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Abstract
Treating specific tissueswithout affecting other regions is a difficult task. It is desirable
to target the particular tissue where the chemical has its biological effect. To study
this phenomenon computationally, in this work we numerically study a mathematical
model which is written as a nonlinear system composed by three parabolic partial
differential equations. The variables involved in the model are the concentration of the
chemical, the concentration of the binding protein and the concentration of the chem-
ical bound to the protein. Our aim is to propose a fully discrete approximation of this
problem, using the Finite Element Method and a semi-implicit Euler scheme, in order
to solve it numerically. This discrete problem is analysed, obtaining a discrete stability
property and some a priori error estimates that show the algorithm converges linearly
if the continuous solution is regular enough. Also, some representative examples are
shown, as well as the numerical verification of the convergence.
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1 Introduction

Over the last twenty years, there has been a big interest in the modelling of the target
action of chemicals to particular issues where their biological action should be exerted.
Some typical examples are, for instance, endogenous hormones, growth factors and
prescribed drugs. In the paper [7], Zhang et al. introduced a model for the transport of
IGF which suggested a way to achieve selective targeting to particular issues, in such
a way that the degradation of the IGF-IGFBP complex could be able to regulate the
free concentration of the IGF. Therefore, in their continuation work [5] they consider
a simplified model involving only two molecules, the IGF and the IGF binding protein
3 (IGFBP3), and their small IGF-IGFBP3 binary complex. They also applied this
model to the transport of a prodrug within a tumour. The basic idea of the model is
that such binding proteins act as “carrier proteins”, forming IGF-IGFBP complexes,
which prolong the half time of IGFs (see, e.g., [4, 6]). As it is pointed out in [5], this
mechanism is biologically admissible as IGFBP-degrading proteases are capable of
cleaving IGFBP into fragments that have low binding affinity for IGFs.

In the paper by Gardiner et al. the model is described by using three reaction-
diffusion parabolic partial differential equations which are assumed to be coupled by
several nonlinear terms. In their work, they first consider the particular case where the
rate of formation of the complex within the tissue is small. In such case, for the one-
dimensional setting, it is possible to calculate an analytical solution and to show that,
under some conditions on the parameters, the maximum concentration of IGF is found
in the centre of the tissue. In the case of the fullmodel, a finite differencemethod,which
is implemented in Matlab but not detailed in the paper, is applied and some numerical
simulations are then presented. Therefore, in our work our aim is to continue the
research started in [5, 7], by introducing a semi-explicit finite element approximation
of the corresponding variational problem, providing its theoretical numerical analysis,
which includes a discrete stability property and a priori error estimates, and to perform
some numerical simulations which demonstrate the accuracy of these approximations
and the behaviour of the solution.

2 Themathematical model

Let us denote by � ⊂ R
d , d = 1, 2, 3 the spatial domain (d being the spatial dimen-

sion), and by [0, T ], T > 0 the time interval of interest. Let x = (x j )dj=1 and
t ∈ [0, T ] be the spatial and temporal variables, respectively. The boundary of the
domain � = ∂� is assumed to be Lipschitz, and its outward unit normal vector is
ν = (νi )

d
i=1.

In this section, following [5] we describe the mathematical model. In order to
avoid some repetition, we only consider the dimensionless version of the constitutive
equations. Therefore, let us denote by A, B and C the three chemicals arising in this
reaction-diffusion problem. As it is pointed out in [5], these chemicals could refer to
the concentration of IGF (A), the concentration of IGFBV3 (B) and the concentration
of the IGF-IGFBP3 binary complex (C).
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Let us define the source functions as follows [5]:

φA(A, B,C) = −λ1μA AB + λ2μAC,

φB(A, B,C) = −λ1μB AB + λ5C,

φC (A, B,C) = λ1AB.

