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1 Introduction
Neutral stochastic delay differential equations with and without Markovian switching have
been recently intensively investigated (see [1, 10, 11, 13, 14, 19, 20, 22], and [23]). Many
systems are often subject to component repairs or failures, abrupt changes, environmental
disturbances, and subsystem interconnections. The pantograph SDEs (PSDEs) have been
widely used in electrodynamics and quantum mechanics. In the last decades the stabil-
ity analysis of stochastic differential equations (SDEs) has received much attention (see
(2, 3, 7-9, 15, 18, 25]). In general, due to the characteristics and specifications of SDEs
themselves, it is difficult to obtain explicit solutions of equations. Therefore we use the
Lyapunov method to study the stability and the asymptotic behavior of solutions. The al-
most sure polynomial and exponential stabilities were investigated by many researchers
(see [2, 3], and [7-9]). The stochastic pantograph differential equations are a kind of
stochastic delay differential equations (see [4, 7-9]), also called equations with propor-
tional delay. They play an important role in industrial and mathematical problems. The
NPSDEwMS are very well investigated (see [4, 25], and [17]). In [4] the authors proved the
existence, uniqueness, and p-moment stability of solutions in the case p > 0. However, in
many dynamical systems, such a stability is usually too strong to be satisfied. Therefore the
notion of partial stability (PS) (see [5, 6, 12], and [16]) has been studied, and the Lyapunov
method, as an important tool, has been used to investigate the PS in various practically
important domains. In the literature, we did not find any result on PAS of NPSDEwMS.
Using the technique of stochastic calculus and Lyapunov method, we show a new sufficient
condition for the PS of a class of NPSDEwMS.

In [5] and [12] the authors investigated the PAS of the solutions of ordinary SDEs by
using an appropriate Lyapunov function satisfying some specific properties. In our paper,

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by

L]
@ Sprlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-022-03692-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03692-x&domain=pdf
mailto:lmchiri.c@ksu.edu.sa

Mchiri et al. Advances in Continuous and Discrete Models (2022) 2022:18 Page 2 of 15

we prove the PAS of solutions of NPSDEwMSs. In this sense, our results extend the analysis
in [5] and [12] providing the neutral term and the delay in the case of the PSDE with
Markovian switching.

Let us outline the framework of this paper. After preliminaries and notations (see
Sect. 1), in Sect. 2, we recall some important notions and definitions. In Sect. 3, we es-
tablish the PAS for a class of NPSDEwMSs. Finally, in Sect. 4, we present a numerical
example to show the applicability of our results.

2 Preliminaries and notations
Let {Q,F,(F:)s=0,P} be a complete probability space with filtration {F;}s>o satisfy-
ing the usual conditions, and let W(s) be an m-dimensional Brownian motion de-
fined on this probability space. Let s > so > 0, let C([gso,s0;R") = {¢ : [gto,s0] —
R"such thatyis a continuous function} with the norm ||y || = sup, <5<, 1¥(D)], and let
|x| = V2T x for x € R”. If B is a matrix, then its trace norm is denoted by |B| = \/W(BTB),
and its norm is given by ||B|| = sup,, _; |Bx|. Denote by L’;-SO ([gso, so]; R") the set of all F;,-
measurable C([gso,so); R”)-valued random variables ¢ = {y/(0) : gso < 0 < so} such that
E||¢||? < 0o, where p € N*.

