
Towards an Approach for Applying Early Testing to Smart

Contracts

N. Sánchez-Gómez a, L. Morales-Trujillo b and J. Torres-Valderrama c
University of Seville, Escuela Técnica Superior de Ingeniería Informática,

Web Engineering and Early Testing (IWT2) Group, Avda. Reina Mercedes s/n, 41012 Seville, Spain

Keywords: Blockchain (BC), Smart Contracts, Early Testing.

Abstract: Immutability -  the ability for a Blockchain (BC) Ledger to remain an unalterable, permanent and indelible

history of transactions - is a feature that is highlighted as a key benefit of BC. This ability is very important

when several companies work collaboratively to achieve common objectives. This collaboration is usually

represented by using business process models. BC is considered as a suitable technology to reduce the

complexity of designing these collaborative processes using Smart Contracts. This paper discusses how to

combine Model-based Software Development, modelling techniques, such as use cases models and activity

diagram models based on Unified Model Languages (UML) in order to simplify and improve the modelling,

management and execution of collaborative business processes between multiple companies in the BC

network. This paper includes the neccessity of using transformation protocols to obtain Smart Contract code.

In addition, it presents systematic mechanisms to evaluate and validate Smart Contract, applying early testing

techniques, before deploying the Smart Contract code in the BC network.

1 INTRODUCTION

The first BC that appeared was Bitcoin, when Satoshi

Nakamoto (Nakamoto, 2009) released the Version

0.1 of bitcoin software on January 2009. Since then,

all BC are based on the same operative. Reviewing

the rapid evolution and current state of the BC

networks, this technology could have the ability to

reconfigure all aspects of today's society. In the

logistics industry and Supply Chain (Hackius and

Petersen, 2017), BC appears as a facilitator and

enabler of operations, because this technology could

easily be added to other tools that seek to streamline

and optimize the operations of traditional companies.

Smart Contracts (Buterin, 2014) is a related

concept to BC Technology (BCT). These are digital

contracts that are executed by themselves, without

intermediaries, but written as a computer program

instead of using a printed document with legal

language.

From our point of view, a successful

implementation of BCT will only be achieved if it

a https://orcid.org/0000-0001-9102-6836
b https://orcid.org/0000-0001-9554-1173
c https://orcid.org/0000-0002-7786-5841

combines the paradigm of Model-based Software

Development and modelling techniques in order to

simplify and improve the entire business process. In

fact, the combination of both techniques has allowed

to obtain successful results in different research areas

such as requirements engineering (García-García et

al., 2012) (Escalona et al., 2013), process

management (García-García et al., 2017) or identity

reconciliation (Enríquez et al., 2015), among others.

In this context, other important aspect to consider

is the Software Testing. Testing has usually been seen

as a phase which is always performed at the end once

the coding phase is finished and before software is

delivered to our customer. But, in the Software

Development Life Cycle, software testing should

begin as soon as possible, because an early start of the

testing phase, helps to reduce the number of defects

(Cutilla et al., 2012).

This paper discusses the advantages of applying

transformation protocols to obtain Smart Contract

code from models. This would also make it possible

to apply systematic mechanisms to evaluate and

Sánchez-Gómez, N., Morales-Trujillo, L. and Torres-Valderrama, J.
Towards an Approach for Applying Early Testing to Smart Contracts.
DOI: 10.5220/0008386004450453
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 445-453
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

445

validate the Smart Contract, applying early testing

techniques, before deploying the software in the BC

network.

The paper is structured as follows: the next section

summarizes background and a hypothesis is raised as

a starting point (section 2). Then, in Section 3, we

present the global approach to solve the identified

problem and an overview of our proposed design

solution. Finally, Section 4 describes some

conclusions and future works.

2 BACKGROUND

2.1 Blockchain Smart Contracts

Nowadays, one of the main trends of IT technology is

the so-called BC application. The BC is a technology

originally devised to run the Bitcoin cryptocurrency

in a decentralized and secure way.

BCT is one form of Distributed Ledger

Technology (DLT). A Distributed Ledger is a

database that is spread across several computing

devices (nodes). Each node replicates and saves an

identical copy of the Ledger (so each participant node

of the network updates itself independently). The

structure of the BCT makes it distinct from other

types of distributed ledgers. In this technology, data

is grouped together and organized in blocks. In others

words, the BC structure is a chronologically ordered

list of blocks. These blocks are containers

aggregating transactions and, every block, is

identifiable and linked to the previous block in the

chain (these are then linked to one another secured

and immutable using cryptographic techniques).

