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Abstract
In this paper, we investigate the partial asymptotic stability (PAS) of neutral
pantograph stochastic differential equations with Markovian switching (NPSDEwMSs).
The main tools used to show the results are the Lyapunov method and the stochastic
calculus techniques. We discuss a numerical example to illustrate our main results.

1 Introduction
Neutral stochastic delay differential equations with and without Markovian switching have
been recently intensively investigated (see [1, 10, 11, 13, 14, 19, 20, 22], and [23]). Many
systems are often subject to component repairs or failures, abrupt changes, environmental
disturbances, and subsystem interconnections. The pantograph SDEs (PSDEs) have been
widely used in electrodynamics and quantum mechanics. In the last decades the stabil-
ity analysis of stochastic differential equations (SDEs) has received much attention (see
[2, 3, 7–9, 15, 18, 25]). In general, due to the characteristics and specifications of SDEs
themselves, it is difficult to obtain explicit solutions of equations. Therefore we use the
Lyapunov method to study the stability and the asymptotic behavior of solutions. The al-
most sure polynomial and exponential stabilities were investigated by many researchers
(see [2, 3], and [7–9]). The stochastic pantograph differential equations are a kind of
stochastic delay differential equations (see [4, 7–9]), also called equations with propor-
tional delay. They play an important role in industrial and mathematical problems. The
NPSDEwMS are very well investigated (see [4, 25], and [17]). In [4] the authors proved the
existence, uniqueness, and p-moment stability of solutions in the case p > 0. However, in
many dynamical systems, such a stability is usually too strong to be satisfied. Therefore the
notion of partial stability (PS) (see [5, 6, 12], and [16]) has been studied, and the Lyapunov
method, as an important tool, has been used to investigate the PS in various practically
important domains. In the literature, we did not find any result on PAS of NPSDEwMS.
Using the technique of stochastic calculus and Lyapunov method, we show a new sufficient
condition for the PS of a class of NPSDEwMS.

In [5] and [12] the authors investigated the PAS of the solutions of ordinary SDEs by
using an appropriate Lyapunov function satisfying some specific properties. In our paper,

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-022-03692-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03692-x&domain=pdf
mailto:lmchiri.c@ksu.edu.sa


Mchiri et al. Advances in Continuous and Discrete Models         (2022) 2022:18 Page 2 of 15

we prove the PAS of solutions of NPSDEwMSs. In this sense, our results extend the analysis
in [5] and [12] providing the neutral term and the delay in the case of the PSDE with
Markovian switching.

Let us outline the framework of this paper. After preliminaries and notations (see
Sect. 1), in Sect. 2, we recall some important notions and definitions. In Sect. 3, we es-
tablish the PAS for a class of NPSDEwMSs. Finally, in Sect. 4, we present a numerical
example to show the applicability of our results.

2 Preliminaries and notations
Let {�,F , (Fs)s≥0,P} be a complete probability space with filtration {Fs}s≥0 satisfy-
ing the usual conditions, and let W (s) be an m-dimensional Brownian motion de-
fined on this probability space. Let s ≥ s0 > 0, let C([qs0, s0];Rn) = {ψ : [qt0, s0] →
R

nsuch thatψ is a continuous function} with the norm ‖ψ‖ = supqs0≤b≤s0 |ψ(b)|, and let
|x| =

√
xT x for x ∈R

n. If B is a matrix, then its trace norm is denoted by |B| =
√

Trace(BT B),
and its norm is given by ‖B‖ = sup|x|=1 |Bx|. Denote by Lp

Fs0
([qs0, s0];Rn) the set of all Fs0 -

measurable C([qs0, s0];Rn)-valued random variables ψ = {ψ(θ ) : qs0 ≤ θ ≤ s0} such that
E‖ψ‖p < ∞, where p ∈N

∗.
Let {m(s), s ≥ 0} be a right-continuous Markov chain on {�,F , (Fs)s≥0,P} taking values

in a finite state space S̄ = {1, 2, 3, . . . , N}, where � = (γjk)N×N is the generator given by

P
(
m(s + � ) = k|m(s) = j

)
=

⎧
⎨

⎩
γjk� + o(� ) if j 
= k,

1 + γjj� + o(� ) if j = k,

for � > 0. Here γjk ≥ 0 is the transition rate from j to k if j 
= k, whereas

γjj = –
∑

j 
=k

γjk .