However, since these functions are nonlinear, in order to obtain the error estimates
and also due to biological restrictions (all the concentrations must be greater than zero
and bounded because the space (the tissue) is limited), we introduce the following
truncation operators:

R1(A) =
⎧
⎨

⎩

A if A ∈ [0, A∗],
0 if A < 0,
A∗ if A > A∗,

R2(B) =
⎧
⎨

⎩

B if B ∈ [0, B∗],
0 if B < 0,
B∗ if B > B∗.

In the previous definitions of the truncation operators Ri , i = 1, 2 we have denoted
by A∗ and B∗ the maximum concentrations of the chemicals A and B, respectively.

In this way, we may rewrite the above constitutive source functions as follows:

φA(A, B,C) = −λ1μAR1(A)R2(B) + λ2μAC,

φB(A, B,C) = −λ1μB R1(A)R2(B) + λ5C,

φC (A, B,C) = λ1R1(A)R2(B),

where, making an abuse of the notation, we have used the same letters for the truncated
source functions.

The resulting problem is written as follows (for any number of spatial dimensions):
Problem P. Find the concentration of the first chemical A : �̄ × [0, T ] → R, the

concentration of the second chemical B : �̄ × [0, T ] → R and the concentration of
the third chemical C : �̄ × [0, T ] → R such that

Ȧ = δA ∇2A − λ3A + φA(A, B,C) in � × (0, T ), (1)

Ḃ = δB ∇2B − λ4B + φB(A, B,C) in � × (0, T ), (2)

Ċ = ∇2C − λ2C + φC (A, B,C) in � × (0, T ), (3)
∂ A

∂ν
= ∂ B

∂ν
= ∂ C

∂ν
= 0 on � × (0, T ), (4)

A(x, 0) = A0(x), B(x, 0) = B0(x) for a.e. x ∈ �, (5)

C(x, 0) = C0(x) for a.e. x ∈ �, (6)

where A0, B0 and C0 are the given initial conditions and ∇2 represents the Laplacian
operator.

Now, we derive the variational formulation of the above biological problem. To
this purpose, let us define the variational spaces Y = L2(�), E = H1(�) and H =
[L2(�)]d and denote by

(·, ·)Y ,
(·, ·)E and

(·, ·)H the respective scalar products in
these spaces (with corresponding norms ‖ · ‖Y , ‖ · ‖E and ‖ · ‖H).
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From now on, in order to simplify the writing, we do not indicate the explicit
dependence of the functions on the spatial variable x. Thus, by using Green’s formula
and boundary conditions (4) the variational formulation of Problem P is written as
follows.

Problem VP. Find the concentration of the first chemical A : [0, T ] → E , the
concentration of the second chemical B : [0, T ] → E and the concentration of the
third chemical C : [0, T ] → E such that A(0) = A0, B(0) = B0, C(0) = C0 and,
for a.e. t ∈ (0, T ) and for all v, r , z ∈ E ,

( Ȧ(t), v)Y + δA(∇A(t), ∇v)H + λ3(A(t), v)Y

= (φA(A(t), B(t),C(t)), v)Y , (7)

(Ḃ(t), r)Y + δB(∇B(t), ∇r)H + λ4(B(t), r)Y
= (φB(A(t), B(t),C(t)), r)Y , (8)

(Ċ(t), z)Y + (∇C(t), ∇z)H + λ2(C(t), z)Y
= (φC (A(t), B(t),C(t)), z)Y . (9)

In the following we state that the previous variational problem admits a unique
solution.

Theorem 1 If we assume that the coefficients λ3, λ4 and λ2, and the diffusion coeffi-
cients δA and δB are strictly positive, then there exists a unique solution to Problem
V P with the following regularity:

A, B, C ∈ C1([0, T ]; Y ) ∩ C([0, T ]; E).

The proof of the above theorem is a little bit technical and it is based on well-known
results on evolution equations with monotone operators (see, e.g., [1]), and a direct
application of the fixed-point theorem. However, for the sake of simplicity and since,
in this paper, we focus on the numerical analysis of this problem, we skip the details
of the proof.

