subject to an increased standard deviation,
which needs to be considered with higher safety margins for
dimensioning. It can be deduced that the effectiveness of the
open loop control is poor.

E. ADDITIONAL STUDIES
Other investigations were performed in the context of the
present study, but the presentation of the results is omitted
to increase significance and conciseness. Nevertheless, this
section provides a short discussion on the omitted results.

1) OTHER TYPES OF FILTERS
Other filter types were investigated, among them higher
order filters, highpass filters, FIR filters, and infinite impulse
response (IIR) filters. They all expose the same behavior, and
the choice is insignificant, except for high-order filters. Due
to the high phase shifts introduced by these filters, the power
allocation is poor, which leads to inferior performance.

2) RAMP FILTER
A ramp filter does not limit a frequency f but limits the
maximum allowed slope, i.e., the allowed change in power
per time or its derivative dp/dt . This implementation is
more typical for power electronics than for a low-pass
filter or a restriction for applications such as wind power
smoothing [50]. The qualitative results are comparable if
the maximum slope dp/dt and cutoff frequency fc at the
x-axis are scaled correctly. However, the results for the ramp
filter are subject to an increased standard deviation, which
needs to be accounted for with higher safety margins during
dimensioning.

3) VARIATION OF REFERENCE LOSS MODEL
PARAMETERIZATION
Other values for the efficency η and self-discharge rate τ
that are equally applied to the single, base, and peak storage,
do not alter the normalized results. Changes only happen if
they are applied unequally between the base and peak storage,
as described in Section V-C.

4) DYNAMIC STRESS
The dynamic stress S introduced in Equation (16) is an
abstract measure of the variation of a signal with the claim
that lifetime correlates with it. Other definitions were tested,
among them the examination of the maximum slopes or the
investigation of the power density spectrum at low and high
frequencies, but all showed qualitatively comparable results.
The present one is chosen because it is simple and symmetric
to the definition of the cycles in Equation (15).

5) LENGTH OF SIGNAL
The length N of the signal will affect the energy capacity Eb
of the base storage, but not the energy capacity Ep of the peak
storage. The absolute energy capacity Eb of the base storage
increases with increasing signal length N , and the absolute
amount of the peak storage energy capacity Ep stays constant.
Through normalization, the curves will tend towards one and
zero, respectively. The rated power P stays unaffected for
both storages. As a result, the normalized specific powers ωb
and ωp will tend towards one for the base storage and towards
infinity for the peak storage. Cycles C will behave the same
way. The normalized dynamic stress S is unaffected by signal
length N . Also, the length of the signal N does not impact the
losses L. This is an implicit consequence of the simulation
setup definition, as the loss model parameters η and τ are
chosen to have equal weight on efficiency and discharge
losses ηL and τL.

6) SIGNAL GENERATION
Other kinds of signal definition, e.g., a univariate random
generator instead of a Gaussian random generator or other
shapes of the frequency spectrum, were analyzed. However,
the results did not reveal any differing or extra insights.

7) SUPERPOSITION
The qualitative results presented in the previous sections can
be superposed. E.g., it is shown in Section V-A that high-
frequency signals lead to higher specific powers ωp of the
peak storage, and in Section V-B it is shown that higher
deviation from the mean value of the signal also leads to
higher specific powers ωp for the peak storage. Combining
both effects would increase the specific power ωp even
further.

VI. KEY FINDINGS AND DESIGN GUIDE
The following section gathers insights of the previous
elaborations. Themethodology can be used as a dimensioning
tool, but the idea is to present dependencies, correlations,
influences, and advice in a condensed form. They can be kept
in mind and incorporated into individual design processes.
First, key findings are extracted, and then design guidelines
are derived from these.
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A. KEY FINDINGS
The following conclusions are rules of thumb extracted from
the previous elaborations. The designer can always look up
details in the individual sections.

1)
A filter-controlled HESS benefits from an increased lifetime
(in terms of cycles Cb and dynamic stress Sb) of the base
storage at the cost of higher energy capacity Eh and rated
power Ph of the hybrid system compared to the single
storage system (cp. Section IV-C). Hence, the filter control
performs worse than other control strategies regarding the
dimensioning (cp. to [21], [24], [48]), but the result is quite
robust to signal variations.

2)
The disadvantage of overdimensioning can be mitigated if
there is no adequate single storage technology for the chosen
application in terms of specific power ω. A HESS can meet
the required specific power in this typical case by assembling
two storage technologies with a lower and higher specific
power ω (cp. Section IV-C).