We suppose that r and W are independent.
Consider the following NPSDEwMS:

d
(
z(s) – G

(
s, z(qs), m(s)

))

= f
(
s, z(s), z(qs), m(s)

)
ds + g

(
s, z(s), z(qs), m(s)

)
dW (s), s ≥ s0, (2.1)

with initial data ζ ∈ Lp
Fs0

([qs0, s0];Rn), i.e.,

z(s) = ζ (s) for qs0 ≤ s ≤ s0. (2.2)

Let u(s) = z(s) – G(s, z(qs), m(s)), where G(s, z(qs), m(s)) = (G1(s, z(qs), m(s)), G2(s, z(qs),
m(s)))T ∈R

n. We assume that

f : [s0, +∞) ×R
n ×R

n × S̄ →R
n, g : [s0, +∞) ×R

n ×R
n × S̄ →R

n×m,

G : [s0, +∞) ×R
n × S̄ →R

n.

Let z = (z1, z2)T ∈ R
n be the solution of equation (2.1), where z1 ∈ R

k and z2 ∈ R
p, and

k + p = n.
We will impose the following assumptions on f , g , and G:



Mchiri et al. Advances in Continuous and Discrete Models         (2022) 2022:18 Page 3 of 15

(A1) For each l ∈N
∗, there exists kl > 0 such that

∣∣f (s, u, x, j) – f (s, u, x, j)
∣∣2 ∨ ∣∣g(s, u, x, j) – g(s, u, x, j)

∣∣2 ≤ kl
(|u – u|2 + |x – x|2). (2.3)

(A2) For all (s, j) ∈ [s0, +∞) × S̄ and ς , x ∈R
n, there exists κj ∈ (0, 1) such that

∣∣G(s,ς , j) – G(s, x, j)
∣∣2 ≤ κj|ς – x|2. (2.4)

Set G(s, 0, j) = 0 and κ = maxj∈S̄ κj.
Let C1,2([qs0, +∞) × R

n × S̄;R+) be the set of all nonnegative functions V (s, z, j) on
[qs0, +∞) × R

n × S̄ that are once continuously differentiable with respect to s and twice
continuously differentiable with respect to z.

For any (s, z, v, j) ∈ [qs0, +∞) ×R
n ×R

n × S, u = z – G(s, v, j), by the generalized Itô for-
mula (see [18] and [24]) we have

V
(
s, u(s), m(s)

)
= V

(
s0, u(s0), m(s0)

)
+

∫ s

s0

LV
(
τ , z(τ ), z(qτ ), m(τ )

)
dτ + M(s),

where the stochastic process M(s) and the operator LV (s, z, v, i) : [qs0, +∞) × R
n × R

n ×
S̄ → R are defined by

M(s) =
∫ s

s0

Vz
(
τ , u(τ ), m(τ )

)
g
(
τ , z(τ ), z(qτ ), m(τ )

)
dW (τ ),

LV (s, z, v, j) = Vs(s, u, j) + Vz(s, u, j)f (s, z, v, j)

+
1
2

Trace
(
gT (s, z, v, j)Vzz(s, u, j)g(s, z, v, j)

)

+
N∑

k=1

γjkV (s, u, k),

Vs =
∂V (s, z, j)

∂s
, Vzz =

(
∂2V (s, z, j)

∂zj∂zj

)

n×n
,

Vz =
(

∂V (s, z, j)
∂z1

, . . . ,
∂V (s, z, j)

∂zn

)
.

(A3) There exist functions μ1, μ2, μ3, μ4 in K and V ∈ C1,2(R+ ×R
n × S̄;R+) satisfying,

for all (s, z, v, j) ∈ [s0, +∞) ×R
n ×R

n × S̄,
(i) μ1(|z1|) ≤ V (s, z, j) ≤ μ2(|z1|),

(ii) LV (s, z, v, j) ≤ –μ3(|z1|) + qμ4(|v1|).

3 Main results
We discuss the PS in probability and PAS of equation (2.1).

Definition 3.1
(i) The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called PS in probability with

respect to z1 if for all η > 0 and λ ∈ (0, 1), there exists δ0 = δ0(λ,η, s0) > 0 such that

P
(∣∣z1(s)

∣∣ < η,∀s ≥ s0
) ≥ 1 – λ

whenever ‖ζ‖ < δ0.
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(ii) The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called PAS in probability with
respect to z1 if it is stable in probability with respect to z1 and for all
ζ ∈ Lp

Fs0
([qs0, s0];Rn), we have

P
(

lim
s→+∞ z1(s) = 0

)
= 1.