3 Numerical analysis of a fully discrete approximation

Now, we consider a fully discrete approximation of Problem VP. Firstly, we start
assuming that the domain �̄ is polyhedral, and denoting by T h a regular triangulation
in the sense of Ciarlet [3]. Thus, we can construct the finite dimensional space Eh ⊂ E
as follows: where P1(Tr) represents the space of polynomials of degree less or equal
to one in element Tr . Therefore, the finite element space Eh is composed of piecewise
continuous affine functions. Here, h > 0 denotes the spatial discretization parameter.
Moreover, we assume that the discrete initial conditions are given by

Ah
0 = Ph A0, Bh

0 = Ph B0, Ch
0 = PhC0, (10)

where Ph is the classical finite element interpolation operator over Eh (see, e.g., [3]).
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Secondly, we consider a uniform partition of the time interval [0, T ] with step
size k = T /N and nodes tn = n k for n = 0, 1, . . . , N . Moreover, for a continuous
function f : [0, T ] → E , we denote fn = f (tn).

Finally, using a hybrid combination of the implicit and the explicit Euler schemes,
we obtain the fully discrete approximation of variational problem VP in the following
form.

Problem VPhk Find the discrete concentration of the first chemical Ahk =
{Ahk

n }Nn=0 ⊂ Eh , the discrete concentration of the second chemical Bhk = {Bhk
n }Nn=0 ⊂

Eh and the discrete concentration of the third chemical Chk = {Chk
n }Nn=0 ⊂ Eh such

that Ahk
0 = Ah

0, B
hk
0 = Bh

0 ,C
hk
0 = Ch

0 , for n = 1, . . . , N and for all vh, rh, zh ∈ Eh ,

((Ahk
n − Ahk

n−1)/k, vh)Y + δA(∇Ahk
n , ∇vh)H + λ3(A

hk
n , vh)Y

= (φA(Ahk
n−1, B

hk
n−1,C

hk
n−1), vh)Y , (11)

(
(Bhk

n − Bhk
n−1)/k, r

h)

Y + δB
(∇Bhk

n , ∇rh
)

H + λ4
(
Bhk
n , rh

)

Y

= (
φB(Ahk

n−1, B
hk
n−1,C

hk
n−1), r

h)

Y , (12)
(
(Chk

n − Chk
n−1)/k, z

h)

Y + (∇Chk
n , ∇zh

)

H + λ2
(
Chk
n , zh

)

Y

= (
φC (Ahk

n−1, B
hk
n−1,C

hk
n−1), z

h)

Y . (13)

Under the conditions of Theorem 1, using the classical Lax-Milgram lemma we
easily find that there exists a unique discrete solution to Problem V Phk .

In the rest of the section, our aim is prove a discrete stability result and to derive
some a priori error estimates on the numerical errors An−Ahk

n , Bn−Bhk
n andCn−Chk

n .
First, we prove a discrete stability property on the discrete solution.

Theorem 2 Let the assumptions of Theorem 1 hold. If we denote by (Ahk, Bhk,Chk)

the solution to problem V Phk, then it follows that there exists a positive constant
M > 0, independent of the discretization parameters h and k, such that

‖Ahk
n ‖2Y + ‖Bhk

n ‖2Y + ‖Chk
n ‖2Y ≤ M .

Proof First, taking as a function test vh = Ahk
n in discrete variational equation (11)

we find that

(
(Ahk

n − Ahk
n−1)/k, Ahk

n

)

Y + δA
(∇Ahk

n , ∇Ahk
n

)

H + λ3
(
Ahk
n , Ahk

n

)

Y−(
φA(Ahk

n−1, B
hk
n−1,C

hk
n−1), Ahk

n

)

Y = 0.