Let {m(s),s > 0} be a right-continuous Markov chain on {2, F, (F;)s>0, P} taking values
in a finite state space S= {1,2,3,...,N}, where I" = (yx)nxn is the generator given by

, itk
P(””(S+w)=k|m(s)=j): Yk + o(w) ifj #k
1+ ym +o(@) ifj=k

for @ > 0. Here yj > 0 is the transition rate from j to k if j # k, whereas

Vi== Vi

Jj7#k

We suppose that » and W are independent.
Consider the following NPSDEwMS:

d(z(s) - G(S, z(gs), m(s)))
=1 (s,2(s), 2(gs), m(s)) ds + g (s, 2(s), z(qs), m(s)) AW (s), s> s, (21)

with initial data ¢ € LI-;}O ([gs0, s0]; R™), i.e.,
z(s) = ¢(s) for gso <s<so. (2.2)

Let u(s) = z(s) — G(s,z(gs), m(s)), where G(s,z(gs), m(s)) = (G1(s,z(gs), m(s)), Ga(s, z(gs),
m(s)))T € R”. We assume that

f:[s0,+00) x R” x R” x § — R”, g : [s0,+00) x R" x R" x § — R™"™,

G: [s0,+00) x R" x § — R".
Let z = (z1,22)T € R” be the solution of equation (2.1), where z; € R¥ and z, € R?, and

k+p=n.
We will impose the following assumptions on f, g, and G:
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(A;) For each [ € N¥, there exists k; > 0 such that

V(s, U, %, j) —f(s,ﬁ,%,j)|2 \% |g(s, U, %, j) —g(s,ﬁ,a_c,j)|2 < /q(|u —ul® + |x —E|2). (2.3)
(Ay) For all (s, /) € [so, +00) X Sand ¢,x € R”, there exists kj € (0,1) such that

|G(s, 5.) = Gls,2.)|” < kil — % (2.4)

Set G(s,0,/) = 0 and k = max;cg ;.

Let C“%([gso, +00) x R” x S;R*) be the set of all nonnegative functions V(s,z,j) on
[gs0, +00) x R” x S that are once continuously differentiable with respect to s and twice
continuously differentiable with respect to z.

For any (s,z,v,j) € [gso, +00) x R" x R" x S, u = z - G(s,v,j), by the generalized It6 for-

mula (see [18] and [24]) we have
V (s, u(s), m(s)) = V(so, u(so), m(so)) + /s LV (t,2(7),2(qr), m(r)) d + M(s),

where the stochastic process M(s) and the operator LV (s,z,v,i) : [gso, +00) x R” x R" x
S — R are defined by

M(s):/ V. (t,u(t), m(v))g(z,2(1),z(q7), m(r)) dW (7),

S0

LV (s,2,v,]) = Vi(s,u,)) + Vo (s,u,j)f (5,2, v,))

1
+ 5 Trace(gT(Sr Z’ Vrj) VZZ(S) M;j)g(si Z; Vrj))

N
+ Z ]/jkV(S; u, k))
k=1
AV (s,z,j) 02V (s,z,))
VS = 7], VZZ = 7] ’
ds aZjaZ/' nxn
BV(S,Z,j) av(syzij)
V, = yeees .
321 azn

(As) There exist functions pt1, ita, i3, 4 in K and V e CY2(R, x R” x S;R,) satisfying,
for all (s, z,,j) € [sg, +00) x R" x R" x S,

(i) mi(lzi]) < Vs, 2,)) < walz1l),

(ii) LV(s,zv,)) < —ps(lz1l) + qua(ivil).

3 Main results
We discuss the PS in probability and PAS of equation (2.1).

Definition 3.1
(i) The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called PS in probability with
respect to z; if for all n > 0 and A € (0, 1), there exists 8y = 8¢(A, 1, 50) > 0 such that

P(|zl(s)| <nVs=s0) =1-A

whenever ||| < §o.

Page 3 of 15
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(i) The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called PAS in probability with
respect to z; if it is stable in probability with respect to z; and for all
¢ € Lz ([g50,50);R"), we have

P( lim z(s) = 0) -1
S—>+00

Let KC be the set of all continuous nondecreasing functions p : R, — R, such that (0) =
0 and u(v) >0 for v>0.For H > 0,let Sy = {z e R", |z;| < H}.