Let K be the set of all continuous nondecreasing functions μ : R+ →R+ such that μ(0) =
0 and μ(ν) > 0 for ν > 0. For H > 0, let SH = {z ∈R

n, |z1| < H}.

Theorem 3.1 Suppose that there exist a function V (s, z, j) ∈ C1,2([s0, +∞) × SH × S;R+)
and μ ∈K such that

(i) μ(|z1|) ≤ V (s, z, j) for all (s, z) ∈ [s0, +∞) × SH ,
(ii) LV (s, z, v, j) ≤ 0 for all (s, z) ∈ [s0, +∞) × SH .

Then the solution of equation (2.1) is PS in probability with respect to z1.

Proof By Assumptions (A1)–(A3) system (2.1) has a unique global solution z(s) for s ≥ s0

(see [17]).
Let λ ∈ (0, 1) and η > 0 be arbitrary. We will assume that η < H . By the continuity of

V (s, z, j) and the fact V (s0, 0, m(s0)) = 0 we can find ρ = ρ(λ,η, s0) > 0 such that

1
λ

sup
z∈Sρ

(
V

(
s0, z, m(s0)

)) ≤ μ(η). (3.1)

We can see that ρ < η. Fix an arbitrary initial condition ζ ∈ Lp
Fs0

([qs0, s0];Rn) such that
‖ζ‖ < ρ . Let ϑ be the stopping time given by

ϑ = inf
s≥s0

{
z1(s) /∈ Sη

}
.

By the Itô formula, for every s ≥ s0, we have

E
(
V

(
s ∧ ϑ , z(s ∧ ϑ), m(s ∧ ϑ)

))

= E
(
V

(
s0, z(s0), m(s0)

))
+ E

(∫ s∧ϑ

s0

LV
(
τ , z(τ ), v(τ ), m(τ )

)
dτ

)
.

Using (ii) and equation (3.1), we obtain that

E
(
V

(
s ∧ ϑ , z(s ∧ ϑ), m(s ∧ ϑ)

)) ≤ E
(
V

(
s0, z(s0), m(s0)

))
= λμ(η). (3.2)

Notice that if ϑ ≤ s, then

∣∣z1(ϑ ∧ s)
∣∣ =

∣∣z1(ϑ)
∣∣ = η.

Then by (i) we have

E
(
V

(
s ∧ ϑ , z(s ∧ ϑ), m(s ∧ ϑ)

)) ≥ E
(
1{ϑ≤s}μ

(∣∣z1(ϑ)
∣∣)) = μ(η)P(ϑ ≤ s). (3.3)
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Using (3.2) and (3.3), we obtain P(ϑ ≤ s) ≤ λ. Letting s → +∞, we have P(ϑ ≤ ∞) ≤ λ,
which implies

P
(∣∣z1(s)

∣∣ < η,∀s ≥ s0
) ≥ 1 – λ,

and the proof is completed. �

(A4) There exist positive constants α1 and p and functions μ2, μ3, μ4 in K and V ∈
C1,2(R+ ×R

n × S̄;R+) satisfying, for all (s, z, v, j) ∈ [s0, +∞) ×R
n ×R

n × S̄,
(i) α1|z1|p ≤ V (s, z, j) ≤ μ2(|z1|),

(ii) LV (s, z, v, j) ≤ –μ3(|z1|) + qμ4(|v1|).

Theorem 3.2 Suppose that assumptions (A1), (A2), and (A4) hold. Let μ3 and μ4 in K
satisfy, for all (s, z) ∈ [s0, +∞) ×R

n,

μ3
(|z|) ≥ μ4

(|z|), (3.4)

where μ3 – μ4 is an increasing function. Then, for any initial value ζ ∈ Lp
Fs0

([qs0, s0];Rn),
the solution of equation (2.1) is PAS in probability with respect to z1.

