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Abstract
Wind energy plays a major role in the transition to a renewable energy supply
and is already holding significant shares of the overall energy production.
In the near future, a dependence on this power resource requires a high
availability of the turbines. In consequence, an enhanced reliability of all
wind turbine components gains significant importance. Especially, the rotor
blades are huge and complex composite structures that are exposed to
exceptionally high loads, both extreme and fatigue loads. These can result
in damages causing severe downtimes or repair costs. It is thus of utmost
importance that the blades are carefully designed, including uncertainty
analyses in order to produce safe, reliable, and cost-efficient wind turbines.

An accurate reliability assessment should already start during the
design and manufacturing phases. Recent developments in digitalization
give rise to the concept of a digital twin, which replicates a product and
its properties into a digital environment. Model updating is a technique,
which helps to adapt the digital twin according to the measured behavior
and characteristics of the real structure. Current model updating techniques
are most often based on heuristic optimization algorithms, which are compu-
tationally expensive, can only deal with a relatively small parameter space,
or do not estimate the uncertainty of the computed results. However, recent
developments in the field of inverse problems and a solution using invertible
neural networks offer a chance to efficiently couple the model updating
procedure for complex wind turbine blades with uncertainty analysis.

The specific objective of this thesis is to present a computationally
efficient model updating method that recovers parameter deviation. This
method is able to consider uncertainties and a high fidelity degree of the
rotor blade model. The basis for this study is a fully parameterized model
generator, which is validated at the beginning of this thesis. The model
generator is used to perform a physics-informed training of a conditional
invertible neural network. This network finally represents a surrogate of the
physical model, which then can be used to recover model parameters based
on structural responses of the blade.

The presented research consists of different studies with increasing
levels of fidelity of the physical model used for the training of the invertible
neural network. All generic model updating applications show excellent
results, predicting the a posteriori distribution of the significant model
parameters accurately. However, the application of the presented approach
on real experimental data results in less accurate predictions and requires
further analysis in future research.
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Kurzfassung
Die Windenergie spielt eine wichtige Rolle beim Wandel zu einer erneu-
erbaren Energieversorgung und hat bereits einen erheblichen Anteil an
der Gesamtenergieerzeugung. Die künftig zu erwartende Abhängigkeit von
dieser Energiequelle erfordert eine hohe Verfügbarkeit der Windenergieanla-
gen. Hierfür muss die Zuverlässigkeit aller Anlagenkomponenten verbessert
werden. Insbesondere Rotorblätter sind gewaltige und komplexe Faserver-
bundstrukturen, die außergewöhnlichen Extrem- als auch Ermüdungslasten
ausgesetzt sind. Diese können zu Schäden führen, die erhebliche Ausfallzeiten
oder Reparaturkosten verursachen. Daher ist ein sorgfältiger Entwurf unter
Berücksichtigung von Unsicherheiten von größter Bedeutung, um sichere,
zuverlässige und kosteneffiziente Windenergieanlagen herzustellen.

Eine genaue Zuverlässigkeitsbewertung sollte bereits bei der Konstruk-
tion und Fertigung beginnen. Im Rahmen der Digitalisierung erhält der
digitale Zwilling Einzug, der ein Produkt und seine Eigenschaften in einer
digitalen Umgebung abbildet. In diesem Fall ist die Modellaktualisierung
eine Technik zur Kalibrierung des digitalen Zwillings entsprechend dem
gemessenen Verhalten und den Eigenschaften der realen Struktur. Aktuelle
Modellaktualisierungstechniken basieren meist auf heuristischen Optimie-
rungsalgorithmen, die rechenintensiv sind, nur einen kleinen Parameterraum
abdecken können oder die Unsicherheit der berechneten Ergebnisse nicht
abschätzen. Jüngste Entwicklungen auf dem Gebiet inverser Probleme und
deren Lösung mit invertierbaren neuronalen Netzen bieten jedoch die Möglich-
keit, die Modellaktualisierung für komplexe Rotorblätter mit gleichzeitiger
Unsicherheitsbetrachtung effizient anzugehen.

Das Ziel dieser Arbeit ist die Vorstellung einer recheneffizienten Me-
thode der Modellaktualisierung zur Ermittlung der Parameterabweichung.
Diese soll außerdem eine Unsicherheitsbewertung der berechneten Ergebnisse
für ein hochaufgelöstes Rotorblattmodell beinhalten. Die Grundlage für die
Untersuchungen bildet ein umfänglich parametrisierter Modellgenerator, der
zu Beginn dieser Arbeit validiert wird. Der Modellgenerator wird verwendet,
um ein physikalisch informiertes Training eines konditionierten invertierbaren
neuronalen Netzes durchzuführen. Dieses Netz stellt schließlich ein Ersatzmo-
dell des invertierten physikalischen Modells dar, das dann zur Aktualisierung
von Modellparametern auf der Grundlage des strukturellen Verhaltens des
Blattes verwendet werden kann.

In der vorliegenden Arbeit werden verschiedene Studien mit zuneh-
mender Genauigkeit des physikalischen Modells dargestellt, das für das Trai-
ning des invertierbaren neuronalen Netzes verwendet wird. Alle generischen
Anwendungen zur Modellaktualisierung liefern ausgezeichnete Ergebnisse,
indem sie die a-posteriori Warscheinlichkeiten der signifikanten Modellpara-
meter genau vorhersagen. Die Anwendung auf experimentelle Daten führt
jedoch zu ungenaueren Vorhersagen und erfordert weitere Untersuchungen.
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1 Introduction

This chapter introduces the thesis by establishing an overall motivation for the topic. In a second
step, the state of the art of wind turbine blade modeling is presented, followed by current model
updating techniques. Based on the current state of the art, a research gap is identified and the
objectives for this thesis are declared. Finally, the concept of the thesis with the outline and the
declaration of contributions to the incorporated publications is presented.

1.1 Motivation . . . . . . . . . . . . . . . . . . . . 2
1.2 State of the art . . . . . . . . . . . . . . . . 3
1.3 Research gap and objectives. . . . . 12
1.4 Thesis concept . . . . . . . . . . . . . . . . . 13



2 Section 1.1 Motivation

Wind energy is one of the key drivers to transform the fossil energy production [105] to a renewable
energy fundament. The decarbonisation of the energy production is a major prerequisite for a
long-term transition to climate-neutrality by mid of this century, as decided in the Paris Agreement
on 12 December 2015 [193] and integrated into the European Strategic Energy Technology Plan
[76]. A shift to an energy production system based on renewable resources — attributing important
significance to wind energy — helps to ensure a general access to affordable, reliable, sustainable
and modern energy for all, which is demanded by the United Nations in the 7th goal of their 2030
Agenda for Sustainable Development [194].

Within these frameworks, several platforms and associations from the wind energy sector — such
as the European Energy Research Association [62], the European Technology and Innovation Platform
on Wind Energy [64, 65], the European Academy of Wind Energy [195], and the International
Energy Agency [104] — identified several short to long term research challenges for the wind energy
research community. One key focus is on modern and reliable turbine technology. These experts
emphasize, among others, the importance of reducing or tracking uncertainties during design and
manufacturing as well as the reliability modeling and digitalization.

The present thesis will be settled in this research field. Structural uncertainties within a manu-
factured rotor blade are hard to quantify due to the structure’s complexity. However, a probabilistic
and efficient model updating approach can improve the quantification of these uncertainties, reveal
extreme manufacturing deviations and enhance a digital twin of the blade. This research gap is
addressed by the present thesis.

This first chapter is introduced by a short motivation, which is followed by the state of the art of
wind turbine blade modeling and model updating. Subsequently, the research gap and the objectives
are described. Finally, the last section contains the conceptual design of this thesis.

1.1 Motivation

To make wind turbines fully competitive and establish wind energy as a stable, renewable form
of power generation, the wind turbine reliability is of utmost importance [199]. Especially, the
rotor blades are huge and complex composite structures, which carry extreme loading. Thus, an
accurate blade design is necessary to minimize manufacturing and material costs, while maximizing
power extraction. However, rotor blades are also among the top three most crucial components
with respect to severe downtime after a failure [114, 153, 162, 189]. According to a study of Dao
et al. [52], the rotor blades and hub contribute to 24.2% of the onshore and 33.3% of the offshore
downtime. Hence, the rotor blades reliability has to be maximized [83]. The wind industry is highly
focused on condition monitoring of crucial sub-components such as rotor blades or gearboxes [68] to
improve the predictive maintenance and thereby decrease downtime significantly [74, 102, 200, 217].

Reliability analysis should already start beforehand at the design, modeling and manufacturing
stage. All designed rotor blade prototypes are typically tested in a full scale test against fatigue
and extreme loads to experimentally verify the blade design [41]. Due to the increasing size of
modern blades [145], recent research proposes segmented blade tests [89] and subcomponent-tests
[9, 14, 37, 46, 166, 214] of the rotor blades. These reduce the test dimensions, time, and costs,
while trying to achieving similar boundary conditions and loads compared to the full scale tests. In
any of the mentioned tests, the prototyping and experimental costs are high, thus, such tests are
only performed once at the final certification process [106]. This requires the final design to rely
on precise models, that represent the real blade characteristic as accurately as possible, to avoid
any unexpected surprise during the tests. Thus, the finally designed rotor blade is expected to be
sufficiently accurate and reliable before even performing experimental tests [45].

Although quality management in manufacturing should ensure similar blades during production,
which range within a defined tolerance, a lot of uncertainties originate either from the manufacturing
process itself or from the uncertain material properties and can provoke non-negligible deviations
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in structural blade characteristics [33]. For example, Gundlach and Govers [88] revealed variations
in modal response of different blades of the same rotor, i.e., production series. On the other hand,
Willberg et al. [206] point on manufacturing deviations, as the blade’s structural behavior during
experiments does not agree with the predicted results from finite element analysis. However, these
deviations in a rotor blade can appear as material property variations, geometric differences or even
manufacturing defects [139]. All deviations from the design require a method to capture and track
these differences and replicate the correct blade with adequate uncertainties to provide a reliable
basis for any further analysis or condition monitoring during operation. This can be accomplished
by the novel concept of a digital twin [47, 171].

Digitalization and digital twins receive increasing attention throughout the industries [82].
According to Solman et al. [180], the digital twinning also emerged most recently in the wind energy
sector and is gaining significant attention in its research community [66, 124, 140, 159, 171]. A
mayor method to derive a digital twin is via model updating of the physical model with measured
information of the component, as shown in diverse finite element applications, e.g., for a naval vessel
[197], bridges [77] or an offshore structure [192]. To achieve a meaningful digital twin the process
has to compromise three principal aspects:

• An extensive and accurate (physical) model

• A sufficient tracking of the manufacturing process and condition state of the product via
sensors

• An efficient, reliable and probabilistic model updating procedure to feedback the gathered
physical information into the model

However, till now, the combination of an extensive model and an efficient model updating procedure
is contradictory. Current model updating procedures are based on optimization methods. In general,
these optimization methods require the number of parameters to be as small as possible, since fewer
parameters improve the stability of the optimization solution [84]. This present thesis will focus on
combining both extensive rotor blade models and an efficient updating method.

1.2 State of the art

This section gives an overview on the state of the art of both wind turbine blade modeling and
model updating approaches. First, modeling techniques for wind turbine blades are reviewed and
categorized according to their fidelity level. Next, different model updating approaches are assessed.
Some examples will focus on wind energy applications, while others are more generally chosen to
show the broad possibilities of model updating methods.

1.2.1 Wind turbine blade modeling

As already emphasized, a correct and accurate modeling is an essential first step for the reliability of
wind turbine blades. Although the lifetime and operational reliability is one important aspect, better
predictive models could also lead to a reduction of safety factors imposed by certification guidelines
such as DNV GL AS [58] and thereby push the blade designs more to the limit, which would reduce
material weight as well as costs and consequently also beneficially impact the design of other turbine
components. Therefore, wind energy research and industry have established a huge range of tools to
accurately design blades and predict their characteristics from aeroelastic codes [75, 110, 123] to
optimization toolboxes [32, 34]. However, accurate models are computationally expensive and do
not necessarily contribute additional information for particular design stages. Thus, the different
applications call for different model fidelity levels.
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A pre-stage in modeling wind turbine blades are cross sectional analysis tools used to generate
cross sectional properties of anisotropic beam structures. This directly leads to the first fidelity level
of a full blade model, the Euler-Bernoulli beam [86] or the more sophisticated Tymoshenko beam
model [182], which can both be built based on the cross sectional properties generated beforehand.
The next higher fidelity level are fully resolved finite-element models represented by shell elements,
which are a good compromise between accuracy and computational cost. The best representation of
wind turbine blades can be achieved by 3D finite element models with continuum shell elements
or layered solid elements. These can replicate the exact geometry, laminate layup and tapering.
However, they require the most computational effort. In the following, the state of the art for these
four fidelity levels will be discussed. Further information can also be found in Chapter 2 (i.e., the
first paper).

Cross sectional model

Although cross sectional analysis codes do not directly calculate blade responses, in conjunction
with beam models, these were very early stages of analyzing the wind turbine blade behavior, as
for example in the computer program HANBA2 [79]. Other early codes [25, 26, 158] are based
on classical laminate theory [150] or derivations of it. Since then more algorithms were published
[13, 131, 204] in research, while the most popular codes, at least in the wind energy research
community, are the Beam Cross Sectional Analysis Software - BECAS [27, 28, 29] (exemplarily
depicted in Figure 1.1) and the Variational Asymptotic Beam Sectional Analysis - VABS [44]. While
all of the aforementioned codes return individual strucutral properties, such as the shear or mass
center, more sophisticated approches such as BECAS and VABS compute fully populated 6x6 mass
and stiffness matrices.

Figure 1.1: Exemplary plot of a wind turbine blade cross section generated with BECAS, showing the
element distribution and material assignment.

BECAS, as well as the tool NABSA [212], was developed based on the formulations published by
Giavotto et al. [79]. These formulations were established to account for anisotropy and inhomogeneity
of beam structures by extending the Saint Venant hypotheses for homogeneous and isotropic beams.
VABS is also capable of dealing with anisotropic, non-homogeneous materials and to represent
general cross sectional geometries, but was formulated according to Hodges [99], who included the
theories of the geometrically exact beam [97] and the variational asymptotic methods [23]. The
software VABS was continuously tested, revised and validated [98, 210, 211, 212]. Chen et al. [45]
compared the accuracy of VABS against different other tools such as PreComp [25], FAROB [158],
and CROSTAB [130] and BPE [131], with the result that VABS outperforms the others in terms of
accuracy.
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Finite element beam model

Wind turbine blades being slender and elongated structures are predestined to be modeled as
beam-like components [209]. Typically, these are chosen as either Euler-Bernoulli beams [95] or
Tymoschenko beams [182]. The beam theory according to Euler-Bernoulli assumes that the cross
sectional deformation is limited only to rotation due to beam bending, i.e., the cross sections stay
perpendicular to the beam axis in the deformed configuration. Shear deformations from lateral forces
are additionally taken into account in the Timoshenko beam theory. Both models are linear beam
models that assume small deflections. However, modern wind turbine blades are highly flexible and
are exposed to partially very large deflection, which makes that assumption invalid. Formulations
such as the geometrically exact beam theory [98] also account for large deflections. Compared to 3D
finite element models, beam models are computationally more efficient, while providing sufficiently
accurate solutions considering the general turbine dynamics [53, 201]. The relevant cross sectional
information to create a beam model can be derived from the aforementioned cross sectional analysis
tools. Figure 1.2 illustrates an exemplary finite element beam model, where BECAS was used to
calculate the cross sectional properties for the section, as shown for the cross section highlighted in
red.

Figure 1.2: Exemplary plot of a coarse wind turbine blade finite element beam model [148]. The blue airfoil
shapes depict the corresponding structural topology, whereas for the cross section highlighted in red, the
BECAS plot is shown.

Due to their computational efficiency and reasonable accuracy, this type of model fidelity is
popular for current aeroelastic analysis codes, such as BeamDyn [203], HAWC2 [123], FAST [181],
GH Bladed [75], MBDyn [137], Dymore [18], and others. In general, these codes construct multi-
body-systems of the complete turbine to calculate load histories under predefined environmental
conditions, which constitute the design loads for the structural components, e.g., the rotor blade.
Changing the structure directly leads to changes in the beam model and thus the aeroelastic analysis
has to be processed again to obtain the design loads. This procedure is repeated iteratively until
a certain convergence is achieved [175]. Since this procedure comprises several different operation
states of the wind turbine, these codes make use of the computational efficiency of beam models.

Finite element shell model

Despite their high computational efficiency, beam models contain the risk of over-reducing the
complex composite blade structure [107] and decouple the structural properties from the real blade
design [70]. However, it may occur that problems originating from the design with simplified models
are not revealed until later design stages, when higher fidelity models are applied [165].

As the composite thickness to chord length ratio of a rotor blade is typically small, a finite
element model with shell elements containing a layup definition can be used [45]. Although it is
usually referred to as 2D finite element model, such a model represents the three dimensional shape
of the blade in contrast to a beam model, which only follows the three dimensional blade axis. Shell
element models obviously result in a higher number of degrees-of-freedom, but it is still half as much



6 Section 1.2 State of the art

as in solid finite element models. Apart from torsion, shell finite element models predict the overall
global blade behavior almost as well as solid finite element models [156].

Since these models offer an excellent compromise between accuracy and computational costs,
they are state of the art when applied for detailed analyses [206] and represent the lowest necessary
fidelity level. This is also the reason why a lot of research or commercial model generation tools
apply shell models, such as NuMAD [24, 163], FOCUS [61], FEPROC [167] or a tool from the Ghent
University [157]. Shell element models are often built in conjunction with solid elements for the
adhesive volumetric joints [145, 146, 167]. Figure 1.3 shows an exploded view of such a hybrid model,
where the composite parts are modeled as shell elements, i.e., the components shell, shear webs and
trailing edge, and the adhesive joints (yellow) are represented by solid elements. However, the shell
element models suffer from a significant drawback: the element node offsets from the mid-plane lead
to significant misprediction of the structure’s torsional behavior [38, 81, 122, 154]. This can present a
dramatic problem, especially as modern bend-twist coupled blades are intentionally designed to twist
during bending in order to reduce aerodynamic loads [69, 141, 183]. Additionally, shell elements
overlap in convex or tight structures, e.g., leading or trailing edge, or the shear web corners, and
provoke excessive weight and stiffness. Hence, these types of models are reaching their limits and
have to be applied with caution for modern wind turbine blades.

Figure 1.3: Exemplary exploded view of a coarse wind turbine blade hybrid finite element model with shell
elements for the composite parts (blue, light blue) and solid elements for the adhesive parts (yellow).

Finite element solid model

The most accurate, but also computationally most expensive modeling approach is (layered) solid
element modeling [45]. Whenever very detailed analysss are necessary, such as accurate stresses
in adhesive joints [156] or through-thickness stresses for interlaminar fractures and delamination
[93, 151, 152], the use of solid element formulations is unavoidable. In contrast to homogeneous
solids, layered solid elements can be assigned a laminate layup and thus easily represent a composite
section. Recent research follows the trend to use solid element models [34, 94, 156] and even integrate
them in their model generators such as the tool from the Ghent University [157] and the modeling
code within CP-Max [32]. Figure 1.4 shows an example of a solid finite element model segment used
by Haselbach et al. [94].
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Figure 1.4: Exemplary segment of a wind turbine blade finite element model with solid elements [94].

Models using continuum shell elements (also referred to as solid shell elements) are intermediate
solutions between shell and solid element models [161]. These can represent the correct shape of the
blade also as solid elements, but include shell kinematics, thus should only be used for thin-walled
structures.

1.2.2 Model updating approaches

After a structural model is designed, simulated, and verified, the structure is finally ready for the
production process. After this structure is tested, it may have significant differences to the simulated
model’s properties or response. This is when model updating (also referred to as calibrating)
comes into action, seeking to correct the inaccurate model parameters with the aim to improve
the model prediction of the real structure [142]. This of course does also apply to other science
disciplines. Model updating is a huge scientific field due to a vast amount of available algorithms.
There are also different ways of categorizing the model updating problem and the solving approach,
though, this section divides it according to Figure 1.5 following Marwala [135], Sarker et. al
[170], Lin et. al [129] and Guantara [87]. First, the approaches are categorized into deterministic,
heuristic and probabilistic methods. The deterministic methods rely on the analytical properties of
a problem and systematically generate a sequence of points trying to converge to an optimum [129],
examples are linear programming [49], nonlinear programming [19], and mixed-integer programming
[128]. Heuristic approaches rather search for the optimum solution and are applied whenever the
deterministic approaches fail to solve a complex optimization problem. Usually they are inspired by
natural process and can generally be categorized in evolutionary, swarm intelligence, physical/natural
processes, direct search methods [91]. Both aforementioned model updating approaches, deterministic
and heuristic, solve an optimization problem. The probabilistic model updating is typically performed
with the Bayesian model updating [135]. According to Baye’s theorem the posterior distribution of
the model parameters is inferred by expensive Markov Chain Monte Carlo sampling [178], thus, it
benefits from an uncertainty estimation the other approaches cannot offer. A different updating
method, which addresses uncertainties, are fuzzy models, though these are non-probabilistic [113].

The deterministic and heuristic approaches can be further divided into multi-objective and
single-objective optimizations. The multi-objective optimization has more than one observed model
output. Depending on the approach these can either be kept as individual optimization targets,
which would result in a Pareto-optimization or can be grouped to a single objective function, which
is called scalarization. The objective function, sometimes also referred to as fitness function, is then
treated similar to a single-objective optimization. Further, this problems can be divided into linear
problems (LP) and non-linear problems (NLP), which defines if the objective function is linear or
non-linear.
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Model updating

Deterministic ProbabilisticHeuristic

Multi objective optimization Single objective optimization

Pareto Scalarization

LP NLP

Figure 1.5: Categories of optimization methods used for model updating.

This does by far not cover all ways of categorizing model updating or especially optimization
problems. Due to the problem complexity of updating wind turbine blade models, the further
state-of-the-art review will focus on model updating with heuristic global optimization algorithms
and limit any discussed applications at least to finite element structural model updating. For further
information on the other methods and categorization please refer to [21, 35, 87, 118, 129, 134].

Heuristic optimization algorithms in model updating

Heuristic approaches are widely used whenever problem-specific algorithms are not feasible or
simply to expensive too develop [160]. Heuristic derives from the Greek heuriskein, which means to
discover [213] and describes well the random search nature of these algorithms [36]. They act as
universal solver, though, simple linear convex problems are probably better solved in a conventional
deterministic way [125]. Heuristic methods seek for a satisfying solution, which not necessarily is
always the converged optimum [126]. Another big advantage of heuristic methods is, that they do
not need specific insight of the model and can thus deal with black box problems, where only input
and output or an objective function are given [17].

Evolutionary algorithms generally follow the principal survival of the fittest [138]. From there
also derives the term fitness function instead of objective function. The two most popular algorithms
are the evolutionary computation [170] and the genetic algorithm [59]. These algorithms compute
an initial solution (often referred to as population), based on this solution a new one is generated
by perturbation. If the new solution improved in terms of the fitness value, it is set as the current
solution. The iteration is repeated until the fitness function change reaches a defined tolerance.
The different algorithms have different strategies for the generation of the initial solution and the
perturbation [170, 208].

Swarm intelligence algorithms are sometimes also assigned to evolutionary algorithms, however,
they deserve an individual category [112]. These algorithms are inspired by the collective intelligence
behavior of a self-organized swarm species [31]. It relies on the self-organized interaction and
exchange of information between the individuals in order to achieve a superior goal [1]. Here the
best-known algorithms are the ant colony optimization and the particle swarm optimization [30].
Ant colony optimization mimics the behavior of an ant colony where ants depositing pheromone on
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their way to mark beneficial paths to be followed by other ants [60]. Whereas the particle swarm
optimization imitates the movement and reaction of, e.g., fish schooling or bird flocking [50]. Both
are population-based stochastic optimization strategies.

Additionally to the aforementioned algorithms, other optimization methods are inspired by
physical and natural processes, from different fields such as magnetism, chemistry, and thermody-
namics [169]. Here, the most preferred algorithm is the simulated annealing, originally developed by
Kirkpatrick et al. [116] and Černý [43], which is based on the thermodynamic analogy of annealing
of solids [196].

Unlike gradient based algorithms, the direct search methods search from the latest point a set of
surrounding points looking for a better solution [127]. Most of them rely on geometric strategies
to explore the solution space [16]. Well-known algorithms are the Nelder-Mead [144] and the
pattern search algorithm [101]. The Nelder-Mead algorithm starts off with a simplex. A simplex
is the most simple geometrical form representing a hypertetrahedron with n + 1 vertices in the
n dimensional parameter space, e.g., a triangle in a 2D space or a pyramid in a 3D space. The
algorithm evaluates the objective function for each corner point of the simplex. Then, the worst
point is then replaced by its geometric reflection over the centroid of the rest points generating a new
simplex. Combined with some geometric extension and contraction processes, this procedure is done
iteratively untill it reaches a tolerance [121]. It basically moves the simplex through the parame-
ter space and when it is approaching the optimum, it reduces the size of the simplex until convergence.

Apart from these pure heuristic optimization methods, any combination of those can be imagin-
able as hybrid approaches. Most likely a global search is used for exploration followed by a more local
search for exploitation of the optimum [111]. Examples show combinations of bee colony algorithm
& pattern search [111], pattern search & simulated annealing [96], or evolutionary algorithms &
Nelder-Mead search [67, 119].

Model updating in structural engineering

Structural engineering nowadays employs model generation and finite element simulation to obtain
responses of a certain structural component. Gradient information of the transformation from input
to response data is hardly available, which directly suggests the use of non-gradient methods [91], e.g.,
heuristic optimization approaches for model updating. Usually, the updating of structural models
is performed on structural dynamics, thus natural frequencies and mode shapes [174]. Therefore,
the most popular metric to define an objective function is the modal assurance criterion (MAC)
[2] or derivatives thereof [6]. The MAC-value is a statistical indicator, that describes the degree of
consistency between mode shapes [155].

Marwala [135] gives a broad overview and good introduction into the field of finite element
structural model updating, while applying all types of heuristic optimization methods, hybrid
combinations of them, neural networks, or Bayesian approaches. There are many fields of application
for finite element model updating of structures. Bridges are probably the predominant ones, e.g.,
Deng and Cai [54] used a hybrid response surface method and genetic algorithm, others used a
particle swarm algorithm [176, 187, 188, 207]. However, this state-of-the-art review will focus on
wind energy related applications.

Several updating studies are presented on the full wind turbine multi-body model, e.g., a FAST
model is adapted with a simplex search method based on inertial measurements from operational
monitoring [205], Velazquez and Swartz [198] use a simulated annealing algorithm to update the mod-
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els for structural health monitoring, whereas others apply a multi objective pareto front optimization
to account individually for each mode shape consistency [132], or a gradient based approach [143] to
update offshore wind turbine multi-body models. Rinker et al. [164] calibrated a full HAWC2 model
of a Vestas V52 turbine with manual step by step tuning and sequential least square method until
meeting the desired properties of each single component.

The tower, foundation and, in case of offshore turbines, the substructure also received research
attention in terms of model updating. Tamizifar et al. [185] applied model updating for calibrating
the material’s Young’s modulus E and density ρ of a wind turbine tower by minimizing the objective
function based on the MAC and using a genetic algorithm. Others used model updating for damage
identification applying Levenberg-Marquardt optimization [216] or sequential quadratic program-
ming [172]. Augustyn et al. [15] used a sensitivity based model updating for offshore jacket structures.

Latest research publications show, model updating for wind turbine rotor blades is performed
on different fidelity levels depending on the application, but, without exception, (to the best of
the author’s knowledge) all studies are based on structural dynamic response. Model updating
on the beam level is primary used for damage identification and localization. Hofmeister et al.
[100] successfully used model updating with different approaches such as particle swarm, genetic
algorithm, global pattern search, and sequential quadratic programming to identify stiffness drops in
a generic finite element Euler-Bernoulli beam model of the NREL offshore 5-MW rotor blade [109].
In parallel, Bruns et al. [39, 40] compared different optimization algorithms for wind turbine blade
model updating of generic two and five dimensional updating problems based on a similar model of
the NREL offshore 5-MW. Schröder et al. [173] performed a hybrid model updating with Simulated
Quenching as global exploration algorithm and an adaptive Sequential Quadratic Programming
as local exploitation algorithm on a Timoshenko beam model. This way they successfully tried to
locate local ice accreation on rotor blades, by identifying additional masses on the experimentally
tested blades. The last presented publication is that of Bottasso et al. [33], who applied Sequential
Quadratic Programming to update a Timoshenko beam model. However, they used shape functions
to adapt a spanwise baseline property in order to reduce the dimensionality of the problem and
make the effects less local than discrete properties.

Apart from the aforementioned publications all covering finite element beam model updating,
a few publications on model updating of higher fidelity models, i.e., shell or solid element models,
exists. The first is presented by Turnbull and Omenzetter [190, 191], using fuzzy finite element model
updating of a simplified laboratory blade structure. They applied both, a particle swarm optimization
as well as a firefly optimization, and compared the results. Knebusch et al. [117] published a model
updating study considering a 3D finite element model with shell elements representing the composites
and with the largest parameter space including 59 fields of the blade shell where stiffness and density
can be varied, i.e., 118 parameters in total. The response used for the model updating with a
gradient-based optimization were experimental high fidelity modal characterization tests of the blade
[88].

Model updating - an inverse problem

Most model updating approaches and applications tackle the updating process by minimizing the
response errors between the updated model and the target response. But at the end, model updating
is an inverse problem [178], which however, most of the times is ill-posed [63]. The forward process,
i.e., mapping of a response to a given set of input, is typically an established physical model/process
and well known. In wind turbine blade modeling this, so called forward process, is briefly depicted in
Figure 1.6 and includes computing the outer shell geometry, before defining additional components
such as webs, after which the material and composite layup is mapped onto the corresponding blade
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sections. The structure is then divided into finite elements forming the model, which undergoes a
modal analysis before extracting the relevant nodal displacements of the mode shapes and their
corresponding natural frequencies.

Compute blade
geometry

Build finite-
element model

Solve modal
analysis

Mode shape
and natural fre-
quency extraction

Define add.
components

Map materi-
als and layup

Figure 1.6: Brief description of the forward process in wind turbine blade modeling and model evaluation.

The inverse problem is the inverse of the forward process and is most likely intractable [10],
due to ambiguities, non-linearities or non-invertible processes, such as the finite element modal
analysis or even the geometrical modeling itself. Directly approaching the inverse problem requires
the prediction of a conditional posterior distribution, which can be achieved by statistics and more
precisely by Bayesian methods. All of these methods are based on the Bayes’ theorem [103]:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
(1.1)

It describes the posterior probability p(θ|D) of the model parameters θ given the data D as a
product of the likelihood p(D|θ) and the prior probability p(θ), normalized by the model evidence
p(D), i.e., the probability of the given data D. The prior describes the prior knowledge or a guess
for the model parameters and typically is chosen to be a known distribution to easily sample from
it. As the model evidence p(D) is only used to normalize the expression and normally posterior
relations are relevant, the above equation reduces to:

p(θ|D) ∝ p(D|θ) · p(θ) (1.2)

However, evaluating the likelihood p(D|θ) for complex applications is sometimes not feasible or at
least computationally very expensive. Therefore, the best-known approach is approximated Bayesian
computation (ABC) method, which estimates the posterior probability without the need to evaluate
the likelihood function [92], while using a rejection sampling algorithm to compute the posterior
distribution [20]. This requires a lot of sampling, first because a significant amount of generated
samples is rejected and second it needs to converge to an approximated likelihood. However, this
algorithm could predict the true posterior with infinite samples. Newer methods, propose combining
the ABC algorithm with the Markov chain Monte Carlo technique (ABC-MCMC) [133], with the
sequential Monte Carlo technique (ABC-SMC) [186], or with the population Monte Carlo technique
(ABC-PMC) [168]. Although, these extensions improve the computational efficiency by reducing the
rejection rate, i.e., less function evaluations are necessary, the overall computational effort is still
huge depending on the complexity of the model and the convergence limit defined.

The ABC-method and its derivatives are relatively new approaches, especially as the fast growing
computational power makes such heavy sampling techniques feasible. However, it already finds its
application in the structural model updating (see, e.g., [22, 71, 136]) and even in wind energy, where
Camargo et al. [42] updated a concrete tower finite element model via ABC-SMC.
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Inverse modeling with artificial neural networks

Recent research in artificial neural networks provides alternatives to the ABC-methods to approximate
the posterior distribution of an inverse problem. Several approaches such as variational autoencoder
(VAE) [7, 80, 184] or generative adversarial networks (GAN) [3, 177] were proposed to deal with
inverse problems. However, this work will focus on the field of invertible neural networks (INN).
In contrast to VAE or GAN, the INN are bidirectional due to the mathematical structure of their
coupling blocks [57]. According to Ardizzone et al. [11], these types of artificial neural networks have
the following characteristics:

• they are bijective, i.e., they can be unambiguously inverted

• the forward and inverse path are efficiently computable

• they have tractable Jacobians for both paths

The tractable Jacobians and their determinants present the opportunity to train the INNs using
the maximum likelihood loss [56, 57] and by that offer a basis to probabilistic inverse modeling
according to the Bayes theorem, though without the need of ABC-methods and their cost intensive
computation. Ardizzone et al. [10] presented an extension of these INNs, to feed an observation
as condition into the coupling blocks, and then calling the complete network conditional invertible
neural network (cINN). Although, invertible neural networks are relatively new, they already can
demonstrate several successful applications such as, image processing [5, 10, 12, 56, 115], medical
applications [4, 55, 85, 202], geophysics [8, 215], and astrophysics [51, 90, 120]. Recently, INNs have
also been applied to classical engineering problems such as material science [72] or aerodynamic
design for gas turbine airfoils [78]. Further information on invertible neural networks is elaborated
in the Chapters 3 and 4 (i.e., second and third paper).

1.3 Research gap and objectives

This section will define the research gap from the presented state of the art for wind turbine blade
modeling and model updating. Subsequently, the specific objectives of this thesis are presented.