Theorem 3.1 Suppose that there exist a function V(s,z,j) € C¥2([so, +00) x Sy x S;R,)
and u € K such that

(i) wllz1l) = V(s,z,)) for all (s,2) € [so, +00) X Sp;,

(ii) LV (s,z,v,)) <0 forall (s,z) € [so, +00) X Sh.
Then the solution of equation (2.1) is PS in probability with respect to z;.

Proof By Assumptions (A;)—(.A3) system (2.1) has a unique global solution z(s) for s > so
(see [17]).

Let A € (0,1) and 5 > 0 be arbitrary. We will assume that n < H. By the continuity of
V(s,z,j) and the fact V(sg, 0, m(sg)) = 0 we can find p = p(A, n,s0) > 0 such that

! sup (V (so, 2, m(s0))) < pu(n). (3.1)

Z€S)

We can see that p < 5. Fix an arbitrary initial condition ¢ € L’}SO ([g50,S0]; R”) such that
IZ]l < p. Let ¥ be the stopping time given by

¥ = inf{z(s) ¢ S, }.
$>50
By the It6 formula, for every s > sy, we have

E(V(sA®,2(s A9),m(s A D)))

SAD
= E(V (s0,2(s0), m(so))) + E(/ LV (t,2(),v(t), m(r)) dl').

S0

Using (ii) and equation (3.1), we obtain that

E(V(s A, z(s A ), m(s A 19))) < E(V(so,z(so),m(so))) = Au(n). (3.2)
Notice that if % <s, then

21 As)| = [a(®)] = n.
Then by (i) we have

E(V(sAD,z(s A9),m(s AD))) = E(Ly<yue(|z1(2)])) = u(m)P(® <3s). (3.3)
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Using (3.2) and (3.3), we obtain P(¢ <s) < A. Letting s — +00, we have P(¢ < oo) < 2,

which implies
P(|z1(s)| <m, Vs = s9) = 1 -4,
and the proof is completed. d

(A4) There exist positive constants «; and p and functions uy, s, ts in K and V €
CH(R, x R" x §;R,) satisfying, for all (s, z, v, /) € [sg, +00) x R" x R” x S,

(i) arlzil? < V(s,2,)) < pa(lzil),

(ii) LV (s,z,v,)) < —p3(lz1]) + gpea(val).

Theorem 3.2 Suppose that assumptions (A1), (Ay), and (Ay) hold. Let w3 and g in K
satisfy, for all (s,z) € [so, +00) x R”,

ws(lzl) = pma(lzl), (3.4)

where [ — (g is an increasing function. Then, for any initial value ¢ € LI;_-SO ([gs0, S0]; R™),

the solution of equation (2.1) is PAS in probability with respect to z;.

Proof We will proceed as in the proof of Theorem 3.1 in [23] with necessary changes.

By Theorem 3.1 it is easy to prove that equation (2.1) is stable in probability with respect
to z;.

Step 1. Fix ¢ € Lpfs0 ([gs0,s0); R™) and iy € S. By the It6 formula, (i), (ii), and (3.4) we have

V (s, u(s), m(s))

< V(s0, u(so), m(s0)) +/ qua(|z1(qr)]) dr—/ 13 (|z1(2)|) dr + M(s)

S0

palla@dr - [ (@) - walla @) dr

0

< V/(s0, u(s0), m(so)) +f

q50

+ M(s)

< o (|u(s0)]) + a5 )01 = @) - / (13(|2)]) = pa(|n(@)])) dr + M(s), (3.5)
where

M(s) —/ (‘L’ u(t), m(t)) (T,z(r),z(qt),m(r)) dw (t)

S0

is a continuous local martingale with M(sp) = 0 a.s. Applying Lemma 2.5 in [17] and tak-

ing x = pa(lu(so)l) + palllZ|)so(1 —g), A(s) = 0, N(s) = f;(us(la(f)l) — pa(lz1(7)))) d7, and
M(s) = fsso V(t, u(t), m(t))g(z,z(t), z(qt), m(t)) dW (t), we have

lim sup(V(s, u(s),m(s))) <00 a.s. (3.6)