Proof We will proceed as in the proof of Theorem 3.1 in [23] with necessary changes.
By Theorem 3.1 it is easy to prove that equation (2.1) is stable in probability with respect

to z1.
Step 1. Fix ζ ∈ Lp

Fs0
([qs0, s0];Rn) and i0 ∈ S̄. By the Itô formula, (i), (ii), and (3.4) we have

V
(
s, u(s), m(s)

)

≤ V
(
s0, u(s0), m(s0)

)
+

∫ s

s0

qμ4
(∣∣z1(qτ )

∣∣)dτ –
∫ s

s0

μ3
(∣∣z1(τ )

∣∣)dτ + M(s)

≤ V
(
s0, u(s0), m(s0)

)
+

∫ s0

qs0

μ4
(∣∣z1(τ )

∣∣)dτ –
∫ s

s0

(
μ3

(∣∣z1(τ )
∣∣) – μ4

(∣∣z1(τ )
∣∣))dτ

+ M(s)

≤ μ2
(∣∣u(s0)

∣∣) + μ4
(‖ζ‖)s0(1 – q) –

∫ s

s0

(
μ3

(∣∣z1(τ )
∣∣) – μ4

(∣∣z1(τ )
∣∣))dτ + M(s), (3.5)

where

M(s) =
∫ s

s0

Vz
(
τ , u(τ ), m(τ )

)
g
(
τ , z(τ ), z(qτ ), m(τ )

)
dW (τ )

is a continuous local martingale with M(s0) = 0 a.s. Applying Lemma 2.5 in [17] and tak-
ing χ = μ2(|u(s0)|) + μ4(‖ζ‖)s0(1 – q), A(s) = 0, N(s) =

∫ s
s0

(μ3(|z1(τ )|) – μ4(|z1(τ )|)) dτ , and
M(s) =

∫ s
s0

Vz(τ , u(τ ), m(τ ))g(τ , z(τ ), z(qτ ), m(τ )) dW (τ ), we have

lim sup
s→+∞

(
V

(
s, u(s), m(s)

))
< ∞ a.s. (3.6)
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Then

sup
s0≤s<∞

V
(
s, u(s), m(s)

)
< ∞ a.s. (3.7)

Thus using (3.4), (3.7), and (i) (in Assumption (A4)), we obtain

sup
s0≤s<∞

(
z1(s) – G1

(
s, z(qs), m(s)

))
< ∞. (3.8)

For T > 0, by Assumption (A2), for s0 ≤ s ≤ T , we have

∣∣z1(s)
∣∣ ≤ ∣∣z1(s) – G1

(
s, z(qs), m(s)

)∣∣ +
∣∣G1

(
s, z(qs), m(s)

)∣∣

≤ ∣∣z1(s) – G1
(
s, z(qs), m(s)

)∣∣ + k
∣∣z1(qs)

∣∣.

It then follows that

sup
s0≤s≤T

∣∣z1(s)
∣∣ ≤ κ sup

s0≤s≤T

∣∣z1(qs)
∣∣ + sup

s0≤s≤T

∣∣z1(s) – G1
(
s, z(qs), m(s)

)∣∣

≤ κ‖ζ‖ + κ sup
s0≤s≤T

∣∣z1(qs)
∣∣ + sup

s0≤s≤T

∣∣z1(s) – G1
(
s, z(qs), m(s)

)∣∣.

Thus

sup
s0≤s≤T

∣∣z1(s)
∣∣ ≤ 1

1 – κ

(
κ‖ζ‖ + sup

s0≤s≤T

∣∣z1(s) – G1
(
s, z(qs), m(s)

)∣∣
)

.

Using (3.8) and letting T → ∞, we have

sup
s0≤s<∞

∣∣z1(s)
∣∣ a.s. (3.9)

Thus taking the expectations of both sides of (3.5) and letting s → +∞, we have

E
(∫ +∞

s0

(
μ3

(∣∣z1(τ )
∣∣) – μ4

(∣∣z1(τ )
∣∣))dτ

)
< ∞. (3.10)

This implies that

∫ +∞

s0

(
μ3

(∣∣z1(τ )
∣∣) – μ4

(∣∣z1(τ )
∣∣))dτ < ∞ a.s. (3.11)

Step 2. Set μ = μ3 – μ4 (μ ∈ C(R+,R+)). By (3.11) we can see that (see [15])

lim inf
s→+∞

(
μ

(∣∣z1(s)
∣∣)) = 0 a.s. (3.12)

Now we claim that

lim
s→+∞μ

(∣∣z1(s)
∣∣) = 0 a.s. (3.13)
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If (3.13) is false, then

P
(

lim sup
s→+∞

μ
(∣∣z1(s)

∣∣) > 0
)

> 0.