The Distributed Ledger in a business network is

shared and synchronized by the consensus algorithm.

Consensus affirms that all parties in this network

agrees on the types of information to be captured

about an asset (element that is also contained in the

BCT). Data provenance is a historical record for any

piece of data and this provenance ensures that the

parties are able to back trace records of an asset to its

origination. On the other hand, the immutability of

this technology guarantees that a record in a ledger

cannot be removed or altered: when a transaction is

committed there is no rolling back, even if it was a

mistake.

An immutable and shared BC Ledger is updated

every time a transaction occurs through peer to peer

replication. The Ledger is distributed and shared so

there is no Master control through some centralized

mechanism (so each party has a replica ensuring that

transactions are secure, authenticated and verifiable).

In this context, the digital contract for asset

transference can be embedded in the transaction

database. Smart Contracts are the rules that govern a

transaction. This is a user-defined program executed

on the BC network (Omohundro, 2014). This is the

program code that asks the BC to create, delete,

modify or return the state of an asset. For a software

engineer, a transaction is analogous to a stored

procedure call on a database.

An oracle, in the BC context, is an agent that finds

and verifies real-world occurrences and submits this

information to a BC to be used by Smart Contracts.

BCs can’t access data outside their network. An

oracle is a data feed – provided by third party service

– designed for being used in Smart Contracts on the

network BC. Oracles provide external data and

trigger Smart Contract executions when pre-defined

conditions meet together. These conditions can be

validations such as successful payment, package

received, etc.

Smart Contracts can be enforced as a part of

transactions, and are executed across the BC network

by all connected nodes.

The BC platform Ethereum, for example, offers a

complete built scripting language for writing Smart

Contracts, called Solidity. Its execution environment,

the Ethereum Virtual Machine (EVM), comprises all

full nodes on the network and executes bytecode

compiled from Solidity scripts.

One practical application is the use of BCT for

Business Process Management (BPM). It has been

discussed under diverse viewpoints. Mendling et al.,

(2018) about challenges and opportunities and

Rosemann and von Brocke (2015) about the

challenges and opportunities of BC for BPM in

relation to the six BPM core capability areas.

2.2 Early Testing

The goal of software development is to elaborate a

product that will bring value to our customers. As a

software engineer we must have a reputation for

finding and embracing new technologies and

programming`s languages. However, these can only

take us so far in ensuring the software we build has

quality and brings value to our customers.

Therefore, software testing is a very essential part

of Software Development Life Cycle (SDLC) and

without proper testing software cannot be released to

our customers.

Traditionally, software testing has been seen as a

phase which is always performed at the end once

coding phase is finished and before software is

delivered to our customer. But, in the SDLC, software

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

446

testing should begin as soon as possible. This helps to

capture and eliminate defects in the early stages of

SDLC. An early start of test, helps to reduce the

number of defects and, ultimately, the cost of rework

at the end.

This is clearly evidenced, moreover, in the

principles of software testing (Graham et al., 2015).

“Principle 3: Early testing: To find defects early,

testing activities shall be started as early as possible

in the software or system development life cycle, and

shall be focused on defined objectives. If the testing

team is involved right from the beginning of the

requirement gathering and analysis phase they have

better understanding and insight into the product and

moreover the cost of quality will be much less if the

defects are found as early as possible rather than later

in the development life cycle”.

Figure 1, shows an example of the Delayed Issue

effect (relating to the relative cost of fixing

requirements issues at different phases of a project).

Figure 1: A widely-recreated chart of the Delayed

Issue Effect (Boehm, 1981).

It is essential to launch the software testing

activity from the collection of objectives and

requirements, then refining the software testing in the

analysis and design phases. The efficiency of testing

as well as the possibility to reduce the overall project

time and costs largely depends on how accurately you

formulate the requirements to the final software

product.

Thus, the final result depends not only on the

software engineer but also on our customer.

Moreover, the cost to fix an error directly depends on

what stage of SDLC has been detected. Any error that

is found may cause a domino effect (Rayskiy, 2017).

An error that hasn’t been found on time may require

100 times more efforts on its fixing after it gets to the

stage of software deployment. In this context, the

requirements for the final software product are critical

(Rayskiy, 2017).