3)
A filter-controlled HESS highly benefits from storage
technologies with distinct loss model parameters η and τ ,
i.e., a base storage with low self-discharge rate τb and a
peak storage with high efficiency ηp. This combination may
even outperform a well-suited single storage system with a
balanced loss model parameterization in terms of losses L and
energy capacity E (cp. Section V-C).

In other words, it is proven under the assumption of
linear loss models that a hybrid system can reduce total
losses L and dimensioning E and P if and only if the storages
utilize different loss model parameterization η and τ . If not,
frequency-based control leads to higher dimensioning E
and P and losses L than theoretically possible and do not
allocate power optimally (cp. Section V-C) (cp. to [21], [24],
[48]).

4)
Lower cutoff frequencies of the filter reduce rated power Pb,
specific power ωb, and cycles Cb of the base storage.
However, the cutoff frequency barely affects the needed
energy capacity Eb by this parameter and the energy
capacity Eh of the hybrid system (cp. Section IV-C).

5)
The required rated power Pp of the peak storage approx-
imately matches the required rated power of the single
storage Es for lower and medium cutoff frequencies fc. Only
the base storage rated power Pb decreases towards lower
cutoff frequencies fc (cp. Section IV-C).

6)
The advantages of a hybrid system increase for signals with
an emphasis on high frequencies (cp. Section V-A).

7)
The advantages of a hybrid system diminish for signals with
a high mean value offset as the results for the base storage
converge to the results of the single storage, making an extra
peak storage superfluous (cp. Section V-B).

8)
Higher feedback factors k decrease the energy capacity Ep of
the peak storage by increasing the energy capacity Eb of the
base storage. The total capacity Eh of the hybrid system stays
approximately constant. Both effects increase the spread in
specific powers ω of the base and peak storage, making the
feedback factor k a significant design variable to tune the
resulting specific powers ω to existing storage technologies
(cp. Section V-D). An open loop control without feedback
provides poor performance and high standard deviation and
is therefore not recommended (cp. Section V-D).

B. DESIGN GUIDELINES
It is advised to use optimization techniques to find the best
parameters of the filter-based control strategy for a specific
application. Otherwise, the parameters can be tunedmanually
with the help of the following guidelines:

• Use filter-based control only for input signals with low
mean value and with an emphasis on high frequencies
(cp. Section VI-A-6 and Section VI-A-7)

• Use a base storage with a low self-discharge
rate τb and a peak storage with high efficiency ηp
(cp. Section VI-A-3).

• Choose a low cutoff frequency fc, i.e. 1% to 10%
of the maximum frequency fmax of the input signal,
to reduce the power rating Pb of the base storage
(cp. Section VI-A-5).

• Choose a feedback factor of k > 0. Iteratively adapt
this value to match the specific power ωb and ωp of
the chosen storage technologies (cp. Section VI-A-2).
Increase the value if the simulation results yield a base
storage with a specific power ωb that is higher than the
chosen base storage technology or if the simulations
yield a peak storage with a specific power ωp that is
lower than the chosen peak storage technology. Decrease
the value if the opposite is true. Also, consider adapting
the cutoff frequency fc. Decrease it if the yielded specific
powers ω of both storages are too high and increase it if
the opposite is true.

VII. SUMMARY
Hybrid energy storage systems (HESS) are a promising
solution for storage problems, and a filter-controlled HESS
is a standard implementation as it provides robust results
and easy implementation. However, more advanced strategies
may provide better performance.

This paper intends to structure, specify, clarify, summarize
and provide mathematical background and guidelines to
previous work for filter-based control of HESS. The present
work builds on a simple linear storage model with efficiency
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and self-discharge rate and a carefully conducted simulation
setup for numerical experiments with statistical analysis.
Results are quantified and normalized. The investigated
output characteristics involve energy capacity, power rating,
specific power, cycles, dynamic stress and conversion, and
self-discharge losses. The influence on these characteristics
is investigated for the following design variables: frequency
spectrum and mean value of the input signal, cutoff
frequency and feedback factor of the control strategy, and
parameterization of the loss model of the storage.

The paper proves that a filter-controlled HESS enhances
the lifetime of the supported storage but also reveals inherent
overdimensioning of the HESS compared to more advanced
control strategies. However, it demonstrates that a HESS’s
dimensions and overall losses can fall below that of a single
storage system, assuming storages with distinct efficiency
and self-discharge rate parameters. Moreover, the present
work shows that a HESS is more effective for high-frequency
signals and less effective for signals with high mean value
offsets. The feedback factor of the control strategy is shown
to be the most prominent design variable.

Potential future work could verify the results exper-
imentally, conduct a similarly structured comparison of
filter-based control to other control paradigms or compare
different subtypes of filter-based control comprehensively.
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