Thus there exists a positive constant λ such that

P(�1) ≥ 3λ (3.14)

with �1 = {lim sups→+∞ μ(|z1(s)|) > 2λ}. By (3.9) and using the fact ‖ζ‖ < ∞, we can find
h = h(λ) > 0 sufficiently large such that

P(�2) ≥ 1 – λ, (3.15)

where �2 = {supqs0≤s<∞(|z1(s)| < h)}. Using (3.14) and (3.15), we have

P(�1 ∩ �2) ≥ 2λ. (3.16)

Now we define the following stopping times:

ϑh = inf
{

s ≥ s0,
∣∣z1(s)

∣∣ ≥ h
}

,

ϑ1 = inf
{

s ≥ s0,μ
(∣∣z1(s)

∣∣) ≥ 2λ
}

,

ϑ2k = inf
{

s ≥ ϑ2k–1,μ
(∣∣z1(s)

∣∣) ≤ λ
}

, k = 1, 2, 3, . . . ,

ϑ2k+1 = inf
{

s ≥ ϑ2k ,μ
(∣∣z1(s)

∣∣) ≥ 2λ
}

, k = 1, 2, 3, . . . .

By the definitions of �1 and �2 and (3.12) we can see that if ω ∈ �1 ∩ �2, then

ϑk < ∞ and ϑh = ∞ ∀k ∈N
∗. (3.17)

Since ϑ2k < ∞ whenever ϑ2k–1 < ∞, by (3.10) we obtain that

λ

∞∑

k=1

E
(
1{ϑ2k–1<∞,ϑh=∞}(ϑ2k – ϑ2k–1)

)

≤
∞∑

k=1

E
(

1{ϑ2k–1<∞,ϑ2k<∞,ϑh=∞}
∫ ϑ2k

ϑ2k–1

μ
(∣∣z1(τ )

∣∣)dτ

)

≤ E
(∫ +∞

s0

μ
(∣∣z1(τ )

∣∣)dτ

)

< ∞. (3.18)

In fact, by assumption (A1) there exists kh > 0 such that

∣∣g(s, z, v, j)
∣∣2 ∨ ∣∣f (s, z, v, j)

∣∣2 ≤ kh
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whenever (s, j) ∈ [s0, +∞) × S̄ and |z| ∨ |v| ≤ h. Using the Hölder and Doob martingale
inequalities, we have that for k = 1, 2, 3, . . . and T > 0,

E
(

1{ϑh∧ϑ2k–1<∞} sup
s0≤s≤T

∣∣z1
(
ϑh ∧ (ϑ2k–1 + s)

)
– z1(ϑh ∧ ϑ2k–1)

∣∣2
)

≤ 2E
(

1{ϑh∧ϑ2k–1<∞} sup
s0≤s≤T

∣∣∣∣

∫ ϑh∧(ϑ2k–1+s)

ϑh∧ϑ2k–1

f
(
τ , z(τ ), z(qτ ), m(τ )

)
dτ

∣∣∣∣

2)

+ 2E
(

1{ϑh∧ϑ2k–1<∞} sup
s0≤s≤T

∣∣∣∣

∫ ϑh∧(ϑ2k–1+s)

ϑh∧ϑ2k–1

g
(
τ , z(τ ), z(qτ ), m(τ )

)
dW (τ )

∣∣∣∣

2)

≤ 2TE
(

1{ϑh∧ϑ2k–1<∞}
∫ ϑh∧(ϑ2k–1+T)

ϑh∧ϑ2k–1

∣∣f
(
τ , z(τ ), z(qτ ), m(τ )

)∣∣2 dτ

)

+ 8E
(

1{ϑh∧ϑ2k–1<∞}
∫ ϑh∧(ϑ2k–1+T)

ϑh∧ϑ2k–1

∣∣g
(
τ , z(τ ), z(qτ ), m(τ )

)∣∣2 dτ

)

≤ 2khT(T + 4). (3.19)

We know that if μ is a continuous function in R
n, then it is uniformly continuous in Bh =

{z ∈R
n : |z| ≤ h}. Thus we can choose sufficiently small ϕ = ϕ(λ) > 0 such that

∣∣μ(z) – μ(v)
∣∣ <

λ

2
whenever z, v ∈ Bh, |z – v| < ϕ. (3.20)

Set T = T(λ,ϕ, h) > 0 sufficiently small such that 2khT(T+4)
ϕ2 < λ. By (3.19) we have

P
(
{ϑh ∧ ϑ2k–1 < ∞} ∩

{
sup

s0≤s≤T

∣∣z1
(
ϑh ∧ (ϑ2k–1 + s)

)
– z1(ϑh ∧ ϑ2k–1)

∣∣ ≥ ϕ
})

< λ.