1.3.1 Research gap

Reliability plays a major role when trying to improve a relatively mature component such as a wind
turbine blade. However, it is one of the most crucial characteristics for a stable operation of a wind
turbine and with significant impact on turbine downtimes, especially offshore. Reliability analysis
is directly connected to uncertainty estimation, without this insight no prediction of the system’s
condition can be estimated. Though, uncertainty analysis already starts at the manufacturing
level. Any additional information on the real state of the manufactured blade, such as, e.g., in-situ
material properties, mass distributions, or defect detection, can highlight extreme manufacturing
deviations/errors, which could lead to fatal damages during operation. Additionally, this information
can be applied for digital twin creation or enhancement.

Model updating is a tool to recover structural or material properties from a given component’s
response, which in most structural problems is a dynamic analysis. Commonly used methods for
model updating are optimization approaches such as heuristic optimization algorithms to minimize
the error between the model’s response and the target response. However, these classical optimization
approaches lack an uncertainty quantification of their predicted model parameters. This raises the
necessity to apply probabilistic model updating methods, most likely based on the Bayes’ theorem,
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such as the approximated Bayesian computation. Although, these algorithms can return a good pre-
diction of the posterior distribution of the model parameters, they are computationally very expensive.

This expense increases with the model’s complexity. Therefore, published model updating
applications for wind turbine rotor blades typically rely on beam models of the blade, as these
represent a type of model reduction and by that reduce the model complexity for the updating
process. However, updating a higher fidelity model such as a shell or solid finite element model,
would give more detailed insight into the condition of a manufactured blade. To the best of the
author’s knowledge, only Knebusch et al. [117] published a model updating of a full scale wind
turbine blade finite element shell model by applying gradient based optimization. This study also
had the highest number of model parameters to update (118 parameters), but, did not account for a
proper uncertainty analysis of the results.

Thus, a significant research gap consists in efficiently recovering manufacturing deviations and
uncertainties of manufactured rotor blades. This in consequence would help to enhance digital twins
and manufacturing quality assurance as well as improve reliability of wind turbine blades overall.

1.3.2 Objectives

With the research gap defined above, the overall objective of this thesis can be stated as follows:

Establishment of a computationally efficient approach to recover the devia-
tion and uncertainty of rotor blade design parameters by updating higher
fidelity models.

This concept aims for several improvements compared to the state-of-the-art approaches. The
uncertainty evaluation of model parameters after manufacturing enables a more reliable blade
assessment. While the higher fidelity level of the finite element models used for the model updating
give more detailed insights into the structural properties. Besides, a computational efficient updating
method can enhance digital twin creation by feeding in the blade setup as built, not only as designed.

However, the combination of model updating of high fidelity models, uncertainty evaluation and
computational efficiency seems to be a contradiction. Therefore, this work is structured via the
following work packages to break down the thesis effectively:

1. Development of a fully parameterized model generator, that can efficiently create wind turbine
blade models at different fidelity levels,

2. Validation of the modeling methodology,

3. Establishment of a model updating approach with uncertainty evaluation for structural wind
turbine blade models at a state-of-the-art fidelity level (beam model),

4. Evaluation of the efficiency and accuracy of the presented approach by comparison with current
model updating techniques,

5. Application of the model updating procedure to a higher fidelity model (3D-model).

1.4 Thesis concept

After defining the research gap and the objectives of this work, the thesis concept is summarized in
this section. The thesis is presented in a cumulative way, with three papers published in peer-reviewed
journals. This section includes the outline of the thesis, discusses the link between the publications,
and highlights the author’s contribution to each paper.
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1.4.1 Outline

The content of the presented thesis is divided in five chapters plus the introduction and conclu-
sion. The second to fourth chapter consists of the published papers. The chapters sequentially
deal with the work package, which were defined in the objectives in the previous section, in or-
der to fulfill the overall objective. Figure 1.7 depicts the outline of this thesis with its different
chapters and a brief description of the respective content. The complete thesis will be based on
a 20 m demonstration blade, that was built and tested during the SmartBlades2 research project [179].
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Figure 1.7: Thesis Outline

After the introduction, the second chapter, i.e., the first paper, deals with the two first work
packages by describing and validating the modeling tool. The developed fully parameterized model
generator is first described and then applied to create a 20 m finite element shell model of a real rotor
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blade. An experimental, full-scale, dynamic modal analysis and a static load test were performed
on the rotor blade. The same tests were conducted in a simulation using the generated model.
Subsequently, the model was then validated against the experimental results.

After creating and validating the modeling tool, a feasibility study of the model updating via
invertible neural networks is realized in the third chapter (second paper). This study is aimed to
show the applicability of invertible neural networks for structural model updating problems with
uncertainty treatment in the context of rotor blade engineering. Therefore, the application was
limited to the lowest fidelity level of wind turbine modeling, the cross sectional model in combination
with a very basic invertible neural network.

The fidelity level is increased to state-of-the-art Timoshenko beam models in the fourth chapter
(third paper), completing the third work package defined in the objectives. The invertible neural
network is extended to include an additional conditional network. The results of this generic
application of model updating are analyzed and discussed revealing the potentials of the approach.

In order to prove the efficiency of the presented method (fourth work package) a benchmark is
performed in the fifth chapter, comparing the model updating via invertible neural networks with
optimization-based updating using heuristic methods, which represents the state of the art. This
benchmarking is conducted on the basis of a surrogate model of the model generator and evaluation
tool chain, as all the different approaches demanded high sampling numbers.

In the sixth chapter, the application is elevated to the 3D finite element shell model level,
representing the highest fidelity level in this thesis. To fulfill the last work package of the objectives,
the approach was tested for a generic updating problem. Additionally, it is also applied to existing
experimental test data to update the respective model parameters representing the blade as-built.
However, updating the real blade showed inaccuracies, thus a root cause analysis is conducted to
the end of this chapter.

Finally, the conclusion summarizes the outcome of the thesis and an outlook for possible future
research is given, covering open questions raised by this work.

1.4.2 Declaration on the included publications

The overall goal of the publications is to establish and evaluate the model updating framework for
rotor blades via invertible neural networks, before it is then evaluated in terms of its efficiency and
applied to a high fidelity model in the additional chapters to fulfill the work packages and objectives
of this thesis. All three papers are published in open-access, peer-reviewed, scopus-listed, and wind
energy-specific journals, the Wind Energy Science journal and the Wind Energy journal. Although,
the author’s contribution is already declared in a statement at the end of each paper, they will be
additionally highlighted in this section.

The first paper Validation of a modeling methodology for wind turbine rotor blades based on a
full scale blade test [147] establishes the basic tool for producing sample models of rotor blades
with varying model parameters. The tool MoCA – Model Creator and Analyzer is presented, which
includes a fully parameterized modeling methodology for wind turbine blades. Within the Smart-
Blades2 research project [179] a 20 m demonstration blade was built and tested. These conducted
tests are briefly documented in this paper to settle the necessary boundary conditions and for
reproducibility in the simulation. After that the test is replicated in simulations and used to validate
the generated model and by this the modeling methodology. The author of this thesis implemented
the parametrization and modeling methodology of MoCA, conducted the numerical simulations,
compared the simulations with the tests, and wrote the core paper. Bernd Haller planned, executed,
and documented the tests. Claudio Balzani guided the author in the conception of the ideas and
supervised the writing, structuring and reviewing of the paper.

https://wind-energy-science.net/
https://onlinelibrary.wiley.com/journal/10991824
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After the modeling tool is established, the second paper Model updating of wind turbine blade
cross sections with invertible neural networks [149] consists of a feasibility study for structural
model updating with invertible neural networks. This feasibility study is performed on the lowest
fidelity level, the blade cross section. In the first instance a one-at-a-time sensitivity analysis is
performed to identify relevant input parameters and output parameters in order to reduce the
updating problem. After the invertible neural network is trained, the model updating capabilities
are tested on different cross sections along the blade and with different available sets of output
parameters. The author of this thesis established the framework, performed the sensitivity analysis
for the parameter subspace selection, trained and applied the neural network, analyzed the updating
results, and wrote the core paper. Lynton Ardizzone, participated in the conceptualization of the
paper and supported the author on the invertible neural networks as well as the writing and re-
viewing of the paper. Claudio Balzani supervised all steps of the reseach and the writing of the paper.

Since the feasibility study on the new model updating methodology was successful, the complexity
and scope was increased to a higher model fidelity in the third paper, Model updating of a wind
turbine blade finite element Timoshenko beam model with invertible neural networks [148]. Here the
model updating procedure is applied to a full finite element Timoshenko beam model. A global
sensitivity analysis approach, the Sobol’ method, is applied to identify a relevant parameter subspace.
Subsequently, the invertible neural network is extended by an additional conditional network in order
to enhance the information extraction from the conditions, i.e., outputs. The model updating is
performed on generic problems and evaluated with respect to, accuracy, ambiguities, cross-correlation,
and robustness. It is also identified if a sensitivity analysis is necessary for this approach at all. The
author of this thesis prepared the concept, established the methodology, conducted the analysis,
wrote the paper and processed the review. David Melcher, supported the author in transferring the
cross sectional properties to an ANSYS beam model and in conducting the finite element analysis.
Claudio Balzani supervised all steps of the reseach and the writing of the paper.
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Abstract. Detailed 3D finite-element simulations are state of the art for structural analyses of wind turbine rotor
blades. It is of utmost importance to validate the underlying modeling methodology in order to obtain reliable
results. Validation of the global response can ideally be done by comparing simulations with full-scale blade
tests. However, there is a lack of test results for which also the finite-element model with blade geometry and
layup as well as the test documentation and results are completely available.

The aim of this paper is to validate the presented fully parameterized blade modeling methodology that is
implemented in an in-house model generator and to provide respective test results for validation purpose to the
public. This methodology includes parameter definition based on splines for all design and material parameters,
which enables fast and easy parameter analysis. A hybrid 3D shell/solid element model is created including
the respective boundary conditions. The problem is solved via a commercially available finite-element code. A
static full-scale blade test is performed, which is used as the validation reference. All information, e.g., on sensor
location, displacement, and strains, is available to reproduce the tests. The tests comprise classical bending tests
in flapwise and lead–lag directions according to IEC 61400-23 as well as torsion tests.

For the validation of the modeling methodology, global blade characteristics from measurements and simula-
tion are compared. These include the overall mass and center of gravity location, as well as their distributions
along the blade, bending deflections, strain levels, and natural frequencies and modes. Overall, the global results
meet the defined validation thresholds during bending, though some improvements are required for very local
analysis and especially the response in torsion. As a conclusion, the modeling strategy can be rated as validated,
though necessary improvements are highlighted for future works.

1 Introduction

Rotor blades are major components of wind turbines. They
are susceptible to damages, which, in case they need repair,
can result in severe turbine downtime (Reder et al., 2016).
It is thus crucial to develop a blade design that withstands
all expected loads without damage. Though a blade proto-
type is always tested at the full blade scale in the certifica-
tion process (International Eletrotechnical Comission, 2014),
such tests are very costly and time-consuming, especially for
growing blade dimensions (Ha et al., 2020). For this reason,
full-scale blade tests are executed one time only per blade

design. Hence, a reliable and fast virtual blade design pro-
cedure is required. Full 3D finite-element (FE) analysis is
accurate but computationally expensive. A widely used ap-
proach for wind turbine blade design is to carry out two-
dimensional cross-sectional analyses which offer a reduced
level of complexity but are a fast and efficient alternative for
rotor blade pre-designs (Chen et al., 2010). Tools like VABS
(Yu et al., 2002) or BECAS (Blasques and Stolpe, 2012)
compute cross-sectional properties based on a 2D FE analy-
sis, which is necessary to feed the aeroelastic models in order
to recalculate the design loads on the turbine blades and close
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the design iteration loop. Nevertheless, at a final stage 3D FE
analyses have to be performed in order to obtain a reliable
blade design and account for structural details, such as adhe-
sive joints, longitudinal geometric discontinuities, ply drops,
or local buckling analysis, which are not considered in a 2D
FE analysis.

1.1 State-of-the-art 3D finite-element modeling of wind
turbine blades

Automated model creation is state of the art and a key to en-
hancing the design process significantly by reducing com-
putational time, increasing the possible number of design
loops, and avoiding modeling errors caused by the user dur-
ing a manual model creation. Among a vast selection of com-
mon software tools originated from the scientific commu-
nity, QBlade (Marten et al., 2013) for example focuses on the
aerodynamic blade design, applying only an Euler–Bernoulli
beam approach for the structure. Sandia’s NuMAD (Berg
and Resor, 2012) additionally contains a more sophisticated
structural description taking into account a composite layup
definition for the blades’ sub-components. The same holds
for the software package FOCUS developed by WMC Lab-
oratories, now part of LM Wind Power (Duineveld, 2008),
which is a state-of-the-art tool used for blade design in many
engineering offices. In FOCUS the user discretizes stations
in the spanwise direction with all necessary geometrical in-
formation of these particular cross section and in between
the tool interpolates linearly all missing data. Hence a high
discretization of stations along the blade span (e.g., 45 sta-
tions for a 20 m blade) is necessary to correctly reproduce
non-linear changing geometrical or material information in
the spanwise direction.

Another more advanced tool is the optimization frame-
work Cp-Max; see Bottasso et al. (2014). The parameteri-
zation is based on mathematical functions for the blade de-
sign description in the spanwise direction. This method has
the advantage of reducing the number of stations along the
blade without losing information in between, while enabling
the framework to efficiently manipulate the parameters dur-
ing optimization. The focus of the optimization framework
is to find the best compromise between accuracy and costs.
A similar blade parameterization is used within the FUSED-
Wind framework (Zahle et al., 2020), which contains spline
descriptions for each parameter as shown in the prominent
example of the DTU 10 MW reference blade design (Bak
et al., 2013). An interface to the framework was later incor-
porated into the Python tool FEPROC, and the correct mod-
eling process was verified against the DTU 10 MW reference
blade (Rosemeier, 2018). Another blade modeling tool de-
veloped at Ghent University also relies on function-based de-
scriptions of the blade parameters and focuses on a modular
principle of finite-element (FE) constellations for modeling
the different blade components and joints in the structure
(Peeters et al., 2018). The latter algorithm and Cp-Max are

capable of generating solid element models, while the others
rely on more common shell element representations.

A lot of scientific contributions deal with FE modeling
but focus on structural details such as trailing edge adhe-
sive joints. Eder and Bitsche (2015) for instance use a lo-
cal model with fracture analysis to deduce the debonding be-
tween shell and adhesive due to buckling and validate the be-
havior against experimental results. Ji and Han (2014) also
apply fracture mechanics and use a detailed model at the
shear web adhesive joint to analyze crack propagation in the
bond line. Most of these locally detailed models are used
within a global–local modeling approach like in Chen et al.
(2014) to reduce the global model complexity while keeping
a high level of detail at local spots.

1.2 Objectives of this paper

Though some of these model creation frameworks may work
with functions or splines describing the blade’s geometrical
or layup information, most of them work with a reasonably
high number of airfoils/stations that in addition to the blade’s
geometry yield the outer blade shape by a global linear or
higher-order interpolation between the airfoils.

The presented method combines and extends several as-
pects of the different aforementioned software packages. The
benefits are the following.

– It generates airfoils independent from any neighboring
geometry and uses the relative thickness distribution to
position these along the span. This ensures the geometry
distribution, as it avoids any overshoot due to spanwise
geometry interpolation.

– Any parameter which may vary over the radius can be
defined as spline, e.g., relative blade thickness, layer
thickness, material density, or stiffness.

– It enables flexible and easy parameter studies due to the
simple parameter variation based on splines.

– It is designed for research, as different modules can be
easily replaced by an alternative code, e.g., airfoil inter-
polation, adhesive modeling.

– It generates an FE model in MATLAB and already
provides an interface to Ansys Parametric Design
Language (APDL ANSYS Inc., 2021) and BECAS
(Blasques and Stolpe, 2012); however, interfaces to
other FE software can easily be implemented.

Different FE modeling procedures can result in different
deformation and stress solutions, though based on the same
model parameters; see (Lekou et al., 2015). Hence, it is im-
portant to validate modeling strategies by comparing simula-
tions with full blade tests, which is the aim of this paper. A
quasi-static full-scale blade test is performed, including not
only bending tests in the flapwise and lead–lag direction – as
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are usually executed in the context of blade certification (In-
ternational Eletrotechnical Comission, 2014) – but also tor-
sion tests. This allows for an exceptionally detailed and thor-
ough validation. Unlike other blade tests reported in literature
(Chen et al., 2021, 2017; Jensen et al., 2006; Overgaard and
Lund, 2010; Overgaard et al., 2010), the aim of the tests in
this work is not the validation of failure models. Hence, the
blade is not loaded up to failure.

The paper focuses on measuring and validating primarily
the global elastic response of the blade, expressed in terms
of deflections, mass distribution, and modal characteristics.
That is why neither global–local modeling approaches nor
very local mesh refinements are considered for this study.
However, secondly the local behavior in terms of strain lev-
els along defined cross sections is measured and compared
to find a qualitative agreement with the model. The blade un-
der investigation is the SmartBlades 2 DemoBlade, a 20 m
blade from the SmartBlades 2 project (SmartBlades2, 2016–
2020), which includes prebending and a presweep towards
the trailing edge. The blade is modeled with our in-house
blade model creation tool MoCA (Model Creation and Anal-
ysis Tool for Wind Turbine Rotor Blades), taking into ac-
count some major manufacturing-related deviations. The test
setup and the load introduction are approximated via a com-
bination of suitable boundary conditions and multiple point
constraints. The simulation results are thoroughly compared
with the test measurements.

1.3 Outline

The modeling strategy is addressed in Sects. 2 and 3. The
test setup is described in Sect. 4. The blade was cut into seg-
ments after the tests in order to accurately measure the mass
distribution and the locations of the centers of gravity along
the blade. These measurements are also described in Sect. 4.
The simulation versus test comparison is reported in Sect. 5,
followed by the conclusions in Sect. 6.

2 Model creation framework

A framework to automatically generate fully parameterized
3D FE models of wind turbine rotor blades from a set of
parameters was developed at the Institute for Wind Energy
Systems at Leibniz University Hannover. The purpose of this
tool called MoCA (Model Creation and Analysis Tool for
Wind Turbine Rotor Blades) is to enable users to investigate
and analyze different blade designs or design parameter vari-
ations in an easy way, including structural details such as ad-
hesive joints. The following section presents a brief descrip-
tion of the framework.

MoCA is based on a set of input parameters categorized
as geometry, plybook, structure, and material. In general all
parameters that describe a distribution along the blade are
stored as splines over the blade’s arc length, but even mate-
rial parameters may be varied over the blade arc if necessary

by using a spline. The parameter set geometry contains all
information on the outer geometry of the blade, i.e., all in-
volved airfoils and their positions along the blade as well as
the distributions of the relative thickness, chord length, twist
angle, threading point location, prebend and presweep. The
structure set is associated with the structural description of
the blade. This includes the specification of shear webs, ad-
hesive joints, and additional masses as well as cross-sectional
division points that are mainly used to subdivide cross sec-
tions into different regions of interest. The plybook parame-
ters contain the stacking information of different composite
layups used in the blade. The parameter set material com-
prises all material properties assigned for the different ma-
terials. These can be either isotropic or anisotropic on the
macroscopic scale. The user can also specify a composite
material based on microscopic characteristics of the fiber and
matrix constituents, which are then transformed to a laminate
via the well-known rule of mixtures.

In Figs. 1–4, each block is labeled with an index, which
will be used in the following description for reference to the
blocks of the respective figures. The flowchart in Fig. 1 de-
picts the structure of the finite-element creation procedure
implemented in MoCA on the basis of the parameter sets
described above. First, the blade segmentation, i.e., the dis-
cretization in the spanwise direction, is defined. For each
blade segment edge, a cross section of the blade is calcu-
lated (5–7) by evaluating the planform data (1). Then a finite-
element discretization of the cross sections (8) is executed
using the information of the structure (2), material (3), and
plybook (4) parameter blocks. At this stage, an interface to
the BECAS (Blasques and Stolpe, 2012) software (9) can be
utilized to calculate the full 6× 6 stiffness and mass matri-
ces of a beam model. However, since our aim is to create
a 3D blade model (12), we continue with the finite-element
discretization in the spanwise direction (10–11) utilizing a
hybrid shell element/solid element strategy. Therein, we use
shell elements to model the composite laminates and solid
elements for the adhesives. The 3D FE mesh includes the
node-to-element connectivity and elemental material assign-
ments. The boundary conditions are added and the FE model
is translated to an input file for the finite-element solver of
choice (13), which in our case is Ansys Mechanical (AN-
SYS Inc., 2021). In the following, we describe the different
steps of this overall procedure in more detail.

Figure 2 visualizes the process of cross-section geometry
calculation. After the blade segmentation, the geometry data
splines (2–7) are evaluated (8) for the particular blade arc
positions (1) of the segment edges. According to the spline-
based interpolation of the relative thickness trel (10), an air-
foil (AF) is linearly interpolated (16) between the basic input
airfoils (9), which have the next higher and lower relative
thickness. In contrast to a global blade shape interpolation,
the use of a blade-independent airfoil interpolation enables
the user to implement an own sub-function and replace the
former. The interpolated airfoils are then scaled by the chord
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Figure 1. Flowchart of the finite-element model creation procedure in MoCA.

length c∗ calculated via the respective spline (11, 17), shifted
along the chord to the correct threading point by the coordi-
nate tp∗ (12, 18), and twisted by the twist angle θ∗ (13, 19).

Until here, all transformations are performed in a 2D chord
coordinate system with its final origin in the threading point.
The cross sections are now shifted to the correct 3D posi-
tion (20), locating the 2D cross-sectional threading center on
the prebent (14) and preswept (15) global blade axis. By do-
ing so, the 2D chord coordinate system is still parallel to the
blade root plane. Hence, the cross sections are rotated by the
slope angles of the prebend and presweep spline functions
so that they are perpendicular to the threading axis. These
shifted and rotated cross sections are the final cross-sectional
shapes denoted by CSShape (21).

According to Fig. 1, the next step is the 2D cross-sectional
meshing, which is executed using the cross-sectional shapes
CSShape (7) and the parameter sets structure, material, and
plybook (2–4). This process is presented in Fig. 3. As before,
all data (2–6) are evaluated (7) for the particular arc positions
(1) at the blade segment edges. The division points are gen-
erated on the cross-sectional shapes (9, 14). They serve to
subdivide the cross sections into regions of different material
layups and are also used to define the positions of the shear
webs. Then the shapes of the shear web (10, 15) and the web
and trailing edge adhesive joints (11, 16) are computed. The
computation of the blade’s outer geometry and its structural
topology is now finished. After inclusion of the material (12)
and plybook (13) information, the FE discretization (18) on
the 2D cross-section level can be conducted. This yields ei-
ther a two-dimensional mesh with four-noded plane elements
for the BECAS (Blasques, 2012) interface (19) or a cross-
sectional node map representing a hybrid 2D mesh with two-
noded elements for the composite laminates and four-noded
elements for the adhesives (20, 21).

The last step in the creation of a 3D finite-element model
is to connect the 2D cross-sectional models; see Fig. 1 (10).
The 2D line elements on the cross-sectional level yield four-
noded shell elements on 3D level after the 3D extension, and
the four-noded plane elements on cross-sectional level be-
come 3D solid elements, respectively.

An additional module called TestRig is included in MoCA
to model the boundary conditions similar to a full-scale blade
test. Full clamping of the blade root represents the geomet-
rical boundary conditions; i.e., all degrees of freedom are
fixed at the blade root. Figure 4 shows the process of the
TestRig module for the introduction of force-like boundary
conditions. In the real blade test, a number of load frames in-
troduces loads that approximate the target bending moment
distribution (or torsional moment distribution, respectively).
The TestRig module approximates the load frames by means
of appropriate multiple point constraints (MPCs) and addi-
tional masses. For each load frame, the position along the
blade (arc position) (1), the load frame width (4), the center
of gravity (CoG), and the resulting mass (5) are specified as
well as the load (2) and sensor points (3).

In the range where the load frame is located, MoCA
searches all elements of the blade shell (6, 9) and defines
2D slave elements (12) that share their nodes. An additional
cross section is created at the desired load frame position (7,
10) according to the procedure depicted in Fig. 2. In this ad-
ditional cross section, the position of the load introduction
(load point), the sensor points, and the center of gravity of
the load frame are given in the blade coordinate system (11).
These points are defined as master nodes (14). MPCs that
connect the degrees of freedom of the master nodes and the
slave nodes (13) by means of a rigid connection are included;
i.e., there are no relative displacements between the master
and the slave nodes. The additional mass of the load frame
is applied to the CoG node (17), while the load is applied to
the position where the load is introduced (16) in the real test
(load point). In this way, we model solid and quasi-rigid load
frames (15) and their effects on the blade response without
adding detailed models of the load frames themselves, which
is beneficial in the context of computational costs. The rigid
connection implies that the deformation of the blade at the
load frames is restricted. Similar to the real blade test ac-
cording to IEC-64100 International Eletrotechnical Comis-
sion (2014), the load frames neighboring blade sections can-
not be evaluated, as the structural response is influenced by
the quasi-rigid constraints.
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Figure 2. Flowchart of the calculation of the cross-sectional shapes CSShape.

Figure 3. Flowchart of the 2D cross-sectional meshing routine in MoCA.

The 3D finite-element model including the mesh and the
boundary conditions is translated to an input file for the
finite-element solver of choice via an integrated interface.

3 Modeling of the test blade

This section briefly describes the blade under consideration,
which is the SmartBlades DemoBlade, a 20 m long blade

with prebend and presweep. It was designed and manu-
factured in the coordinated research projects Smart Blades
(Teßmer et al., 2016) and SmartBlades2 (SmartBlades2,
2016–2020). The blade is referred to as the DemoBlade in
the following.

The DemoBlade was designed to investigate bend–twist
coupling effects in wind turbine rotor blades. Therefore a
presweep of 1 m towards the trailing edge at the tip is in-
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Figure 4. Flowchart of the procedure to model the boundary conditions in the TestRig module.

tended to introduce a torsional twist into the blade. The off-
set between the aerodynamic centers of the swept airfoils and
the pitch axis introduces a torsional moment and thus a tor-
sional deformation, i.e., a twist in the outer part of the blade.
The twist reduces the angle of attack of the respective air-
foils and hence the aerodynamic coefficients. In this way the
aerodynamic loads can be reduced.

During the manufacturing procedure and the latter testing,
several different properties of the blade are captured. From
these, the FE model only covers the geometrical deviations
such as the chord, thickness, and adhesive geometry devia-
tions. However, mass and stiffness adaption, to meet the mea-
sured natural frequencies and masses, or displacements will
not be covered, as this would demand a thorough model up-
dating procedure, which would go beyond the scope of this
work. Therefore, this section will refer to the geometrical
measurements, and the rest will be covered in Sect. 5

The full blade design of the DemoBlade as designed and
the manufacturing documentation is available to the authors.
In order to allow precise modeling of the DemoBlade as built,
laser scanning of the blade mold was carried out to determine
the geometry deviations. The derived chord length and abso-
lute thickness distributions for the DemoBlade as designed
and as built can be found in Noever-Castelos et al. (2021).
Though the manufacturing deviations in the outer geome-
try are negligibly small (chord length< 10 mm and thick-
ness< 8 mm), they will be considered in the modeling pro-
cess.

After the full-scale blade tests, the DemoBlade was cut
into segments. The masses and the centers of gravity were
determined for all blade segments. The respective proce-

dure will be addressed later in this paper; see Sects. 4.4 and
5.5. Besides the weighing, the geometry was measured thor-
oughly in each cut cross section in order to guarantee the
correct positioning of the shear webs in the FE model and to
determine deviations from the design due to manufacturing
errors. In particular, the dimensions of the shear web/spar cap
adhesive joints on the pressure side of the blade showed sig-
nificant deviations to the blade design and had to be adjusted
in the FE model. Figure 5, for instance, shows the cut at a
radial position of 5.2 m (rnorm = 26%). On the suction side
(bottom) we see a nice, very thin, and over-laminated shear
web/spar cap bonding. However, on the pressure side (top)
the shear web/spar cap bonding (which was the blind bond,
marked in red) is much thicker than specified in the design.
Moreover, there is a lack of adhesive in large portions of the
blade, so that the shear web flanges were not covered entirely
by adhesive material. This was actually found throughout
the whole blade, where the thickness varied between 20 and
30 mm. The design defined a thickness of 9±3 mm. Noever-
Castelos et al. (2021) contains all the measured dimensions
of the pressure side web adhesive.

In the FE model, we apply concentrated and line-
distributed additional masses to cover any type of add-ons in-
stalled on the blade such as the lightning protection cable or
reflectors of an optical sensor system. Noever-Castelos et al.
(2021) include a table with all additional masses and the re-
spective modeling methods. Furthermore, MoCA predefines
node positions in the blade that correspond to strain gauges
installed on the blade. These are documented in Haller and
Noever-Castelos (2021). They allow for accurate and easy
extraction of strain results at the correct positions.
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Figure 5. Cut cross section at a radial position of 5.2 m (r26 %) with
an erroneous manufactured shear web/spar cap adhesive joint on the
pressure side of the blade. The width should cover the complete web
flange, and the designed thickness is 9± 3 mm; however, the real
thickness is measured to be 33 mm.

A mesh convergence study was performed in advance to
ensure a satisfying mesh density. As stated before, the pur-
pose is to primarily validate the global blade behavior and
only secondarily the local response. Therefore, no local mesh
refinement will be performed, but the overall mesh density
should yield acceptable convergence even at local level. Tak-
ing this into account, the convergence was first based on the
global blade response in terms of total mass, center of grav-
ity, tip deflection, and the first 10 natural frequencies. Sec-
ond, the nodal strain results are examined for convergence at
several positions covering the whole blade. The element di-
mensions are halved each step. At the finally chosen mesh
size the deviations to the next step are for global responses
less than 1.5 % and for strains less than 2.1 µ strains. It has
to be stated that for exact local strain measurements a mod-
eling approach with solid shells or layered solid elements is
required to replicate the correct and detailed geometry of the
structure. The resulting base model of the DemoBlade con-
sists of 77 693 elements and 71 781 nodes. A total of 71 016
four-noded shell elements (SHELL181 elements in Ansys),
with offset nodes on the outer blade surface, represent the
composite components, and 6260 eight-noded solid elements
(SOLID185 elements in Ansys) model the adhesive joints.
Figure 6 depicts a cross-sectional view of the FE model at
r = 8 m (rnorm = 40 %). All other elements are used to model
additional masses in the blade. The only boundary conditions

Figure 6. Cross-sectional cut of the FE model at r = 8 m (rnorm =
40%).

of the base model are the geometric boundary conditions at
the blade root (full clamping as described above).

4 Test description and virtual modeling

Several test configurations of the full-scale blade test were
performed to characterize the blade behavior under differ-
ent load conditions and to prove that the blade design meets
all requirements of the certification guidelines (International
Eletrotechnical Comission, 2014). These configurations are
then replicated in the virtual test setup and are described in
this section.

4.1 Mass and center of gravity

The first structural characterization considers the blade’s
mass and center of gravity (CoG). An indoor crane equipped
with load cells at every hook lifted two points on each root
and tip transport structure as shown in Fig. 7. As the blade
remained still and horizontally suspended, the force at each
suspension point and its radial position were recorded. Af-
ter individually weighing the transport structures, the load-
ing chains, and the shackles, the weight was subtracted from
the total recorded load at the measurement devices to obtain
the total blade mass. Additionally, the mass of the blade bolts
was subtracted from the total mass.

The CoG is obtained by calculating the moment equilib-
rium with the measured loads with respect to a pivot point, in
this case the blade root center. This procedure was performed
for the z direction (along the span) and y direction (along the
chord).

The mass and CoG of the FE model are calculated during
every analysis by default and can be extracted directly from
the Ansys log file.

4.2 Modal analysis

The experimental modal characterization was carried out by
the German Aerospace Center (DLR) for different bound-
ary conditions. The methodology is described briefly in the
following. For details please refer to Gundlach and Govers
(2019).
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Figure 7. Setup for mass and center of gravity measurements.

Free–free boundary conditions were applied after the
blade manufacturing by means of elastic suspensions con-
nected to lifting straps. The blade was excited using an im-
pact hammer with soft tip at a total of eight excitation points.
Sensors distributed along the blade recorded the deforma-
tions, and the mode frequencies and shapes were extracted
from the measurements.

The blade was then transported to Fraunhofer Institute
for Wind Energy Systems (IWES) and mounted on the test
rig. The aim was a second modal characterization with the
boundary conditions of the full-scale blade test. Electrody-
namic long stroke shakers were employed for the excitation
of the blade, and sensor outputs were evaluated for the cal-
culation of the mode frequencies and shapes.

During the FE modal analysis, the boundary conditions are
adapted to the different characterization tests. In the free–free
configuration, no boundary conditions are applied at all, par-
tially resulting in zero eigenvalues related to rigid body mo-
tions. These are not considered in the validation process. For
the test rig configuration, the blade root is fully clamped; i.e.,
all seven degrees of freedom of the shell elements are fixed,
for the sake of simplicity. Note that we neglect flexibility of
the bolts and the test rig in this way, which we have to keep
in mind when evaluating the simulation results.

4.3 Static bending and torsion test configuration

The SmartBlades2 DemoBlade was loaded with extreme
loads in four directions. These four load cases correspond
to maximum and minimum edgewise loading (MXMAX and
MXMIN) as well as maximum and minimum flapwise load-
ing (MYMAX and MYMIN). Furthermore, three static tor-
sion tests were conducted, in which a torsional moment was
applied only at one load frame at a time. The tests are referred
to as MZLF2, MZLF3, and MZLF4, where LFX indicates the
particular load frame, in which the torsional moment was in-
troduced. The static tests provide the necessary information

Figure 8. Photo of a static blade test configuration in flapwise di-
rection.

on the structural blade behavior required to validate the vir-
tual model and test setup.

The tests were performed in the facilities of Fraunhofer
IWES. The experimental quasi-static loading of the blade
is accomplished with a series of horizontally mounted hy-
draulic cylinders. These are connected to the load cells via
cables which are attached to the load frames mounted on the
rotor blade. Each cable runs through pulleys that are mounted
on the floor and redirect the forces from a horizontal to a
vertical orientation. By attaching the load cells to the load
frames (load point), the actual load applied to the rotor blade
is measured, and friction and weight of the loading cables do
not affect the measurements. The general test setup is shown
in Fig. 8.