Keeping in mind that

(
(Ahk

n − Ahk
n−1)/k, Ahk

n

)

Y ≥ 1

2k

{
‖Ahk

n ‖2Y − ‖Ahk
n−1‖2Y

}
,

δA
(∇Ahk

n , ∇Ahk
n

)

H ≥ 0,
λ3

(
Ahk
n , Ahk

n

)

Y ≥ 0,
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using several times Cauchy-Schwarz inequality and the following Young’s inequality

ab ≤ εa2 + 1

4ε
b2,

we easily find that

1

2k

{
‖Ahk

n ‖2Y − ‖Ahk
n−1‖2Y

}
≤ M

(
‖Ahk

n ‖2Y + ‖Ahk
n−1‖2Y + ‖Bhk

n−1‖2Y + ‖Chk
n−1‖2Y

)
.

Proceeding in a similar form, we obtain the following estimates for the discrete con-
centrations of chemicals Bhk

n and Chk
n :

1

2k

{
‖Bhk

n ‖2Y − ‖Bhk
n−1‖2Y

}
≤ M

(
‖Bhk

n ‖2Y + ‖Ahk
n−1‖2Y + ‖Bhk

n−1‖2Y + ‖Chk
n−1‖2Y

)
,

1

2k

{
‖Chk

n ‖2Y − ‖Chk
n−1‖2Y

}
≤ M

(
‖Chk

n ‖2Y + ‖Ahk
n−1‖2Y + ‖Bhk

n−1‖2Y + ‖Chk
n−1‖2Y

)
.

Combining the previous estimates it follows that

1

2k

{
‖Ahk

n ‖2Y − ‖Ahk
n−1‖2Y

}
+ 1

2k

{
‖Bhk

n ‖2Y − ‖Bhk
n−1‖2Y

}

+ 1

2k

{
‖Chk

n ‖2Y − ‖Chk
n−1‖2Y

}

≤ M
(
‖Bhk

n ‖2Y + ‖Ahk
n−1‖2Y + ‖Bhk

n−1‖2Y + ‖Chk
n−1‖2Y

)
,

≤ M
(
‖Chk

n ‖2Y + ‖Ahk
n−1‖2Y + ‖Bhk

n−1‖2Y + ‖Chk
n−1‖2Y

)
.

Therefore, multiplying the above estimates by k and summing up to n we obtain

‖Ahk
n ‖2Y + ‖Bhk

n ‖2Y + ‖Chk
n ‖2Y ≤ Mk

n∑

j=1

(
‖Bhk

j ‖2Y + ‖Ahk
j ‖2Y + ‖Chk

j ‖2Y
)

+M(‖Ah
0‖2Y + ‖Bh

0 ‖2Y + ‖Ch
0 ‖2Y ).

Finally, using a discrete version of Gronwall’s inequality (see, for instance, [2]) we
conclude the desired stability property. ��

Now, we derive the error estimates for the concentration of the first chemical.
Subtracting variational equation (7) at time t = tn and for all v = vh ∈ Eh ⊂ E and
discrete variational equation (11), then we have, for all vh ∈ Eh ,

(
Ȧn − (Ahk

n − Ahk
n−1)/k, vh

)

Y + δA
(∇(An − Ahk

n ), ∇vh
)

H+λ3
(
Ahk
n , vh

)

Y − (
φA(An, Bn,Cn) − φA(Ahk

n−1, B
hk
n−1,C

hk
n−1), vh

)

Y = 0,
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and therefore, it follows that, for all vh ∈ Eh ,

(
Ȧn − (Ahk

n − Ahk
n−1)/k, An − Ahk

n

)

Y + δA
(∇(An − Ahk

n ), ∇(An − Ahk
n )

)

H−(
φA(An, Bn,Cn) − φA(Ahk

n−1, B
hk
n−1,C

hk
n−1), An − Ahk

n

)

Y+λ3
(
Ahk
n , An − Ahk

n

)

Y= (
Ȧn − (Ahk

n − Ahk
n−1)/k, An − vh

)

Y + δA
(∇(An − Ahk

n ), ∇(An − vh)
)

H−(
φA(An, Bn,Cn) − φA(Ahk

n−1, B
hk
n−1,C

hk
n−1), An − vh

)

Y+λ3
(
Ahk
n , An − vh

)

Y .