We can see that

{ϑh = ∞,ϑ2k–1 < ∞} = {ϑh ∧ ϑ2k–1 < ∞,ϑh = ∞} ⊂ {ϑh ∧ ϑ2k–1 < ∞}.

Then we obtain

P
(
{ϑ2k–1 < ∞,ϑh = ∞} ∩

{
sup

s0≤s≤T

∣∣z1(ϑ2k–1 + s) – z1(ϑ2k–1)
∣∣ ≥ ϕ

})
< λ.

Using (3.16) and (3.17), we deduce

P
(
{ϑ2k–1 < ∞,ϑh = ∞} ∩

{
sup

s0≤s≤T

∣∣z1(ϑ2k–1 + s) – z1(ϑ2k–1)
∣∣ < ϕ

})

= P
({ϑ2k–1 < ∞,ϑh = ∞})

– P
(
{ϑ2k–1 < ∞,ϑh = ∞} ∩

{
sup

s0≤s≤T

∣∣z1(ϑ2k–1 + s) – z1(ϑ2k–1)
∣∣ ≥ ϕ

})

> 2λ – λ = λ.

Therefore by (3.20) we have

P
(
{ϑ2k–1 < ∞,ϑh = ∞} ∩

{
sup

s0≤s≤T

∣∣μ
(
z1(ϑ2k–1 + s)

)
– μ

(
z1(ϑ2k–1)

)∣∣ < λ
})

> λ. (3.21)
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Set Mk = {sups0≤s≤T |μ(z1(ϑ2k–1 +s))–μ(z1(ϑ2k–1))| < λ}. Notice that if ω ∈ {ϑ2k–1 < ∞,ϑh =
∞} ∩ Mk , then

ϑ2k(ω) – ϑ2k–1(ω) ≥ T .

By (3.18) and (3.21) we can derive that

∞ > λ

∞∑

k=1

E
(
1{ϑ2k–1<∞,ϑh=∞}(ϑ2k – ϑ2k–1)

)

≥ λ

∞∑

k=1

E
(
1{ϑ2k–1<∞,ϑh=∞}∩Mk

(ϑ2k – ϑ2k–1)
)

≥ λT
∞∑

k=1

P
({ϑ2k–1 < ∞,ϑh = ∞} ∩ Mk

)

≥ λT
∞∑

k=1

λ = ∞,

which is impossible. Then (3.13) holds.
Step 3. By (3.9) and (3.13) there is �0 ⊂ � with P(�0) = 1 such that for all ω ∈ �0,

lim
s→+∞μ

(∣∣z1(s,ω)
∣∣) = 0, and sup

s0≤s≤∞

∣∣z1(s,ω)
∣∣ < ∞. (3.22)

Now we must show that

lim
s→+∞ z1(s,ω) = 0 ∀ω ∈ �0. (3.23)

If we suppose that (3.23) is false, then there is ω̂ ∈ �0 such that lims→+∞ sup |z1(s, ω̂)| > 0.
Thus there exist subsequences {z1(sk , ω̂)}k≥0 of {z1(s, ω̂)}s≥s0 satisfying |z1(sk , ω̂)| > ᾱ for
some ᾱ > 0 and all k ≥ 0. Since {z1(sk , ω̂)}k≥0 is bounded, we can find an increasing subse-
quence {ŝk}k≥0 such that {z1(ŝk ,ω)}k≥0 converges to some z̄ ∈ R

n such that |z̄| > ᾱ. There-
fore μ(|z̄|) = limk→∞ μ(|z1(sk ,ω)|) > 0. However, by (3.22) we have μ(|z̄|) = 0, a contradic-
tion.

Consequently, the solution of system (2.1) is asymptotically stable in probability with
respect to z1. �

4 Asymptotic instability of NPSDEwMS
We will state a theorem about the asymptotic instability with respect to all variables of
NPSDEwMS.

Definition 4.1 The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called asymptotically
unstable in probability if it is unstable in probability or for all ζ ∈ Lp

Fs0
([qs0, s0];Rn),

P
(

lim
s→+∞ z1(s) 
= 0

)
= 1.