In the following, some general information is given that is
valid for all test setups. The test block angle (cone angle) is
7.5◦ upwards. The coordinate system referred to in this pa-
per has its origin in the center of the blade root. The y axis
is facing vertically upwards, the z axis points horizontally
from the origin towards the blade tip (parallel to the floor,
not to the pitch axis), and the x axis follows from the right-
hand rule (pointing left watching towards the tip). After turn-
ing the blade to the correct position and waiting for a static
state, the signals of the load cells and the strain gauges are
reset to zero. In the virtual test this is achieved by activating
gravity, extracting the deformed nodal coordinates, and tak-
ing these as the undeformed and stress-free state for the load
tests. Gravity is thus not applied in the further analysis, and
the nodal displacements are virtually reset to zero so that it
is easier to post-process the results. Preliminary verification
showed that the corresponding error in the displacement is
less than 0.5 % with respect to a simulation that accounts for
gravitation throughout the whole simulation.
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In the tests, four steel load frames with wooden inlays
that follow the blade shape at the respective spanwise posi-
tions are used to introduce the loads; see Haller and Noever-
Castelos (2021). In the following, we refer to the load frames
(LF) as LF1 (r = 6.7 m, rnorm = 33.5%), LF2 (r = 9.7 m,
rnorm = 48.5%), LF3 (r = 14.0 m, rnorm = 70.0%), and LF4
(r = 17.7 m, rnorm = 88.5%), where r denotes the spanwise
position along the blade. Depending on the test setup, not
all load frames are installed. Please refer to Noever-Castelos
et al. (2021) to find an overview of all test setups. Each load
frame is equipped with two eye bolts to attach the load ca-
bles. These bolts are roughly positioned at the shear center
position in the blade’s cross section to avoid unintended tor-
sional loads. Detailed information on the load frames, such
as mass, center of gravity, and the corresponding shear cen-
ter position in the blade’s cross section, is given in Haller and
Noever-Castelos (2021).

The test setup is equipped with two different kinds of dis-
placement measurements, an optical displacement measure-
ment system and draw-wire sensors (DWSs). For the model
validation in this paper, the DWS signals are considered. Us-
ing LINK11 elements in Ansys provides a simple and exact
model of the draw wires by defining the attachment points
only. The deformation measured by the DWS is then mod-
eled by the element length variations of the link elements.

All necessary sensor positions (SP) and load introduction
points (LP) on the load frames for the different test setups
can be found in Haller and Noever-Castelos (2021). At each
load frame position, either with or without a load frame in-
stalled, two DWSs are attached. One is connected to a point
closest to the front bottom corner, i.e., negative y direction,
and one at the rear bottom corner, i.e., positive y direction, of
the load frames, or blade shells in case no load frame is in-
stalled. These two DWSs will be referred to as front and rear
DWS in the following. At the blade tip, one DWS is attached
and referred to as the tip DWS. Note that during several load
cases, one or the other load frame is not applied due to the
setup design; thus the respective DWSs have to be attached
directly to the blade shell.

The angle between the loading cable and the blade axis
can be adjusted in the experiment by changing the pulley
block location within a discrete set of fixing points on the
floor. Prior to the test setup, the optimal position for each
pulley was determined based on the predicted blade deforma-
tion and the desired loading cable angle. The applied loads
should be aligned to the load frame planes in the most de-
formed configuration. The DWS floor attachment and pulley
block positions are specified for each test setup individually.

In addition to the DWS and the optical measurement sys-
tem, several cross sections along the blade are equipped
with strain gauges; see Haller and Noever-Castelos (2021).
The cross sections at r = 5 m (rnorm = 25 %) and r = 8 m
(rnorm = 40%) are instrumented with strain gauge rosettes
(biaxial strain gauges) with 0◦ / 90◦ and ±45◦ orientations.
Figures B1 and B3 depict the distributions, respectively. The

angles 0 and 90◦ denote the spanwise and the cross-section-
wise direction, where ±45◦ is defined accordingly. The
0◦ / 90◦ rosettes are positioned every approx. 250–300 mm
along the shell circumference. The ±45◦ rosettes are located
at each web position as well as the leading and trailing edges.
Details on strain gauge positions can be found in Haller and
Noever-Castelos (2021).

All load cases have the same basic experimental pro-
cedure. They were designed to ensure that the actual test
matches the specification requirements as closely as possi-
ble. Prior to each load case, the rotor blade is rotated to the
desired position and mounted to the test stand (with the afore-
mentioned 7.5◦ cone angle). The load cable pulley blocks are
fixed to the appropriate fixation points on the floor. The load
cells are installed between the load frames and the loading
cables and are then connected to the data acquisition system.
Each of the DWSs is attached to the blade. The DWS base is
positioned so that the wires run perpendicular to the floor. Fi-
nally, the loading cables are connected to the hydraulic cylin-
ders.

The tests are then executed in the following order:

1. check functionality of load cells and displacement sen-
sors;

2. compensate for load cell and strain gauge measurements
(reset to zero);

3. start data acquisition;

4. ramp up loads until 100 % of the target load, pausing at
40 %, 60 %, and 80 % partial loads for 10 s each;

5. ramp down loads, pausing at the same load fractions as
during ramp-up;

6. stop data acquisition and save measurement data to log
file.

The process is similar in the simulation. Starting from the
base model, which does not have a cone angle and has the
blade positioned with the trailing edge pointing upwards, the
steps are as follows:

1. install necessary load frames;

2. rotate blade around z axis to desired position;

3. include cone angle of test rig (incline the blade by 7.5◦

upwards around x axis);

4. apply gravity and extract new nodal coordinates;

5. replace old nodal coordinates by the extracted new
nodal coordinates (equal to resetting sensors to zero);

6. apply and ramp up loads onto the LINK11 elements act-
ing as loading cables;
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Figure 9. Configuration example of a static torsional loading on the
blade with marked-up and downward-facing forces.

7. extract element length variation of the LINK11 ele-
ments acting as DWS for 40 %, 60 %, 80 %, and 100 %
of the target load.

All individual setups for the simulation with modifications
to the base model, all necessary load frames, load points, sen-
sor positions, and forces, and the corresponding ground posi-
tions of the pulley blocks and the DWS attachments are sum-
marized in Haller and Noever-Castelos (2021). The ground
position coordinates are given in the blade coordinate system
of the base model (no cone angle or rotation) described above
at the beginning of this subsection.

In other torsion tests, e.g., Tiedemann and Chen (2021),
a load is applied on a lever to introduce a combined torsion
and flapwise bending, with a subsequent test loading with
pure flapwise bending only. The torsional deformation can
then be found by subtracting the flapwise motion from the
combined motion. However, our test setup follows the idea
of introducing pure torsion by suspending the load frame ap-
proximately at the shear center location of the blade cross
section and inducing torsion by an offset load as shown in
Fig. 9.

Because the blade is still mounted at a block angle of
7.5◦ the axis of the torsional moment is not fully aligned
with the pitch axis, as the forces do not act exactly in the
cross-sectional plane. The load cable oriented upwards was
attached to a ceiling crane and to the load frame at approx-
imately the shear center position. As the ceiling crane lo-
cation is hard to record but the load rope is perpendicu-
lar to the ground, it was assumed that the location is 18 m
above ground (y direction, approximately crane height). By
this, deflections parallel to the floor, due to load application,
would only result in small angle deviation of the perpendic-
ular force. The force facing downwards was applied onto the
load frame corner to create the lever with respect to the shear
center. Our procedure is similar to a combination of the pure
torsion and locked torsion test presented by Berring et al.
(2007). However, this method may imply some errors from

1. numerical shear center calculation;

2. not suspending exactly at the cross-sectional shear cen-
ter but on the frame, which leads to an offset of the sus-
pending force when the blade is twisted and thus an in-
duced counteracting torsion;

3. no exact perpendicular downward-facing force; and

4. inclination of the blade.

Regarding point 2, the offset of the load application point
of the suspending cable from the numerically calculated
shear center after twisting the blade yields 0.9 %, 3.0 %, and
5.3 % of the respective lever for the downward-facing force
on LF2, LF3, and LF4, respectively. Theoretically, expecting
a similar force pulling upwards as downwards, the induced
torsion is reduced by the same relative values for the respec-
tive load cases MZLF2, MZLF3, and MZLF4.

The magnitude of the induced torsion was designed to be
the maximum allowable torsion (respecting safety margins)
at the particular cross section rather than a possible bend–
twist-induced torsion magnitude. This was motivated by the
idea of reducing any relative measurement error when proof-
ing at the maximum allowable torsion, i.e., the maximum de-
formation.

Nevertheless, overall the aforementioned errors do not
practically affect the validation of the model, as all DWS
and load cables are modeled as LINK11 elements, with all
attachment points modeled at their correct global location of
the test setup. This ensures that the forces and displacement
measurement direction is always correct throughout the test,
all under the assumption that the model behaves the same as
the real blade. Thus, no corrections of any kind to measure-
ments or FE results were applied.

4.4 Blade segment mass and center of gravity
measurement

After finishing the full blade tests, as discussed in Sect. 4.3,
the blade was cut into 17 segments for further characteriza-
tion. Figure 5 shows a cut surface of the seventh segment at a
spanwise position of r = 5.2 m. To determine the 3D center
of gravity (CoG), the segment was suspended at one point
with a flexible rope, so that the CoG settled exactly under-
neath this point (like a pendulum). Hence, the vector in direc-
tion of the suspension rope defines an axis on which the CoG
must be located (CoG axis). This procedure was repeated
with different suspension points at least two times. The CoG
was then found in the intersection point of the different CoG
axes. The measurement setup can be seen in Fig. 10 as well
as a digital representation of the intersection of different CoG
axes.

To measure the vectors and analyze the data, an opti-
cal measurement system (photogrammetry) was used. Every
segment was equipped with several coded and uncoded re-
flecting marks to obtain the shape of the segment, the sus-
pension points, and a plumb that was used to get the CoG
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Figure 10. Measurement setup of cross-sectional analysis (left) and
extracted vectors in CAD with intersection point defining the center
of gravity (right).

axes. All the point clouds were analyzed in Autodesk Inven-
tor and Siemens NX. All segments were aligned in CAD, and
the CoG was extracted for each segment with regard to the
blade coordinate system. In this way we obtained the distri-
bution of the segment CoGs along the blade.

Considering the model validation, MoCA is able to gen-
erate the respective segments at their correct positions in the
blade, so the segment masses and CoGs are a natural output
of Ansys.

5 Comparison of experimental and simulation
results

In this section, we compare the experimental results with
the simulations. The observation scale will continuously de-
crease from a global to a more local scale. We start with the
global blade characteristics such as natural frequencies, total
mass, and global center of gravity. These give a rough esti-
mate of the modeling correctness. Then the blade deforma-
tions by means of bending and twist distributions during the
static extreme load tests will be analyzed. Finally, the strain
levels in two cross sections during the extreme load tests and
the masses and centers of gravity of the cut blade segments
are compared, which give a more detailed view on a local
scale.

In order to rate the validity of the model, it is necessary to
identify specific thresholds. However, these are hardly found
in the literature, especially as different applications and fi-
delity levels may demand other thresholds. For example,
Safarian (2015) reports validation requirements for finite-
element analysis according to the Federal Aviation Regula-
tions of the US government, where a displacement devia-
tion of < 5% between the simulation and experiment is typ-
ically acceptable for global effects, and local effects mea-
sured in the form of strains allow for a maximum of 10%
deviation, whereas strains exceeding these values require a
re-evaluation of the model. These regulations refer to avia-

Table 1. Comparison of the total mass and the center of gravity
(CoG).

Experiment Uncertainty MoCA Difference
(in kg) (in kg) (in kg) (in kg)

Mass 1793 45 1673.5 −115.5

CoG Experiment Uncertainty MoCA Difference
(in m) (in m) (in m) (in m)

y 0.10 0.04 0.10 0.00
z 6.58 0.20 6.35 0.23

tion applications, which also apply finite-element shell mod-
els for the analysis comparable to our use case. Therefore, we
will apply a 5% threshold for global displacements, whereas
a 10% threshold will be applied on the cross-sectional strain
results. These margins should also cover measurement uncer-
tainties, as the DWS and the strain gauges offer a quite nar-
row uncertainty band, 0.6% and 2%, respectively. Thresh-
olds for masses are harder to define as these depend on the
measurement setup, in our case with up to 2.5% uncertainty.
In addition, not all additional masses were correctly docu-
mented, and thus they were not modeled. The same problem

holds for natural frequencies ω: following ω =
√
k
m

and re-
specting unknown mass variation and typically a maximum
of 5% material tolerances (including density and stiffness ac-
cording to private communication with manufacturers), it is
also hard to define thresholds for the frequencies. Therefore,
both mass and frequencies will be discussed individually.

5.1 Blade mass, center of gravity, and eigenfrequencies

Table 1 lists the total blade mass and the location of the cen-
ter of gravity in longitudinal (z) and chord direction (y) as
well as the measurement uncertainties and the deviation of
the numerical model. We see that the model from MoCA
is 115.5 kg lighter than the real blade, which corresponds
to a 6.44 % relative difference related to the measurement.
In contrast, the measurement uncertainty is 45 kg. The mass
difference is likely due to manufacturing deviations and/or
additional masses (e.g., sensor wires and installations) that
have not been considered in the numerical model. The lo-
cation of the CoG matches perfectly in the chord direction,
i.e., with a precision to the nearest two decimal places. There
is only little deviation of 230 mm in the spanwise direction,
which is almost within the measurement uncertainty range of
±200 mm. All measurement uncertainties are based on given
sensor uncertainties and taking the worst case scenario in the
combination of those.

The results of the modal analysis, both experimental and
numerical, are listed in Table 2. The experimental results are
taken from Gundlach and Govers (2019). The flapwise fre-
quencies are in acceptable agreement with deviations of less
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Table 2. Comparison of the modal analyses for the free–free (top)
and the test rig (bottom) configuration. Experimental results are
taken from Gundlach and Govers (2019).

Mode Experiment MoCA Difference

free–free (in Hz) (in Hz) (in Hz) (in %)

1st flapwise 4.8 5.08 0.28 5.83 %
1st edgewise 10.1 9.74 −0.36 −3.56 %
1st torsion 16.9 15.95 −0.95 −5.62 %

Mode Experiment MoCA Difference

test rig (in Hz) (in Hz) (in Hz) (in %)

1st flapwise 2.2 2.37 0.17 7.73 %
2nd flapwise 6.8 7.34 0.54 7.94 %
1st edgewise 3.1 3.25 0.15 4.84 %
2nd edgewise 10.9 10.81 −0.09 −0.83 %
1st torsion 18.7 16.50 −2.20 −11.76 %

than 8 %. The largest deviation in flapwise modes is found for
the second mode in the test rig configuration (7.94 %, which
corresponds to an absolute deviation of 0.54 Hz). The small-
est deviation can be observed for the first flapwise mode in
the free–free configuration, which is 5.83 % or 0.28 Hz, re-
spectively. In edgewise direction, the approximation is even
better. The largest relative deviation is seen for the first edge-
wise mode in the test rig configuration, which is 4.84 % (or
0.15 Hz in absolute numbers). The second edgewise mode is
only 0.83 % (or 0.09 Hz in absolute numbers) smaller in the
simulation compared to the experiment in the test rig config-
uration, which is an excellent agreement. The largest abso-
lute deviation is present in the free–free configuration, where
the first edgewise mode is 0.36 Hz lower than the measured
value. Anyways, the deviation of the edgewise modes is less
than 5 % in all cases, which is a very good agreement. The
first torsion mode is quite well approximated in the free–free
configuration, where the simulation is 5.62 % lower than the
experiment. However, in the test rig configuration the devia-
tion is −11.76 % (more than 2 Hz less compared to the test),
which is relatively high. In general, the simulations agree bet-
ter with the test results in the free–free configuration than in
the test rig configuration. This is likely due to the rigid rep-
resentation of the test rig and the connection bolts, as already
mentioned in Sect. 4.2. Similar deviation ranges of the natu-
ral frequencies can be found in Knebusch et al. (2020) for the
same blade, but with a different model, with errors between
1.8 % and 9.7 % for flapwise and edgewise modes and up to
22 % for the torsion mode.

5.2 Static bending tests

The results of the static bending tests will be illustrated by
means of deflection lines. For each test setup, two lines exist:
one for the front and one for the rear DWS. The deflections

in the front DWS are plotted in Fig. 11 for each pausing load
during ramp-up (40 %, 60 %, 80 %, and 100 % of the target
load as described in Sect. 4.3). The plots for the rear DWS are
added in Appendix A. A table is added in each of the figures
that show the differences between the simulations and the
tests (in absolute and relative numbers). The tip DWS values
are the same for the rear and the front DWS, as only one
DWS is installed at the blade tip.

Figure 11a shows the result of the front DWS during the
MXMAX load case. For this scenario a maximum deflec-
tion of 180 mm at the blade tip is reached. The simulation
shows excellent agreement for the front DWS sensors, with
a maximum absolute difference of −2.3 mm at the tip for
100 % load and a maximum relative difference of −4.0 % at
LF1, whereas the deviations in all other positions are well
below 2.0 %. The rear DWS results shown in Fig. A1a in
Appendix A have slightly higher errors with a maximum of
−5.5 % at LF1 for full load.

For the load case MXMIN, Fig. 11b illustrates the front
DWS results. Except for LF1, the results are in very good
agreement with a maximum deflection error of −1.6 % at
LF2 at full load. However, the results in LF1 return maximum
errors of 3.8 % at 40 % load, which decreases to 1.8 % at full
load. Similar behavior is found for the rear DWS (Fig. A1b);
excluding LF1 the maximum error is 1.7 % in LF3 and the
tip during 40 % load.

The results of the front DWS during the maximum flap-
wise setup (MYMAX, Fig. 11c) are in very good agreement,
when excluding the LF1 data. The LF1 results tend to show
the highest errors. This might be due to the smallest abso-
lute deflection values, as a systematic sensor/measurement
inaccuracy will have a higher impact on relative errors. Con-
cerning the other load frames the maximum error is found
to be −2.6 % for the LF4 DWS at full load, which corre-
sponds to −22.4 mm deflection error at a maximum deflec-
tion of 875 mm in the experiment. All other values range be-
tween −0.9 % and −2.4 %. The excluded LF1 results show
higher errors of up to 9.0 % for 60 % load. For the rear
DWS (Fig. A1c), though excluding LF1 (maximum error
−17.6 %), the LF2 results show errors above 6.7 % with the
highest reaching −8.8 % during full load. For the other two
load frames the errors are low again and are between−0.9 %
and −2.4 %. If taking a closer look at the LF2 full load de-
flection d in the test and experiment, the front DWS shows
dExp, f = 165 mm and dSim, f = 161 mm, whereas the rear
DWS returns dExp, r = 175 mm and dSim, r = 160 mm. That
means the overall deflection of the simulation is less than in
the experiment, but the difference between rear and front is
1dExp = dExp, r−dExp, f = 10 mm and1dSim =−1 mm; i.e.,
the simulation shows a positive rotation around the z axis,
while the experiment returns a much higher negative rotation.
The rotation angle 2 can be calculated by the relationship

2= arcsin
(
1d

lSP

)
, (1)
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Figure 11. Bending lines extracted from the front draw-wire sensor for the (a) MXMAX, (b) MXMIN, (c) MYMAX, and (d) MYMIN
experiment and simulation. Results are shown for 40 %, 60 %, 80 %, and 100 % of the target load. The table on the right shows the differences
between the simulation and the test.

where lSP is the distance of both front and rear DWS attach-
ment points on the load frame. The rotation angle becomes
2Exp,LF2 =−0.268◦ in the experiment and 2Sim,LF2 =

0.042◦ in the simulation. Assuming the pivot point is at the
shear center (SC), a correction could be calculated to see if
the bad results of the rear DWS at LF2 are due to the wrong
predicted rotation along the z axis. All necessary geomet-
ric data can be found in Haller and Noever-Castelos (2021).
Following Eq. (1) and using the distance of the front or rear
DWS attachment to the shear center, the front absolute differ-
ence during 100 % loading is increased to −7.87 mm, which
results in an error of −4.8 %, and the rear deflection is re-
duced to −7.7 mm or an error of −4.4 %. By this correc-

tion due to a wrong predicted rotation angle the rear DWS
approximation improves by 4 %, while the accuracy of the
front sensor decreases by only 2.4 %. This correction is in-
troduced to evaluate the accuracy for the bending prediction
and only holds for the LF2 position, as the other positions
have different rotation angle deviations. Additionally, it has
to be noted that during the flapwise loading the DWS attach-
ment distances to the shear center are much higher than for
the edgewise loading; i.e., the influence from rotation angle
deviations is amplified significantly.

Figure 11d shows the front DWS results comparison dur-
ing the minimum flapwise loading scenario (MYMIN). All
load frames are installed and thus can be evaluated, and the
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Figure 12. Twist angles calculated from the draw-wire sensor results for the (a) LF2, (b) LF3, and (c) LF4 torsional loading experiment and
simulation. Results are shown for 40 %, 60 %, 80 %, and 100 % of the target load. The table on the right shows the differences between the
simulation and the test.

results show a very good agreement with errors below 2.2 %
for all DWS, except LF1. At this first load frame, again the
results have significantly higher errors of up to −7.3 % at
full load. Figure A1d contains the rear DWS result of the
MYMIN load case and lists throughout higher deviations of
up to−13 % for the LF1 sensor. Here, again, by analyzing the
rotation behavior of the blade along the z axis all load frames
show significant rotation differences and after estimating a
correction, e.g., the accuracy of the LF1 front sensor, would
decrease to a deviation of −11 %, while that of the rear sen-
sor increases to −10.4 %. This is the worst approximation
of the simulation for the static extreme load bending setups.
The other load frames are in very good agreement, with most
of the results (excluding LF1) being below the 5 % threshold
defined at the beginning of Sect. 5.

5.3 Static torsion tests

Full-scale blade tests in pure torsion are usually not in-
cluded in certification processes according to International

Eletrotechnical Comission (2014) and are thus rarely avail-
able. As described in Sect. 4.3 the blade is twisted during
three different setups successively at the load frames LF2,
LF3, and LF4. The results of the tests and the simulations
are plotted in Fig. 12. The structural behavior behind the ac-
tual loaded frame position to the tip will not be addressed
in this paper and is highlighted as gray-colored areas, as the
areas loaded in torsion are located between the root and the
respective load frame. However, the raw results similar to the
static bending experiments are the DWS length variation; for
these torsional experiments the more relevant twist angles are
calculated and plotted according to Eq. (1). Figure 12a shows
the first torsional test loaded at LF2. The absolute angle devi-
ation from experiment to simulation is between −0.06◦ and
−0.15◦ but yields high relative deviation up to 30 % due to
the small twist angles of −0.55◦ at LF1 and −1.72◦ at LF2
during 100 % load.

Moving the load application to LF3 (Fig. 12b) does not
change the situation. At the load application position the ab-
solute error is high, with up to −0.6◦ at a maximum twisting
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of −4.3◦. All errors exceed −10 % dramatically. However,
the experiment with torsional loading on LF4 (see Fig. 12c)
shows reasonably good results for the twist angle at LF2 and
LF3 with angle deviations of 3.7 % and 1.8 %, respectively.
The results at LF4 where the load is applied and which shows
the highest twist angle keep high deviations of about 20 % for
full load. Such high errors during torsional loading may be
based on the shell element with a node offset to the exterior
surface used for this model. Greaves and Langston (2021),
Branner et al. (2007), Pardo and Branner (2005), and espe-
cially Laird et al. (2005) already stressed the high inaccuracy
of shell elements with node offsets from the mid-plane to pre-
dict the structural behavior of hollow structures subjected to
torsional loading. However, the twisting is generally overes-
timated throughout the three torsional tests, which is in line
with the aforementioned references.

5.4 Local strain comparison

As stated in Sect. 4.3 the highly instrumented cross sections
at r = 5 m and r = 8 m offer a more detailed view on the
local strain levels in the rotor blade. The strain results are
used to compare the simulations with the tests and to verify
that local effects are correctly reproduced. We have selected
a few representative load cases in this section. The remaining
load cases can be found in Appendix B.

In Fig. 13a the strain in 0◦ (spanwise direction, in blue) and
90◦ (crosswise, in yellow) directions for the MXMIN simu-
lation (solid lines) and experiment (circles) are plotted over
the normalized airfoil circumference (denoted by S) for the
5 m cross section, starting at the suction side trailing edge
(S = 0), moving along the suction side to the leading edge
(S ≈ 0.5), and then along the pressure side to the pressure
side trailing edge (S = 1). This cross section shows the fol-
lowing general characteristics in all load cases.

1. In the simulation at S = 0, there is a strain peak in the
90◦ direction, because the sandwich core material van-
ishes suddenly towards the trailing edge, due to the shell
elements and their missing capability of tapering single
materials in their sections as done in the real layup.

2. In the simulation at S = 0–0.25, there is an excessive or
wrong curvature in the 90◦ strain curve, for which we
do not have a feasible explanation.

3. In the simulation at S = 0.25–0.35, there is a stepped
dip or raise of the 90◦ strain, because the sandwich core
material is substituted by core and unidirectional (UD)
layers and then completely by the UD spar cap and vice
versa.

4. In the simulation at S = 0.5, there is a strain peak in
the 90◦ direction, because the sandwich core material
vanishes around the leading edge.

5. In the experiment at S = 0.5–0.65, there is a strain dip
in the 0◦ direction, for which we do not have a feasible
explanation. The structure should be symmetric next to
the leading edge.

6. In the simulation at S = 1, there is a strain peak in the
90◦ direction, because the sandwich core material van-
ishes towards the trailing edge.

Apart from the unclear dip around the suction side lead-
ing edge panel (S = 0.5–0.65), the longitudinal strain (in
0◦ direction) differs along the circumference in mean only
about±107 µm m−1. This is about 13.3 % related to the max-
imum measured absolute strain of 811 µm m−1. However,
the crosswise strains (in 90◦ direction) reach deviations of
up to ±90 µm m−1 in mean, which corresponds to about
26.2 % related to its measured maximum. The MXMAX re-
sults (Fig. B2a) are slightly better concerning mean strain
errors, with 12.4 % for the 0◦ direction and 20.3 % for the
90◦ direction.

Figure 13b shows the MYMAX load case. Unlike the
edgewise case a failure of the strain gauge at S = 0.3 was
recorded in the experiment, which can be seen in the dis-
continuity of the experimental results. The flapwise bend-
ing of the blade in general is more excessive compared to
the edgewise bending and provokes the highest longitudinal
strains in the spar cap positions reaching maximum values
of up to 1800 µm m−1 in the outer shell layer. Consequently
the crosswise strain also increases with absolute mean errors
to ±208 µm m−1 (11.6 %) in 0◦ direction and ±217 µm m−1

(36.0 %) in 90◦ direction, both approximately twice as much
as in the edgewise load case. All other aforementioned is-
sues are also present here, some more and some less pro-
nounced. The same conclusion also holds for the MYMIN
case in Fig. B2b, though the mean error values are lower, due
to smaller load sets. In 0◦ direction a mean error of 8.2 % was
calculated and 15.8 % in 90◦ direction.

Taking a look at the torsion tests, in particular for the
MZLF3 load case plotted in Fig. 13c, the longitudinal strain
shows a relatively good agreement with the test, except for
S = 0.5–0.65 and at the pressure side trailing edge panel
(S = 0.85–1). The crosswise strain shows partially good
agreement with the experiments, except for the aforemen-
tioned characteristics, which are more dominant than in the
bending tests; e.g., the peaks at the trailing edge are more
pronounced. As for the longitudinal strain, the crosswise
strain shows a disagreement between simulation and experi-
mental results, which is even stronger due to a shifted curva-
ture in the plot. These can also be seen during the remaining
two torsion tests. The MZLF4 load case in Fig. B2d is very
similar to the MZLF3 load case, whereas the MZLF2 load
case (Fig. B2c) shows all of the stated characteristics in a
more pronounced manner as the load introduction is shifted
closer to the evaluated section at r = 5 m.

The next highly equipped cross section is at r = 8 m.
While the previous cross section was located at maximum
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Figure 13. Spanwise and crosswise strains of the simulation and the test, plotted against the normalized profile circumference of the cross
section at r = 5 m for the (a) MXMIN, (b) MYMAX, and (c) MZLF3 load case and at r = 8 m for the (d) MXMIN, (e) MYMAX, and (f)
MZLF3 load case.

chord, this one is already in a region where geometric cur-
vatures are smoother. For direct comparison the same three
load cases were selected for this cross section. As depicted in
Fig. 13d the longitudinal and the crosswise strains during the
MXMIN test follow very well the experimental results, both
qualitatively and quantitatively. Strain levels are similar to
the cross section at r = 5 m, but the strain errors of the sim-

ulation compared to the experiments are much lower (mean
error ±29 µm m−1 or 3.0 % in 0◦ direction and ±32 µm m−1

or 11.0 % in 0◦ direction ). The same holds for the MXMAX
loading (see Fig. B4a), where the mean strain error is even
between 2.0 % and 9.5 %, respectively. Although these are
not very pronounced, the peaks at the trailing and leading
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Table 3. Segment mass and center of gravity (CoG) differences between experiment and simulation. The relative distances of the CoG are
given with respect to their corresponding geometrical cross-section parameter, i.e., absolute thickness (X), chord length (Y ), and spanwise
segment length (Z).

Mass Center of gravity

Section r1 r2 X Y Z X Y Z

no. (in m) (in m) (in kg) (in %) (in m) (in m) (in m) (in %) (in %) (in %)

1 0.0 0.9 34.6 9.8 % − 0.030 0.000 0.003 − 2 % 0 % 0 %
2 0.9 2.0 − 7.36 − 5.1 % − 0.003 0.009 0.035 0 % 1 % 3 %
3 2.0 3.0 − 10.96 − 9.3 % − 0.031 − 0.004 0.065 − 3 % 0 % 6 %
4 3.0 3.5 − 4.74 − 8.0 % − 0.066 0.000 − 0.007 − 6 % 0 % − 1 %
5 3.5 4.0 − 3.419 − 6.1 % − 0.076 − 0.005 0.021 − 8 % 0 % 4 %
6 4.0 5.2 − 7.39 − 5.9 % − 0.094 − 0.060 0.055 − 10 % − 3 % 5 %
7 5.2 6.5 − 6.07 − 4.9 % − 0.102 − 0.036 0.054 − 13 % − 2 % 4 %
8 6.5 8.5 − 9.81 − 5.8 % − 0.074 − 0.008 0.071 − 12 % 0 % 4 %
9 8.5 9.5 − 3.572 − 4.8 % − 0.050 0.007 0.040 − 10 % 0 % 4 %

10 9.5 10.5 − 5.236 − 7.3 % − 0.049 0.004 0.132 − 11 % 0 % 13 %
11 10.5 11.5 − 3.685 − 5.4 % − 0.041 − 0.005 0.108 − 10 % 0 % 11 %
12 11.5 12.5 − 4.087 − 6.6 % − 0.031 0.003 0.090 − 9 % 0 % 9 %
13 12.5 16.0 − 18.59 − 9.9 % − 0.036 0.007 0.091 − 13 % 1 % 3 %
14 16.0 16.5 4.007 16.3 % − 0.003 − 0.048 0.128 − 1 % − 4 % 26 %
15 16.5 17.5
16 17.5 19.0 − 4.405 − 9.1 % − 0.025 0.094 0.195 − 15 % 11 % 13 %
17 19.0 20.0 1.104 9.5 % 0.010 0.023 0.041 10 % 4 % 4 %

edges as well as the stepped dips or raises can be identified
as consistent characteristics throughout all test setups.

Comparing the results of the MYMAX test depicted in
Fig. 13e, the good agreement between the simulation and
the test are evident. Even the stepped raise at the two spar
caps (S = 0.3 and S = 0.67) exist in the experimental results.
The mean strain error is ±53 µm m−1 (2.5 %) in 0◦ direction
and ±63 µm m−1 (8.4 %) in 90◦ direction, which is much
less than for the other cross section, while having slightly
higher maximum strain levels of 2080 µm m−1 in 0◦ direc-
tion and 753 µm m−1 in 90◦ direction. This excellent agree-
ment is also found in Fig. B4b for the MYMIN load case.

However, the results from the torsional tests do not agree.
As seen in Fig. 13f the simulation results of the longitudinal
strain during the MZLF3 test may follow some correct trend
of the experiments but has significant differences. The same
applies to the crosswise strains. Although the strain errors are
in the same range as the bending test results, compared to the
absolute strain levels these have the same magnitude as the
error. The remaining torsional test results (Fig. B4c and d)
show similar problems.

5.5 Segment mass and CoG comparison

In this section, we compare the experimental mass and CoG
measurement of each segment with the respective simulation
results. Table 3 contains the segment numbers, the segment
locations along the blade defined by the spanwise positions
of the left and the right cutting sections r1 and r2, respec-

tively, and the differences of the segment masses and the CoG
locations (in absolute and relative numbers).

The relative difference of the mass is related to the mea-
sured segment mass, and the CoG positions are with re-
spect to the corresponding geometrical mid-cross-sectional
dimensions, i.e., absolute thickness (X), chord length (Y ),
and radial segment length (Z). It was not possible to mea-
sure segment 15. The mass differs from −4.8 % to −9.9 %
except for segment 1, 14, and 17, where the mass was over-
estimated. Unfortunately it was not possible to calculate an
overall blade mass as one segment result was missing. Con-
cerning the CoG differences, the coordinate in cross-section
thickness direction (X) varied up to −15 % but was most of
the time predicted closer to the suction side. The CoG loca-
tion in chord direction (Y ) agreed very well with the mea-
surement, except for segment 16, where the variations were
below ±4 %. The radial locations match well for most of the
segments (≤ 6 %). However, the sections 10, 11, 12, 14, and
16 resulted in higher variations, predicting the CoG position
closer to the tip by more than 10 % of the segment length.