§—>+00
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Then

sup V(s, u(s),m(s)) <00 a.s. (3.7)

50 <5<00

Thus using (3.4), (3.7), and (i) (in Assumption (A4)), we obtain

sup (z1 () -Gy (s, z(qs),m(s))) < 00. (3.8)

50 <5<00
For T > 0, by Assumption (A,), for sy < s < T, we have

|21(5)| < |z1(s) — Gi(s,2(qs), m(s)) | + | Gi (5, 2(gs), m(s))|

< ‘zl(s) -Gy (s,z(qs),m(s))| + k|z1(qs)|.

It then follows that

sup |z1(s)| <« sup |zi(gs)| + sup |z1(s) — Gi(s,z(gs), m(s))|

so<s<T <s<T so<s<T

<«kl¢ll+x sup |zi(gs)| + sup |z1(s) — Gi(s,z(gs), m(s))|.

so<s<T so<s<T

Thus

sup |zl(s)| < 1
so<s<T —K

(klicl+ sup [z1() - Ga (s, 2(gs), m®)])-

so<s<T

Using (3.8) and letting T — oo, we have

sup ‘zl (s)‘ a.s. (3.9)

509 <s<00

Thus taking the expectations of both sides of (3.5) and letting s — +00, we have

E( [ ) -M(|z1<r>|)>dr) < oo, (3.10)

0

This implies that

/mo(ug(’zl(t)’) - ,u4(‘zl(r)‘)) dr <o as. (3.11)

S0

Step 2. Set v = 3 — g (n € C(R,,R,)). By (3.11) we can see that (see [15])

liminf(u(|z1(s)])) =0 as. (3.12)

§—>+00

Now we claim that

lim ,u(’zl(s)’) =0 as. (3.13)

§—>+00
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If (3.13) is false, then

P(limsup n(|z16s)]) > O) >0.

§—>+00

Thus there exists a positive constant A such that
P(T'y) > 31 (3.14)

with T'; = {limsup,_, , ., #(]z1(s)]) > 2A}. By (3.9) and using the fact [|{]| < oo, we can find
h = h(A) > 0 sufficiently large such that

P(Ty)>1-4, (3.15)
where Iy = {sup, <. (121(s)| < /)}. Using (3.14) and (3.15), we have

P(I'1NTy) > 2. (3.16)
Now we define the following stopping times:

Oy = inf{s > 8o,

Zl(s)| Zh}r
P = inf{s > so,u(|z1(s)|) > 2A},
192k = illf{S = 192/(—1:“(|Z1(S)|) =< )\}7 k= 1;2’ 37---;

Vaker = infls = Vo, (|21 (s)]) = 20}, k=1,23,....
By the definitions of I'; and I'; and (3.12) we can see that if w € 'y N 'y, then
Hh<oo and ¥, =00 VkeN*, (3.17)

Since Yy < 0o whenever 95,1 < 00, by (3.10) we obtain that
o0

A ZE(I{ﬂzkfﬁoo,ﬂh:oo}(ﬁzk - 192k—1))
k=1

i 2%
= ZE(I{ﬂzk_lwo,z?zkmo,ﬂh:oo} / M(|Z1(7:)|)d7:>
k=1

Pok-1
§E(/ ;,L(|z1(r)|)dr>

< 00. (3.18)

D}

In fact, by assumption (A;) there exists k;, > 0 such that

g(s,2, v,j)|2 v Lf(s,z,v,j)‘2 <ky

Page 7 of 15
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whenever (s, j) € [s9,+00) x S and |z| V |v| < h. Using the Holder and Doob martingale
inequalities, we have that for k=1,2,3,... and T > 0,