Maximum defects occur in requirement phase. As

noted in "Inspecting Requirements" (Wiegers, 2001),

"Industry data suggests that approximately 50 percent

of the product defects are originated in the

requirements elicitation. Perhaps 80 percent of the

rework effort on a development project can be traced

to requirements defects.". This technique would allow

the evaluation and validation of the Smart Contract

before deploying the software.

In the significant book “Software Testing

Techniques” (Beizer, 1990), contains the most

complete catalogue of testing techniques, Beizer

stated that “the act of designing tests is one of the

most effective bug preventers known,” which

extended the definition of testing to error prevention

as well as error detection activities. This led to a

classic insight into the power of early testing.

2.3 Model-based Software
Development

Since a few years ago, modelling tools help document

business processes functionality and through model

transformations, partially automate software source

code generation using Unified Model Languages

(UML) and other modelling standards.

Models, normally, are easier to understand than

software source code (Forward and Lethbridge,

2008). Therefore, it also allows improving the

productivity of the development and their quality. It’s

easier to check the correctness of a model and

modelling tools can ensure that the deployed code has

not been modified after its generation from the model

(Lu et al., 2018).

In comparison to traditional software

development (Figure 2), where phases are clearly

separate, Model- based Software Development shows

the phases specification, design and implementation

to have grown together much more strongly (Conrad

et al., 2005).

Figure 2: Traditional vs Model-Based Software

Development (Conrad et al., 2005).

Model-based Design combined traditional

Software Development and Systems Engineering best

practices with visual modelling best practices. Model-

Towards an Approach for Applying Early Testing to Smart Contracts

447

based Design principles and best practices continue to

evolve, but they are complete architecture blueprint,

organized as a framework with multiple viewpoints

as the primary work artefact throughout the SDLC.

The major advantages of a Model-Based Design

approach by technology driver are (PivotPoint

Technology™, 2019):

 Requirements are an integral part of model and

other parts of the model can be traced back to

requirement.

 Provide a precise architecture blueprint organized

by views/viewpoints that are meaningful to all

systems stakeholders.

 Automate system validation and verification

(reduce errors in the life cycle), automate

generation of quality code and automate testing

(ensure system implementation is correct and

reliable).

Model-based Testing is a testing technique where

the runtime behaviour of an implementation under

test is checked against predictions made by a formal

specification, or model (Pretschner et al., 2005).

In the context of Blockchain-oriented

applications, Model-based Software Development is

of particular importance for the following reasons (Lu

et al., 2018):

 Model-Based tools can implement best practices

and generate well-tested code, thereby reducing

the occurrence of vulnerable code.

 Models can avoid lock-in to specific BCT since

they can be platform-agnostic, and model-based

(Model-based tools can be applied at multiple BC

platforms).

 Models are easier to understand than code. It is

easier to check the correctness of a model and

model-based tools can ensure that the deployed

code has not been modified after its generation

from the model.

2.4 Our Hypothesis

BC is an immutable, transparent and secure

technology (Sultan K., 2018) for recording the state

and ownership of an asset. These assets can be

something tangible and diverse as Internet of Things

(IoT) devices, a piece of art, ... or they can also be

something intangible (e.g. intellectual property).
This Technology allows unknown or

untrustworthy parties to conduct transactions

efficiently and accurately. It automates the

contractual agreements between stakeholders in a

business network by the use of Smart Contract.

As indicated in subsection 2.1, Smart Contracts

are digital contracts that are executed by themselves,

without intermediaries, but these are written as a

computer program instead of using a printed

document with legal language. That is, a Smart

Contract is a set of formal rules under which the

parties to that Smart Contract agree to interact with

each other and complete a transaction.

Specifically, a Smart Contract is a computer

program which is executed after the completion of a

transaction and, through this, the logical rules

(Boolean function as if-then-else) are defined in the

same way as a traditional legal contract would,

indicating the agreements and obligations (and

possible sanctions) that can occur in various

circumstances.

Smart Contracts for Ethereum are typically

written using the Solidity language. Solidity is an

object-oriented language, and the contracts are

defined in it like classes – they have a data structure,

public and private functions, and can inherit from

other contracts. Smart Contracts have also specific

concepts like events and modifiers.

Currently, Smart Contracts can be programmed in

others numerous languages, such as JavaScript, Go,

Python, C #, Ruby, PHP, Scala, etc.