6 Summary and conclusion

The aim of this paper was the validation of a parameter-
ization and modeling methodology for wind turbine rotor
blades. This methodology was implemented in the in-house
3D finite-element model generator MoCA, which creates hy-
brid shell/solid finite-element models.
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Full-scale blade tests were performed on the SmartBlades
DemoBlade as an experimental reference. The blade has a
length of 20 m and is designed with prebend and presweep.
The following magnitudes were determined experimentally:
the total mass and the center of gravity of the full blade,
the mass and center of gravity distributions along the blade
by weighing of blade segments, the natural frequencies in
a free–free and a clamped cantilever configuration, the de-
flection curves along the blade for both flapwise and edge-
wise bending as well as torsion, and the strains in the cross-
sectional and longitudinal direction close to the maximum
chord position. The governing parameters such as geometry,
material layup, manufacturing deviations, additional sensor,
and load frame masses were extracted from the blade and test
documentations. These were fed into MoCA. Finite-element
models for all test setups were created, and the simulations
were executed in the commercially available finite-element
code Ansys. Then, the simulations were compared with the
experimental results.

The mass and center of gravity of the full blade compared
very well (error of −6 %). The masses and centers of gravity
of the blade segments, i.e., the mass and center of gravity dis-
tributions along the blade, were also in good agreement (er-
ror of 5 %–10 %). Modal analysis concluded for the natural
frequencies with free–free boundary conditions also well (er-
ror< 6 %) matching results, and those for the clamped can-
tilever configuration matched reasonably well (error< 8 %
for bending, 11.7 % for torsion).

The deflections for bending in edgewise direction were in
excellent agreement (error< 4 %), while the deflection curve
for bending in flapwise direction showed a comparably large
deviation of 13 % at the root, which decreased substantially
towards the tip (error at the tip< 4 %). A reason for that was
an elastic twist during the test that was not replicated in the
simulations. In general, the errors mostly comply with the
validation threshold of 5 % defined at the beginning.

For both flapwise and edgewise bending the strains in the
spanwise direction were in reasonably good agreement, tak-
ing into account that no local mesh refinement or global–
local modeling strategy was followed. Strain gauges were
distributed along the circumference of the cross sections at
spanwise positions of 5 and 8 m, respectively, in order to
measure the cross-sectional deformations. Especially at a
span of 8 m, the authors observed a very good agreement
of the simulation and the experiments, with nearly all mean
strain errors below the 10 % threshold defined for local com-
parison. The cross section at a span of 5 m produced approxi-
mately twice the errors of the 8 m section. However, for both
sections some local effects close to the spar caps could not
be resolved in the simulations.

During torsion, the authors identified quite large devia-
tions in the global elastic twist distributions along the blade.
Also the first torsional natural frequency has the highest dis-
crepancy to the test with −11.76 %. During the torsion test
the strain measurements showed quite large deviations ex-

ceeding 30 % mean errors at 8 m span and reaching up to
295 % mean error at 5 m span. Although, the longitudinal
strains agreed better than the transverse strains, at least qual-
itatively. As the literature reports, all this may by traced back
to the shell elements being inappropriate to model torsional
behavior, due to the offset of the nodes to the element’s mid-
plane.

Generally speaking, the authors observed good agreement
between the simulations and the experiments in almost all
situations and global bending observations and acceptable
agreement in local observations. The parameterization and
modeling methodology can thus be rated as validated, in the
capabilities of the proposed modeling technique.

However, the modern flexible blade design, which is
driven to its material and structural integrity limits and in-
cludes intentional torsion for load alleviation, requires ac-
curate predictions for all load cases in order to be reliable.
Looking a step further, fatigue damage calculation espe-
cially needs correct strain or stress predictions of the mod-
els. The authors currently work on evaluating blade model-
ing by means of solid elements and/or solid shell elements.
Although we loose computational efficiency of the shell el-
ement models, this way the accuracy in torsional response
should be improved significantly. Additionally, the correct
representation of geometrical shape and 3D tapering can be
realized. This should shed light on the discrepancy in torsion
and some of the bending load cases, where we were unable
to identify their origin, for instance wrong curvatures in the
strain distributions or numerical steps/peaks at material ta-
pering. However, such very local effects as material discon-
tinuities and numerical strain/stress peaks probably require
a global–local modeling approach to capture every smaller-
scaled detail. Subsequently, a sensitivity study of relevant
geometry, material, or modeling parameters can further en-
hance the understanding of local inaccuracies.
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Appendix A: Static bending test results

Figure A1. Bending lines extracted from the rear draw-wire sensor for the (a) MXMAX, (b) MXMIN, (c) MYMAX, and (d) MYMIN
experiment and simulation. Results are shown for 40 %, 60 %, 80 %, and 100 % of the target load. The table on the right shows the differences
between the simulation and the test.
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Appendix B: Local strain comparison

Figure B1. Cross-sectional sensor distribution at r = 5 m (rnorm = 25 %) (Haller and Noever-Castelos, 2021).

Figure B2. Spanwise and crosswise strains of the simulation and the test, plotted against the normalized profile circumference of the cross
section at r = 5 m for the (a) MXMAX, (b) MYMIN, (c) MZLF2, and (d) MZLF4 load case.
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Figure B3. Cross-sectional sensor distribution at r = 8 m (rnorm = 40%) (Haller and Noever-Castelos, 2021).

Figure B4. Spanwise and crosswise strains of the simulation and the test, plotted against the normalized profile circumference of the cross
section at r = 8 m for the (a) MXMAX, (b) MYMIN, (c) MZLF2, and (d) MZLF4 load case.
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Abstract

Fabricated wind turbine blades have unavoidable deviations from their designs due

to imperfections in the manufacturing processes. Model updating is a common

approach to enhance model predictions and therefore improve the numerical blade

design accuracy compared to the built blade. An updated model can provide a basis

for a digital twin of the rotor blade including the manufacturing deviations. Classical

optimization algorithms, most often combined with reduced order or surrogate

models, represent the state of the art in structural model updating. However, these

deterministic methods suffer from high computational costs and a missing probabilis-

tic evaluation. This feasibility study approaches the model updating task by inverting

the model through the application of invertible neural networks, which allow for infer-

ring a posterior distribution of the input parameters from given output parameters,

without costly optimization or sampling algorithms. In our use case, rotor blade cross

sections are updated to match given cross-sectional parameters. To this end, a sensi-

tivity analysis of the input (material properties or layup locations) and output parame-

ters (such as stiffness and mass matrix entries) first selects relevant features in

advance to then set up and train the invertible neural network. The trained network

predicts with outstanding accuracy most of the selected cross-sectional input param-

eters for different radial positions; that is, the posterior distribution of these parame-

ters shows a narrow width. At the same time, it identifies some parameters that are

hard to recover accurately or contain intrinsic ambiguities. Hence, we demonstrate

that invertible neural networks are highly capable for structural model updating.

K E YWORD S

Bayesian optimization, blade cross section, invertible neural network, machine learning, model
updating, sensitivity analysis, wind turbine rotor blade

1 | INTRODUCTION

Wind turbine blades are huge and complex structures that are exposed to extreme load conditions. Thus, an accurate blade design is of funda-

mental importance for the turbine's safety and reliability. As for most engineering structures, primarily numerical models form the design basis for

rotor blades. However, manufacturing deviations lead to a mismatch in the structural behavior of the numerically designed rotor blades and those

produced in real life.1 These deviations may prove crucial even within the allowed tolerances and material parameter uncertainties. Consequently,
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enhancing virtual models by means of model updating is an important aspect of a modern blade design procedure. Model updating seeks to cor-

rect the inaccurate parameters of the numerical model in order to improve test result predictions.2 This method is applied either for calibrating

the model with conducted real-life tests3,4 or to detect damage in terms of structural health monitoring.5 The updated model provides a basis for

a digital twin of the rotor blade produced.6

Model updating most commonly takes the form of an optimization problem: This optimization can either directly manipulate the modeling

parameters (e.g., material properties and layup) or take corrective action in the final model itself (e.g., stiffness or mass matrix of a beam model).7

For both approaches, metaheuristic algorithms such as genetic or particle swarm algorithms are commonly used to solve the optimization prob-

lem.8 Such deterministic model updating algorithms (e.g., global pattern search9) have been applied successfully in the field of rotor blade damage

detection. However, all these algorithms yield exactly one result for the model parameters and do not cover possible result ambiguity, that is, mul-

tiple model parameter sets that lead to the same output parameters. This can emerge due to a lack of sensitive output parameters. This uncer-

tainty worsens the user's confidence in the updated model parameters, as more than one configuration may yield the given output results.10

Depending on the algorithm, it even may get stuck in local optima and depend on the randomness of the starting samples.11 Bayesian inference

algorithms solve this issue by predicting posterior distributions for the updated parameters, which lets the user estimate the prediction confi-

dence. Popular methods for this include Bayesian model updating12 and approximate Bayesian computation.13

All the aforementioned approaches for model updating suffer from the same general drawback: the prohibitively high computational cost of

repeatedly simulating the physical model. This is especially severe for the probabilistic algorithms such as Bayesian model updating, where tech-

niques like Markov Chain Monte Carlo sampling are needed. Practitioners try to avoid this problem by using surrogate models, which are faster to

compute than the full physical model, to cut down on the computational costs.14 These surrogate models can take the form of reduced order

models15 or other reduction techniques such as the response surface method.4 However, the surrogate model approach, in turn, sacrifices physi-

cal input–output linkage of the original model and may lead to a loss in accuracy depending on the abstraction level and the model complexity

itself.16

Machine learning techniques, specifically artificial neural networks (ANNs), can help address these issues of model updating in various ways.

Most importantly, they can be trained to map the relationship between input and output parameters highly accurately, without knowledge of the

physical connections.17 In this way, they can serve as surrogate models that may be substantially faster to compute or more accurate than other

types of surrogates.18–21 They have also been successfully applied as surrogates in Bayesian model updating.22,23 However, combining ANNs and

model updating algorithms in such a way requires a considerably amount of implementation effort, tuning, and software engineering. Even then,

using ANNs as surrogates may not achieve the desired speed-up, as they do not remove the fundamental limitations of having to compute the

surrogate model many times, which is part of optimization-based or sampling-based model updating. In principle, ANNs could also be trained to

predict the desired parameters directly, circumventing the need for an optimization procedure altogether. While they are orders of magnitude

faster than any traditional model updating techniques, the main problem is that they lack indications of confidence, uncertainty, or goodness of fit

and are hard to verify rigorously. Due to this, standard ANNs are rarely used in this direct way for the purpose of model updating.

Within this difficult setting, we present the main idea of this paper: We use invertible neural networks (INNs) as probabilistic models to pro-

duce a posterior distribution of the input parameters directly. During training, the network receives the model parameters as inputs, as would be

the case with a surrogate model ANN. At test time, however, the network can be inverted to produce samples from the posterior directly, without

having to carry out additional algorithms. This approach offers a significant potential speed-up over traditional model updating techniques, even

ones using ANNs as surrogate models. At the same time, we obtain a full Bayesian posterior that allows among other things the determination of

confidence intervals and revealing of ambiguities in the same way that is otherwise reserved for computationally expensive Bayesian model

updating algorithms. In contrast, this is not possible with existing direct ANN approaches or standard optimization-based model updating

procedures.

This is a feasibility study for model updating with INNs and thus relies on a reduced set of material and geometrical input parameters. It is

based on a low structural blade model level, the blade cross section. This represents a generic and not a real world application, as cross-sectional

(CS) properties—if possible at all—are not intended to be measured, and may also require destructive test/measuring methods. However, our

experiments clearly demonstrate the practical applicability and benefit of INNs in the research field of structural rotor blade model updating: The

INN predicts highly accurately selected material and layup parameters based on CS beam properties, as well as offering verifiable uncertainty esti-

mates, and identifying some ambiguous and unrecoverable parameters.

To the best of our knowledge, ANNs have not yet been applied for the structural model updating of wind turbine blades, especially not in the

form of probabilistic models such as INNs. Instead, the major application of ANNs in the context of wind turbines is the field of controls

(e.g., model predictive control,24 adaptive control,25 yaw control,26 and aerodynamic coefficient prediction for control27) and for condition or

structural health monitoring considering fault or damage prediction.28–33 INNs have been introduced relatively recently, even in the field of

machine learning itself,34–38 but have seen rapidly growing research attention in the last years. They have been successfully applied in a broad

field of applications, commonly in image processing but also in scientific studies. In this paper, we specifically adapt and apply the conditional

invertible neural network (cINN)39 implemented in the FrEIA Framework.40
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The application example evaluated in this feasibility study has some specific limitations, which are summarized in the following: (i) The

updating procedure does not account for full rotor blades but links material parameters and layup topologies with blade CS properties for exem-

plarily chosen cross sections of a real blade. (ii) The blade cross sections are simplified by omitting adhesive joints in order to keep the investiga-

tions simple. (iii) The analyzed parameter space is limited to a number of material parameters (Young's moduli, shear moduli, Poisson's ratios, and

mass densities) and the ply positions in the in-plane directions of the cross sections. It should be noted the aforementioned limitations have been

included in order to keep the application example as simple as possible but still representative for a real wind turbine rotor blade. The method

itself does not require these limitations. For instance, adhesive joints can be included by refining the underlying physical models accordingly. Also,

the application of the proposed concept to updating of full blade models (i.e., finite beam element models or full 3D finite element models) should

generally be possible and is subject of ongoing research.

Section 2 of this paper covers the overall workflow description, with explanations of the feature selection method based on a sensitivity anal-

ysis. The approach and architecture of a cINN are briefly addressed in Sections 2.2 and 2.3, respectively. Subsequently, the feature selection

results are presented in Section 3. The cINN parameter definition, training, and evaluation are reported in Section 4, followed by the conclusion in

Section 5.

2 | MODEL UPDATING METHODOLOGY WITH INNs

This section describes the methods used in this investigation to analyze the input and output parameters of the model updating procedure and

how a neural network is structured and trained for inverse problems. In this feasibility study, we will restrict the problem to rotor blade CS analy-

sis with a reduced set of input parameters and evaluate the capability of INNs for structural model updating on a first level in wind turbine blade

structural design processes. This work is intended to reveal the potential of the presented methodology in a structural wind turbine-related envi-

ronment, while still keeping the model updating problem rather simple. Figure 1 illustrates the overall workflow for this study, which the following

subsections will discuss in more detail. Briefly summarized, the approach consists of a data preprocessing step in the form of a sensitivity analysis

to identify relevant input and output features of the model. Following the sensitivity analysis, all features are individually, simultaneously, and ran-

domly sampled with the physical model, to represent all possible parameter combinations. Based on these input samples, the CS properties of the

wind turbine blade at a particular radial position are calculated. The input and output features are filtered according to the feature selection. The

workflow splits these sample sets of input and output features into training, validation, and testing subsets for the cINN (the validation set is used

to check the progress of the training and tune the network settings. The test set is only used for the final evaluation of the method, so as to avoid

biasing the results). The data generation is based on a rotor blade model within the in-house modeling tool Model Creation and Analysis Tool for

Wind Turbine Rotor Blades (MoCA)41 and its interface to BEam cross-section Analysis Software (BECAS).42

2.1 | Sensitivity analysis of blade CS properties

Data preprocessing plays an important role in building a proper dataset specially for neural networks and for machine learning problems in gen-

eral.43 This contribution focuses on a sensitivity analysis to perform feature selection.44 The feature selection technique reduces the number of

F IGURE 1 Overall workflow of this study. Based on all cross-sectional input features, a sensitivity analysis is performed to determine the
relevant input and output features. The physical model is then used to generate sample sets of input and output features, which are then filtered
by the feature selection of the sensitivity analysis. All samples are finally split into training, validation, and test sets for the conditional invertible
neural network (cINN)
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input features to a subset which has a significant impact on the output features, based on the assumption that some data contains irrelevant or

redundant information.45 Additionally, the output features are reduced by all insensitive components, as these cannot be expressed with respect

to the given input features.

In our use case example of CS model updating, we will be focusing on material and geometrical composite layup parameters. These parame-

ters include Young's modulus E11 (for anisotropy additionally: E22), shear modulus G12, Poisson's ratio ν12, and density ρ, which are varied for all

applied materials. However, the Young's modulus E33 of the anisotropic materials is excluded, as through thickness stresses are not covered in the

CS analysis. Additionally, the geometrical layup parameters are described by the layup division point locations on the cross section's circumfer-

ence. These division points subdivide the composite layup in the CS direction in our model. All selected parameters will be further addressed in a

subsequent section. Geometric blade shape parameters, such as blade chord and thickness, are neglected, as 3D laser scanning can offer an accu-

rate measurement of the blade outer shell/mold,46 and thus, the overall blade shell geometry is assumed to be known. The authors are aware that

these selected input features do not cover the full range of varying parameters (e.g., adhesive and longitudinal ply positioning) due to manufactur-

ing but should be reasonably representative for a feasibility study on CS model updating. Figure 2 illustrates the sensitivity analysis for a simplified

example of three input features x: Young's modulus E, density ρ, and one division point P, as well as three output features y: mass M, stiffness K,

and area A.

During the sensitivity analysis, all selected input features x are varied individually in a one-at-a-time manner. The CS property response of all

created parameter subsets is calculated with MoCA and BECAS for a particular blade radius. All these subsets are then concatenated to a full

database, labeled as CS results in Figure 2. Each output feature y is then standardized to y¼0 and σ¼1 across the full database and denoted as ŷ.

This simplifies the sensitivity evaluation of each feature, as ŷ describes the output feature's deviation magnitude for each sample in relation to all

other samples.

After standardization, the full database is split into the subset again, that is, variation of one input feature x. Figure 2 contains the calculation

of the standard deviation σy, x across each subset's output feature, denoted as σ, which is then collected in the sensitivity matrix. Through this, all

input features x have a single value for each output feature y showing the input feature's impact on that respective output feature. Finally, by

defining a threshold λ, the sensitivity analysis identifies irrelevant input features, in case σy, x < λ for all y. On the other hand, an insensitive output

feature y is discarded if σy, x > λ applies for all x. Additionally, the algorithm reduces all linearly dependent output features to one, as the others do

not include further information for the training process of the neural network.

2.2 | INNs for inverse problems

The general setting described in the introduction is shared across many fields in engineering and natural science: The problem is well understood

and modeled in the forward process; that is, the observed response y can be readily calculated based on some parameters x that describe a system

(from mechanics, physics, chemistry, medicine). However, scientists are commonly interested in the corresponding inverse problem, that is,

F IGURE 2 The feature selection process based on a sensitivity analysis applied to a simplified cross-sectional (CS) example with three input
features: Young's modulus E, density ρ, and division point position P. The algorithm varies all individually and calculates their corresponding CS
characteristics, here, as an example, the mass M, stiffness K, and area A. After global feature standardization, splitting into the previous sets, and
computing of the standard deviation, the process returns a reduced sensitivity matrix. This can be used for feature selection
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computing possible states x of the underlying system given observations y. Computing this inverse can be a highly challenging task, and common

approaches such as classical model updating have some intrinsic shortcomings, as was briefly laid out in the introduction. Firstly, they are often

computationally very expensive, as the forward process has to be computed or simulated many times to fit a set of system parameters x̂ that

matches a given set of observations. Secondly, especially for safety-relevant applications, obtaining a single estimate x̂ is not sufficient: Ideally,

any ambiguities in the solution as well as its uncertainty should be captured and precisely quantified. This can be fulfilled by a (Bayesian) posterior

distribution px(x j y).47 The posterior quantifies the probability that any system state x could have led to the observations y and makes it possible

to produce confidence intervals or discover ambiguous or unrecoverable system parameters.48

An approach that alleviates both of these difficulties, and has seen growing adoption in recent years, is the use of cINNs to model the full pos-

terior distribution reliably in a computationally efficient way. Such networks were first successfully applied to image processing such as

inpainting,34 colorization of grayscale images,39 and synthetic image generation.36 More recently, they have entered other scientific fields such as

astrophysics,49 particle physics,50 medical imaging,51 and most recently in epidemiology.52 In short, cINNs rely on a simple reference distribution

pz(z) called the latent distribution, most commonly a Gaussian. The cINN f then conditionally transforms and reshapes between the posterior px

(x j y) and the latent distribution pz(z) (see Figure 3). The cINN can be understood as an inverse surrogate model of the well-known physical model.

The output of the physical model can be passed as a conditional observation y to the cINN to infer the posterior distribution px(xjy). Finally, the
established inverse model, which can be evaluated again at any time, is a striking benefit over the optimization-based model updating algorithms

applied for one particular set of parameters.

From this construction, the posterior that the network represents can be exactly computed through the change-of-variables formula as fol-

lows:34

pxðxjyÞ¼ pz fðx;yÞð Þ det δf
δx

� �����
���� ð1Þ

Here, det δf
δx

� �
denotes the determinant of the model's Jacobian, det(J) for short from here on. Similarly, samples from the posterior can be

drawn by first sampling z from the latent distribution pz(z) and then using the inverted cINN to transform them to the domain of the posterior:

x¼ f�1ðz;yÞ. As with many classic probabilistic modeling techniques, the cINN can be trained through maximum likelihood training. This means

that given existing pairs of (xi, yi), the model's posterior px(x j y) will match the true posterior of the inverse problem p ∗(x j y) if the average log-

likelihood of the models posterior is maximized or, as done in practice, the negative logarithmic likelihood (NLL) is minimized. Together with the

change-of-variables formula and a Gaussian latent distribution pzðzÞ/ expðkzk2=2Þ, we arrive at the following objective:

LNLL ¼E �log pðxijyiÞð Þ½ � ¼E kfðxi;yiÞk2
2

� logjdetðJiÞj
" #

þ const: ð2Þ

For a more detailed explanation and derivation of the objective function, see, for example, Ardizzone et al.39

2.3 | Architecture and training of the conditional INN

From the previous section, we can conclude that the neural network we use to represent f must be invertible and have a way of readily computing

the Jacobian determinant. In the following, we describe the implementation of the cINN architecture that satisfies these requirements. In general,

F IGURE 3 Schematic illustration of the principle of a cINN. The cINN f conditionally transforms and reshapes between the posterior px(x j y)
and the latent distribution pz(z)
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the cINN consists of a sequence of so-called coupling blocks, specifically affine coupling blocks in our case. To this end, the (unconditional)

coupling blocks introduced in RealNVP35 can be extended to include the condition y, shown below in Figure 4.

This block first splits the input data u into [u1, u2] and applies affine transformation according to the following functions:

v1 ¼ u1
Kexpðs1ðu2,yÞÞþ t1ðu2,yÞ ð3Þ

v2 ¼ u2
K

expðs2ðv1,yÞÞþ t2ðv1,yÞ ð4Þ

The results [v1, v2] are concatenated afterwards to v. Inverting the set of equations yields these inverse operations:

u2 ¼ðv2� t2ðv1,yÞÞ�expðs2ðv1,yÞÞ ð5Þ

u1 ¼ðv1� t1ðu2,yÞÞ�expðs1ðu2,yÞÞ ð6Þ

The internal functions sj and tj always take as input the corresponding variables u2 or v1 and additionally the conditional data y. As these func-

tions must not be inverted, they can be replaced by any arbitrary mathematical expression: in our case, by shallow standard neural networks that

will be referred to as subnetworks. One big advantage of this coupling block is the simplicity to compute the logarithm of the Jacobian determi-

nant being the sum of s1 and s2 over the inputs dimension.35 The cINN architecture then consists of the aforementioned sequence of conditional

coupling blocks CC as depicted in Figure 5, each of them fed with the condition y (CS output). This cINN can than be evaluated in forward and

inverse direction between the input x (CS input) and latent space z. In addition to the plain coupling blocks, we include a number of technical

improvements common to invertible network architectures, such as fixed permutations between variables. In order to improve generalization of

F IGURE 4 Structure of a conditional affine coupling block (CC)39

F IGURE 5 The conditional invertible neural network (cINN) structure applied to cross-sectional model updating. In the forward path f, cross-
sectional (CS) input features x are processed over a sequential concatenation of conditional coupling (CC) blocks, which represents the cINN.
The CS output features y contribute as coupling block conditions, and the cINN result is a latent space z. This path can be inverted, which is
defined as f�1
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the cINN, we apply dropout layers in the subnetworks as well as L2 weight regularization.53 Gradient clipping avoids exploding gradients in back

propagation,54 and an optimizer's learning rate scheduler improves the convergence.53

3 | INPUT AND OUTPUT FEATURE SELECTION

The sensitivity analysis and feature selection as described in Section 2.1 will focus in this study particularly on the cross section at a radial position

of R = 6 m of the SmartBlades2 DemoBlade. This cross section is depicted in Figure 6 as a BECAS output with material assignment and division

point (P) location. In a cross section, division points divide the shell into different sections with a constant material layup or define subcomponent

positions such as the web location.

In addition to the CS view, Tables A1 and A2 in Appendix A contains the layup of each CS subcomponent at R = 6 m for a full insight into the

analyzed structure. This may enhance the interpretation of the following sensitivity analysis in this section. The spar cap is prefabricated with

balsa transition pieces on each side of the unidirectional glass fiber (UD) material and trimmed to the correct size, before placing it in the

blade mold.

The input feature variation is selected based on manufacturing tolerances for materials and the layup of wind turbine blades. The manufactur-

ing documentation of the SmartBlades2 DemoBlade allows tolerance thresholds of max, ±5% deviation for material parameters, such as densities

and stiffnesses. The ply positioning tolerances in CS direction, that is, division point locations, depend on the material; valid tolerances for core

material are ±5 mm, whereas spar cap and web location may vary ±5–10 mm maximum. In order to account for even higher inaccuracies, the anal-

ysis range was extended for each parameter as stated in Table 1. As the spar cap is prefabricated, all related positions varied together; that is, all

suction side division points from PSS,TE,core to PSS,LE,core are moved simultaneously; the same is true for the pressure side, respectively.

After generating the model in MoCA and processing it with BECAS, the output features in Table 2 are available. These include CS locations

of shear, elastic, area, and mass center, as well as total mass, total area, inertias, and principal axis orientation. However, the most important out-

put is probably the stiffness and mass matrices, which serve as input for finite element beam models.

Following the sensitivity algorithm described in Section 2.1, a sensitivity matrix is computed based on the parameter variation listed in

Table 1 and the CS output variables in Table 2. The full sensitivity matrix is given in Tables A3–A5 in Appendix A. The sensitivity analysis is part

F IGURE 6 This is a cross section of the SmartBlades2 DemoBlade at a radial position of R = 6 m. The division points on the circumference
divide the blade shell into sections of equal material layup as follows: PSS,TE,offset to PSS,TE,core is the suction side (SS) sandwich panel located at the
trailing edge (TE); PSS,TE,spar cap to PSS,LE,spar cap denotes the location of the spar cap; this is flanked by balsa transition pieces in-between PSS,TE,core
to PSS,LE,core; followed by the sandwich panel located to the leading edge (LE) from PSS,LE,core to PSS,LE,offset. The pressure side (PS) is constructed
accordingly. As the outer face laminates are hard to identify due to their small thickness, the layup is shown in Tables A1 and A2 in Appendix A.
Additionally, the coordinate system is defined according to blade coordinate system in DNVGL AS55
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of the overall methodology, enabling also users without in-depth knowledge of the underlying physical models to perform model updating of cross

sections.

A threshold value λ = 0.25 was chosen to identify irrelevant features, which are then excluded in the matrix of Table 3. This led to discarding

the input features E22 and the Poisson's ratio ν of each material. The Young's modulus E of both core materials is sorted out as its magnitude only

reaches a fraction <0.2% of the glass fiber laminates. As the prefabricated spar cap was moved simultaneously, the algorithm additionally rejects

4 of 5 linearly dependent division points, keeping the PXX,Mid,spar cap as representative for each shell side.

TABLE 1 Parameter variation range for sensitivity analysis and neural network training

Note: The prefabricated spar cap is varied synchronous for each shell side.

TABLE 2 BECAS cross-sectional output parameters

Variable Description

SCx, SCy Shear center (SC) coordinates

ECx, ECy Elastic center (EC) coordinates

Mtotal Total mass

CoGx, CoGy Center of gravity (CoG) coordinates

Ixx, Iyy, Ixy Mass moment of inertia

Ax, Ay Area center cordinates

Axx, Ayy, Axy Area moment of inertia

Atotal Total areas

αPC,Ref Orientation of principal axis

αPC,EC Orientation of principal axis w.r.t. EC

K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26

K33 K34 K35 K36

K44 K45 K46

K55 K56

K66

2
666666664

3
777777775

Stiffness matrix

M11 M12 M13 M14 M15 M16

M22 M23 M24 M25 M26

M33 M34 M35 M36

M44 M45 M46

M55 M56

M66

2
666666664

3
777777775

Mass matrix
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Regarding the output, the algorithm sorts out several insensitive stiffness terms (K13, K23, K14, K24, K15, K25, K36, K46, K56). As only isotropic

and orthotropic materials aligned with the CS normal axis are applied in the blade design and no additional off-axis layers to induce, for example,

bend-twist coupling effects, the respective coupling terms in the stiffness matrix are zero, and thus, the sensitivity is zero. Considering the mass

matrix, the features M12, M13, M23, M14, M24, M15, M25, M36, M46, and M56 are always zero.56 Lastly, due to linear dependencies, M11 was kept,

but Mtotal, M22, and M33 were discarded; all these features represent the total mass. Additionally Ixx, Iyy, Ixy, M34, and M35 were sorted out in favor

of M44, M55, M45, M16, and M26, as these again represent the same physical parameter, respectively. This feature selection yields the final reduced

sensitivity matrix in Table 3. However, all parameters are varied for the sample generation for training and validation of the cINN, only the

remaining selected 14 input features and 33 output features from the respective samples are passed as input and conditions to the cINN.

The physical soundness of the input–output relations is discussed in the following. The explanations are exemplarily given for the impact of

the input parameters E11, UD (axial Young's modulus of the spar caps), G12, Biax45 (in-plane shear modulus of the biax layers in the shear web), and

G12, Triax (in-plane shear modulus of the triax layers in the shell) on the output parameters. For a complete picture, the reader is referred to existing

literature on physical modeling employing generalized composite Timoshenko beam formulations.56,57

There is a strong separation of functions for the different blade subcomponents. The spar caps shall provide stiffness against flapwise bending

and carry bending-related axial normal stresses. Hence, E11, UD should have an impact on the related stiffness matrix entry K55. Additional axial

stiffness in the spar caps will also affect the stiffness matrix entry linked to axial stretching, K33, and the position of the elastic center, ECx and

ECy, respectively. The function of the shear web is to carry lateral forces (and the respective shear stresses) in flapwise direction (perpendicular to

the rotor plane). Therefore, the in-plane shear modulus of its biax layers, G12, Biax45, shall contribute to the corresponding stiffness matrix entry

K11 and the shear center location. The shell is designed to withstand the shear stresses, especially due to torsion, and due to lateral forces, primar-

ily in edgewise direction (parallel to the rotor plane) and secondarily in flapwise direction. Modification of the in-plane shear modulus in the triax

layers positioned in the shell should therefore have an impact on the related stiffness matrix entries, K11, K22, and K66, and the related coupling

entries K12, K16, and K26, respectively. The position of the shear center should also be affected. All of these considerations are confirmed by

Table 3. It can thus be concluded that the physical model that gives the outputs as a function of the inputs is physically meaningful.

4 | INN STRUCTURE, TRAINING, AND EVALUATION

After having identified the significant in- and output features of the model, in this section, we seek appropriate cINN hyperparameters for the

subsequent training and evaluation of the INN. Furthermore, the network is selected with respect to its computational training costs and applica-

bility on other related scenarios.

4.1 | Identifying network hyperparameters

While the network parameters (i.e., the network weights) are produced by the training process, the network size and structure, the length of the

training procedure, and other settings have to be set by the user beforehand. These are known as hyperparameters, and we describe our choices in

the following sections. All the programming is done within Pytorch58 including the FrEIA for INNs.40 As previously stated, the cINN is a sequence of

conditional affine coupling blocks (CC), with subnetworks acting as internal functions. The subnetworks are represented by standard feed-forward

neural networks consisting of a number of hidden layers (network depth), each with a certain number of nodes (network width). Every hidden layer is

followed by a dropout layer to improve generalization and an activation layer. To find a set of well-performing hyperparameters for the cINN, we

trained networks with various different depths and widths as depicted in Table 4. The hyperparameter tuning revealed that shallow but wide subnet-

works are favorable for this application. The AdaGrad59 optimization algorithm gave the best and fastest convergence, which is finally improved by a

learning rate scheduler. Due to huge magnitude differences between the features, all passed samples are standardized per feature (x¼0 and σx ¼1)

to equalize the contribution magnitude of each one. For further information on ANN's terminology, please refer for example to Chollet.17

In order to determine the necessary network depth of the cINN, we will evaluate the four trained models from Table 4 against their prediction

quality of the input feature's posterior. If not otherwise stated, all given results will be shown as standardized values to improve direct comparabil-

ity between the features. Considering that all input features were sampled uniformly within their respective symmetric maximum variation ±xmax

from Table 1, the standard deviation is defined as follows:

σx ¼ jxmaxj �
ffiffiffi
1
3

r
ð7Þ

Equation (7) helps to estimate the real range of the respective input feature's posterior distribution. Furthermore, to enhance the understand-

ing of the upcoming discussion, we use Figure 7 to explain the interpretation of the results for two exemplarily chosen features: E11,Triax and

ρBiax90. The left two graphs represent the posterior distribution of the respective features after evaluating the cINN inversely. Each sample is a set
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of input and output features. This original input feature value is the so-called ground truth, which the cINN tries to predict as accurately as possi-

ble. Therefore, all given results are related to the ground truth value of each sample feature. This enables the comparison of different samples

with varying ground truth values, and it lets the reader recognize the accuracy of the prediction at a glance.

What is striking about the left graph is the improved prediction with increasing network depth. The mean value approximates the ground

truth with increasing depth, while the standard deviations describe narrower distributions, with the shallowest model (σE11;Triax
¼0:72) is much

higher than that of the deepest (σE11;Biax90 ¼0:16). That means the shallowest model has a poor prediction confidence for E11,Triax compared to the

deeper models. In contrast, the input feature ρBiax90 is predicted similarly by all models. Here, the width of the posteriors is generally also much

higher, indicating that ρBiax90 cannot be recovered with as great of a precision as E11,Triax, even for the deeper and more powerful cINN architec-

ture. Another interesting fact is that the posteriors are all approximately Gaussian (as opposed to having multiple peaks, skewed shape, etc.). This

TABLE 4 Final cINN hyperparameter set

Model No.