Theorem 4.1 Suppose that there exist a function V ∈ C1,2(R+ × R
n × S̄;R+) and μ1, μ2,

μ3, and μ4 in K such that for all (s, z, v, j) ∈ [s0, +∞) ×R
n ×R

n × S̄,
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(i) μ1(|z|) ≤ V (s, z, j) ≤ μ2(|z|),
(ii) LV (s, z, v, j) ≥ –μ3(|z|) + qμ4(|v|).

Then for any initial value ζ ∈ Lp
Fs0

([qs0, s0];Rn), the solution of equation (2.1) is asymptot-
ically unstable in probability.

Proof The proof is similar to that of Theorem 4.3 in [6]. �

5 Example and numerical solution
We now give a numerical example to illustrate the application of our results.

Let W (s) be a three-dimensional Brownian motion. Let m(s) be a right-continuous
Markov chain taking values in S̄ = {1, 2, 3} with � = (γjk)1≤j,k≤3 given by

� =

⎛

⎜
⎝

–2 1 1
1 –2 1
1 1 –2

⎞

⎟
⎠ .

Moreover, we assume that W (s) and m(s) are independent. Consider the following NPS-
DEwMS:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(z1(s) – G(s, z1(qs), m(s)))

= f1(s, z(s), z(qs), m(s)) ds + g1(s, z(s), z(qs), m(s)) dW1(s),

d(z2(s) – G(s, z2(qs), m(s)))

= f2(s, z(s), z(qs), m(s)) ds + g2(s, z(s), z(qs), m(s)) dW2(s),

d(z3(s) – G(s, z3(qs), m(s)))

= f3(s, z(s), z(qs), m(s)) ds + g3(s, z(s), z(qs), m(s)) dW3(s),

(5.1)

with initial data ζ (s). Moreover, for (s, z, v, j) ∈ [s0, +∞) ×R
3 ×R

3 × S̄, let

G(s, z, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1
5 z if j = 1,
1
6 z if j = 2,
1
9 z if j = 3,

f1(s, z, v, j) =

⎧
⎪⎪⎨

⎪⎪⎩

–(z1 + 1
5 v1) if j = 1,

–(z1 + 1
6 v1) if j = 2,

–(z1 + 1
9 v1) if j = 3,

f2(s, z, v, j) =

⎧
⎪⎪⎨

⎪⎪⎩

– 1
3 (z1 – 1

5 v1)2(z2 – 1
5 v2) if j = 1,

– 1
3 (z1 – 1

6 v1)2(z2 – 1
6 v2) if j = 2,

– 1
3 (z1 – 1

9 v1)2(z2 – 1
9 v2) if j = 3,

f3(s, z, v, j) =

⎧
⎪⎪⎨

⎪⎪⎩

–2(z3 + 1
5 v3) if j = 1,

–2(z3 + 1
6 v3) if j = 2,

– 11
2 (z3 + 1

9 v3) if j = 3,

g1(s, z, v, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
5

v2 if j = 1,
1√
6

v2 if j = 2,
1
3 v2 if j = 3,

g2(s, z, v, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2
3 (z1 – 1

5 v1)(z2 – 1
5 v2) if j = 1,

√
2
3 (z1 – 1

6 v1)(z2 – 1
6 v2) if j = 2,

√
2
3 (z1 – 1

9 v1)(z2 – 1
9 v2) if j = 3,

g3(s, z, v, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2√
5

v3 if j = 1,
√

2
3 v3 if j = 2,

2
3 v3 if j = 3.
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Let V (s, z, j) = z2
1 + z2

2 + z2
3 for j ∈ S̄. Then for j = 1, we have

LV (s, z, v, 1) = –2
(

z2
1 –

1
25

v2
1

)
+

1
5

v2
2 – 4

(
z2

3 –
1

25
v2

3

)
+

4
5

v2
3

= –2z2
1 +

2
25

v2
1 – 4z2

3 +
24
25

v2
3 +

1
5

v2
2

≥ –4
(
z2

1 + z2
2 + z2

3
)

+
2

25
(
v2

1 + v2
2 + v2

3
)

= –4|z|2 +
2

25
|v|2.