There are even initiatives that allows exploring

and interacting with digital contracts using a REST

API (Application Programming Interface). For

example, ETHEREST Ethereum Contract API is a

tool that provides a way to interact with Smart

Contracts using the user interface of the website or

the API. APIs are already used on all BCs because of

their advantage to make function coding’s much

easier.

Given the immutability of BCT, It is essential that,

before deploying a Smart Contract code in a business

network, they go through evaluation and validation

processes. A defect of Smart Contract may cause a

non-repairable effect.

In order to achieve this objective, it is necessary

that user requirements, use cases, activity diagrams,

etc. are an integral part of model and to provide a

precise architecture blueprint, organized by

views/viewpoints, that are meaningful to all systems

stakeholders.

Since Smart Contracts have some very specific

characteristics, it is necessary to introduce some new

concepts in these diagrams, to be able to better model

and specify Smart Contracts. Whenever possible,

these concepts are simply introduced as UML

stereotypes, which are tags that can be used in UML

diagrams wherever needed. In a few other cases, it is

sufficient to introduce a specific notation like the

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

448

transfer of cryptocoins in sequence or activity

diagram (Marchesi et al., 2018).

Nowadays, the platforms BC Smart Contracts as

Ethereum, NEM, NEO, etc., allow anyone to build

and execute Smart Contract code directly, without

following good practices of software engineering

without going through evaluation and validation

processes.

This means software developers may run Smart

Contracts with bugs and serious security

vulnerabilities (to understand the severity of the

problem, can see this list of known bugs and

vulnerabilities from https://consensys.net (Ethereum

Smart Contract Best Practices).

A handful of companies, e.g. SolidifiedTM

(https://solidified.io/) is one of the largest auditing

platform for Smart Contracts have stepped forth to

provide auditing services for Smart Contracts)

reviewing the code and providing feedback on its

quality and security, but it is crucial to start the

software testing activity before having software's

code source, it should be from the requirements and

then refine the software testing in the phases of

analysis and design (throughout the typical SDLC).

The SDLC is a framework that defines the tasks

to be performed at each step of the software

development process.

The life cycle of Smart Contract development

must also clearly define the methodology for writing

and improving the quality of this software and the

overall development process (The modex Team,

2019), by streamlining the use cases writing process,

the activity diagrams writing process and the code

writing process as well as the early testing process.

In this context, this hypothesis is raised: Smart

Contracts model-based can improve the verification

and validation of Smart Contracts code through the

application of testing techniques from the early stages

of the SDLC, what is known as early testing.

3 TOWARDS A MODEL-BASED

BLOCKCHAIN ENGINEERING

As mentioned above, following a model-based

approach helps to derive an understanding of a

system, by bringing together different views with

various levels of abstraction.

According to Seebache and Maleshkova (2018),

Model-Based Engineering contributes to describe and

understand a system in various ways:

 Since a model builds upon a well-defined notation

and typology, the relationships between the

distinct elements as well as their descriptions

contribute to a general understanding of the

system, while helping to develop scalable

solutions as well.

 An architectural framework may be used to

combine and transform different models and

descriptive layers to facilitate the construction of

a system.

 Building upon a set of formalized meta-models,

which in turn can be integrated and transformed

into models with a higher degree of information,

automation may be applied.

As shown in Figure 3, Model-Based Engineering can

be applied both on System modelling and Test

modelling.

Figure 3: Model-Based Engineering.

User requirements are represented in a tabular

format, which may facilitate requirements tracing

during the system life cycle. This is important to

know what happens when related requirements

change or are deleted, which improves traceability.

Nowadays, requirements and use cases are a

widely used technique to define the functional

requirements of software systems. Several authors,

like Escalona et al., (2006), García-García et al.,

(2012), Achour (1998) or Cockburn (2000) propose

how to define use cases with UML.

Towards an Approach for Applying Early Testing to Smart Contracts

449

Figure 4: Use case diagram template (Marchesi et al.,

2018).

Figure 4, shows an example use case diagrams,

which describes the relations between use cases and

actor (these diagrams can also describes the relation

between use cases and other use cases). Specifically,

this diagrams describing the behaviour of every use

case and their pre-conditions, post-conditions,

priority, etc.

The UML is a visual language to support the

design and development of complex systems. But

UML itself, even the newest version 2.0 (Binder,

2000), provides no means to describe a test model.