CC

Subnet

nodes

Subnet

layer

Activation

function

Dropout

rate

Optimizer Learning

rate

Batch

size

Epochs Samples Training

time

0 2 100 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 50 min

1 4 200 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 107 min

2 8 400 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 168 min

3 16 800 1 PReLu 0.05 AdaGrad 0.1 32 1000 20 000 279 min

Note: The parameters where chosen subjectively, involving the number of epochs and the learning rate and its scheduler, although focusing more on

computationally cheaper hyperparameter sets may also achieve reasonably good accuracy with lower computational costs.

F IGURE 8 Input feature prediction showed for 10 random samples of four different models with full output as conditional features. The four
invertible neural networks increase in depths

F IGURE 7 Exemplary standardized prediction for the two input features E11,Triax and ρBiax90 of one sample computed with all four models
from Table 4. The left two graphs show the predicted distribution of the corresponding feature x. The right graph summarizes the same results as
error bars with 1 � σx width around the predicted mean value x. The results are related to the ground truth value
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could help justify even simpler methods in future that may only provide Gaussian uncertainty estimates. Without producing the full nonparametric

posteriors first with the cINN, such simplifying assumptions could not be made. Both first graphs can be summarized as presented in the right

graph. There, the prediction moves to the y-axis, and for each feature, the posterior is depicted as error bars with 1 � σx width around the mean

value x, making it easy to compare several features and models at a glance.

Having explained how to interpret the inverted model results, we will now move on to define the best network depth from the given models

in Table 4. Therefore, Figure 8 shows all four models' prediction of each input feature's posterior for 10 randomly chosen samples. It is directly

apparent from this figure that most of the features are predicted extremely accurately with a high confidence by the deeper models, except for

both densities of the glass fiber plies Biax90 and Triax and the shear modulus G12 of Biax90 and Foam.

The two density features cannot be recovered accurately enough by any of the given models due to an ambiguity resulting from their rela-

tively similar mass contribution and quasi identical position in the cross section. Recovering from Figure 6 above and Tables A1 and A2 in

Appendix A, the Triax and Biax90 are placed directly upon each other in the shell sandwich laminate with a similar nominal thickness. Thus, they

counteract each other, that is, if one density increases, the other decreases to achieve the same total weight and inertia contribution together.

This behavior is clearly confirmed by Figure 9, where the mean value of the learned posterior of the samples is scattered along a thin line against

each other; that is, the features are negatively proportional and highly correlated R 2 = 0.9985. From this, we can conclude that the cINN has cor-

rectly detected the ambiguity and represents it accordingly in the posterior. However, it is able to predict a merged density of both values quite

precisely, as following results will show. Another interesting point due to a greater nominal thickness (+38%) and its existence in the prefabricated

spar cap the Triax is slightly more dominant, which is reflected in a marginally better prediction and thus narrower posterior distribution compared

to the Biax90 (cf. Figure 8).

As stated above, the overall inference performance of the models is strikingly accurate, especially from model 1 (4 CCs) on. Figure 8 shows

similar result qualities for models 1–3, with only minor improvements in the standard deviation in each step. In addition, Table 4 describes a com-

putational time increase by 57% from model 1 to 2 and approx. 66% from model 2 to 3. Thus, the authors decided to choose the model 2 (8 CCs)

hyperparameter set as the cINN design. In addition to the depth selection, the necessary training sample size and number of epochs for a fixed

learning rate of 0.2 are analyzed to cut down computational costs even further. All scenarios showed satisfying posteriors; therefore, a sample size

of 10 000 and 1000 epochs was chosen as a trade-off between computational time (112 min) and accuracy. Table 5 summarizes the final cINN

TABLE 5 Final cINN hyperparameter set

No.
CC

Subnet
nodes

Subnet
layer

Activation
function

Dropout
rate Optimizer

Learning
rate

Batch
size Epochs Samples

Training
time

8 400 1 PReLu 0.05 AdaGrad 0.2 32 1000 10 000 112 min

Note: The parameters where chosen subjectively, involving the number of epochs and the learning rate and its scheduler, although focusing more on

computationally cheaper hyperparameter sets may also achieve reasonably good accuracy with lower computational costs.

F IGURE 9 Counteraction of the mean predicted densities ρBiax90 and ρTriax. The highly correlating samples show that the cINN correctly
detects this ambiguity

NOEVER-CASTELOS ET AL. 13
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hyperparameter set. Considering the complete process to create a cINN, the sample generation has to be taken into account, which is a significant

cost driver for classical iterative model updating techniques. On a 40-node computing cluster, generating 10 000 samples with MoCA and BECAS

with the given mesh density of 500 elements per circumference takes approx. 38 min.

F IGURE 10 Final model: input feature prediction on the left graph for 30 random samples with full output as conditional features. Right
graph depicts the negative logarithmic likelihood loss curve of the cINN for training and validation samples

F IGURE 11 Input feature prediction showed for 10 random samples at four different radial positions with full output as conditional features.
The four cINNs were each trained individually for their respective radius

F IGURE 12 Input feature prediction showed for 10 random samples at four different radial positions only considering the stiffness and mass
matrix as conditional features. The four cINNs were each trained individually for their respective radius
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4.2 | Invertible network evaluation

After having defined our cINN, this section will continue with the evaluation of its performance and applicability for different scenarios. First of

all, we will recap the input feature prediction of the finally chosen model and its training process. The good prediction quality is again apparent

from the data in the left graph of Figure 10, with the exception of the two counteracting input features: G12,Biax90, GFoam, ρBiax90, and ρTriax. The

latter two features are mostly unrecoverable due to an inherent ambiguity of the problem, as discussed above. During training, the NLL loss curve

on the right graph is monotonically decreasing with little steps every 100th epoch, where the scheduler reduces the learning rate by 20% of the

actual rate. The validation loss is even lower due to the averaging effect of the dropout layers mimicking multiple trained models.54 However,

both seem to have nearly converged to their optimum.

In order to extend the analysis of the posterior distribution, the correlation of an input feature prediction (mean value x) against its ground

truth value can be investigated. Therefore, we use the coefficient of determination (R 2). Figure B1 in Appendix B compares the linear correlation

of each inferred input feature for 1000 random samples, also stating each feature's R 2 score, which in most cases is R 2 > 0.92, with the exception

previously named. The computed correlation confirms the previous outstanding predictions for a wide range of samples. Next, these predicted

mean values are used to recalculate the output features with MoCA and BECAS to evaluate its accuracy. All recalculated values match extremely

well the ground truth values as proved by the given R 2 scores, which are all approx. 1 with a roundoff error at the fifth decimal digit. Interestingly,

the inaccuracies of ρBiax90 and ρTriax seem to cancel each other out due to their counteraction. Considering the proximity of both laminates and

that both are infused together, a merged or averaged density for both materials could improve the prediction of such a parameter in future

applications.

So far, we have demonstrated an excellent model updating capability of the finally designed cINN for a cross section at R = 6 m. Hereafter,

the same cINN will be trained for cross sections at the following positions: R = 9 m, 12 m, and 15 m. Figure 11 presents the posterior predictions

for all four radial locations considering 10 random samples. Here again, the predictions are outstanding, except for ρBalsa. This rests upon the fact

that balsa is replaced by foam in the trailing edge panels after R = 6 m and only appears in the transition pieces of the spar cap, as shown exem-

plarily in Figure B2 in Appendix B. Hence, the contribution to any mass property and sensitivity is comparatively low to gain enough information

to recover this input feature. The wide posteriors produced by the cINN show that it has correctly understood and modeled this uncertainty,

instead of having the same high confidence as for the other parameters.

As a final aspect, the possible updated features for a future case of a finite element beam model updating would be the stiffness and mass

matrix. Therefore, analyzing the prediction quality trained only with these two matrices as conditional features indicates if the basic material and

layup input features can be subsequently inferred. Figure 12 shows the already familiar posterior prediction graph for the four previously analyzed

CS positions, only considering the stiffness and mass matrix features. The overall width of the posterior distributions increases slightly for all cross

sections and features but is still reasonably accurate. Only the original cINN for the cross section at R = 6 m noticeably loses accuracy at several

features (PSS,TE,offset, PSS,LE,offset, PPS,LE,offset, and PPS,TE,offset). This only presents the easiest and most straight forward way of inferring the input

posteriors, though recovering the full output parameter set from the stiffness and mass matrix before inferring the input features is also possible

with a few calculations.56,57

5 | CONCLUSION

This feasibility study set out to reveal the capability of INNs to be successfully applied in the field of wind turbine blade structural model updating.

The study was based on an example of blade cross sections, being one of the first structural model levels of rotor blades.

A feature selection was carried out using a sensitivity analysis that yielded a sensitivity matrix. This analysis covered a limited set of input

parameters, including material properties such as Young's moduli, shear moduli, Poisson's ratios, and densities of all materials and layup variations

(CS layup division points). All parameters were varied within extended manufacturing tolerances. Based on the sensitivity matrix and a chosen

threshold value, the significant input and output features were identified. Although from an engineering point of view most of the sensitivities

might be deducible, the sensitivity analysis in the overall approach is universally applicable to retrieve sensitive parameters for the feature selec-

tion without a priori knowledge of the physical model behavior. The physical soundness of the underlying physical model was discussed though

and shown by exemplary input–output relations.

Furthermore, the general architecture and principles of an cINN were explained. Subsequently, the necessary cINN structure was investigated

considering the trade-off between computational time and prediction accuracy. A cINN with shallow feedforward subnetworks was selected that

took approx. 140 min for sample generation and training on a computing cluster equipped with 40 CPUs and an NVIDIA Tesla P100 GPU. In con-

trast to optimization methods for model updating, this cINN finally establishes an inverse model of the physical model represented by MoCA and

BECAS, which can be evaluated any time without having to perform the complete process again.

A total number of 10 000 samples based on randomly varied input feature sets were generated with MoCA and BECAS for testing. The cINN

inferred remarkably accurate input feature values from the given test samples, except for two ambiguous density values of glass fiber-reinforced
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plastic materials. The results revealed that the ambiguity rests upon the two densities counteracting each other. However, a recalculation of output

parameters from the inferred values affirmed again correct predictions. The inaccuracies of the densities canceled each other out. Another advan-

tage over classical model updating techniques is that cINNs generate posterior distribution and not single values. This gives the user an instrument

to evaluate the model's confidence on the predicted value and to reveal unrecoverable parameters. These findings were further confirmed by inves-

tigating cross sections at different radial positions, showing similarly accurate results. The study found the posterior for the density of balsa was very

wide for the other radii, which is due to a significantly reduced balsa application in these cross sections and thus lower contribution to the mass-

related output features, and therefore a source of uncertainty correctly captured by the cINN. Moreover, this paper studied a reduced output

feature set, training the model only with stiffness and mass matrix as conditional feature. This scenario becomes relevant whenever a finite beam

model updating can predict these values and a further inference to the material and layup level is desired. Here, the standard deviation of the

posterior distribution increases slightly, that is, the confidence of the prediction diminishes. However, the results are still satisfactory.

In conclusion, this feasibility study was able to show that cINNs are generally applicable and provide good results. The example of wind tur-

bine blade CS model updating proved outstanding performance for cINNs in this research field. Although we have limited the parameter space

and model complexity, the cINN is flexibly scalable to cover further parameters, for example, parameters linked to geometry or adhesive joints, as

well as more complex models. This fact and the excellent results make model updating with cINN a feasible and promising approach to tackle

more complex model updating problems. In ongoing research, the authors work on the extension of the updated parameter space, the increase of

the model complexity to a full-scale blade model, and to update blade models with experimental data. A successful application of this methodol-

ogy on the global blade model and having an extensive inverse model of the blade can offer several application opportunities, for example, digital

twins and/or structural health monitoring by continuous training and updating or quality assurance after manufacturing.
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The following abbreviations are used in this manuscript:ANN artificial neural network

BECAS beam cross section analysis software

CC conditional coupling block

cINN conditional invertible neural network

CS cross section

EC elastic center

FrEIA Framework for Easily Invertible Architectures

CoG center of gravity

INN invertible neural network

K stiffness matrix

LE leading edge

MoCA Model Creation and Analysis Tool for Wind Turbine Rotor Blades

M mass matrix

NLL negative logarithmic likelihood

PS pressure side

SC shear center

SS suction side

TE trailing edge

UD unidirectional
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APPENDIX A: SENSITIVITY ANALYSIS

TABLE A1 Shell layup of the DemoBlade at cross section R = 6 m

Laminate No. of plies Nom. thick.

Triax 1 0.9 mm

Biax 0�/90� 1 0.65 mm

Foam/Balsa 1 20 mm

Biax 0�/90� 1 0.65 mm

Triax 1 0.9 mm

TABLE A2 Prefabricated spar cap layup of the DemoBlade at cross section R = 6 m

Laminate No. of plies Nom. thick.

Triax 1 0.9 mm

UD 32 26.2 mm

Triax 1 0.9 mm
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APPENDIX B: EVALUATION OF CINN

F IGURE B1 Correlation between input feature prediction and ground truth measured with R2. Optimum values will are located on fðxÞ¼m �x
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F IGURE B2 Cross section of the SmartBlades2 DemoBlade at a radial position of R = 12 m
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Abstract. Digitalization, especially in the form of a digital twin, is fast becoming a key instrument for the
monitoring of a product’s life cycle from manufacturing to operation and maintenance and has recently been
applied to wind turbine blades. Here, model updating plays an important role for digital twins, in the form
of adjusting the model to best replicate the corresponding real-world counterpart. However, classical updating
methods are generally limited to a reduced parameter space due to low computational efficiency. Moreover, these
approaches most likely lack a probabilistic evaluation of the result.

The purpose of this paper is to extend a previous feasibility study to a finite element Timoshenko beam model
of a full blade for which the model updating process is conducted through the novel approach with invertible
neural networks (INNs). This type of artificial neural network is trained to represent an inversion of the physical
model, which in general is complex and non-linear. During the updating process, the inverse model is evaluated
based on the target model’s modal responses. It then returns the posterior prediction for the input parameters. In
advance, a global sensitivity study will reduce the parameter space to a significant subset on which the updating
process will focus.

The finally trained INN excellently predicts the input parameters’ posterior distributions of the proposed
generic updating problem. Moreover, intrinsic model ambiguities, such as material densities of two closely lo-
cated laminates, are correctly captured. A robustness analysis with noisy response reveals a few sensitive param-
eters, though most can still be recovered with equal accuracy. And, finally, after the resimulation analysis with
the updated model, the modal response perfectly matches the target values. Thus, we successfully confirmed that
INNs offer an extraordinary capability for structural model updating of even more complex and larger models of
wind turbine blades.

1 Introduction

Wind turbine blades are enormous composite structures ex-
posed to extreme and harsh environmental conditions. Due
to these circumstances, structural health or condition moni-
toring plays a critical role in reliably ensuring the endurance
of the rotor blade. However, this raises the need for an ac-
curate model representation of the structure as built. In this
context, the digital twin is emerging as a powerful instrument
(Grieves, 2019) for these monitoring systems during opera-
tional time, though it can already be involved in early stages

of manufacturing (Sayer et al., 2020). The concept of model
updating is central to achieving a digital product twin, for
example, by updating the preliminary blade design based on
sensor responses from blade characterization tests. This pro-
cess of model updating ensures that the current stage of the
digital twin represents the blade as built.

1.1 Model updating of wind turbine blades

Model updating has grown in importance in light of digi-
talization of the wind turbine blades; however, it has only
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been marginally explored in the literature. Similarly to other
structural dynamic model updating applications (Sehgal and
Kumar, 2016), the publications on rotor blade model updat-
ing typically follow metaheuristic optimization techniques
and define the objective function based on the modal assur-
ance criterion (MAC), which represents a common metric for
the quantitative comparison of modal shapes (Pastor et al.,
2012). Other related modal metrics can be found in Alle-
mang (2003). The most recent publications, such as Hofmeis-
ter et al. (2019) and Bruns et al. (2019), apply classical meta-
heuristic optimization algorithms to update the model param-
eters and localize damage in a generic problem with a finite
element beam blade model. These publications evaluate a
global pattern search and compare it to evolutionary, particle
swarm, and genetic optimization algorithms. The objective
function is based upon the natural frequencies and the MAC
value. Furthermore, the MAC and the coordinate modal as-
surance criterion (COMAC) are applied in the model updat-
ing process of a finite element shell model of a rotor blade
conducted by Knebusch et al. (2020). That study aims to
update the blade model of a built blade along with high-
fidelity modal measurements and a gradient-based optimiza-
tion approach. Another approach presented by Schröder et al.
(2018) uses a two-stage metaheuristic optimization to detect
damage and ice accretion on a rotor blade. A global optimiza-
tion with a simulated quenching algorithm is followed by a
local method (sequential quadratic programming) to mini-
mize the objective function, consisting of natural frequen-
cies and mode shapes. Omenzetter and Turnbull (2018) im-
plemented metaheuristic optimization methods (fireflies and
virus optimization) to detect damage in a finite element beam
model of a blade and compare the performance to a simpli-
fied beam experiment. Other publications cover simplified
model updating procedures of low-level wind turbine blade
models (Velazquez and Swartz, 2015; Liu et al., 2012; Lin
et al., 2018). While most of the referred contributions focus
on the field of damage detection, the model updating con-
ducted by Luczak et al. (2014) highlights the impact of a
flexible support structure of the test setup of modern blades,
which was also revealed by Knebusch et al. (2020).

1.2 Drawbacks of current updating approaches

Most of these publications encounter three major problems:

1. Due to the aforementioned computational effort, the
studies have been restricted to simple models.

2. They typically lack an efficient probabilistic approach
to evaluate the uncertainty in the results.

3. All approaches only address one particular state of the
blade at a defined condition and not a generalized in-
verse model.

The aforementioned approaches can be classified as deter-
ministic and thus lead to results which are not necessarily the

global optima. Therefore, these methodologies may require
the process to be run several times to ensure result validity
(Schröder et al., 2018; Omenzetter and Turnbull, 2018). This
is especially problematic since metaheuristic optimization al-
gorithms are computationally expensive due to their iterative
model evaluation (Chopard and Tomassini, 2018). As a ref-
erence, Bruns et al. (2019) performed 500 iterations for two
updating parameters and 1500 iterations for five updating pa-
rameters, while in Omenzetter and Turnbull (2018) the firefly
optimization of two updating parameters required 157 itera-
tions until convergence and the virus optimization required
5000 iterations. Newer model updating techniques involve
probabilistic approaches such as a sensitivity-based method
(Augustyn et al., 2020) or Bayesian optimization (Marwala
et al., 2016). The latter is based on sampling techniques such
as Markov chain Monte Carlo methods to cover the com-
plete parameter space. However, these approaches typically
require even more model evaluations as stated in Patelli et al.
(2017). There, a relatively simple model of a 3-degree-of-
freedom (DOF) mass-spring system demanded 12 000 sam-
ples for the Bayesian solution, which was approximately
10 times higher than for the sensitivity-based method. Iter-
ations are always model dependent, but to give a reference
for real-time consumption, the model generator used in this
publication (Noever-Castelos et al., 2021) takes on average
approx. 80 s on a single-core device for one iteration, i.e.,
model creation. And finally, from the model updating we ob-
tain one solution of input parameters for a particular set of
model response parameters. However, if the model response
changes, the whole optimization process has to be repeated.
While in most applications a solution for a particular model
is sufficient, an inverted model, which maps model responses
to input parameters, can be beneficial, e.g., in quality man-
agement during serial production. This reveals a niche for an
efficient method to invert the physical model, enabling a fast
evaluation of the model states at any time.

1.3 Model updating via invertible neural networks

This research framework is based on Noever-Castelos et al.
(2021), a feasibility study on a first structural level of wind
turbine blades. The research performs a model updating with
conditional invertible neural networks (cINNs) (Ardizzone
et al., 2019b) for four selected cross-sections of a wind tur-
bine blade. Noever-Castelos et al. (2021) consider a set of
material and layup parameters as updateable inputs and take
cross-sectional structural beam properties, such as stiffness
and mass matrix, as model outputs to define the objective
values. A sensitivity analysis following a one-at-a-time ap-
proach identified a parameter subspace selection of 19 sig-
nificant input parameters for the updating process. The spe-
cific objective of this current investigation in contrast to the
aforementioned publication (Noever-Castelos et al., 2021) is
to
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1. extend the feasibility study and methodology to a
complete three-dimensional finite element Timoshenko
beam model of a wind turbine blade as applied in real-
world problems, instead of analyzing isolated cross-
sections;

2. introduce parameter splines for the input variation along
the blade;

3. use modal blade shapes and frequencies as the model
response;

4. replace the sensitivity analysis for the parameter sub-
space selection by the global variance-based Sobol’
method (Sobol’, 1993), which takes interactions of in-
put parameters into account;

5. implement a preprocessing feed-forward neural net-
work for the cINN conditions;

6. analyze the potential of replacing or neglecting the sen-
sitivity analysis by training the cINN on the full param-
eter space.

However, this investigation is still designed to reveal the fea-
sibility with respect to a complex full three-dimensional Tim-
oshenko beam model, before applying the method to a high
dimensional real-world and non-generic problem.

1.4 Outline

This study will follow the outline of Noever-Castelos et al.
(2021). The first section after the Introduction presents the
sensitivity analysis procedure and discusses the physical
model built in MoCA (Model Creation and Analysis Tool
for Wind Turbine Rotor Blades) (Noever-Castelos et al.,
2022) and BECAS (BEam Cross section Analysis Software)
(Blasques and Stolpe, 2012). The chosen architecture of the
cINN is explained in Sect. 3. Section 4 covers the discussion
of results, with a general analysis of the updating results in
Sect. 4.1. Section 4.2 reveals intrinsic model ambiguities be-
fore the model robustness to noisy model responses is exam-
ined in Sect. 4.3. A resimulation analysis to ensure high up-
dating quality is performed in Sect. 4.4. Section 4.5 presents
a method to replace the computationally expensive sensitiv-
ity analysis. This is then all followed by the conclusion in
Sect. 5.

2 Sensitivity analysis of modal responses of a rotor
blade finite element beam model

Typically a physical model consists of several input param-
eters defining the model behavior. The model is then evalu-
ated, or simulations are performed, which yield a model re-
sponse. However, not all input parameters equally contribute
to the particular model response. A sensitivity analysis helps

to identify the most significant input parameters. It is an un-
derestimated powerful tool to reduce the model dimensions
without losing significant information. Especially for model
updating purposes this can make a huge difference in per-
formance. This section will discuss the applied sensitivity
method as well as the applied model and parameter subspace
selection.

2.1 Sobol’ sensitivity method

Noever-Castelos et al. (2021) performed a sensitivity analy-
sis to reflect how input distributions influence the output dis-
tribution’s variance and mean value in order to identify rele-
vant input and output features for the model updating process
with the invertible neural network. There, a one-at-a-time ap-
proach is used, where values vary individually and their im-
pact on the output is analyzed. In contrast to Noever-Castelos
et al. (2021), this contribution will make use of a variance-
based approach, called the Sobol’ method, or Sobol’ index
(Sobol’, 1993, 2001). This method is widely used in research
and is used here, as it also applies globally to non-linear
models and analyzes the influence of input parameter inter-
action on the model response. For a multivariate function
y = f (x1, . . . , xn), Sobol’ derived the first-order Sobol’ in-
dex Si for the variable xi as follows:

Si =
V
[
E (y|xi)

]
V (y)

. (1)

This is a measure of to what extent the impact of varying xi
will have on the output y. On the basis of a random sampling
of the parameters x, E(y|xi) represents the expectation E of
all y values for a constant value of xi . It can be understood
as an average of y corresponding to a slice of the xi domain
in the parameter space. V [E(y|xi)] is then the variance of all
expectations over the range of values of xi , i.e., slices of the
xi domain (Saltelli et al., 2008). This variance is finally re-
lated to the overall variance of y. The first-order Sobol’ index
range is 0≤ Si ≤ 1. Higher-order Sobol’ indices can also be
extracted, see Saltelli et al. (2008), which measure the sen-
sitivity of parameter interactions. For instance the second-
order Sobol’ index shows the joint effect of two parameters
on the output, whereas third indices express the joint effect
of three parameter interactions and so on. Although these in-
dices can give a significant insight into the model, such as
existing collinearities, the number of indices grows geomet-
rically with the number of parameters, which quickly makes
the computation intractable. However, the total Sobol’ in-
dex STi gathers the total sensitivity for a parameter including
the first-order and all higher-order interactions. According to
Saltelli et al. (2008) the total index STi is calculated as fol-
lows:

STi = 1−
V
[
E (y|x∼i)

]
V (y)

, (2)
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Figure 1. Exemplary finite element beam with reduced number of elements and exemplary cross-sectional illustration. The detail shows a
cross-sectional BECAS output (Blasques and Stolpe, 2012) as used in the feasibility study (Noever-Castelos et al., 2021).

where V [E(y|x∼i)] describes the variance of all expectations
over the range where xi is not included. If the model is purely
additive for a particular parameter, the corresponding total
Sobol’ index should be equal to the first-order index. While
the total index does not provide the information about which
interaction is significant, it does identify if any interaction
exists, with the benefit that it is computed alongside the first-
order Sobol’ index without any significant additional compu-
tational effort.

For a multivariate function with multiple outputs
(y1, . . . , ym)= f (x1, . . . , xn), Eqs. (1) and (2) can be ex-
pressed, respectively, as

Sij =
V
[
E
(
yj |xi

)]
V
(
yj
) , (3)

STij = 1−
V
[
E
(
yj |x∼i

)]
V
(
yj
) . (4)

2.2 Rotor blade finite element beam model

The necessary model generation and variation are performed
with the model creator MoCA (Noever-Castelos et al., 2022)
and its interface to BECAS (Blasques and Stolpe, 2012)
to create cross-sectional beam properties, which are assem-
bled into a finite element beam (FE beam) and evaluated
in ANSYS Mechanical (ANSYS Inc., 2021a). We will be
performing the analysis on the DemoBlade of the Smart-
Blades2 project (SmartBlades2, 2016–2020). Figure 1 de-
picts a coarse version of the FE beam used in this study. In
contrast to this simplified visualization in Fig. 1, the applied
FE beam model is built of 50 three-dimensional linear beam
elements (BEAM188) (ANSYS Inc., 2021a) with higher
mesh density to the root and tip sections of the blade, where
greater geometrical and material changes are expected. Thus,
the finite element model consists of 51 nodes (NFE). The in-
put parameter selection of Noever-Castelos et al. (2021) was
slightly expanded to cover more material properties, which
will be discussed in detail later. The input parameter selec-
tion spans a space with a maximum dimension of DCS = 33
for each cross-section, though varying these for each of the
50 cross-sections would result in Dtot = 1650 parameters.
Assuming a smooth variation in each parameter over the ra-
dius, Akima splines (Akima, 1970) were introduced to rep-
resent the parameter variation along the blade. An exemplary
spline is depicted in Fig. 2. The spline is built based upon

Figure 2. Exemplary variation spline with five nodes.

five equidistant nodes that may vary in the y direction within
the given variation range of the parameter. The number of
spline nodes can be chosen arbitrarily; however, a high num-
ber increases the computational costs (more updating param-
eters) and can lead to collinear behavior if the nodes are too
near, whereas a low number reduces the flexibility to adapt
to short-distance changes. For this study the number were
chosen based on experience as a trade-off between compu-
tational costs and a sufficient approximation of a global pa-
rameter variation.

Table 1 summarizes all the investigated input parame-
ters xi and corresponding properties. Moreover, Table 1 lists
the number of spline nodes with their respective normalized
radial range and variance limits for each property. In this fea-
sibility study, we consider the most significant independent
elastic properties for each material – the density ρ, Young’s
modulus E11, the shear modulusG12, and Poisson’s ratio ν12
– which may be varied over all five nodes in a range of
±10 %. Here, we have neglected all thickness-related elas-
tic constants, i.e., parameters including the index/direction 3
and E22, as these parameters offer no significant contribu-
tion to the stiffness terms of the beam cross-sectional prop-
erties according to Hodges (2006) and Noever-Castelos et al.
(2021). Since foam is modeled as an isotropic material, only
two independent elastic properties E and G and the den-
sity ρ are considered. In addition to the material properties,
the division points are also varied. These subdivide the shell
in the cross-sectional direction into different sections with a
constant material layup or define sub-component positions
such as the web or adhesive (Noever-Castelos et al., 2022).
The division point parameters P are allowed to vary on the
three mid-nodes by the given absolute range. The root and
tip nodes cannot be varied due to model generation issues
within MoCA; thus the variance for node N0 and N4 will
be kept at zero, similarly to in Fig. 2. All applied varia-
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Table 1. Input feature list analyzed in this study. Each feature and
property builds a distribution spline based on the given number of
equidistant nodes within the given normalized radial range of the
blade. Each node value may then vary in the listed variance range.

Parameter Property Nodes Norm. range Variance

UD ρ, E11, G12, ν12 5 [0, 1] ±10 %
Biax45◦ ρ, E11, G12, ν12 5 [0, 1] ±10 %
Biax90◦ ρ, E11, G12, ν12 5 [0, 1] ±10 %
Triax ρ, E11, G12, ν12 5 [0, 1] ±10 %
Flange ρ, E11, G12, ν12 5 [0, 0.1] ±10 %
Balsa ρ, E11, G12, ν12 5 [0, 1] ±10 %
Foam ρ, E, G 5 [0, 1] ±10 %

PSS,TE,offset Location 3 [0.25, 0.75] ±10 mm
PSS,Mid,spar cap Location 3 [0.25, 0.75] ±15 mm
PSS,LE,offset Location 3 [0.25, 0.75] ±10 mm
PPS,TE,offset Location 3 [0.25, 0.75] ±10 mm
PPS,Mid,spar cap Location 3 [0.25, 0.75] ±15 mm
PPS,LE,offset Location 3 [0.25, 0.75] ±10 mm

UD: uni-directional layer; Biax45◦: biaxial layer with −45, +45◦; Biax90◦: biaxial layer with 0,
90◦; Triax: triaxial layer with −45, 0, 45◦; SS: suction side; PS: pressure side; TE: trailing edge;
LE: leading edge.

tions are approximately twice the permitted manufacturing
tolerances (Noever-Castelos et al., 2021) in order to assure
some flexibility of the inverse model. Summing up all pa-
rameters and nodes, the problem spans a parameter space
of dim(x)= 153. The sensitivity study is conducted based
on the Python package “SALib” (Herman and Usher, 2017)
and a random sampling dimension of n= 29

= 512 sam-
ples. SALib uses the quasi-random sampling with a low-
discrepancy sequence technique from Saltelli et al. (2008)
for the sensitivity analysis. To compute the Sobol’ index, the
algorithms require a variation in each input feature individu-
ally for each of the n samples, which results in a total sample
size of ntotal ·(dim(x)+2)= 79360 to compute the first-order
and total Sobol’ indices. The sensitivity study as well as the
updating process is based on the modal beam response y, as
described in Gundlach and Govers (2019), in a free–free and
a clamped scenario, which are comparable to an elastic sus-
pension of the blade and a fixation of its root to a test rig,
respectively. In each case, the first 10 eigenmodes are ex-
tracted, excluding the rigid body motion modes in the free–
free scenario. For all 10 mode shapes of each configuration
(free–free and clamped), the natural frequency and the three
deflections and three rotations of each finite element beam
node NFE are saved. These are collected in a response matrix
with dim(y)= (10+10)·(1+6)= 140 columns. Throughout
this paper, input parameters and model responses will also be
referred to as input and output features or conditions, respec-
tively.

2.3 Feature subspace selection with Sobol’ indices

After computing the first-order and total Sobol’ index Sij
and ST ij , respectively, for each input feature xi and output
feature yi at every NFE position, we obtain a matrix of size

140×51×153, i.e., dim(y)×dim(NFE)×dim(x). For the sub-
space selection we follow two selection methods:

1. by computing the maximum-appearing first-order
Sobol’ index of each input feature and comparing it to a
threshold;

2. by performing singular value decomposition (SVD) on
the total Sobol’ sensitivity matrix to identify the most
relevant contributions and mapping these back onto the
input feature with a QR factorization with column pivot-
ing (Chakroborty and Saha, 2010; Olufsen and Ottesen,
2013).

The selected subspaces are merged into a final subspace,
which is applied for the model updating process.

For the first selection method the sensitivity matrix con-
taining the first-order Sobol’ index is condensed into a single
maximum value Smax,i for each input feature xi . Therefore,
it is reduced to identify relevant input features y by comput-
ing the maximum value along the other non-corresponding
dimensions, i.e., dimensions 2 and 3. Subsequently, an arbi-
trary threshold Sthld is defined to reject all features with a
lower maximum index Smax,i . By this, we aim to consider
only features which have a significant impact during at least
one event at one location, thus containing enough informa-
tion for the updating process. Based on experience, we have
chosen Sthld = 0.1.

The second method follows a combination of SVD and
QR factorization on the sensitivity matrix of the total Sobol’
index according to Chakroborty and Saha (2010) for a given
set of n input parameters x. Here each mode shape is an-
alyzed individually. Therefore, the sensitivity matrix is di-
vided and reshaped; the first dimension, i.e., the 6 DOFs
plus frequency, and second dimension, i.e., the node posi-
tions NFE, are flattened, while the third dimension, i.e., in-
put features, is kept yielding an (m× n) matrix. Given this
individual total Sobol’ sensitivity matrix ST for each mode
shape, the singular value decomposition according to Golub
and van Loan (2013) is

ST = U6VT . (5)

U and V denote the left and right singular vector matri-
ces, each column corresponding to the singular values in
6 = diag{s1, s2, · · ·, sp} with p =min(m,n). According to
Chakroborty and Saha (2010), the criterion percentage of en-
ergy explained by the singular values is used to identify the
g most relevant features. The percentage of energy Pex is cal-
culated as the normalized cumulative sum of the singular val-
ues:

Pex =

g∑
i=1
s2
i

p∑
i=1
s2
i

· 100%. (6)
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The number of relevant singular values g is equal to the high-
est number g complying with Pex ≤ 99 %. The rest of the sin-
gular values, p−g, only contribute to 1 % of the total energy
and are therefore insignificant for the result.