Now, taking into account that

(
Ȧn − (Ahk

n − Ahk
n−1)/k, An − Ahk

n

)

Y= (
Ȧn − (An − An−1)/k, An − Ahk

n

)

Y+(
(An − An−1)/k − Ahk

n − Ahk
n−1)/k, An − Ahk

n

)

Y= (
Ȧn − (An − An−1)/k, An − Ahk

n

)

Y

+ 1

2k

{
‖An − Ahk

n ‖2Y − ‖An−1 − Ahk
n−1‖2Y

}
,

δA(∇(An − Ahk
n ), ∇(An − Ahk

n ))H ≥ δA‖∇(An − Ahk
n )‖2H,

‖(φA(An, Bn,Cn) − φA(Ahk
n−1, B

hk
n−1,C

hk
n−1), v)Y ‖

≤ M
(
‖An − Ahk

n−1‖2Y + ‖Bn − Bhk
n−1‖2Y + ‖Cn − Chk

n−1‖2Y + ‖v‖2Y
)
,

where we have used the well-known Cauchy-Schwarz inequality, the Young’s inequal-
ity used previously, and the definition of the truncated function φA, we conclude that

1

2k

{
‖An − Ahk

n ‖2Y − ‖An−1 − Ahk
n−1‖2Y

}
≤ M

(
‖An − Ahk

n−1‖2Y
+‖Bn − Bhk

n−1‖2Y + ‖Cn − Chk
n−1‖2Y + ‖An − Ahk

n ‖2Y + ‖An − vh‖2E
+(

(An − An−1)/k − (Ahk
n − Ahk

n−1)/k, An − vh
)

Y

+‖ Ȧn − (An − An−1)/k‖2Y
)
,

(14)

where, here and in what follows, M > 0 represents a positive constant which is
assumed to be independent of the discretization parameters but depending on the
continuous solution.

Proceeding in a similar form, we derive the a priori error estimates for the concen-
tration of the second and third chemicals:

1

2k

{
‖Bn − Bhk

n ‖2Y − ‖Bn−1 − Bhk
n−1‖2Y

}
≤ M

(
‖An − Ahk

n−1‖2Y
+‖Bn − Bhk

n−1‖2Y + ‖Ḃn − (Bn − Bn−1)/k‖2Y + ‖Bn − Bhk
n ‖2Y

+(
(Bn − Bn−1)/k − (Bhk

n − Bhk
n−1)/k, Bn − rh

)

Y

+‖Cn − Chk
n−1‖2Y + ‖Bn − rh‖2E

)
,

(15)

123



2132 Journal of Mathematical Chemistry (2022) 60:2125–2138

1

2k

{
‖Cn − Chk

n ‖2Y − ‖Cn−1 − Chk
n−1‖2Y

}
≤ M

(
‖An − Ahk

n−1‖2Y
+‖Bn − Bhk

n−1‖2Y + ‖Ċn − (Cn − Cn−1)/k‖2Y + ‖Cn − Chk
n ‖2Y

+(
(Cn − Cn−1)/k − (Chk

n − Chk
n−1)/k, Cn − zh

)

Y

+‖Cn − Chk
n−1‖2Y + ‖Cn − zh‖2E

)
.

(16)

Combining estimates (14)–(16) it follows that

1

2k

{
‖An − Ahk

n ‖2Y − ‖An−1 − Ahk
n−1‖2Y

}

+ 1

2k

{
‖Bn − Bhk

n ‖2Y − ‖Bn−1 − Bhk
n−1‖2Y

}

+ 1

2k

{
‖Cn − Chk

n ‖2Y − ‖Cn−1 − Chk
n−1‖2Y

}

≤ M
(
‖An − Ahk

n−1‖2Y + ‖Bn − Bhk
n−1‖2Y + ‖Cn − Chk

n−1‖2Y
+‖An − Ahk

n ‖2Y + ‖Bn − Bhk
n ‖2Y + ‖ Ȧn − (An − An−1)/k‖2Y

+‖Ḃn − (Bn − Bn−1)/k‖2Y + ‖Ċn − (Cn − Cn−1)/k‖2Y
+‖An − vh‖2E + ‖Bn − rh‖2E + ‖Cn − zh‖2E + ‖Cn − Chk

n ‖2Y
+(

(An − An−1)/k − (Ahk
n − Ahk

n−1)/k, An − vh
)