Specifically, UML 2.0 for testing, called UML 2.0

Testing Profile (U2TP) (Cockburn A., 2000) would

close the gap between designers and testers by

providing a meaning to use UML for both system

modelling and test specification. This allows a reuse

of UML design documents for testing and enables test

development in an early system development phase.

Model-Based Design can implement best

practices and generate test cases from the early stages

of the software development lifecycle, thereby

reducing the number of bugs when coding.

Test Scenarios are derived from the UML-Use

case and Test Cases are derived from the UML-

Activity diagrams.

Test Cases are obtained through transformations,

implements the all nodes, all transitions, and all

criteria to select scenarios. They select the paths that

go across a higher number of actions until all the

actions of the activity diagrams have been traversed

at least once. For the all-transitions criterion, they

select the path that traverse a higher number of object-

flow edges until all of them have been crossed at least

once.

Figure 5: Business process template in UML-Activity

diagram (Donyina and Heckel, 2009).

Figure 5, shows a UML-Activity diagram. If the

activity diagram has not got any loops, the all-

scenarios criterion selects the paths that go through

all output object-flow edges from decision nodes at

least once. If the activity diagram has got some loops,

the all-scenarios criterion selects the paths that go

through all output object-flow edges from decision

nodes and all combinations among loops at least once.

And ultimately, it could generate Smart Contracts

code and REST API following the REST principles

(Fielding and Taylor, 2002) with different roles in BC

as a System of Connectivity, as a System of Security,

as a System of Chain Management, etc. (Sandoval,

2018).

Therefore, we can adopt Model-based Software

Development to facilitate the development of BC

applications in the space of business processes.

Figure 6: Source Code Generation.

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

450

Figure 6 illustrates our proposal to generate

source code, which consists of the following basic

elements: Smart Contracts templates, UML-Activity

diagrams, a Smart Contracts generator and a BC

triggers through the use of REST API.

Smart Contract templates are based on the

framework of Grigg’s Ricardian Contract triple of

“prose, parameters and code” (Grigg, 2004) (Grigg,

2015). The first application to implement Ricardian

contracts is OpenBazaar (https://openbazaar.org/), a

peer-to-peer e-commerce platform where you can

trade almost anything directly with each other.

Figure 7: Potential evolution of important aspects of

legally-enforceable Smart Contracts (Clack et al., 2016).

Figure 7 illustrates the potential evolution of
important aspects of legally – enforceable Smart
Contracts: legal prose and parameters, code sharing,
and long-term research. It can easily be adapted to
specific use cases and, in addition, could support
legally-enforceable Smart Contracts using
operational parameters to connect legal agreements to
standardised code (Clack et al., 2016).

There are already initiatives, such as Lorikeet

(Tran et al., 2018), where the tool developed can

automatically create Smart Contract code from

specifications that are encoded in the business process

and data registry models based on the implemented

model transformations.

With these pillars, we can automatically create

Smart Contracts in, for example, Solidity from UML-

Activity diagram models (because UML-Use case

and Test Cases are derived from the UML-Activity

diagrams) and REST API to provide data and trigger

Smart Contract executions. The REST API is

necessary to expose the BC logic to web or mobile

applications, as well as integrating the BC with

existing enterprise systems of record or legacy

system.

Consequently, this automation will reduce the

level of inherent complexity associated with BC

Smart Contracts and encourage their adoption across

a diverse domain (banking, finance, real estate,

governance, education, entertainment, …) of

applications.

4 CONCLUSIONS AND FUTURE

WORKS

This paper has presented a discussion about the

technological constraints and current situation of the

BC Smart Contract. As it introduces, BCT is a

fascinating technology that is producing a revolution

in ICT (Information and Communication

Technologies), but the necessity of assuring software

quality of a BCT is a current unsolved problem.

In this paper, we present the problem in detail and

introduce a preliminary view of an approach based on

the use of models and the necessity of having a

complete framework for orchestrating the life cycle

of BC Smart Contract.

Tools or techniques for modelling and managing

the peculiarities a software engineer must face when

dealing with BC oriented software systems are still

matter for researchers. Tools and techniques of

traditional software engineering have not yet been

adapted and modified to adhere to this new software

paradigm.