A subsequent QR factorization with column pivoting
(Golub and van Loan, 2013) is used according to Olufsen
and Ottesen (2013) and Chakroborty and Saha (2010) to ex-
tract the order of the original input vector x, by sorting the
columns of the left singular vector matrix V of size n× n in
order of maximum Euclidean norm in successive orthogonal
directions:

VT P=QR. (7)

Here, Q is a matrix with orthonormal columns, R is an upper
triangular matrix, and P is the permutation matrix. In this
particular case of a square matrix V, all matrices are of the
same dimension as V. The permutation matrix P is finally
applied to the input parameter vector x to re-sort the vector
according to sensitivity significance:

xs = xT ·P. (8)

The sorted input vector xs is than reduced to the first g en-
tries, representing the most significant parameters for the an-
alyzed mode shape following the criterion explained above.
After computing all xs values for each mode shape, they are
all merged into a final set of input parameters determined to
be relevant for at least one mode shape. With this SVD-QR
method applied to the total Sobol’ indices matrix, the authors
tried to identify parameters that are significant either on their
own or in interaction with others. However, the significance
is not measured as the maximum value on one occasion, such
as in the first method, but rather contributes substantially on
average over a complete mode shape.

Both methods lead to the 49 selected features depicted in
Table 2 with their respective Smax values and a checkmark
showing the selection by the SVD-QR method.

When analyzing the rejections, it has to be noted that all
structural properties are condensed to cross-sectional beam
properties. That means, for example, Biax45◦ as a face layer
of the shear web is typically located near the elastic and grav-
itational center of the cross-sections and thus does not con-
tribute in excess to the mass inertia according to the Steiner
theorem or to the overall bending stiffness (Gross et al.,
2012). Consequently, a variation in ρBiax45 and E11,Biax45
will not significantly impact the modal response of the beam
model. However, its shear modulus G12,Biax45 does have
an impact when dealing with the shear forces from flap-
wise loading. Regarding foam and balsa as sandwich core
materials, the stiffness contribution to the sandwich panels
is approximately 1 % compared to the GFRP (glass-fiber-
reinforced plastic) face sheets, and this makes their variations
neglectable, while the mass contributions depending on the
layup can reach up to 66 %–100 %, which is why a few of
the density spline nodes are kept. Summarizing the sensitiv-
ity analysis reduced the input feature space to dim(xsel)= 45,
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Figure 3. The conditional coupling blocks (CCs) with their embed-
ded sub-network s1, t1, s2, and t2. This CC architecture can easily
be inverted (Ardizzone et al., 2019b).

approximately 30 % of dim(x). The output features were all
kept according to the feature selection approach. However,
a reduced set of radial positions can be applicable as the in-
trinsic information might be repeated in neighboring NFE.
This repeated information does not necessarily improve the
updating results but reduces the computational performance.
Therefore, the output of each third node is selected, end-
ing up with a radial output dimension of dim(NFE,sel)= 17.
Thus, the final dimension for the model updating process of
the input feature space is dim(input)= dim(xsel)= 45 and
of the output feature space is dim(output)= dim(NFE,sel)×
dim(y)= 17× 140.

3 Invertible neural network architecture

Before proceeding to the model updating process, it is neces-
sary to define the invertible neural network architecture. Sim-
ilarly to Noever-Castelos et al. (2021), this work will build on
conditional invertible neural networks (cINNs) (Ardizzone
et al., 2019b) implemented in FrEIA – the Framework for
Easily Invertible Architectures (Visual Learning Lab Heidel-
berg, 2021). A basic cINN consists of a sequence of condi-
tional coupling blocks (CCs), as shown in Fig. 3. Each of
these represents affine transformations that can easily be in-
verted. The embedded sub-networks s1, t1, s2, and t2 embody
the trainable functions of this type of artificial neural net-
work.

These sub-networks stack the conditions c and the input
slice u2 or v1 and transform them for further processing.
The stacking necessarily requires similar spacial dimensions
of c and u2 or v1, respectively. For a further brief introduc-
tion to cINNs with a topic-related application, please refer to
Noever-Castelos et al. (2021). A more in-depth explanation
can also be found in Ardizzone et al. (2019b, 2018).

After an extensive hyperparameter study, the presented in-
vestigation applies the network depicted in Fig. 4. Hyperpa-
rameters describe the network or architecture parameters of
artificial neural networks, like the number of layers or per-
ceptrons. It consists of a cINN (blue) with a sequence of
15 CCs, grouped into clusters of 3. This cINN transforms be-
tween the beam input x and the latent space z. However, un-
like the underlying feasibility study of Noever-Castelos et al.

(2021), an additional feed-forward network is implemented,
referred to as a conditional network (orange). The idea is to
preprocess the raw conditions c, i.e., beam responses, before
passing them to the sub-networks in the CCs. It is trained
in conjunction with the cINN to extract relevant feature in-
formation optimally for each stage. The conditional net-
work architecture is inspired by Ardizzone et al. (2019b) and
should extract higher-level features of c to feed into the se-
quential CCs, which, according to Ardizzone et al. (2019b),
should relieve the sub-networks from having to relearn these
higher-level features each time again. With a conditional
beam response c of shape dim(c)= dim(NFE,sel)× dim(y),
the conditional network applies 1D convolutions (conv 1D)
to process the data, which gradually increase in size to pro-
gressively extract higher-level features, which are fed into the
different clusters of the cINN.

In general, the beam input would also be available in a
2D shape (property× spline nodes), though the feature selec-
tion of the sensitivity analysis reduced the splines irregularly.
Thus, a 2D shape cannot be maintained anymore, as not all
splines have the same number of nodes. Therefore, the se-
lected beam input x for the updating process going into the
cINN is flattened to a vector and is not present in a 2D shape,
as for example the beam response c. A consequence is that
the sub-networks cannot make use of convolutional layers
but have to include feed-forward layers. However, this will
not have any significant impact on the result. As mentioned
before, the conditions and input features are stacked in the
sub-networks, which thus need a similar spacial shape. Con-
sequently, the conditional network has to flatten the shape
to a vector for each output in order to agree with the input
shape in the sub-networks. Before flattening the output, the
conditional network activates the convolutional layer output
with a parametric rectified linear unit (PReLU) (He et al.,
2015) and halves the dimension with an average 1D pooling
layer (Chollet, 2018) (avg. pool 1D). After flattening, the di-
mension is additionally reduced with a fully connected layer
(fc-layer) to subsequently relieve the sub-network’s compu-
tation.

Within the cINN, the CCs are clustered into groups, which
are then each fed by the progressively processed condi-
tions c. All sub-networks have one hidden fc-layer, followed
by a batch normalization to improve generalization and a
PReLU (Chollet, 2018) activation layer, as depicted in Fig. 5.
As previously explained the conditional network processes
the conditions c and has five outputs at different stages of
the processing. Each of these outputs is fed into a cluster
of three CCs. The configuration for each cluster and the
corresponding hyperparameters for the conditional network,
cINN, and sub-networks are summarized in Table 3.

The training is performed with an AdaGrad optimizer
(Duchi et al., 2011) and an initial learning rate of 0.3,
which is gradually decreased throughout the training process.
The optimization minimizes the negative logarithmic likeli-
hood (NLL) given in Eq. (9) in order to match the model’s
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Figure 4. Conditional invertible neural networks (cINNs, in blue frame) with sequentially connected conditional coupling blocks (CCs).
The conditional feed-forward network (cond. net, in orange frame) preprocesses the condition y with 1D convolutional layers and PReLU
(parametric rectified linear unit) activations. Average 1D pooling is performed on the output before it is flattened and reduced in dimensions
with a fully connected layer (fc-layer) to be then fed into the sub-networks of the CCs. The convolutions gradually increase in size in order
to progressively extract higher-level features from the condition c.

Table 3. Hyperparameter set of the complete network, including conditional network, conditional invertible neural networks (cINNs), and
sub-network. The cINN is divided into five clusters, for which the hyperparameters are listed separately. In Cluster 1, the conditions are
directly fed into the conditional coupling blocks (CCs), without a prior convolutional layer (see Fig. 4).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Conditional Conv 1D kernel k 3 3 3 3
network stride s 1 1 1 1

padding p 1 1 1 1
out chan. “out” 32 64 128 256

Activation PReLU PReLU PReLU PReLU

Average 1D pooling kernel k 2 2 2 2
stride s 2 2 2 2
padding p 0 0 0 0

Flatten X X X X X

Fully connected nodes 100 200 300 400 500

cINN Conditional coupling block (CC) 3 3 3 3 3

Sub-network Fully connected nodes 400 500 600 700 800

Batch normalization X X X X X

Activation PReLU PReLU PReLU PReLU PReLU
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Figure 5. Sub-network with one hidden fully connected layer (fc-
layer), batch normalization, and a PReLU activation layer. Each
conditional coupling block (CC) has such a sub-network embedded.

posterior prediction of px(x|y) with the true posterior of the
inverse problem (Noever-Castelos et al., 2021).

LNLL = E
[
− log(p (xi | yi))

]
= E

[
‖f (xi;yi)‖2

2
− log‖det (Ji)‖

]
+ const. (9)

4 Model updating of a rotor blade beam model

Having selected the significant features with the sensitiv-
ity analysis and defined the cINN architecture, we will now
move on to the model updating process and its evaluation.
Therefore, the workflow of the cINN if briefly explained
along with the schematic view of the transformations per-
formed by the cINN in Fig. 6. The presented cINN in Sect. 3
is trained and tested with sample sets of input features x and
their corresponding conditions c in the form of the modal
beam responses as described in Sect. 2. The concept and
training of the cINN are based on Bayes’ theorem to infer
a posterior distribution px(x|c) from a set of conditions c.
Therefore, the cINN learns the conditioned transformation
from the posterior distribution px(x|c) onto the latent dis-
tribution pz(z), as depicted in Fig. 6. This mapping can be
achieved through maximum likelihood training. The training
is performed over 150 epochs, i.e., training iterations, with
a samples size of 30 000 training samples in order to mini-
mize the negative log likelihood LNLL (given in Eq. 9). For
a more detailed description of the inherent method of cINNs
please refer to Noever-Castelos et al. (2022) or Ardizzone
et al. (2019a). Additionally a sample set of 5000 test samples,
which have not been seen by the cINN during its training, are
used for validating and testing the cINN after the training.
All input features are always sampled randomly and inde-
pendently but at the same time in order to span the complete
parameter space. However, only features selected by the sen-

Figure 6. Schematic view of the transformation between the input
features x and the latent space z for a given condition c performed
by the conditional invertible neural network (Noever-Castelos et al.,
2021).

sitivity study (see Table 2) are passed on to the cINN as the
other parameters are identified to be less relevant.

As the cINN is trained to map the input features x into
a normally distributed latent space pz(z), during the inverse
evaluation the process is reversed: the latent space is sam-
pled from a Gaussian normal distribution (e.g., 50–100 sam-
ples), which the cINN then transforms along with the beam
response as condition c to the posterior prediction of the in-
put features. This prediction results in a distribution for each
input feature px(x|y) as depicted in Fig. 6. In order to gen-
eralize the data for the training process and make them more
comparable for the evaluation, all input features and condi-
tions are standardized to zero mean and a standard devia-
tion of 1 over the complete training set. The necessary scal-
ing factors are additionally saved in the cINN to transform
back and forth any input features or conditions used in the
cINN besides the training process. Consequently, all features
and conditions during the evaluation of the cINN are related
to the complete training set’s mean and standard deviation.
Generally, the posterior predictions are also depicted with re-
spect to their ground truth, i.e., target value of the sample, to
align multiple samples for enhanced comparison.

This section first analyses the overall updating results of
the model. The identified inference ambiguities are then
highlighted and discussed before the model is checked
against its robustness to noisy conditions cnoisy. Based on the
predicted posterior distribution of the input features p(x|y),
a resimulation analysis is performed where the updated pa-
rameters are used to feed the physical model and calculate
the beam response in order to check the quality of the up-
dating and sensitivity analysis results. Finally, a method for
avoiding the computational intensive sensitivity analysis is
presented.

4.1 General analysis of the updating results

In the first instance the posterior distributions have to be ex-
amined. Figure 7 shows as an example the predicted posterior
distribution of four different input features as a histogram and
fitted Gaussian distribution. The ground truth on the x axis
represents the real value used to generate the sample, while
the distribution is obtained from the cINN. For the further
analysis, the type of distribution must be known in advance
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Figure 7. Conditional invertible neural network’s standardized pos-
terior prediction distributions p(x|y) for four input features of one
example. Plotted as a histogram and fitted Gaussian distribution.

for it to be possible to apply the correct metric, e.g., mean
or median. In this case of a Gaussian distribution, the mean
is the most significant value and will thus be applied in this
study to reduce the posterior prediction distribution to a sin-
gle value accompanied by the standard deviation as a mea-
sure of uncertainty.

By shifting the former x axis from Fig. 7 onto the y axis
and reducing the distributions to their mean and standard de-
viation, as stated before, we obtain the graphs depicted in
Fig. 8 for the same exemplary sample but with all updated pa-
rameters. Most values range close to their ground truth value
and with a narrow distribution, which is desired. For some
input features, e.g., ρBiax90,N4 , the prediction is less accurate.
However, the overall posterior prediction in this example is
very good, as approx. 70 % of the predictions are within a
range of ±0.05 (standardized scale) of the ground truth.

After having checked the results in detail for one exem-
plary sample, Fig. 9 shows the prediction result of all selected
input features for the 5000 test samples. The graphs scatter
the standardized mean posterior predictions p(x|y) against
their corresponding target value from the sample set. Thus,
the ideal case would correlate to an exact line with a slope
m= 1 and an interception b = 0. Each graph is equipped
with the coefficient of determination R2 and shows a corre-
sponding regression line with slope m. Approximately 70 %
of the selected features reach a very satisfying linear corre-
lation with R2 > 0.9 while showing a slope m of approx. 0.9
or higher. For the rest of the discussion we will be sticking
with the R2 value for the accuracy, as the slope accuracy cor-
relates with the R2 value.

In the following we will create the link between the sen-
sitivity results to enhance comprehension and explain pos-

sible discrepancies. In general a high sensitivity of Smax,i >

0.35 leads to a high prediction accuracy (R2 > 0.9). A sec-
ond major metric to fully understand the prediction accu-
racy is the cross-correlation of the input features, which re-
veals collinearities within the physical model. These present
a problem for the inversion of the model as the output re-
sponse of the physical model is ambiguous and can be traced
back to different combinations of input features. However,
this will be addressed in Sect. 4.2. Input features that do
not have any substantial cross-correlation but high Smax,i
reach prediction accuracies of R2

≈ 1.0, e.g., all spar cap
position points PMid,sc or Young’s modulus of the UD ma-
terial E11,UD. For instance, ρFlange,N1 has one of the high-
est sensitivity index values, Smax,i = 0.62, but a comparably
poor prediction accuracy of R2

= 0.82. This fact is due to
a strong collinearity with the input features ρFlange,N0 and
ρFlange,N2 . In contrast, the feature G12,Biax45,N0 has a low
sensitivity Smax,i = 0.1 but an excellent prediction accuracy
of R2

= 1.0. The reason for this is that this feature does not
show any collinearity to other features. Although the Smax,i is
low, according to the first-order Sobol’ index matrix it has at
three nodesNFE the second- and third-highest contribution of
all input features for a particular mode shape and DOF, reach-
ing a magnitude of 50 %–75 % of the maximum value for
that DOF. That shows the powerful capability of the cINN to
learn the mapping of an input feature to only very few output
features out of the complete response data. Table 4 completes
this list of examples with the most striking discrepancies of
the sensitivity index and prediction accuracy of the input fea-
tures. Hence, the sensitivity analysis is a good indication to
detect a significant parameter subspace for the model updat-
ing, though high sensitivities do not directly promise highly
accurate inverse prediction.

4.2 Intrinsic model ambiguities

Ambiguities can originate from different sources, such as lit-
tle significant responses or modeling issues (Ardizzone et al.,
2019a). Noever-Castelos et al. (2021) revealed some intrin-
sic model ambiguities of counteracting density values of the
Biax90◦ and Triax layer in the blade cross-section. This was
also handled by the cINN in this study, although it was only
checked for the two spline nodesN3 andN4 as these coincide
in the feature selection. The results are depicted in Fig. 10,
showing the standardized mean posterior prediction for the
5000 test samples related to their ground truth and the lin-
ear regression as well as the corresponding slope m in the
label. While the mean posterior predictions at node N3 were
detected rather accurately (see Fig. 8), i.e., representing a cir-
cular area in Fig. 10, the values of node N4 spread more and
correlate to the plotted regression line.

In addition to the density, another ambiguity was detected
in Young’s modulus E11 of both these materials, shown in
Fig. 11 for the nodes N0−3. Here, the correlation of the
mean posterior predictions is reasonably well described by
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Figure 8. The two graphs show the standardized posterior prediction for all updated input features related to the target value with 1σ standard
deviation as error; thus the mean value marks the distance to the target value, i.e., ground truth.

Table 4. Most striking discrepancies of the sensitivity and prediction accuracy of input features.

Feature Smax,i R2 XCorrmin Explanation

E11,UD,N0 0.110 1.000 −0.663 Low Smax,i ; however, for two sensors it has the third-highest contribution in a
DOF during one mode shape. The values reach a magnitude of 66 % and 50 %
of the maximum value in their corresponding DOF.

G12,Biax45,N0 0.100 1.000 −0.179 Low Smax,i ; however, for three sensors it has the second- and third-highest con-
tribution in a DOF during one mode shape. The values reach a magnitude of
75 %, 55 %, and 53 % of the maximum value in their corresponding DOF.

G12,Biax45,N3 0.149 1.000 −0.383 Low Smax,i ; however, for one sensor it has the third-highest contribution in a
DOF during one mode shape. The value reaches a magnitude of 83 % of the
maximum value in its corresponding DOF.

ρTriax,N1 0.292 0.790 −0.537 Mid-Smax,i ; mixed collinearity with ρBiax90,N1 and ρBalsa,N1

ρTriax,N2 0.211 0.770 −0.678 Mid-Smax,i ; mixed collinearity with ρBiax90,N2 and ρBalsa,N2

ρFlange,N0 0.214 0.660 −0.952 Mid-Smax,i ; strong collinearity with ρFlange,N1

ρFlange,N1 0.620 0.820 −0.952 High Smax,i ; strong collinearity with ρFlange,N0 and ρFlange,N2

G12,Flange,N1 0.332 0.720 −0.857 Mid-Smax,i ; strong collinearity with G12,Flange,N1

G12,Flange,N2 0.276 0.690 −0.876 Mid-Smax,i ; strong collinearity with G12,Flange,N0 and G12,Flange,N2
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Figure 9. Standardized mean of posterior prediction x of the updated inputs over the corresponding target standardized value for the 5000 test
samples. The coefficient of determination and a corresponding linear regression line are shown. The corresponding parameter description of
the features can be found in Table 2.

the calculated regression lines. Finally, the last correlation
was found for the shear modulus G12,N3 between the same
materials (Fig. 12).

All ambiguities rely on the same fact that the Biax90◦

and Triax layers appear subsequently in the stacking
of the sandwich panels of the blade shell. The stacking

is schematically illustrated in Fig. 13 with a detailed
view of the shell, showing the stacking in an exploded
view. Together, these layers build the symmetric in-
ner and outer face sheets of the shell, with a layer
thickness of tBiax90 = 0.651 mm and tTriax = 0.922 mm,
the same density ρBiax90 = ρTriax = 1875 kg m−3
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Figure 10. Interaction of density ρBiax90 and ρTriax describing the
intrinsic model ambiguities. The depicted values correspond to the
standardized mean posterior prediction for the 5000 test samples.

Figure 11. Interaction of stiffness E11,Biax90 and E11,Triax de-
scribing the intrinsic model ambiguities. The depicted values cor-
respond to the standardized mean posterior prediction for the
5000 test samples.

Young’s modulus E11,Biax90 = 26 430 N mm−2, and
E11,Triax = 29873 N mm−2, and shear modulus
G12,Biax90 = 3464 N mm−2 and G12,Triax = 6918 N mm−2.

The contributions of the properties to the model behavior
must be analyzed for it to be possible to understand these
ambiguities further. As described in Sect. 2, a finite element
beam model is composed of beam elements containing cross-
sectional properties (Blasques and Stolpe, 2012). These ba-
sically consist of mass and stiffness terms, which can be
directly linked to ρ and E11 or G12, respectively (Hodges,
2006). The upcoming deductions follow classical mechanics

Figure 12. Interaction of shear stiffness G12,Biax90 and
G12,Triax describing the intrinsic model ambiguities. The depicted
values correspond to the standardized mean posterior prediction for
the 5000 test samples.

Figure 13. Schematic blade cross-sectional view at a radial position
of r = 12 m with a detailed explosion drawing of the shell.

theories found for example in Gross et al. (2012). First, con-
sidering the mass contribution, we stick with the simplified
example of the center of gravity:

xs =
1
mtot

∫
x2dm=

1
mtot

∑
x2
jmj , (10)

where xj represents the center of gravity of each component
and mi the corresponding mass. Due to the very thin thick-
ness of both layers and the overall cross-sectional dimension
being about 103 greater for both materials, it can be assumed
that xj = xs. And by expecting that the cINN correctly pre-
dicts the total mass mtot, Eq. (10) yields

xs =
1
mtot
· xs

∑
mj , (11)

mtot =
∑

mj = kBiax90 · tBiax90 · ρBiax90+ kTriax

· tTriax · ρTriax . (12)

And this obviously leads to the summation of all individ-
ual masses to the total mass, where k represents the number
of layers. This of course holds for higher-order moments of
mass due to the given proximity of both layers. Thus, a ratio
between both materials can be expressed:

kBiax90 · tBiax90 · ρBiax90 : kTriax · tTriax · ρTriax . (13)
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Figure 14. Layup of the sandwich laminate face sheets of the blade
shell, consisting of Triax and Biax90◦. The inner and outer face
sheets are symmetric.

A similar behavior is also found for the stiffness. This is ex-
plained in a simplified example for the flexural rigidity of a
beam in Eq. (14), which extends with the Steiner theorem to
Eq. (15).

EIx =
∑

Ej Ix,j (14)

=

∑
Ej

(
Ix,j + x

2
s ·Aj

)
(15)

Assuming the layers have a rectangular shape, the area mo-
ment of inertia is Ix,j = w·t3

12 , though the widthw of the layer
is large and the thickness t is 10−3 smaller, and thus this term
vanishes. With that, Eq. (15) reduces to Eq. (16). As stated
before, xs can be assumed to be constant, and the same holds
for the width wi as in the cross-sectional direction both ma-
terial layers cover the complete circumference of the blade.
This results in the proportionality in Eq. (17):

EIx =
∑

Ej

(
x2

s ·Aj

)
=

∑
Ej

(
x2

s · kj · tj ·wj

)
, (16)

EIx ∝
∑

Ej · kj · tj . (17)

Similarly to the total mass mtot, we expect the cINN to pre-
dict the global EIx accurately, and, consequently, we can es-
tablish the following ratio for the stiffness:

kBiax90 · tBiax90 ·EBiax90 : kTriax · tTriax ·ETriax . (18)

Analog derivations can be made for the shear modulus, which
ends up in the following ratio:

kBiax90 · tBiax90 ·GBiax90 : kTriax · tTriax ·GTriax . (19)

Figure 14 shows the number of each layer for the respective
material along the blade, which corresponds to both the inner
and outer face sheet of the shell. The corresponding spline
nodes positions are also depicted. Table 5 shows the ratios
according to Eqs. (13), (18), and (19) of the different possible
stacking options in Fig. 14.

Looking back to the identified ambiguities in Fig. 10 of
the density at node N4, the linear regression shows a slope
of m=−0.355. Assuming each spline node contributes to

Table 5. Ratio between Biax90◦ and Triax layers for density and
stiffness contribution, considering different layer constellations.

kBiax90 1 1 1 2 2 2
kTriax 1 2 3 1 2 3

kBiax90·ρBiax90·tBiax90
kTriax·ρTriax·tTriax

0.706
1

0.353
1

0.235
1

1.412
1

0.706
1

0.471
1

kBiax90·EBiax90·tBiax90
kTriax·ETriax·tTriax

0.625
1

0.312
1

0.208
1

1.249
1

0.625
1

0.416
1

kBiax90·GBiax90·tBiax90
kTriax·GTriax·tTriax

0.354
1

0.177
1

0.118
1

0.707
1

0.354
1

0.236
1

the variance of half of the space to the left and right of
it, the given slope agrees extremely well with the ratio of
kBiax90 = 1 and kTriax = 2. This corresponds to the stacking
shown near the node N4 in Fig. 14. Due to the poor linear re-
gression of node N3 in Fig. 10, the slope is not reliable; thus
no conclusion can be drawn.

However, the counteracting Young’s moduli in Fig. 11 can
be very accurately captured by the ratios for most spline
nodes. Starting with node N2 (Fig. 11, bottom left), which
is clearly affected by only one layer to the left and right of it
(see Fig. 14), the line slope m=−0.618 matches the value
in Table 5 (kBiax90 = 1; kTriax = 1) of 0.625. Node N0 has a
slope of m=−0.579, which agrees well with the value cor-
responding to kBiax90 = 2 and kTriax = 2 but tends towards
kBiax90 = 1 and kTriax = 2, which is also in the scope of this
node according to the layup in Fig. 14. Similar behavior is
found for node N1. Node N3 does not fully agree with this
argumentation, though the point scatters less and the regres-
sion line might not be accurate enough. The same holds for
the shear modulus in Fig. 12.

As assumed in the derivation of the ratios, we can state
that the cINN should correctly predict the total mass and the
stiffness contributions in a global manner but suffers from
an intrinsic model ambiguity affected by the counteracting
densities ρ, Young’s moduli E11, and shear moduli G12 of
the neighboring materials Biax90◦ and Triax. However, it of-
fers posterior predictions for these features but with a wide
distribution expressing the uncertainty in the cINN based on
the given ambiguity. Merging both materials to a face sheet
material following laminate theory would avoid these ambi-
guities and improve the prediction qualities for the overall
laminate. It is assumed that, based on the relatively low layer
thickness, the infusion and therefore the fiber volume frac-
tion of both layers are very similar, so this approach should
be valid.

4.3 Model robustness

So far the analysis of this feasibility study was conducted
on the exact test sample data; i.e., for a given input sam-
ple the corresponding exact output sample is generated with
the tool chain MoCA+BECAS+ANSYS. In future stud-
ies, this presented method should be applied to real measured
data of a blade, and these normally suffer from measurement
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uncertainties. It is thus important to analyze the model ro-
bustness with respect to a measurement error in the output
features. Therefore, an error of 5 % as normally distributed
random noise is applied to the clean output response of each
sample, which is then used as a condition to infer the poste-
rior prediction of the input features. The results are shown in
Fig. A1 in the Appendix, comparing the noisy (orange) and
the clean (blue) mean posterior predictions p(x|y) against
their corresponding targets for all 5000 test samples. The
graphs show some features that are sensitive to noise, such
as E11,Flange,N0−3 and G12,Flange,N3 . As visually confirmed
in Fig. A1, the other features do not show a wider spread
(orange) than the original values (blue) and therefore do not
suffer from any accuracy loss. Additionally, tests were per-
formed resuming the training of the cINN with noisy con-
ditions in order to improve the prediction quality, though no
benefit was identified.

4.4 Resimulation analysis

A resimulation analysis aims to utilize the posterior predic-
tions of the cINN based on the original response to resimu-
late/recalculate the response with the physical model in or-
der to compare it to the original response used to perform
the prediction. For all samples, the correct input features and
their corresponding response features are known, which we
will be referring to as targets. The target response is used as
a condition for the cINN to infer the posterior prediction of
the selected input features. From these inferred input features
we can create new input splines for each input, as depicted
exemplarily in Fig. 15. However, the prediction is not a dis-
crete value but a Gaussian distribution as we have seen before
in Sect. 4.1. Additionally, there are nodes that the sensitivity
analysis excluded from the updating process; these may take
every value within their variation range as they were sampled
uniformly. Hence, for each input feature we obtain a range of
possible splines as Fig. 15 illustrates. Here, the orange spline
represents the target variance of the input parameter and the
dark blue area represents the expected value, i.e., the mean
prediction from the updated nodes. In the case of the first
spline for ρUD, nodes N0 and N4 were excluded from the up-
dating process and can thus take any value in the range of
±10 % as we do not have any prediction for them. As such
the blue area covers all possible splines a user would take
as the result from the model updating process. However, the
purpose of this first evaluation of the resimulation analysis is
to examine if sampling splines from the given distributions
will all lead to appropriate results. Therefore, the 1σ uncer-
tainty displayed in light blue shows the standard deviation
of the predicted nodes. In this first analysis, we sample from
a uniform distribution for the non-updated nodes (dark blue
range) and from a normal distribution for the updated nodes
(light blue) to create a spline. This will be done 1000 times
for the same given target response of the selected single test
sample. Subsequently, these 1000 sets of input splines are

Figure 15. Exemplary inferred spline prediction range for ρUD,
E11,Biax90, and E11,Triax. The graphs depict the target spline in
orange, the mean prediction in dark blue, and the 1σ uncertainty in
light blue, for the updated spline nodes.

then used to create the model and calculate its modal re-
sponse. For the sake of completeness, Table A2 gathers the
identified mode shapes of both configurations. The resultant
mode shapes of the free–free and the clamped configurations
are then compared to the target response with the help of the
modal assurance criterion (MAC) (Allemang, 2003).

MACij =

∣∣8i ·8j ∣∣2
|8i ·8i | ·

∥∥8j ·8j ∣∣ (20)

The MAC is the scalar product of two normalized vectors,
each representing all the model’s degrees of freedom of a
particular mode shape. It is basically an orthogonality check:
equal mode shapes reach a value of MAC= 1, and a value
of MAC> 0.8 is already assumed to show good coherence
(Pastor et al., 2012). For a multiple number of modes, a MAC
matrix summarizes all MAC values of all mode shapes com-
pared against each other.

In our use case, the MAC matrix is computed individually
for all responses of the previously generated 1000 samples
against the target response. For the free–free configuration,
Fig. 16 illustrates the mean value of the MAC matrix over
all samples in the top graph. The corresponding standard de-
viation is depicted below. The main diagonal ideally takes
values of MACij = 1, as the same mode shape of the sample
and the target is compared. Additionally, the matrix should
be symmetric, as the comparison of MACij =MACji rep-
resents the same two mode shapes. Figure 16 confirms this
ideal symmetric matrix structure for the resimulated sam-
ples, with mean values MAC> 0.9975 in the diagonal and
extremely low standard deviations of σMAC < 0.003. For the
clamped configuration, the values on the diagonal are also
strikingly close to 1 (MAC> 0.9960; σMAC < 0.005) and the
overall matrix appears symmetric. In this way, sampling from
the distribution predicted by the cINN for each selected input
feature and arbitrarily choosing a value for the non-updated
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Figure 16. Mean values (a) and standard deviations (b) of the MAC
matrix for the free–free modal configuration based on 1000 spline
samples inferred for one target response.

values yield an exact coherence of target and computed mode
shapes.

After having analyzed a single target sample, the resim-
ulation is expanded to more samples to show the cINN’s
general performance. Therefore, posterior predictions for the
5000 test samples of the test set are inferred with the cINN.
Contrary to the resimulation case before, only one input is
generated for each of the samples by choosing the mean
value of the prediction and, in the case of excluded variables,
a node value of zero (i.e., no variation). That represents a typ-
ical choice a user would make, based on predicted posterior
distributions. Figure 17 depicts the mean (horizontal marker)
and max and min values (bar) of the diagonal entries of the
MAC matrices, which are computed for all samples and both
configurations, to compare the resimulated model and its re-
spective target response. Again, all mean values are close
to 1 (90 % with a MAC≥ 0.995), so an overall excellent up-
dating performance can be stated. Single predictions lead to
worse results, as depicted by the minimum value (4.3 % of all
have a MAC≤ 0.98), especially for the higher-order modes,
though the MAC value of less than 0.8 is only obtained for
the 10th eigenmode of the free–free configuration.

The generally good performance is also confirmed by
the predicted corresponding natural frequencies. Figure 18
shows the relative error from the resimulated frequencies to
the target frequencies of each mode for both configurations,
giving the mean and standard deviation over all resimulated
samples. The range of the mean error is |ef|< 0.25 % and the
standard deviation σef < 1.50 %.

Figure 17. Mean, maximum, and minimum diagonal entries of the
MAC matrices computed for 1000 target responses.

Figure 18. Mean and standard deviation of the natural frequency
error ef computed for 1000 target responses.

The results of the presented resimulation analysis show the
following:

1. The counteracting intrinsic model ambiguities dis-
cussed in Sect. 4.2 cancel each other out; i.e., the over-
all shell laminate properties are correctly predicted, al-
though the individual stiffness or density of the layers
(Biax90 and Triax) is not predicted accurately. So the
cINN still correctly captures the global model behavior
with respect to mass and stiffness distribution.

2. As expected, the insensitive and thereby excluded input
parameters really do not have an impact on the results
and can be chosen arbitrarily (see Fig. 15).

3. The overall cINN updating performance is strikingly
good, with on average 90 % of the mode shapes of the
resimulated samples showing a MAC≥ 0.995. The fre-
quencies were recovered with a mean error of |ef|<

0.25 %.