Y

+(
(Bn − Bn−1)/k − (Bhk

n − Bhk
n−1)/k, Bn − rh

)

Y

+(
(Cn − Cn−1)/k − (Chk

n − Chk
n−1)/k, Cn − zh

)

Y

)
.

Multiplying the above estimates by k and summing up to n, we have

‖An − Ahk
n ‖2Y + ‖Bn − Bhk

n ‖2Y + ‖Cn − Chk
n ‖2Y

≤ M
n∑

j=1

(
‖A j − Ahk

j−1‖2Y + ‖Bj − Bhk
j−1‖2Y + ‖C j − Chk

j−1‖2Y
+‖A j − Ahk

j ‖2Y + ‖Bj − Bhk
j ‖2Y + ‖C j − Chk

j ‖2Y + ‖ Ȧ j − (A j − A j−1)/k‖2Y
+‖Ḃ j − (Bj − Bj−1)/k‖2Y + ‖Ċ j − (C j − C j−1)/k‖2Y+‖A j − vhj ‖2E + ‖Bj − rhj ‖2E + ‖C j − zhj‖2E
+(

(A j − A j−1)/k − (Ahk
j − Ahk

j−1)/k, A j − vhj

)

Y
+(

(Bj − Bj−1)/k − (Bhk
j − Bhk

j−1)/k, Bj − rhj
)

Y

+(
(C j − C j−1)/k − (Chk

j − Chk
j−1)/k, C j − zhj

)

Y

)
.

+M
(
‖A0 − Ah

0‖2Y + ‖B0 − Bh
0 ‖2Y + ‖C0 − Ch

0 ‖2Y
)
.
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Now, considering that

k
n∑

j=1

(
(A j − A j−1)/k − (Ahk

j − Ahk
j−1)/k, A j − vhj

)

Y

=
n∑

j=1

(
A j − A j−1 − (Ahk

j − Ahk
j−1), A j − vhj

)

Y

= (
An − Ahk

n , An − vhn
)

Y + (
Ah
0 − A0, A1 − vh1

)

Y

+
n∑

j=1

(
A j − Ahk

j , A j − vhj − (A j+1 − vhj+1)
)

Y ,

and the corresponding estimates for the remaining variables B and C , applying a
discrete version of Gronwall’s inequality (see [2]), we conclude the following error
estimates result.

Theorem 3 Let the assumptions of Theorem 1 hold. If we denote by (A, B,C) and
(Ahk, Bhk,Chk) the respective solutions to problems V P and V Phk, then we have
the following a priori error estimates, for all vh = {vhj }Nj=0, r

h = {rhj }Nj=0, z
h =

{zhj }Nj=0 ⊂ Eh,

max
0≤n≤N

{
‖An − Ahk

n ‖2Y + ‖Bn − Bhk
n ‖2Y + ‖Cn − Chk

n ‖2Y
}

≤ Mk
N∑

j=1

(
‖ Ȧ j − (A j − A j−1)/k‖2Y

+‖Ḃ j − (Bj − Bj−1)/k‖2Y + ‖Ċ j − (C j − C j−1)/k‖2Y
+‖C j − zhj‖2E + ‖A j − vhj ‖2E + ‖Bj − rhj ‖2E

)

+M

k

N−1∑

j=1

{
‖A j − vhj − (A j+1 − vhj+1)‖2Y

+‖Bj − rhj − (Bj+1 − rhj+1)‖2Y
+‖C j − zhj − (C j+1 − zhj+1)‖2Y

}

+M max
0≤n≤N

{
‖An − vhn‖2Y + ‖Bn − rhn ‖2Y + ‖Cn − zhn‖2Y

}

+M
(
‖A0 − Ah

0‖2Y + ‖B0 − Bh
0 ‖2Y + ‖C0 − Ch

0 ‖2Y
)
, (17)

where M > 0 is a positive constant assumed to be independent of the discretization
parameters h and k but depending on the continuous solution.