A sound software engineering approach might

greatly help in overcoming many of the issues

plaguing BC development providing software

engineer with instruments similar to those typic used

in traditional software engineering to afford

architectural design, security issues, testing planes

and strategies to improve software quality and

maintenance (Marchesi et al., 2018).

It is clear that we have many future objectives.

The first one is to study the current situation of source

code generator tools and early testing in network BC.

To this end, a Systematic Literature Review (SLR) is

being developed following the approach of

Kitchenham and Brereton (2013). We want to focus

our work in the field of the Model-Driven paradigm

but obviously, it depends on our previous results.

Another important future work is trying to make a

proposal based on the previous idea (Figure 3 and 6)

and test it in the industry. Currently, our research

group has numerous contacts with different

companies that are already working on this topic and

Towards an Approach for Applying Early Testing to Smart Contracts

451

we can propose and address projects that allow us to

test and validate our work.

ACKNOWLEDGEMENTS

First of all, we would like to thank all experts for their

participation and sharing their valuable knowledge.

Moreover, we would like to thank all participants in

our pretests for their collaboration.

This research has been supported by POLOLAS

Project (TIN2016-76956-C3-2-R) of the Spanish the

Ministry of Economy and Competitiveness.

REFERENCES

Achour C.B., 1998. Writing and Correcting Textual

Scenarios for System Design. Natural Language and

Information Systems Workshop. Vienna, Austria.

Beizer B., 1990. Software Testing Techniques. Van

Nostrand Reinhold Company Limited.

Binder R. V., 2000. Testing Object-Oriented Systems.

Addison-Wesley. USA.

Boehm B., 1981. Software Engineering Economics.

Prentice Hall, Englewood Cliffs, NJ.

Buterin V., 2014. Ethereum: A next-generation smart

contract and decentralized application platform.

https://github.com/ethereum/wiki/wiki/White-Pape.

Clack C.D., Bakshi V.A., Braine, L., 2016. Smart Contract

Templates: essential requirements and design options.

© Barclays Bank PLC 2016. This work is licensed

under a Creative Commons Attribution 4.0

International License.

Cockburn, A. 2000. Writing Effective Use Cases. Addison-

Wesley 1st edition. USA.

Conrad, M., Fey, I., Sadeghipour, S. 2005. Systematic

Model-Based Testing of Embedded Automotive

Software. Electronic Notes in Theoretical Computer

Science (Book).

Cutilla, C. R., García-García, J. A., Gutiérrez, J. J.,

Domínguez-Mayo, P., Cuaresma, M. J. E., Rodríguez-

Catalán, L., & Mayo, F. J. D., 2012. Model-driven Test

Engineering-A Practical Analysis in the AQUA-WS

Project. In ICSOFT (pp. 111-119).

Donyina A., Heckel R., 2009. Formal Visual Modelling of

Human Agents in Service Oriented Systems. 2009

Fourth South-East European Workshop on Formal

Methods.

Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J.,

García García, J. A., Lee, V., & Goto, M., 2015. Entity

Identity Reconciliation based Big Data Federation-A

MDE approach.

Escalona M.J., Gutiérrez J.J., Villadiego. D., León. A.,

Torres A.H., 2006. Practical Experiences in Web

Engineering. 15th International Conference On

Information Systems Development. Budapest

(Hungary).

Escalona, M. J., Urbieta, M., Rossi, G., Garcia-Garcia, J.

A., & Luna, E. R., 2013. Detecting Web requirements

conflicts and inconsistencies under a model-based

perspective. Journal of Systems and Software, 86(12),

3024-3038.

Fielding, R. T., Taylor R.N., 2002. Principled Design of the

Modern Web Architecture. ACM Transactions on

Internet Technology, Vol. 2,

Forward, A., Lethbridge, T., 2008. Problems and

opportunities for model-centric versus code-centric

software development: A survey of software

professionals. International Workshop on Models in

Software Engineering.

García-García, J. A., Escalona, M. J., Ravel, E., Rossi, G.,

& Urbieta, M., 2012. NDT-merge: a future tool for

conciliating software requirements in MDE

environments. In Proceedings of the 14th International

Conference on Information Integration and Web-based

Applications & Services (pp. 177-186). ACM.

García-García, J. A., Enríquez, J. G., García-Borgoñón, L.,

Arévalo, C., & Morillo, E., 2017. A MDE-based

framework to improve the process management: the

EMPOWER project. In 2017 IEEE 15th International

Conference on Industrial Informatics (INDIN) (pp.