2
E<1{0hwzk,1<oo} sup |z1 (9% A (Fart +5)) — 21 (O A Do) )

so<s<T
2)

I A (Dop_1+5)
/ﬁ g(t,2(1),2(q7), m(v)) AW (r)

nAD2k-1

VA (Dok-1+5)
/ f(l':z(f)’z(qf): m(T)) dt

O AD2k-1

= 2E<1{19hm92k1<00} sup

so<s<T

)

+ 2E<1{17hN72k-1<00} sup

so<s<T

OpAOop_1+T)

= 2TE(1{ﬂhA02k1<oo} / Lf(ri Z(T), Z(qf): m(f)) ’2 dt)
UpADok-1

O A(Oox_1+T) )
+ 8E<1{19h/\192k1<00} / ’g(fyz(f);z(qf)» }’I’I(T))| dT)
0

nAD2k-1

<2k, T(T +4). (3.19)

We know that if x is a continuous function in R”, then it is uniformly continuous in By, =
{z € R": |z| < h}. Thus we can choose sufficiently small ¢ = ¢(A) > 0 such that

A _
|,u(z) - /L(V)| < 3 whenever z,v € By, |z - V| < ¢. (3.20)
Set T = T'(A, ¢, h) > 0 sufficiently small such that w < X. By (3.19) we have

P({z?h A D1 < 001N { sup ‘zl (15‘;, A (Vg1 + s)) —z1(0n A 19‘2;(_1)} > (p}) <A

so<s<T

We can see that
{D), = 00, P91 < 00} = {P), A Py < 00, By, = 00} C {Dy A Pyp1 < 00).
Then we obtain

P({l‘/‘zk_l <00, =00} N [ sup |z1(Vak-1 +5) — 21(Vak1)| > w]) <A

so<s<T

Using (3.16) and (3.17), we deduce

P(Wzk—l <00,y =00} N { sup |z1 (Pt +8) — 21 (k1) | < </’})

so<s<T

= P({t2-1 < 00,0 = 00})

—P<{192k_1 <00,¥ =00} N { sup |z1(Dak-1 +5) — 21 (Vak1)| > <ﬂ])

so<s<T
>S2A— A=A,

Therefore by (3.20) we have

P({l?zk,l < 00,0, =00} N { sup |u(z1(Dakr +9)) — (21 (P2-r)) | < A}) >A. (3.21)

so<s<T

Page 8 of 15
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Set My = {supgy <5< |14 (z1(P2x-1 +5)) — (21 (P24-1))| < A}. Notice thatif € {1 < 00,0, =
00} N My, then

Vox(w) — Vopr(w) = T.

By (3.18) and (3.21) we can derive that

oo
00 > A ZE(I{ﬁzk_1<oo,z?h:oo}(l92k )

>
—

WK

>4 ) E(Ly  coonymooinin, (P2 — D2x-1))

T
N

> ATZP({ﬂZk_l < 00, B, = 00} N My)
k=1

o0
> ATZA = 00,
k=1

which is impossible. Then (3.13) holds.
Step 3. By (3.9) and (3.13) there is Q29 C Q with P(2¢) = 1 such that for all w € Qy,

lim u(|zi(s,0)|) =0, and  sup |zi(s,0)| < o0. (3.22)
5—+00

S0 =$=00

Now we must show that

lim zi(s,w) =0 VYo € Q. (3.23)
§—>+00
If we suppose that (3.23) is false, then there is @ € € such that lim,_, , o, sup |z; (s, ®)| > 0.
Thus there exist subsequences {z;(si, ®)}x>0 of {z1(s,®)}s>5, satisfying |z1(sx, ®)| > & for
some & > 0 and all k > 0. Since {z; (sx, ®) }x>0 is bounded, we can find an increasing subse-
quence {Sx}x>o such that {z; (5x, w)}k>0 converges to some z € R” such that |z| > &. There-
fore wu(|z|) = limg_, o0 p(|21(sx, @)]) > 0. However, by (3.22) we have p(|z|) = 0, a contradic-
tion.
Consequently, the solution of system (2.1) is asymptotically stable in probability with
respect to z;. g

4 Asymptotic instability of NPSDEwMS
We will state a theorem about the asymptotic instability with respect to all variables of
NPSDEwMS.