4.5 Replacing sensitivity analysis

Similarly to other model updating studies such as Luczak
et al. (2014), this work relies on a sensitivity study to reduce
the parameter space of the updating problem to significant
parameters. This so-called feature selection is performed in
this particular investigation with the aforementioned Sobol’
method. A quasi-random sampling with low-discrepancy se-
quences (Dick and Pillichshammer, 2010) is applied to com-
pute the Sobol’ indices, which is a computationally efficient
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and space-efficient sampling method for the sensitivity anal-
ysis. However, the sampling set to train the cINN in general
has to span a real random sampling space, where all features
are varied independently but simultaneously. That means, de-
spite the 79 360 samples for the sensitivity analysis, an addi-
tional set of 30 000 samples has to be generated for training
purposes and a second variably sized set for validation and
testing of the cINN. In total, this results in approximately
115 000 samples and thus model evaluations. This is crucial
considering that the model evaluation in general is the com-
putational bottleneck. Although a classical optimization al-
gorithm would also need a feature selection to reduce the up-
dating problem complexity on top of its usual model evalua-
tion number for the optimization process, the overhead of the
sensitivity cuts down the computational benefit of the cINN.
A single model evaluation from creating the input parameter
set to importing the modal response of the model took on av-
erage approx. 80 s on a single-core device. We generated the
115 000 samples on a 40-core computing cluster in slightly
less than 2.66 d. In contrast, the cINN training for 150 epochs
took only 0.67 h on an NVIDIA Tesla P100 GPU.

To reduce the computational sampling time, the idea is to
apply the cINN to the full input parameter set x to identify
relevant parameters. The cINN implicitly detects irrelevant
features by predicting an uncertain posterior distribution, i.e.,
high standard deviation, due to missing information for the
inference in the response. However, Sect. 4 and 4.2 showed
that intrinsic model ambiguities lead to wider distributions,
without being inaccurate in the global model behavior. This
means the respective input parameters should not be rejected
due only to a widely distributed posterior prediction. There-
fore, we combine three metrics to perform the feature selec-
tion on the posterior predictions of the full input parameter
set with respect to standardized values:

1. root mean square error (RMSE) of the predicted poste-
rior’s mean and target value,

2. standard deviation of the predicted posterior distribu-
tion,

3. cross-correlation matrix of the predicted posterior’s
mean values.

The RMSE should reject features that might have a narrow
predicted posterior distribution but do not match the target
value. This is more a security or backup metric. The stan-
dard deviation is a metric for the confidence of the cINN and
should reject features that are not significantly included in
the information of the modal beam response. And finally, a
cross-correlation matrix should reveal intrinsic model ambi-
guities from feature interactions, in order to keep the respec-
tive features, though the other two metrics would reject them.
The cross-correlation matrix of this inverse problem is de-
picted in Fig. 19. The inputs feat40−54 and feat60−74 in the
matrix correspond to ρBiax90,N0−N4 , E11,Biax90,N0−N4 , and

Figure 19. Cross-correlation of all input features based on mean
posterior prediction of the 5000 test samples.

G12,Biax90,N0−N4 and to ρTriax,N0−N4 , E11,Triax,N0−N4 , and
G12,Triax,N0−N4 , respectively, which show the high negative
correlation of the interacting features discussed in Sect. 4.2.
This matrix also helps to detect other relevant correlations.
Especially nearby nodes of the same feature (e.g., feat85−87,
E11,Flange,N0−2 ) can counteract each other, as these have to
predict in combination the spline behavior in between them;
i.e., if one increases, the other has to diminish. Similar be-
havior was already detected in Bruns et al. (2019).

Similarly to the Sobol’ threshold Sij,thld = 0.1, thresholds
for the given metrics can be chosen arbitrarily again and rely
on experience. In this case we have chosen RMSEthld = 0.5,
σthld = 0.5, and XCorrthld,max =−0.75. Table A1 lists all
features selected by the sensitivity analysis and the cINN
in comparison. The sensitivity analysis selects 49 features,
while the cINN includes 54 features. Most of the features
agree for both selection methods, except those included in
Table 6. The cINN, for example, includes the input features
E11,UD,N4 andG12,Balsa,N1 , which can be very well predicted
by the cINN but which are not detected by the sensitivity
analysis to be significant for the response variations. Ad-
ditionally, it detects a few highly negative correlating fea-
tures – E11,Biax90,N4 andG12,Biax90,N0−2,4 – which follow the
similarly ambiguous behavior shown in Sect. 4.2, counter-
acting the respective Triax properties. However, the features
ρTriax,N1,2 and ρFoam,N1 , detected by the sensitivity analysis,
were excluded by the cINN, though at least the first two show
a significant Smax > 0.200.

Finally, this procedure is based on 30 000 samples and
the same cINN architecture and hyperparameters. Figure A2
shows the correlation results for all features included in the
sensitivity analysis, where the orange scatter represents the
prediction with the model trained on the full input set and
the blue scatter the prediction by the former model based
on the feature selection from the sensitivity analysis. Only
very few features show a significant loss in accuracy com-
pared to the original model and most likely for the feature
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Table 6. Feature selection discrepancies between both methods –
sensitivity analysis (SA) and the cINN-based approach – and their
corresponding metrics. All values depicted in bold meet their corre-
sponding threshold and are thus selected by the respective approach.

Feature SA Smax SVD cINN RMSE σ XCorrmin

E11,UD,N4 0.006 X 0.340 0.354 −0.4407
E11,Biax90,N4 0.051 X 0.913 0.881 –0.9524
G12,Biax90,N0 0.040 X 0.862 0.833 –0.8341
G12,Biax90,N1 0.062 X 0.454 0.374 –0.8889
G12,Biax90,N2 0.078 X 0.941 0.920 –0.986
G12,Biax90,N4 0.009 X 1.014 0.991 –0.9485
ρTriax,N1 X 0.292 X 0.648 0.531 −0.5367
ρTriax,N2 X 0.211 X 0.652 0.604 −0.6785
GBalsa,N1 0.017 X 0.285 0.230 −0.2985
ρFoam,N2 X 0.163 X 0.623 0.538 −0.4732
ρFoam,N3 0.072 X 0.478 0.483 −0.5273

with a worse prediction quality. Thus, there is no need to
perform a second training process with a reduced data set
for the sensitivity-free procedure, though the selection of the
samples should still reveal the significant parameters of the
model. Relying on the same computing resources mentioned
above, the overall process in this particular case adds up to
a complete computation time of approximately 20 h, which
corresponds to a reduction of 69 %. It also reveals that the
cINN can handle a higher number of parameters while ex-
tracting the relevant information from the response to predict
the significant input features. On account of that, there is no
need for a pre-analyzing sensitivity study in future investiga-
tions. This gives cINNs a huge advantage over common ap-
proaches as discussed in the Introduction. They rely on a sen-
sitivity analysis to identify a significant subspace to reduce
the problem dimension. With 30 000 model evaluations for
a total of 49 updated features, the cINN is quite efficient. A
stochastic updating approach demanded 1200–12 000 evalu-
ations for a simple three-feature updating problem (Augustyn
et al., 2020; Marwala et al., 2016). Higher dimensional prob-
lems could explode in computational costs for common de-
terministic approaches, relying even more on an additional
preprocessed subspace selection (here, 79 000 model evalu-
ations). However, to the best of the authors knowledge, no
model updating was found in the literature for such a high
parameter space as presented in this work.

5 Conclusions

The current study aims to extend the feasibility study of
model updating with invertible neural networks presented
in Noever-Castelos et al. (2021) to a more complex and
application-oriented level in the form of a Timoshenko beam.
The model updating was performed on a global level. This
took into account five-noded splines for input feature repre-
sentation over the blade span of material density and stiff-
ness, as well as layup geometry. The blade response used
for the updating process is in the form of modal shapes and

frequencies. The outstanding updating results presented in
this study strengthen the conclusion in Noever-Castelos et al.
(2021) that invertible neural networks are highly capable of
efficiently dealing with wind turbine blade model updating
for the given global fidelity level.

In comparison with Noever-Castelos et al. (2021), this
investigation increased the model complexity from a sin-
gle cross-sectional representation to a finite element Timo-
shenko beam model of the complete blade. The update pa-
rameter space was only slightly expanded for the materials to
cover the most relevant, independent elastic properties of or-
thotropic materials. These, however, are varied over the com-
plete blade length with three- to five-noded splines. More-
over, an established, global, variance-based sensitivity anal-
ysis with the Sobol’ method was performed to determine the
relevant update parameters. A total of 49 input parameters
were updated based on modal responses of the blade in a
free–free boundary configuration and a root-clamped config-
uration. The applied cINN approximately doubled its depth,
and an additional feed-forward network was implemented to
preprocess the conditions of the cINN in order to improve the
network’s flexibility and accuracy.

The result analysis of the predicted parameters shows
strikingly high coherence with the target values with
R2 scores over 0.9 for 75 % of the updated parameters. The
very high updating certainty of the network is reflected in the
narrow predicted posterior distributions of the updated pa-
rameters. Moreover, this study revealed more intrinsic model
ambiguities of material properties (E11, G12, ρ) of the lam-
inate face sheets Biax90◦ and Triax due to their proximity
in the layup. The cINN learns and understands the intrin-
sic collinearities of the physical model, which result in am-
biguous inverse paths. However, the cINN is still not able to
distinguish from which parameter the individual contribution
comes. Nevertheless, in contrast to a deterministic approach,
the user can see how uncertain the cINN is about the predic-
tion due to its wide spreading of affected features’ predic-
tion. In future contributions this can be handled by updating
a joint density or stiffness variation, instead of individual fea-
tures. However, the resimulation analysis revealed the modal
response of the updated models matches the target results ex-
ceptionally well: 90 % of the mode shapes of the resimulated
samples show a MAC≥ 0.995 and a mean error in the nat-
ural frequencies of |ef|< 0.25% over 1000 randomly cho-
sen test samples. Finally, this study presents a method for
avoiding the computationally expensive sensitivity analysis
by fully exploiting the opportunities of the cINN. For this
reason, the full parameter set of Dtot = 153 was used for the
update process. Thanks to the underlying probabilistic ap-
proach of the cINN, a similar set of significant input features
was detected from the complete parameter space, based on
the predicted posterior distributions and a cross-correlation
between the input feature to identify the ambiguities. Thus,
the necessary sample number for the complete process was
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reduced to 30 000 samples and the computational time by
69 % while maintaining similar outstanding updating results.

Referring back to the three major problems of the ap-
proaches studied in the Introduction, the cINN tackles these
in the following ways:

1. It has a high computational efficiency in relation to the
model complexity, i.e., updating parameter space, and
even more by evading computationally expensive sensi-
tivity analysis. The cINN only demanded 30 000 model
evaluations (≈ 20 h) for a total of 49 updated features
within an original space of 153 features.

2. It makes an inherent probabilistic evaluation, as it fol-
lows Bayes’ theorem and is trained to minimize the neg-
ative log likelihood of the mapping between posterior
distribution and latent distribution.

3. A surrogate of the inverted model is represented. By
that, the cINN can be evaluated for any given response
(in the model boundaries) at practically no additional
cost after training. Any other approach is solved only
for one particular model response and has to be repeated
in the case of a different set of responses.

In conclusion, the feasibility study was highly successfully
extended to a full-blade beam model, though with a still lim-
ited parameter set. The cINN proved to be extremely capable
of performing efficient model updating with a larger param-
eter space. The physical model complexity in the form of a
Timoshenko finite element beam is already at the state-of-
the-art level applied in industry. However, to ensure that the
cINN learns the complete inverted physical model, it is im-
portant that all possibly relevant parameters have to be varied
so that the cINN is trained for all circumstances of varia-
tions for the model updating. Therefore, ongoing and future
investigations should bring this method to a real life appli-
cation, where the parameter space will span more relevant
aspects of blade manufacturing deviations, such as adhesive
joints. Moreover, the combined laminate properties of the
face sheets might be able to prevent the model ambiguities
and even improve the already good prediction accuracy. One
possible application scenario could be a final quality control
after manufacturing if the response generation can be auto-
mated. The benefit would be to find rough manufacturing de-
viations and even provide individually updated models for
each blade, which could for example enhance turbine con-
trols.

Appendix A: Tables and figures

Table A1. Comparison of the feature selection performed by the
sensitivity analysis (SA) and directly with the cINN applied to the
full input parameter set.

Feature Smax,i SVD cINN Feature Smax,i SVD cINN

ρUD,N0 X X X E11,Triax,N1 X X X
ρUD,N2 X X X E11,Triax,N2 X X X
ρUD,N3 X X X E11,Triax,N3 X X X
E11,UD,N0 X X X E11,Triax,N4 X X X
E11,UD,N1 X X X G12,Triax,N0 X X X
E11,UD,N2 X X X G12,Triax,N1 X X X
E11,UD,N3 X X X G12,Triax,N2 X X X
E11,UD,N4 X G12,Triax,N3 X X X
G12,Biax45,N0 X X G12,Triax,N4 X X X
G12,Biax45,N1 X X X ρFlange,N0 X X
G12,Biax45,N2 X X X ρFlange,N1 X X X
G12,Biax45,N3 X X X E11,Flange,N0 X X
ρBiax90,N3 X X X E11,Flange,N1 X X X
ρBiax90,N4 X X E11,Flange,N2 X X X
E11,Biax90,N0 X X X E11,Flange,N3 X X
E11,Biax90,N1 X X G12,Flange,N1 X X X
E11,Biax90,N2 X X X G12,Flange,N2 X X X
E11,Biax90,N3 X X X G12,Flange,N3 X X
E11,Biax90,N4 X ρBalsa,N1 X X X
G12,Biax90,N0 X GBalsa,N1 X
G12,Biax90,N1 X ρFoam,N2 X X
G12,Biax90,N2 X ρFoam,N3 X
G12,Biax90,N3 X X X PSS,Mid,spar cap,N0 X X X
G12,Biax90,N4 X PSS,Mid,spar cap,N1 X X X
ρTriax,N1 X X PSS,Mid,spar cap,N2 X X X
ρTriax,N2 X X PPS,Mid,spar cap,N0 X X X
ρTriax,N3 X X X PPS,Mid,spar cap,N1 X X X
ρTriax,N4 X X X PPS,Mid,spar cap,N2 X X X
E11,Triax,N0 X X X

Table A2. Identified mode shapes of the first 10 modes (excluding
rigid body motion) of the free–free and the clamped modal config-
uration.

Mode no. Free–free Clamped

1 1. Flap 1. Flap
2 1. Edge 1. Edge
3 2. Flap 2. Flap
4 1. Torsion 2. Edge
5 3. Flap 3. Flap
6 2. Edge 1. Torsion
7 4. Flap 4. Flap
8 2. Torsion 2. Torsion
9 5. Flap 3. Torsion
10 3. Edge 5. Flap
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Figure A1. Standardized mean of posterior prediction x of the updated inputs over the corresponding target standardized value for the
5000 test samples. The original samples predicted with clean conditions are in blue, compared to samples with noisy flawed conditions (5 %
random noise) in orange. The noisy conditions are intended to simulate measurement inaccuracies of the modal beam response.
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Figure A2. Standardized mean of posterior prediction x of the inputs selected by the sensitivity analysis, over the corresponding target
standardized values for the 5000 test samples. The original samples predicted with the reduced input set according to the sensitivity analysis
selection are depicted in blue. They are compared with the inputs predicted by the cINN trained on the full input set (in orange).
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5 Model updating benchmark of invert-
ible neural networks versus optimiza-

tion algorithms

Model updating with cINN has proven to be efficient and accurate in the previous Chapter 4. In
this chapter a benchmarking study is presented that puts the cINN model updating approach
into the context of commonly used optimizaiton based approaches and compares their efficiency
and accuracy.
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The previous chapter approved with excellent results the efficient model updating of complex
beam models of wind turbine blades via cINN. The state-of-the-art algorithms for model updating
rely on optimization approaches (see section 1.2.2). In order to position the presented model
updating method in the state of the art, this chapter will cover a benchmarking of cINN against
optimization based model updating approaches. This benchmarking will not examine the full
spectrum of optimization approaches, optimization tuning, or model updating techniques, but
intends to reasonably position the cINN based model updating in this thematic field and to reveal
the potential benefits of it.

5.1 Benchmarking basis

Following the previous chapter, this benchmark is based on the beam model and its modal response
as described in section P3-2.2. In order to compare the computational efficiency and prediction
accuracy of the selected approaches, the benchmark makes use of the following metrics for the
comparison:

• Number of model evaluations neval

• Time consumption on a single core device with GPU-support, when applying a surrogate model
tsurrogate and interpolated to the real physical model treal model

• Root-Mean-Square-Error (RMSE) of prediction to true value of a single sample ex

• Correlation for multiple updated samples and corresponding true values

• MAC values and natural frequency errors ef of re-simulation analysis

Section P3-4.5 showed that the cINN is capable of dealing with the complete input parameter
space without loosing accuracy. Therefore, it does not depend on a prior sub-space selection of the
input parameters. However, the optimization based approaches typically demand a prior sub-space
selection in order to reduce the model complexity in favor of computational time. Thus the bench-
mark of the model updating is performed with the sub-space selection as shown in Table P3-2 in
Section P3-2.3. Additionally, the boundaries for the variation of each parameter is set according to
Table P3-1.

As a single model evaluation of the complete tool chain MoCA - Ansys requires approx. 80 s on
a single-core device, this benchmarking study makes use of a second approach to reduce the model
complexity/computational costs: the tool chain MoCA - Ansys transforms the input parameter
space into the degrees of freedom of the modal responses of the blade. In the following this tool
chain will be referred to as physical model. Prior to the benchmarking, a surrogate model of the
physical model is derived and is used for the benchmarking process in exchange for the physical
model. By this, the accuracy of the model update against the physical model input parameters will
suffer. However, it does not influence the benchmarking process, as the sampling for the cINN and
the metrics computation will all refer to the surrogate model as baseline.

The benchmarking process will be performed on a GPU-cluster node with a NVIDIA Tesla P100
GPU. This allows for fast evaluation of ANNs. Moreover, no further parallelization of the code was
applied.
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5.2 Surrogate model

Surrogate models are used to replace physical models with an adequate accuracy, while being highly
efficient with respect to computational costs for evaluating the model. Classic types of surrogate
models are, i.a., polynomial response surface models, kringing models, or artificial neural networks
(ANN). [73, 108] This particular application uses ANNs, as these in general are highly capable of
modeling complex relationships of multidimensional input and output.

fc-layer-in
in=49

out=1000

batch norm

act.: ReLU

fc-layer-out
in=1000

out=2060

Figure 5.1: Structure of the
surrogate model to replace the
physical model. It consists of
a fully connected (fc-layer) in-
put and output layer and in-
between a batch normalization
and ReLU-activation layer.

After a hyperparameter study, the architecture of the ANN
is fixed to a rather simple system as depicted in Figure 5.1. It
consists of an input (in: 49, out: 1,000 nodes) and an output
(in: 1,000, out: 2,060 nodes) fully connected layer. In-between, a
batch-normalization layer and a ReLU activation is applied. As the
physical model’s outputs are modal responses, this study applies a
loss function for the training process, which is based on the MAC
values and natural frequencies f similar to the fitness function
proposed by [40]. The modal loss is derived as follows:

eMAC = diag(MAC(dp,dt))− 1 (5.1)

e2mse,f =
1

nmodes

nmodes∑
i=1

(
1− fp,i

f t,i

)2

(5.2)

LModal =
1

2

√
eMAC · eTMAC

nmodes
+

1

2

√
e2mse,f (5.3)

In equation (5.1) the dp and dt describe the matrices containing
the predicted and target displacement vectors, respectively. For
these, the diagonal vector of the computed MAC matrix is extracted. The difference of the MAC
entries to the ideal value of 1 expresses the MAC-error eMAC. The mean squared error (mse) of the
natural frequencies e2mse,f , is computed by the sum of the squared relative error of the predicted
frequency as depicted in equation (5.2). The modal loss LModal (equation (5.3)) represents the mean
of the Root-Mean-Square-Error of both aforementioned errors.

The surrogate model is trained over 75 epochs with an AdaGrad optimizer, a batch size of 32
and a sample size of 20,000 samples, which are generated with the physical model. Figure 5.2 shows
the loss curves of the training and validation.
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Figure 5.2: Training and validation loss of the surrogate model trained over 75 epochs. The applied loss
LModal describes the modal coincidence of the model prediction and the target values.
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The training and validation quickly converge and show little discrepancies (i.e., LModal > 0)
between the surrogate model and the physical model. However, as stated before, the focus of this
study is the comparison of the model updating approaches, rather than the accuracy to the physical
model. Therefore, it is important to have a model, that behaves somehow comparable and with
a similar range of parameters, but at the same time makes it affordable to computed expensive
iterative algorithms. This surrogate model cuts down the computational time for one evaluation to
0.00025 s/eval on a NVIDIA Tesla P100 GPU. Compared to approx. 80 s/eval for the physical model
on a single Intel core i5 processor, this is a reduction by a factor of 320,000.

5.3 Training and checking the cINN

The cINN architecture for this Benchmark is fully taken from the cINN presented in Section P3-3,
due to the similarity of the surrogate model. However, it is newly trained with samples generated
by the surrogate model. The cINN will be trained with an AdaGrad optimizer to minimize the
negative log-likelihood loss LNLL over 75 epochs. The optimizer’s learning rate is set to 0.3, which
is reduced with a scheduler by 25% after each 10 epochs. In order to find the minimum number
of necessary training samples, the training was processed with a different training size, from 500
to 10,000 random samples picked from the surrogate model. The validation was always computed
with the same 3,000 samples. Figure 5.3 depicts the loss curves for training and validation with
increasing training sample numbers ntrain samp. It clearly shows that the cINN already sufficiently
generalizes with 2.000 samples, as the validation loss gets equal to the training loss. With increasing
number of samples the LNLL is driven down until it reaches more or less a convergence with a stable
loss at about 5,000 samples and LNLL = −93. Hence, the benchmarking reference will be set to the
cINN model with 5,000 training samples.
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Figure 5.3: Convergence of the training and validation loss for increasing number of training samples of the
cINN. The training was performed over 75 epochs minimizing the negative log-likelihood loss LNLL of the
cINN.

5.4 Optimization algorithms for the benchmark

During this benchmarking study, four optimization algorithms will be compared with the cINN.
These are heuristic methods, that can be applied to complex, non-linear black-box models and are
gradient-free optimization algorithms. For each of the heuristic categories presented in Section 1.2.2 —
swarm intelligence, evolutionary, physical/natural processes, direct search methods — one of the most
popular algorithms is picked: particle-swarm-optimization (PSO), genetic-algorithm (GA), simulated
annealing optimization (SimAn), and Nelder-Mead algorithm (NM). Without exhausting and
analyzing in full depth the hyper-parameter variation of each algorithm, the following configurations
were chosen for each optimization approach:
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• PSO: swarm-size: 1,000, max-iteration: 2,000, search-radius-scale: 1

• GA: no-generations: 1,000, chromosoms-per-pop: 100, mutation: 40%, parents-mating: 10%

• SimAn: max-iteration: 1,000, max-fun-eval: 200,000

• NM: max-fun-eval: 200,000

All algorithms are defined to stop if they reach a convergence limit of ∆LModal,lim = 1 e -7 to the
previous iteration, or generation in case of the GA.

5.5 Benchmarking with surrogate model

After defining the benchmarking basics and selecting the benchmarking candidates, the model
updating is performed in the first instance for one randomly chosen sample of input and output
set computed with the surrogate model. In contrast to the cINN, the aforementioned optimization
approaches yield a discrete input parameter prediction and do not give a probabilistic measure of
the obtained results. Therefore, it is of utmost importance to double check the given results with
repeated runs of the optimization. This creates a predicted distribution of each updated input
parameter for each heuristic optimization approach. Such a distribution shows the user the degree
of uncertainty in the given results. In this study the evaluation will be based on 100 runs of each
optimization approach in order to establish a statistically relevant outcome. However, this number
of repetitions is a subjective choice, therefore most of the specific benchmarking metrics will be
averaged to a single run. The cINN already includes a probabilist evaluation of the inverse model.
Therefore, the latent space sampling will be based on 100 random samples, to have a comparable
histogram.

In the second instance, the author conducts the updating for 200 different, randomly chosen
samples. This should reveal the generalization of the approaches to update the surrogate model in
full extend, and not one potentially beneficial sample. However, for each of this randomly chosen
sample only a single run is performed, as well as the cINN’s latent space is only sampled once.

The first overall comparison is the convergence curve of each approach. Figure 5.4 depicts the best
run of each algorithm, i.e., lowest final LModal and shows it’s convergence curve. The NM algorithm
(orange line) demonstrates a fast convergence and the lowest final loss of LModal = 6.9 e -5 after
neval = 22, 400 number of model evaluations. Also the PSO reaches relatively fast (neval = 30, 000)
a low loss level of LModal ≤ 15.0 e -5, but takes another 32,000 evaluations to slowly reach the
convergence limit and a final loss of LModal = 13.1 e -5. The other two approaches, GA and
SimAn, only achieve a loss of LModal = 71.0 e -5 after neval = 28, 000 and LModal = 62.3 e -5 after
neval = 96, 800, respectively. Hence, the GA has the worst results and SimAn needs the most
evaluations until convergence. One may argue, that the convergence limit ∆LModal,lim is not set
properly, as for example the PSO runs half of the neval only to reach a slight improvement in the
loss, while the other algorithms need the time to get out of their local optima (plateaus in the
convergence curve), such as the GA and especially the SimAn algorithm. Even the best approach,
the NM algorithm converges to a local minimum at about neval = 17, 000, before it explores a better
solution. A lower ∆LModal,lim would prevent the algorithms to have time to search for a better
optimum. And again, it has to be noted, this is only an excerpt of the best computed optimization
run for one randomly chosen sample.

The cINN curve does not represent the convergence against LModal, as it is trained against a
different loss, the LNLL. However, for the trained models with different training sample sizes as
referred to in Figure 5.3 in Section 5.3, the LModal is computed for the same randomly chosen sample,
as in case of the optimization algorithms. The cINN demonstrates an even faster convergence than
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Figure 5.4: Convergence of all optimization approaches and the cINN against the modal loss LModal. The
number of evaluations neval is increased until the ∆LModal,lim is reached. The depicted convergence curves
belong to the run with the best final fitness value.

the NM algorithm at a slightly higher loss of LModal = 15.0 e -5 with neval = ntrainsamp = 5, 000
training samples. With higher training sizes the LModal oscillates around this loss value.

Model updating of a single random sample

As described above, the first benchmarking scenario considers only one random sample, for which the
updating is performed with the discussed approaches, but with 100 repetitions, each until reaching
the maximum iteration or the convergence tolerance. Figure 5.5 shows the resulting average number
of model evaluations n̄eval from the 100 conducted optimization runs. The bars clearly show that
the SimAn algorithm, closely followed by the NM algorithm, need on average the least number of
evaluation with approximately n̄eval = 12, 500 and n̄eval15, 500 samples, respectively. The PSO took
the most number of samples on average with n̄eval = 62, 000 and the GA needed n̄eval = 39, 000. The
cINN, however, only required a training sample size of 5,000 samples, which more than halves the
amount of samples necessary for the SimAn.
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Figure 5.5: Average number of model evaluations n̄eval necessary for each model updating approach to
convergence. Additionally, the number of repetitions necessary for a reasonable probabilistic distribution is
denoted. The cINN does not need any repetitions.

The next considered metric for the benchmarking is the average time consumption of a single
optimization run, which is depicted in Figure 5.6. For the optimization approaches this is close to
an even split between surrogate model evaluation time and overhead time. This means it linearly
scales with the n̄eval from above. The overhead of the optimization approaches originate in picking
the current best solution of an iteration and preparing new parameter sets for evaluation during the
next iteration step. The even time split is not the case for the cINN, the evaluation, i.e., sampling
time, is scaled linearly to the number of sampels, though, the overhead is much higher, as the cINN
consists of the training process over several epochs.
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Figure 5.6: Average time t̄surrogate necessary for a run of each model updating approach until convergence
using the surrogate model. The bars are splitted into sampling time (depicted dark) and overhead time
(depicted light) for each approach. Additionally, the number of repetitions necessary for a reasonable
probabilistic distribution is denoted. The cINN does not need any repetitions.

However, the cINN is then finally finished and can be evaluated in the inverse path at nearly no
costs, whereas the optimization approaches need to be fully run several times (here 100 repetitions)
to establish a probabilistic parameter prediction as presented in Figure 5.7. In this figure the true
value is depicted as a dashed line. The x-values are this time normalized to the parameter boundaries
defined for the updating process and centered on the true values. Here, we see that only for a very
few parameters, such as E11,UD,N2, E11,UD,N3 or E11,Triax,N0, the optimization algorithms reach a
roughly significant peak near the true value, but for most others the distributions seem random. In
contrast, the cINN predicts the parameters very close to the true value and with high confidence
(narrow distribution).

As the optimization algorithms are all evaluated against the LModal, it can be expected that all
model results with the obtained input predictions show a good correlation with the target mode
shapes and frequencies. Table 5.1 shows exactly this, the mean and standard deviation of the
LModal is relatively small. However, the Root-Mean-Square-Error of the input predictions given in
equation 5.4 shows a significantly high mean value and standard deviation for all the optimization
approaches over the 100 runs.

ex =

√√√√ 1

n

nx∑
i=1

(
xt,i − xp,i

xb,i

)2

(5.4)

The error describes the RMSE of the difference between predicted input xp,i and target input
xt,i normalized to the boundaries xb,i. The high accuracy in the fitness function and the relatively
poor prediction accuracy with respect to the true values of the corresponding input, probably point
to multiple identified local optima, with a different constellation of input parameters, which however
lead to a similar mode shape and thus low LModal. The cINN in contrast has the big advantage that
it is trained against LNLL and learns conditional probabilities of the input given the raw output, i.e.,
mode shape displacements. This background knowledge of dependencies or conditions is reflected in
the good input predictions of the cINN.
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Table 5.1: Mean and standard deviation of model loss LModal and input prediction error ex for all approaches.

L̄Modal σLModal
ēx σex

cINN 0.00087 0.00040 0.0968 0.0101
PSO 0.00031 0.00010 0.7167 0.0809
GA 0.00101 0.00013 0.6650 0.0676
SimAn 0.00272 0.00088 0.7265 0.0730
NM 0.00025 0.00012 0.6894 0.0779
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Figure 5.7: Input predictions p(x|y) based on a model updating with the fitness LModal. The update was
repeated 100 times to see if a local or global maximum is reached. The output is normalized to the evaluation
boundaries of each parameter.
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Model updating of multiple random samples

Next the model updating will be applied to 200 random samples, but only performing the optimization
algorithm once per sample. The cINN is also only performed with one random sample in the latent
space to make it comparable, though a higher latent space sampling would not impact on the
computational costs in contrast to the optimization approaches.

In the first instance, Figure 5.8 shows the correlation of predicted values xp over true values
xt for each parameter and model updating approach as a point in the scatter plot. All values of
a parameter are again normalized to their corresponding defined boundaries for the optimization
process. An ideal solution would map all points onto a straight thin diagonal line with the slope
m = 1.

Figure 5.8: Correlation of input prediction xp and corresponding target input xt for all approaches and 200
random samples. All values are normalized to their respective optimization boundaries. Ideally all results
should coincide with a straight line with a slope of m = 1.
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The distributions reflect the previous result given in Table 5.1. The optimization algorithm results
spread a lot in their prediction compared to the target values, except for a few parameters, such as
E11,UD,N1−3 or G12,Triax,N1−3, for which the scatter is noticeably more bundled to the ideal solution.
Whereas the cINN results correlate exceptionally well, thus match great with the ideal solution. The
author refrains from computing coefficients of determination as the figures are obviously clear to
interpret.

Similar again to the results in Table 5.1, the MAC values show a nearly absolute agreement
of the target mode shapes to the resimulated mode shapes based on the prediction. For the first
10 mode shapes of the free and the clamped test configuration Figure 5.9 presents the minimum,
maximum and mean values of all 200 test samples. And for nearly all approaches, even the minimum
MAC values are all above MAC > 0.995. Except the SimAn algorithm shows lower values but still
all MAC ≥ 0.985, which would also be considered as a very good result. In general the cINN and
the PSO provides the best results, being almost always MAC = 1.
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Figure 5.9: Maximum, minimum and mean MAC value of each model shape of the re-simulated models
based on the predictions for the 200 random samples.

Similar results are also presented in Figure 5.10, which show the mean and 1-σ-range for the
natural frequency error ef,i = 1− fp,i

ft,i
for each mode i. Here the errors for all modes are relatively

low with the 1-σ-range limited to a maximum of ef = ±0.25%, except for the SimAn algorithm,
which reaches up to ef = ±0.7%. But in contrast to the results in Figure 5.9, the PSO and the
NM algorithm outperforms the cINN, showing nearly no error |ef | < 0.01%. This is a result from
the chosen fitness function, as the frequency errors contribute to half of the modal loss LModal (see
equation 5.3). On the other hand, the frequencies constitute only a small amount of the observed
response in the cINN training and thus have less importance compared to the contribution in the
modal loss of the optimization algorithms. In consequence, these algorithms tend to put a higher
effort in matching the correct frequency. This effect could be regulated by choosing a different
weighting of MAC-error and frequency error in equation 5.3.
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Figure 5.10: Mean and 1-σ-range for the natural frequencies of each model shape of the re-simulated models
based on the predictions for the 200 random samples.

5.6 Benchmarking adapted to physical model

After evaluating all the metrics on the basis of the surrogate model, this section gives a brief outlook
how much the updating computational costs would evolve in case of applying the physical model.
Under the assumption the surrogate model fully represents the physical model and it’s response,
the average sample number for a model run would be the same. Only the time for evaluating the
model would change from 0.00025 s/eval to approx. 80 s/eval. By scaling the computational time
consumption presented in Figure 5.6 for the evaluation time and leaving the overhead equal gives
the results depicted in Figure 5.11 (note: the unit is now hours). The overhead time consumption is
negligible compared to the necessary time for the model evaluation. Here, all optimization algorithms
surpass the cINN time by far. Even the fastest algorithm, the SimAn with t̄physical model = 277h,
takes more than twice as long as the cINN (t̄physical model = 111 h). Disregarding any additional run
to test against local optima.
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Figure 5.11: Average time t̄physical model necessary for a run of each model updating approach until
convergence, extrapolated for the physical model. Additionally, the number of repetitions necessary for a
reasonable probabilistic distribution is denoted. The cINN does not need any repetitions.
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5.7 Discussion

This benchmarking clearly proofs that for the proposed settings and scenarios the cINN outperforms
the chosen optimization approaches for model updating, with the highest accuracy and especially in
terms of reliability, while still being relatively fast. All optimization based approaches fail to find the
correct posterior input parameters. The posterior distributions of the parameters for one random
sample predicted by the optimization algorithms do not have a significant peek, in contrast to the
cINN, which shows a normally distributed and narrow posterior prediction around the true value
(see Figure 5.7). The same holds for updating multiple random samples (see Figure 5.8), where
the true value is only correctly predicted by the cINN. However, all approaches show good results
concerning the MAC-values and the natural frequency error. This leads to two different conclusions:

1. The LModal may not be the best fitness function, as it describes a very global blade behavior,
which averages the modal information and provokes a loss of information for a correct system
identification.