553-558). IEEE.

García-García, J.A., Ortega, M.A., García-Borgoñón, L.,

Escalona, M.J., 2012. NDT-Suite: a model-based suite

for the application of NDT. In International

Conference on Web Engineering. Springer, Berlin,

Heidelberg.

Graham D., Van Veenendaal E., Evans I., Black R., 2015.

Foundations of Software Testing: ISTQB Certification

Cengage Learning Emea; Revised edition.

Grigg, I. 2004. The Ricardian Contract. In Proceedings of

the First IEEE International Workshop on Electronic

Contracting. http://iang.org/papers/ricardian_contract.

html.

Grigg, I. 2015. The Sum of All Chains — Let’s Converge!,

Presentation for Coinscrum and Proof of Work.

http://financialcryptography.com/mt/archives/001556.

html.

Hackius, N.; Petersen, M., 2017. Blockchain in Logistics

and Supply Chain: Trick or Treat?. In Proceedings of

the Hamburg International Conference of Logistics

(HICL), Hamburg, Germany.

Kitchenham B., Brereton P., 2013. A systematic review of

systematic review process research in software

engineering. Information & Software Technology.

Lu Q, Weber I, Staples M., 2018. Why Model-Driven

Engineering Fits the Needs for Blockchain Application

Development. IEEE Blockchain Technical Briefs,

September 2018.

Marchesi M., Marchesi L., Tonelli R., 2018. An Agile

Software Engineering Method to Design Blockchain

Applications. Software Engineering Conference Russia

(SECR 2018). Moscow (Russia).

Mendling, J., Weber, I., van der Aalst, W.M.P., vom

Brocke, J., Cabanillas, C., Daniel, F., Debois, S., Di

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

452

Ciccio, C., Dumas, M., Dustdar, S., Gal, A., Garcıa-

Banuelos, L., Governatori, G., Hull, R., Rosa, M.L.,

Leopold, H., Leymann, F., Recker, J., Reichert, M.,

Reijers, H.A., Rinderle-Ma, S., Solti, A., Rosemann,

M., Schulte, S., Singh, M.P., Slaats, T., Staples, M.,

Weber, B., Weidlich, M., Weske, M., Xu, X., Zhu, L.

2018. Blockchains for business process management -

challenges and opportunities. ACM Transactions on

Management Information Systems (TMIS). Volume 9

Issue 1.

Nakamoto, S. 2009: Bitcoin: A Peer-to-Peer Electronic

Cash System.

Omohundro, S, 2014. Cryptocurrencies, smart contracts,

and artificial intelligence. Published in AI Matters.

PivotPoint Technology™, 2019. Digital Engineering

SolutionsSM for Wicked Problems (https://Pivotpt.com)

Pretschner A., Prenninger W., Wagner S., Kuhnel C.,

Baumgartner M., Sostawa B., Z ̈olch R., Stauner T.,

2005. One evaluation of model based testing and its

automation. ICSE’05.

Rayskiy A., 2017. Why Should Testing Start Early in

Software Project Development?. https://xbsoftware.

com/blog/why-should-testing-start-early-software-

project-development/

Rosemann, M., von Brocke, J., 2015: The Six Core

Elements of Business Process Management. Handbook

on Business Process Management 1. Springer.

Sandoval K, 2018. The Role of APIs In Blockchain.

https://nordicapis.com/the-role-of-apis-in-blockchain/.

Bloc Nordic APIs.

Seebache S., Maleshkova M., 2018. Model-driven

Approach for the Description of Blockchain Business

Networks. Proceedings of the 51st Hawaii International

Conference on System Sciences.

Sultan K., Ruhi U., Lakhani R., 2018. Conceptualizing

Blockchains: Characteristics & Applications. 11th

IADIS International Conference Information Systems.

The modex Team, 2019. The life cycle of Smart Contract

development https://blog.modex.tech/the-life-cycle-of-

smart-contract-development-58b04f65de09

Tran AB, Lu Q, Weber I., 2018. Lorikeet: A model-driven

engineering tool for blockchain-based business process

execution and asset management. In: BPM Demos.

CEUR-WS.

Wiegers K.E., 2001. Inspecting Requirements.

StickyMinds.com Weekly Column.

Towards an Approach for Applying Early Testing to Smart Contracts

453