For j = 2, it follows that

LV (s, z, v, 2) = –2
(

z2
1 –

1
36

v2
1

)
+

1
6

v2
2 – 4

(
z2

3 –
1

36
v2

3

)
+

2
3

v2
3

= –2z2
1 +

1
18

v2
1 +

1
6

v2
2 – 4z2

3 +
7
9

v2
3

≥ –4
(
z2

1 + z2
2 + z2

3
)

+
1

18
(
v2

1 + v2
2 + v2

3
)

= –4|z|2 +
1

18
|v|2.

For j = 3, we deduce

LV (s, z, v, 3) = –2
(

z2
1 –

1
81

v2
1

)
+

1
9

v2
2 – 11

(
z2

3 –
1

81
v2

3

)
+

4
9

v2
3

= –2z2
1 +

2
81

v2
1 +

1
9

v2
2 – 11z2

3 +
47
81

v2
3

≥ –11
(
z2

1 + z2
2 + z2

3
)

+
2

81
(
v2

1 + v2
2 + v2

3
)

= –11|z|2 +
2

81
|v|2.

Thus for j ∈ S̄, we obtain

LV (s, z, v, 3) ≥ –11|z|2 +
2

81
|v|2. (5.2)

Therefore by Theorem 4.1, system (5.1) is asymptotically unstable with respect to all
variables.

For j ∈ S̄, we define V1 by

V1(s, z, j) =

⎧
⎨

⎩
z2

3 if j = 1, 2,
1
2 z2

3 if j = 3.

For j = 1, we have

LV1(s, z, v, 1) = –4
(

z2
3 –

1
25

v2
3

)
+

4
5

v2
3 –

1
2

(
z3 –

1
5

v3

)2

= –4z2
3 +

24
25

v2
3 –

1
2

z2
3 +

1
5

z3v3 –
1

50
v2

3
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= –
9
2

z2
3 +

47
50

v2
3 +

1
5

z3v3

≤ –
9
2

z2
3 +

47
50

v2
3 +

z2
3

100
+ v2

3

= –
449
100

z2
3 +

97
50

v2
3

= –4.49z2
3 + 1.94v2

3.

For j = 2, we derive

LV1(s, z, v, 2) = –4
(

z2
3 –

1
36

v2
3

)
+

2
3

v2
3 –

1
2

(
z3 –

1
6

v3

)2

= –4z2
3 +

7
9

v2
3 –

1
2

z2
3 +

1
6

z3v3 –
1

72
v2

3

= –
9
2

z2
3 +

55
72

v2
3 +

1
6

z3v3

≤ –
9
2

z2
3 +

55
72

v2
3 +

z2
3

144
+ v2

3

= –
648
144

z2
3 +

127
72

v2
3

= –4.5z2
3 + 1.76v2

3.

For j = 3, we deduce

LV1(s, z, v, 3) = –
11
2

(
z2

3 –
1

81
v2

3

)
+

2
9

v2
3 +

(
z3 –

1
9

v3

)2

= –
11
2

z2
3 +

11
162

v2
3 +

2
9

v2
3 + z2

3 –
2
9

z3v3 +
1

81
v2

3

≤ –
9
2

z2
3 +

49
162

v2
3 +

z2
3

9
+

v2
3

9

= –
79
18

z2
3 +

67
162

v2
3

= –4.38z2
3 + 0.41v2

3.

Then for j ∈ S̄, it follows that

LV1(s, z, v, j) ≤ –4.38z2
3 + (0.5)(3.88)v2

3.

Consequently, by Theorem 3.2 system (5.1) is asymptotically stable with respect to z3 with
μ1(|z3|) = 4.38z2

3 and μ2(|v3|) = 3.88v2
3.

For system (5.1), we conduct a simulation using the Euler–Maruyama scheme with step
size 0.001, q = 0.35, s0 = 1, and the linear initial function ζ (s) = (s, –s, s – 1) for 0.35 ≤ s ≤ 1.
Next, we provide the simulations for system (5.1). In Fig. 1, we show the stability of the
component z3 by simulation of its trajectories. In Fig. 2, we illustrate the instability of the
components z1 and z2.
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Figure 1 Simulations of the trajectory of z3(s) in system (5.1) with ζ3(s) = s – 1 for s ∈ [0.35, 5× 104]

Figure 2 Simulations of the trajectories of the components z1(s) and z2(s) with ζ1(s) = s and ζ2(s) = –s on
[0.35, 5× 104]

The simulation results clearly show that the trajectories of the corresponding stochastic
system converge asymptotically to the equilibrium state for any given initial values, thus
verifying the effectiveness of theoretical results.
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