2. The model itself has significant intrinsic ambiguities of the modal response, which prevents an
optimization algorithm to correctly predict the posterior.

The cINN has the advantage that it is trained to learn the conditional probability of the input
given an observation or response according to the Bayes’ theorem. Additionally, these conditions
are given as the raw displacements of the modal shapes and no averaging or similar is performed on it.

But, not only the accuracy of the cINN is excellent, even the necessary model evaluations are
the least, less than half of the best algorithm on a single run. Although, the overhead time for the
cINN for training the model requires more computational time than a single run of any of the other
approaches, but these of course should be repeated in order to double check if a global or local
optimum is found. As soon as the computational time consumption is extrapolated to the evaluation
with the physical model, the overhead time becomes insignificant and the cINN outperforms the
other algorithms.

The absolute computational time for the real model of course can be easily reduced by paralleliza-
tion of the model evaluation, as this is the main cost driving part. Most of these algorithms typically
have implemented partly or full parallelization of the code. For the cINN a parallelization is straight
forward, as the training samples are generate prior to the training process itself. Additionally, the
author would like to note that the cINN has the same accuracy applied to the full parameter set
without a sub space selection in advance, as stated in Section P3-4.5. This may not necessarily be
true for the optimization approaches.
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6 Model updating of a 3D finite ele-
ment wind turbine blade model with

invertible neural networks

After successfully applying cINN based model updating on a finite element beam model, this
study transfers the approach to a more complex level of a hybrid 3D finite element model with
shell and solid elements. The cINN model updating is based on a real experimental setup and
will be subsequently applied to the measured experimental data, once it is validated on a generic
model. Finally, the model updating errors that arised with experimental data and their possible
root causes are discussed.

6.1 Setting up the model updating
problem . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Invertible neural network config-
uration . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Generic model updating of a 3D-
FEM blade model . . . . . . . . . . . . . . 108

6.4 Model updating based on modal
experimental data . . . . . . . . . . . . . . 113
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In this chapter the cINN model updating is applied to the full 3D finite element model as
described in section P1-3. First, Section 6.1 describes the model updating problem based on lessons
learned within chapter 2 and the experimental setup performed for the real blade. Subsequently,
Section 6.2 follows with the cINN architecture for this study. Then the model updating is conducted
and checked for the generic model in Section 6.3, after which the experimental data is applied to the
inverse model to infer the posterior prediction of the input parameters in Section 6.4. The results
are finally analyzed for their validity and discussed.

6.1 Setting up the model updating problem

Again, the SmartBlades2 20 m demonstration blade [179], in the following abbreviated by DemoBlade,
represents the physical model for the model updating. In particular the 3D finite element model
is used as described and validated in chapter 2. It is a hybrid linear shell and solid model, where
the shell elements represent the composite parts of the blade and the solid elements all volumetric
adhesive joints. The sensor positions were defined according to the real world experiments, to measure
the blade’s displacement along its span [88]. Figure 6.1 illustrates the blade finite element mesh and
the given sensor positions and measurement directions. In total 16 cross sections and additionally
the tip were equipped with sensors. In each cross section the flapwise motion displacement (violet
arrows) is measured at four positions of the blade’s suction side from leading edge to trailing edge and
the edgewise motion (green arrows) is captured at the leading edge sensors. The sensor distribution
is used in the experiment to measure the free-free vibrating mode shapes of the blade. These mode
shapes and the corresponding natural frequencies serve as response for the model updating procedure
and therefore will be replicated by the simulation. After setting up the tool chain to generate
the Model with MoCA and evaluate it with ANSYS, it is used to feed the physics-informed cINN
and generate representative training samples. This cINN will then be of use to update the input
parameters for the measured response for all three real blades.

Figure 6.1: Sensor distribution along the DemoBlade for the free-free modal experiment depicted with the
3D finite element model of the blade. Violet arrows represent the flapwise motion sensors and the green
arrows the edgewise motion sensors.

Following the conclusion in Section P3-5 of the feasibility study with the Timoshenko beam
model, the input parameter space was redesigned in order to avoid ambiguities/co-linearities. In this
study the material parameters are changed throughout the complete laminate, hence no ambiguous
results occur, e.g., from two interacting face laminates in terms of stiffness or density. In the light of
manufacturing processes, this also makes more sense, as the laminate is infused all together. This
definition first reduces the parameter space. By adding different layup sections crosswise in the blade
as depicted in Figure 6.2, the parameter setup accounts for material variations in the cross sectional
direction. This creates more flexibility for the cINN to distribute the densities and stiffnesses in
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order to match the real blade. These sections basically represent the leading panel, the trailing panel
and the spar cap for each shell side. In addition to this six different sections along the blade, the
position and width of the spar cap on each blade side can be varied individually and a specific mass
located at the lightning protection cable (m = 5kg

m ) can be adapted. Finally, Table 6.1 summarizes
the parameter space and boundaries linked to the aforementioned parameters in Figure 6.2. This
study analyzes the in-plane stiffnesses E11, E22, shear stiffness G12 and the density ρ for all materials
in each section. Again, the spanwise variation of each parameter is realized with an equidistant
5-noded-spline, except for the spar cap location and width where the last tip node of each spline
is set to 0 due to geometric issues arising from the small scales at the tip. During sampling all
these parameters will by independently and randomly picked from a uniform distribution within the
respective boundaries.

SS,TE
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PS,LE

AddMass

SS,SC

SCw,SS

PS,SC

SCloc,SS

SCw,PS
SCloc,PS

Figure 6.2: Parameter definition for the model updating input parameters illustrated in a schematic cross
sectional view of the DemoBlade.

Table 6.1: Input feature list for the 3D finite element blade model updating. Each feature and property
builds a distribution spline based on the given number of equidistant spline nodes within the given normalized
radial range. Each node value may then vary in the listed variance range.

Parameter Property Spl. nodes Radial range Variance

SS, TE E11, E22, G12, ρ 5 [0, 1] ±25%
SS, SC E11, E22, G12, ρ 5 [0, 1] ±25%
SS, LE E11, E22, G12, ρ 5 [0, 1] ±25%
PS, LE E11, E22, G12, ρ 5 [0, 1] ±25%
PS, SC E11, E22, G12, ρ 5 [0, 1] ±25%
PS, TE E11, E22, G12, ρ 5 [0, 1] ±25%
SC, SS loc, w 4 [0, 0.75] ±1 cm
SC, PS loc, w 4 [0, 0.75] ±1 cm
AddMass 5 [0, 1] ±75%

SS: Suction Side; PS: Pressure Side; TE: Trailing Edge, SC: Spar cap; LE: Leading Edge;
AddMass: Additional Mass.
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6.2 Invertible neural network configuration

Next, inspired by the presented architecture in Section P3-3, the cINN is defined. However, a
hyperparameter analysis showed that a cINN built by only eight conditional coupling blocks (CC) is
better suited for this problem. The CCs are divided into clusters of two and in consequence result in
only four output stages from the conditional network. Therefore the width of each subnetwork in the
CCs or the channels of each 1D-convolution in the conditional network was slightly increased. The
corresponding hyperparameter set for this cINN is summarized in Table 6.2. The cINN is trained
against 90,000 training samples over 200 epochs and an initial learning rate of 0.6, which is reduced
by 50% each 25 epochs. The batch size is set to 32 samples. The training progress is tested against
10,000 unseen validation samples.

Table 6.2: Hyperparameter set of the complete network, including conditional network, conditional invertible
neural networks (cINN), and sub-network. The cINN is divided into four clusters (Clst), for which the
hyperparameters are listed separately. In Cluster 1, the conditions are directly fed into the conditional
coupling blocks (CC), without a prior convolutional layer. The structure is inspired by Figure P3-4 and
Table P3-3.

Clst 1 Clst 2 Clst 3 Clst 4

Conditional Conv 1D kernel k 3 3 3
network stride s 1 1 1

padding p 1 1 1
out chan. out 256 512 1024

Activation PReLU PReLU PReLU
Avgerage 1D pooling kernel k 2 2 2

stride s 2 2 2
padding p 0 0 0

Flatten ✓ ✓ ✓ ✓
Fully connected nodes 300 400 500 600

cINN Conditional coupling block (CC) 2 2 2 2

Sub-network Fully connected nodes 700 800 900 1000
Batch normalization ✓ ✓ ✓ ✓
Activation PReLU PReLU PReLU PReLU

6.3 Generic model updating of a 3D-FEM blade model

In the first instance the cINN is analyzed based on new generic samples extracted from the physical
model before processing the model updating with the experimental data. The analysis comprise:
examining the general updating results, identifying collinearities of predicted parameters and
performing a resimulation analysis.

6.3.1 General analysis of the updating results

For the general analysis, the cINN predicts the input parameter’s posterior distribution for 1,000
randomly generated samples, which were computed with the physical model. For each sample, the
latent space was sampled 100 times. All resulting posterior distributions p(x|y) are predominantly
normally distributed. Therefore, the mean value p̄(x|y) is used as the final prediction value. These
predictions are then plotted against the target values xt for the respective sample and depicted
as scatter plots in Figure 6.3 for all spline nodes of four exemplary parameters. Additionally, a
regression line (dashed, orange) shows the general trend of the predictions. The quality of the
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prediction can be checked visually again; the closer the scattering gets to the optimum line (solid,
yellow) the more accurate is the prediction.

Figure 6.3: Correlation of posterior prediction versus target values for 1,000 random samples. The optimum
solution is depicted as a yellow bisectional straight line. Additionally, the coefficient of determination r2 (see
Equation 6.1) of the parameter prediction against the ideal result is shown.

In contrast to the previous Chapters 3 and 4, here, the coefficient of determination does not
represent the accuracy of the samples with respect to the corresponding regression line, but with
respect to the optimum line. By this, the coefficient of determination, denoted here as r2 and given
in Equation 6.1, is corrected to directly give the accuracy of the prediction.
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r2 =

nsamp∑
j=1

(p̄j(x|y)− xj,t)
2

nsamp∑
j=1

(p̄j(x|y)− x̄p)

with x̄p =
1

nsamp

nsamp∑
k=1

p̄k(x|y) (6.1)

Due to this formulation r2 can become heavily negative. To have a slight orientation the
interpretation of r2 in this context can be defined as follows:

r2 = 1: Perfect accuracy of prediction to target values

r2 > 0.5: Still decent accuracy of prediction to target values

r2 > 0: Correct trend prediction with respect to target values

r2 < 0: Prediction closer to a baseline model, i.e., p̄j(x|y) = 0, than to the ideal solution

This interpretation is also slightly reflected in the regression lines in Figure 6.3, e.g., N1 of
E11,SS,SC (top left) has an r2 ≈ 0 the regression line is approximately the bisector of the optimum
and a baseline model (the horizontal x-axis). Therefore, it is exactly on the border. Hence, r2 > 0
means the regression line is inclined to the optimum (cf. N2−5 of E11,SS,SC) and vice versa, r2 < 0
inclines more to the baseline model (cf. N1 of SCloc,SS).

All this assumes that the y-interception of the regression line is always approximately 0, which is
the case for all parameters. In general it can be stated, the trend of any parameter predicted by the
cINN is never non-proportional, i.e., the slope of the regression line is always greater than 0. So the
cINN understands globally the physics behind the data and in case it does not capture these at all
for a particular parameter, the prediction is just scattered close to zero (c.f. N5 of G12,PS,TE) and
not randomly guessed.

The complete set of results is summarized in Figure 6.4, condensed to the r2 values for all
predicted parameters over the 1,000 random samples. The parameters span over the columns,
whereas the different nodes can then be found in the corresponding row. Figure 6.4 clearly shows
the center nodes 2-4 are predicted very accurate for most of the parameters. The tip nodes (N5)
have the worst prediction accuracy, the root nodes (N1) are a mix with good and bad predictions.
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Figure 6.4: Coefficient of determination r2 of each parameter prediction against the ideal results, i.e., a
straight line with y = x. The coefficient is measured on the basis of 1,000 random sample predictions.

Roughly explained, the most dominant cause for this is that if the blade is divided into 4 spanwise
sections in-between the nodes, then each node contributes always to each adjacent section to 50%.
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The root and tip nodes only influence the parameter variation over the blade radius to one side of
the node. Hence, the root and tip nodes only have impact on 12.5% and each mid node to 25% of
the blade. During inference only these adjacent parts contain pure information for each node, which
accordingly results in less information for the root and tip node compared to the mid nodes. This is
of course significantly simplified for imagination purpose, as the parameter variation at a specific
node may not have such discrete ranges of impact, but more overlapping with other nodes. However,
a too dense spline node distribution leads to collinearities in the prediction.

The second reason for the good prediction of the mid nodes can be, that typically most of the
deformation or the greatest variety of the blade’s mode shapes happen in the mid section of the
blade and not to it’s extremities. Thus the information has a wider spectrum of states and by that a
higher information resolution or quality for the inference.

Further, a cross correlation analysis reveals any model ambiguities, i.e., model collinearities.
Figure 6.5 shows the cross correlation matrix for all predicted input parameters over the 1,000
random samples. This matrix reveals some slight collinearities of the suction and pressure side
parameters at the trailing edge. The density ρ, but also the stiffnesses E11 and G12 correlate
negatively, which is due to its geometrical proximity of both shell sides at the trailing edge. This
collinearty increases from the first to the fourth node as the profiles get thinner and the trailing
edge panels approach each other. A second collinearity can be found between the spar cap width
SCw and the spar cap stiffness E11,SC or density ρSC for each shell side. And finally, some adjacent
nodes of the same parameter, such as G12,SS,SC N4−5 or E11,PS,SC N4−5, show interactions, the same
phenomena already found in the previous chapter 4 in Section P3-4.5.

6.3.2 Resimulation analysis

A resimulation analysis shows how accurate the predicted input parameters can reconstruct the
modal response with the physical model, which was used to predict the input parameters. Without
performing any prior feature selection, the full set of the predicted posterior distribution of the
parameters is used to resimulate the response and compare it to the analysis. Following the same
approach as described in Section P3-4.4, the MAC values and the natural frequencies of the five
given free-free eigenmodes are used to compare the resimulated results to the original predictions.

The results for this resimulation analysis are depicted in Figure 6.6, (a) shows the minimum,
maximum and mean MAC values for the 1,000 resimulated random samples, whereas (b) depicts
the relative error of the natural frequencies. All mean MAC values are above 0.99 which shows an
extraordinary good resimulation of the global mode shape. Except for the 3rd flapwise mode with a
minimum outlier of MAC = 0.9, the others show minimum MAC values of MAC ≥ 0.98 throughout
all the 1,000 samples. The natural frequencies achieve mean errors of approximately 0-3%.

Overall, this can be regarded an excellent result for the generic model updating, as in general
the modal behavior is captured accurately and the correlation of the input feature prediction in the
previous section also gave very good results with r2 > 0.5 for 62% of the parameter and even 57%
with r2 > 0.7.
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Figure 6.5: Cross correlation matrix of the predicted input parameters to reveal collinearities between
predicted parameters.
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Figure 6.6: Resimulation results for 1,000 random samples. (a) minimum, maximum and mean MAC values
of each mode. (b) mean and 1-σ-range of the relative frequency error ef .
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6.4 Model updating based on modal experimental data

As described in Section 6.1, the model updating will be based on free-free vibrating modal responses.
The free-free vibration experiments in the SmartBlades2 project are conducted according to [88]
with an elastic suspension of the blade and an impact hammer for excitation. This analysis will be
applied for the three finished blades number 2-4 of the experiment, while only taking into account
the first five extracted eigenmodes: 1st flap, 1st edge, 2nd flap, 1st torsion, 3rd flap.

6.4.1 Updating results

The experimental modal results of the three observed blades was used to predict the posterior
distribution of the input features by the trained cINN. The obtained results indicate for most of the
features values beyond the trainig boundaries of the cINN. Considering that the sampling variations
are already assumed higher than normally expected during manufacturing, the range should be
sufficient to cover possible outliers of the manufactured blades. Especially features with an high r2

value in the generic model validation (see Figure 6.4) still have unrealistic predictions. Figure 6.7
depicts exemplary three material parameter splines predicted for the three blades. The chosen
parameters have very high r2 values for most of their nodes, but still yield posterior predictions
clearly beyond the ± 25% variation of the training sampling.
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Figure 6.7: Material parameter prediction for all three blades based on the experimental results of the
modal analysis. Results are depicted exemplary for three material parameter splines, which are among the
best prediction accuracy in the generic updating process as shown in Figure 6.4.

6.4.2 Root cause analysis of the updating inaccuracies

Due to the aforementioned inaccuracies or unrealistic values of the material parameter’s posterior
prediction, a root cause analysis is conducted to identify possible problems during the updating
process. This analysis covers concerns about the cINN itself, the training design and the raw data.
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Generalization problems of the cINN

In the first instance, the cINN is checked against its generalization capacity, i.e., if the cINN is
overfitting to the training data. The training and validation curve principally do not show any
significant overfitting as depicted in Figure 6.8. Both curves are not significantly diverging more with
progressed training, which is a good indication for a correct fit. However, it has to be mentioned
that both data sets are sampled in the exact same parameter variation range, so it is possible that
cINN overfits to this sample design and is not able to generalize beyond this sampling range.
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Figure 6.8: Training and validation loss curve of the cINN training.

In order to avoid a possible overfitting, a few typical techniques to reduce this and improve
generalization were applied according to [48], such as:

• Weight regularization

• Drop-out layers in the sub-network and/or the conditional network

• Reducing the model capacity, i.e., cINN model size, in order to force the cINN to learn less
detailed patterns. But still avoiding any underfitting.

• Apply noise to the modal responses used for the training

However, non of these techniques improved the posterior prediction accuracy of the input features
significantly. Therefore, it is assumed, that the cause of the prediction inaccuracy based on the
experimental modal response is not primarily found in the cINN design.

Erroneous sample design

The next possible root cause is an erroneous sample design. Obviously the predetermined input
parameters, which are varied, do not cover all of the possible manufacturing deviations. There-
fore, the input parameter space was extended to consider these additional design parameters:

1. Chord length

2. Relative thickness

3. Twist angle

4. Shear web location

5. Shear web adhesive thickness

6. Shear web adhesive width

7. Trailing edge adhesive width
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Together, these aforementioned parameters and the already included ones should cover most
of the relevant design variations possible for this particular blades. In the generic model updating
the global blade geometry parameters 1.-2. were accurately predicted with r2 > 0.8, the other
parameters 3.-7. could only be sufficiently recovered for a few parameter spline nodes (r2 > 0.5),
i.e., the model response has no significant information on these input features. However, including
all these additional features did not improve the prediction accuracy with the experimental data
either. It also has to be mentioned, that the global geometric parameters were included for the sake
of completeness, though, the mold was measured in advance to manufacturing and all the deviations
were already included in the baseline design. That means, the global geometric parameters, such
as chord length, relative thickness and twist angle, were not expected to vary significantly for the
manufactured blades.

Discrepancies between raw sample data and experimental data

After discarding the cINN and the sampling design as root cause for the prediction inaccuracies
during the model updating, the raw data itself is analyzed on its consistency between sample and
experimental data. Therefore, all generated training samples are compared to the experimental data
in terms of MAC values and natural frequency errors ef . The ten best matching samples to the
experimental results exemplary for blade no. 2 are listed in Table 6.3. These appear to be quite
acceptable, with good agreement according to the relatively good MAC values and frequency errors.
As the training is performed including these samples and the general prediction accuracy against this
generic data is good, hence it could be expected, that the cINN should find a reasonable solution for
the predictable input parameters.

Table 6.3: MAC values and frequency errors for the ten best training samples compared to the experimental
results of blade no. 2.

Mode 1st flap 1st edge 2nd flap 1st torsion 3rd flap

M
A

C

0.995 0.971 0.986 0.982 0.964
0.993 0.965 0.991 0.979 0.964
0.993 0.970 0.992 0.982 0.957
0.991 0.958 0.987 0.977 0.974
0.990 0.964 0.984 0.977 0.967
0.991 0.970 0.991 0.976 0.960
0.994 0.964 0.985 0.976 0.965
0.994 0.958 0.985 0.976 0.973
0.992 0.967 0.991 0.981 0.958
0.992 0.962 0.985 0.975 0.969

e f

-2.6% 3.0% -2.4% 3.9% -1.6%
-0.1% 4.9% 0.2% 6.9% 2.3%
-2.3% 5.1% 0.6% 5.0% 1.8%
-3.9% 1.7% -1.6% 5.1% 0.2%
-3.2% 4.0% -1.5% 6.2% 1.2%
-7.0% 2.8% -5.2% 3.4% -2.8%
-1.4% 4.6% 1.1% 6.7% 2.3%
-3.0% 2.7% -1.7% 5.8% 0.6%
-4.9% 1.7% -0.9% 5.6% 0.3%
-6.3% 2.1% -3.1% 4.2% -1.5%

However, the MAC values are not part of the loss function the cINN is trained with. Therefore,
a closer look is taken on the raw data itself, i.e., the unprocessed sensor data. Figure 6.9 depicts
the mean of the displacement difference ∆ydisp = ydisp, samp − ydisp, exp for each sensor over the three
best matching samples, sorted by mode shapes and sensor direction (flapwise/edgewise). The graphs
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reveal, the difference ∆ydisp is independent from the magnitudes of ydisp. Whereas, the mode shapes
influence the difference, e.g., the flapwise sensors result in lower differences for the flapwise shapes,
while the edgewise sensor show higher differences and vice versa during the edgewise shapes. With
increasing order of mode shapes the difference also increases, see 1st, 2nd and 3rd flapwise mode. This
opens space for the assumption, that flapwise mode shapes result in higher absolute deflections for
the flapwise sensors, therefore, an arbitrary absolute signal noise vanishes in magnitude before the
values are normalized. Whereas, the edgewise and torsion mode shapes provoke smaller displacement
magnitudes for the flapwise sensors, by this any possibly existing noise would result in a significant
disturbance, as shown in the graphs. Same holds for higher order mode shapes such as the 3rd

flapwise mode, although these are more complex, they generally appear with smaller displacement
magnitudes.

Looking further, according to [6], the MAC is formulated to minimize the squared error between
two vectors, which makes it insensitive to smaller values, while higher values influence it more
severely. Therefore, the MAC is a suitable indication for the global behavior, but does not properly
account for any local and small deviations. And as Figure 6.9 clearly shows, there are a lot of
sensor responses within a very low magnitude level, 67% with ydisp, exp < 0.05. However, when
considering a cINN, each of these sensors offer information to infer the posterior distribution of
the input parameters. And even small noises with respect to small displacements result in a high
relative error. And if all of the sensor signals are deviating significantly, these errors multiply
with each weight and pass throughout the network in order to yield a poor posterior prediction.
Remembering the model robustness analysis in Section P3-4.3, a 5% random noise error on the
responses still gave excellent results, though, in this case the mean relative error is approximately 40%.

In order to exclude two possible numerical and modeling causes for this discrepancies the following
aspects were analyzed:

• The convergence study from Section P1-3 was extended to additionally check the displacement
convergence at the particular sensor positions. Here the maximum displacement error was only
4% to the previous step for all considered mode shapes.

• The suspended blade is exposed to gravitation and will thus deform, which results in a pre-
stress in the blade and a misalignment of sensor orientations compared to an undeformed
configuration. Unpublished analyses of the SmartBlades2 project partner DLR showed only
very minor static deformations due to dead weight. It was thus assumed that a modal analysis
in the undeformed configuration is a sufficiently accurate approximation.

After excluding these two candidates for the significant difference between the numerical solution and
the experiments, it has to originate from a more fundamental perspective. Thus, all this condenses
to two general questions:

1. How to model a rotor blade correctly in order to replicate the experimental blade behavior?

A finite element shell model compromises easy modeling, efficient computation and rea-
sonably good results. Therefore, it lacks an accurate modeling of the geometry, which causes
an increased stiffness and mass in convex shapes. Additionally, the node offsets from the
mid-plane generate inaccuracies in torsional prediction as already discussed in Section P1-5.3.
However, local and accurate responses are necessary for the model updating approach, which
might be achieved by continuum shell element or even better solid element modeling.

2. How to adequately design experiments to provide good data for the model updating?

Although, the applied experimental results were used to manually or automatically update
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finite element models, see Knebusch et al. [117], they were formerly not dedicatedly designed
for the use in this particular model updating approach. The primary focus was to best and
fully characterize the modal blade behavior and test the experimental setup. For a dedicated
experimental design, structural characteristics are desirable, where higher magnitudes are
measured to reduced the impact of measurement noise. In case of modal analysis, an increased
excitation than that of a modal impact hammer might be a solution. Ideally, the extracted
structural characteristics should represent a global response instead of local details. This
fidelity level would be more consistent with the updateable input parameters, which are more
of a global type.
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Figure 6.9: Displacement difference ∆ydisp between training sample ydisp, samp and experiment ydisp, exp.
This divided into flapwise and edgewise sensors as well as into the different mode shapes.



119

7 Conclusion and Outlook

This thesis concludes with a summary of all relevant aspects of the conducted research. And
ends with an outlook on future research inspired by open question, as well as possible fields of
application for the elaborated model updating approach.

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . 120
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . 122
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To finish this thesis, an overall conclusion for the presented publications and additional chapters
is drawn, putting the different results in the lights of the thesis’ objective. After that, an outlook
will gather open questions raised by this thesis and propose future research focuses.

7.1 Conclusion

The overall aim of this thesis was to establish a computationally efficient approach to recover
the deviation and uncertainty of rotor blade design parameters by updating higher
fidelity models. Therefore, the work is broken down into five significant work packages: 1) devel-
opment of a model generator for wind turbine blades, 2) validation of the modeling methodology, 3)
establishing an updating approach with uncertainty evaluation for state-of-the-art models, 4) proving
the efficiency of the approach against current techniques, and finally 5) applying the updating on
higher fidelity models.

Focusing on the first two work packages, the first paper Validation of a modeling methodology for
wind turbine rotor blades based on a full-scale blade test presents a fully parameterized modeling
methodology implemented in the software tool MoCA. It provides output for different model fidelity
levels, such as BECAS cross sections, finite element Timoshenko beam models and hybrid shell
& solid 3D finite element models. The parameterization is defined based on spline distributions
for nearly each parameter of the model, thus, it enables an easy way to vary the distribution by
simply adding or multiplying spline distributed variations. The subsequent validation is performed
on the example of the SmartBlades2 20 m demonstration blade, which was modeled with MoCA
and exported as hybrid shell & solid 3D finite element model. A blade was built according to
this design during the project, then accurately measured and tested. The test comprised modal
analysis as well as static bending and torsion. After the test, the blade is cut into segments, which
were characterized for further information. Every known manufacturing deviation and additional
information, such as adhesive thickness, geometry deviation or sensor weights, was replicated in
the finite element model. Then, the model is successfully validated with the given experimental
results. The mass and center of gravity of the full blade and each segment matched very well with
only a few measurements exceeding 5% error. The natural frequencies also gave reasonably good
results with error of up to 8%. For the experiments under pure static bending in both, flapwise
and edgewise direction, the deflection error mostly complied with the validation threshold of 5%
and also the local strain measurements in general agreed with the local threshold of 10%. However,
torsion resulted in significant deviations, which exceeded the deflection thresholds by up to 12% and
local strain threshold by a mean of 30%. The results agree with the poor torsional prediction of
shell elements with offset nodes to the element’s mid plane. This can only be avoided by layered
solid element modeling of the composite parts. Summarizing, this publication accomplished the
first work package and generally the second, except for the torsional behavior. All following appli-
cations use models derived from the validated MoCA model of the SmartBlades2 demonstration blade.

The next step was to establish a model updating approach with uncertainty evaluation of the
updated parameters. As current model updating approaches are either not probabilistic, such as
heuristic optimizations, or computationally very expensive, as e.g., Markov Chain Monte Carlo
methods for approximated Baysian computation, an alternative method is presented, the conditional
invertible neural networks. These networks are bijective due to their mathematical structure and
can thus be easily inverted. While following Bayes’ theorem and training against the negative
log-likelihood loss, they are capable of representing an inverse surrogate of the forward physical
modeling process. They provide an uncertainty evaluation by predicting the posterior parameter
distribution based on observed model response and the learned mapping. This method, therefore,
fulfills all the requirements of the third work package. It is first tested in a feasibility study in the
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second paper Model updating of wind turbine blade cross sections with invertible neural networks
with excellent results. Then, it is successfully applied to update a state-of-the-art full wind turbine
blade model in the third paper Model updating of a wind turbine blade finite element Timoshenko
beam model with invertible neural networks. The feasibility study was based on cross sectional
models of the demonstration blade, with updateable model parameters consisting of material and
geometrical properties. The observations in this example are cross sectional properties such as,
e.g., stiffness matrix, mass matrix, and elastic center. After reducing the parameter space to a
relevant subspace via an one-at-a-time sensitivity analysis, training, validation and test samples
are created with MoCA. The trained cINN-model accurately predicts the input parameters with
generally low uncertainties. The extension to a model fidelity used in the state-of-the-art model
updating is done in the third paper. Here, the cINN proved that it is also capable of accurately
recovering model parameters for a full blade model with 153 variable model parameters, in this case
a Timoshenko beam model. Therefore, the cINN was extended by a conditional network, which
pre-processes the observations before passing them to the coupling blocks. Both networks, the
conditional and the cINN, are trained jointly. The method proved to be robust even against 5%
noise on the observations. Although some of the results could not be accurately predicted due
to inherited model ambiguities, the cINN correctly understands and models the physics behind
the data. A cross-correlation of the predicted features reveals ambiguous model parameters and
helps to redefine the model updating problem in order to enhance the model updating accuracy.
Additionally, this method is also able to deal with full data sets including irrelevant data, without
losing accuracy, while common optimization approaches require a parameter space reduction to be
able to computationally deal with more complex models at all. With this, the third work package is
done and the model updating method is established and successfully tested at current fidelity level.

A benchmark study presented in Chapter 5 briefly compares the cINN model updating method
with approaches based on four different heuristic optimization algorithms. Due to the high number
of model evaluations, the forward process has to be replaced by an artificial neural network as
surrogate model for the MoCA modeling process and evaluation of a full blade beam model. The
time reduction for a single evaluation was from approximately 80 s to 0.25 ms with the surrogate
model. The results show that the optimization approaches do not even rudimentarily reach the
accuracy of the cINN. And when interpolating the performance on real modeling time, the cINN
outperforms the fastest algorithm by the factor of 2.5. Thus, the fourth work package, including the
proof of computational efficiency compared to state-of-the-art approaches, is accomplished.

In the final chapter, the fidelity level of the considered model is increased a further step to a
hybrid shell and solid finite element model to fulfill the last work package. This time, the model
parameter definition was changed to reduce the inherited ambiguities. The model updating of a
generic problem presented good predictions of the posterior distributions of the model parameters
with relatively low uncertainty. The generic problem was designed to replicate an experimental
modal analysis performed on a real blade. However, when applying the trained cINN to update the
model with experimental modal results, the accuracy drops significantly. A thorough root cause
analysis especially of the experimental data compared to the training sample data revealed signifi-
cant deviations, which might be caused either by relevant noise in the experimental measurements
exceeding by far the 5% for low magnitudes, or by modeling-inaccuracies of the finite element model.

Despite its lacking accuracy when applied to modal test data, this thesis has proposed and
successfully tested a computationally efficient updating approach on generic problems for high fidelity
structural rotor blade models taking into account uncertainties of the predicted model parameters.
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7.2 Outlook

Having established the method, further studies could focus on transferring this to a industrial
use case. Therefore, Chapter 6 highlighted important future research questions to overcome the
significant deviations of experimental and sample data. First: how to model a rotor blade correctly
in order to replicate the experimental blade behavior? Finite element shell models comprise efficient
modeling and computation with reasonably good results, but lacks in accuracy concerning the exact
structural properties of a blade. An increased fidelity level of the model with, e.g., layered solid
elements, should avoid any geometric discontinuities, additional masses and stiffness of overlapping
elements, or inaccuracy in torsional prediction, and thus minimize any modeling errors. The second
question is: how to adequately design experiments to provide good data for the model updating?
Here, the focus should be on the design of experiments. The presented modal analysis data used
in Chapter 6 was not originally designed for the purpose of model updating via invertible neural
networks, which led to inaccurate parameter predictions. A thorough research must determine an
appropriate experimental design with the necessary accuracy and extract, at best, noise insensitive
characteristics, which can be used for the model updating process. As the input parameter splines
represent a rather global distribution of a property over the blade, the measured response, which is
used for the update, should also follow a more global character. The measurement of too local effects
may lead to problems in the updating process, as the global updateable parameters may never be
tuned to represent such local effects. Beyond these two highlighted questions, the progress in the
research of inverse modeling and invertible neural networks should be carefully followed. Here, a
field of interest can be generalization capabilities of invertible neural networks, as this could make
the updating process less prone to noisy observation.

A successfully trained and tested invertible neural network in conjunction with the correct
experimental measurement setup could open different fields of application. As the trained cINN
represents a surrogate of the inverse physical model, it can cover all types of parameter variations
and thus possible physical states of a blade, whenever it is correctly trained. Additionally, it has the
advantage that it can be evaluated at practically no extra cost. One possible application for such an
inverse model is to enhance quality assurance during manufacturing, because such an inverse model
could easily update a baseline model for each blade of a series. Therefore, a simple and quick test
method must be designed, applicable to a blade after manufacturing but before shipment/installation.
This may help to detect possible manufacturing deviations rapidly and avoid unnecessary actions,
when the blade is already attached to the turbine. Another application, can be of course structural
health monitoring, where the cINN can update a digital twin of the blade for the current conditional
state. All these approaches should be realized with the aim of evaluating uncertainties of the blade
properties and by that improving the overall reliability. At the end, this model updating method is
universal. It can easily be transferred to other structures or problems.
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