Definition 4.1 The solution z(s) = (z1(s), z2(s)) of equation (2.1) is called asymptotically
unstable in probability if it is unstable in probability or for all ¢ € L’}S0 ([gs0, So]; R™),

p( lim 2 (s) ;/0) 1

S—>+00

Theorem 4.1 Suppose that there exist a function V € C**(R, x R” x §;R,) and 11, i,
w3, and juq in K such that for all (s, z,v,j) € [so, +00) x R" x R" x S,
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(i) wallzl) < V(s 2,)) < pallzl),

(ii) LV(s,2,v,)) = —u3(lz]) + qua(v]).
Then for any initial value ¢ € LI;_-SO ([gs0,S0]; R™), the solution of equation (2.1) is asymptot-
ically unstable in probability.

Proof The proof is similar to that of Theorem 4.3 in [6]. O

5 Example and numerical solution
We now give a numerical example to illustrate the application of our results.
Let W(s) be a three-dimensional Brownian motion. Let mi(s) be a right-continuous

Markov chain taking values in S = {1,2,3} with " = (y)1<jx<3 given by

-2 1 1
rsj1 -2 1
1 1 -2

Moreover, we assume that W (s) and m(s) are independent. Consider the following NPS-
DEwMS:

d(z1(s) — G(s, z1(gs), m(s)))
= fi(s,2(s), 2(gs), m(s)) ds + g1 (s, 2(s), 2(gs), m(s)) AW (s),
d(zx(s) — G(s, z2(gs), m(s)))

(5.1)
= fa(s, 2(5), z(gs), m(s)) ds + ga(s, z(s), z(gs), m(s)) AW (s),
d(z3(s) — G(s, z3(gs), m(s)))
= f3(s, 2(5), z(gs), m(s)) ds + g3(s, z(s), z(gs), m(s)) AW3(s),
with initial data ¢ (s). Moreover, for (s,z, v, /) € [sg, +00) x R® x R? x §, let
1z ifj=1, —(z1+1v1) ifj=1,
G(S)Z;j) = éZ 1f] = 2, fl(S;Z, V;j) = —(Zl + %Vl) lf] = 2,
éz 1f]=3, —(Zl+%V1) 1f]=3,
@ -t - tv) ifj=1,
Hszv)) =1 -1 - vz - Lvy) ifj=2,
-3z - 5v)H @ —5v) ifj=3,
—2zz +3v3) ifj=1, %vz ifj=1,
f&zv.)) =12z +¢vs)  ifj=2, gi(s,z,v,)) = %Vz ifj=2,
~W(zs + tvs) ifj=3, vy ifj=3,
2 1 1 e 2 o
\/;(Zl — ng)(Zz — sz) lf] = 1, EV?) lf] = 1,
&(s,z,v,)) = \/g(zl — )z — ¢v) ifj=2, g(s,z,v,)) = \/gw, ifj=2,
Jia - @ -w) ifj=3, 2y, ifj=3.
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Let V(s,z,j) = 2% + 22 + 22 for j € S. Then for j = 1, we have

1 1 1 4
LV (s,z,v,1) = —2(2% - %V%> + EV% —4(2% - %1%) +-v]

5
24 1
= -2z + %vf -4z + %vg + gvg
2
> —4(z} + 25 +23) + 2—5(1/% +V3+13)

2
= —4)z)* + —|v*.
25

For j = 2, it follows that

1 1 1 2
LV(s,2,v,2) = —2<z% - %v%) + gv% —4(2% - %1%) +-v3

1 1 7
= —2zf + Ev% + EV% —4z§ + §V§

1
> -4z} +z5+23) + E(V% +V3+13)
1
= —4|z* + —|v]%
18

For j = 3, we deduce

1 1 1 4
LV (s,z,v,3) = —2<z% - gv%) + 51/% - 11(2% - avg) +-v;

2 1 47
=222+ v+ 12112+ —2
1T g1t g" 3751”3
2
> -11(2 + 25 +23) + E(V% +v3+13)
2
=11z + —|v|%
81

Thus for j € S, we obtain

2
LV(s,z,v,3) > -11|z|* + ﬁ|v|2.

(5.2)

Therefore by Theorem 4.1, system (5.1) is asymptotically unstable with respect to all

variables.

For j € S, we define V; by

Z2  ifj=1,2,
Vl(srzxj): } /

Z ifj=3.

=

Forj =1, we have

1 4, 1 1 \?
LVi(s,z,v,1) = —4(2% - 251/%) + gv§ - 5(23 - ng)

24 1 1
= Azt VAR —Z 4 —z3V3— — Vs
370537 2T 55078

Page 11 of 15
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9, , 1
Za + — V5 + —2Z3V;
237 503" 577

9, 47 z
< 2+—v§+—3+v§
277 50°° " 100
449 , 97 ,
Z3t ——V3
1007° 50
= —4.49z3 + 1.94v3.

For j = 2, we derive

1 2, 1 1 \?
LVi(s,2,,2) = —4(z§ - 3—61/%) + §v§ - 5(23 - ng)

7 1 1

= Az Vi S22+ vz — v
3793 9T g Ty
9, 55, 1

= ——Z3+ —=V; + —23V
23T 73T 6

9 55 z2
<——Z+ vy gl
2 72 144

648 , 127 ,
——Z3+ ——V3
144 72

= —4.52; + 1.76v3.

For j = 3, we deduce

11 1 2 1 \?
LVi(s,z,1,3) = ——(zg - —v%) + —vg + (z3 - 51/3)

2 81 9

m, 11, 2, , 2 1,
= —523 + ﬁvg + §V3 +Z3 — §ZgV3 + gvg

9 49 Z v
S——Z§+—V§+—3+—3

2 162 9 9

79, 67 ,

BETRANTEIE
= —4.3825 + 0.41v3.

Then for j € S, it follows that
LVi(s,z,v,)) < —4.3823 + (0.5)(3.88)v3.

Consequently, by Theorem 3.2 system (5.1) is asymptotically stable with respect to z3 with
w1(|z3]) = 4.3823 and o (|vs|) = 3.88v3.

For system (5.1), we conduct a simulation using the Euler—Maruyama scheme with step
size 0.001, g = 0.35, sy = 1, and the linear initial function ¢ (s) = (s, —s,s— 1) for 0.35 <s < 1.
Next, we provide the simulations for system (5.1). In Fig. 1, we show the stability of the
component zz by simulation of its trajectories. In Fig. 2, we illustrate the instability of the

components z; and z;.

Page 12 of 15
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0.4 T T T .

0.2 i

0 AP e o]

2,(6)

0 1 2 3 4 5
Time s x10%

Figure 1 Simulations of the trajectory of z3(s) in system (5.1) with &3(s) = s — 1 for s € [0.35,5 x 10%]

2,(9)
z,(s)

0.5 z 1
«
=
N

- 0r

C
©
O
=

& 05 1
L
©
Q

3 f !
£
©
[)

5f 1

I’ . . . ,
0 1 2 3 4 5
Time s x10*

Figure 2 Simulations of the trajectories of the components z;(s) and z,(s) with £;(s) = s and &>(s) = —s on
[0.35,5 x 10%]

The simulation results clearly show that the trajectories of the corresponding stochastic
system converge asymptotically to the equilibrium state for any given initial values, thus

verifying the effectiveness of theoretical results.
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