We note that we can study the convergence order from estimates (17). As an
example, we have the following result which states the linear convergence of the
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approximation under suitable additional regularity conditions (see [2] for details
regarding the estimates of the terms which are not the usually found in the finite
element approximations).

Corollary 1 If we assume that the continuous solution to Problem V P has the regu-
larity:

A, B, C ∈ C2([0, T ]; Y ) ∩ C([0, T ]; H2(�)),

and the initial conditions have the regularity

A0, B0, C0 ∈ H2(�),

then the approximations provided by Problem V Phk are linearly convergent; i.e., there
exists a positive constant M > 0 such that

max
0≤n≤N

{
‖An − Ahk

n ‖Y + ‖Bn − Bhk
n ‖Y + ‖Cn − Chk

n ‖Y
}

≤ M(h + k).

4 Numerical results

In this section we describe some of the numerical simulations we have performed
solving a one-dimensional version of Problem P.

4.1 Numerical convergence

To check numerically the result obtained in Theorem 3 we solve Problem P for several
values of discretization parameters h and k using the following parameters:

� = (0, 1), λ1 = 20, λ2 = 5, λ3 = 0.5, λ4 = 1, λ5 = 1,
μA = 1, μB = 1, δA = 1, δB = 1.

The initial condition was assumed constant for all three variables and equal to one,
i.e. A(x, 0) = B(x, 0) = C(x, 0) = 1 for x ∈ (0, 1). The final time T was 1.

Since the problem is non-linear, an analytical solution is not easy to obtain and so,we
consider as exact solution a numerical solution computed with very fine discretization
parameters (h = k = 10−6). The numerical errors are therefore calculated as

max
0≤n≤N

{
‖An − Ahk

n ‖Y + ‖Bn − Bhk
n ‖Y + ‖Cn − Chk

n ‖Y
}
,

being An, Bn, Cn such approximated discrete solution.
The results obtained are summarized in Table 1. The numerical convergence is

clearly seen. The main diagonal is plotted against h + k in Fig. 1. There we can see
that the convergence of the algorithm is linear, as expected.
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Table 1 Numerical errors (×100)

h ↓ k → 1.000000e-02 5.000000e-03 1.000000e-03 5.000000e-04

1.000000e-02 0.102053 0.068638 0.0549004 0.0561959

5.000000e-03 0.0841871 0.0490727 0.0266104 0.0274287

1.000000e-03 0.0723823 0.035773 0.00739813 0.00542776

5.000000e-04 0.0713007 0.0344873 0.00559552 0.00272815

1.000000e-04 0.0705687 0.0336596 0.00436095 0.000778132

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

h+k

0

0.2
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1
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N
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 e

rr
or

10-3

Fig. 1 Asymptotic convergence

4.2 Stationary results

In this section we explore the one-dimensional examples presented in [5]. We remark
that, in all cases, the problem evolves to a steady solution, and we study the three cases
presented in the mentioned reference comparing different values of λ1.

4.2.1 Case 1

We start with the problem corresponding with these parameters:

� = (0, 1), λ2 = 5, λ3 = 0.5, λ4 = 1, λ5 = 1,
μA = 1, μB = 1, δA = 1, δB = 1,

where parameter λ1 is assumed to vary, and we use the same initial conditions as in
the previous example. The discretization parameters employed are k = 0.0001 and
h = 0.02. In all cases we let the solution evolve until it reaches the steady state; this
happens in all cases around time t = 2.7.
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Fig. 2 This figure directly correlates with Fig. 6 in [5]
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Fig. 3 Evolution of the solution at x = 0 with time

In Fig. 2 we plot the steady state solutions for variables A and C , for three values
of λ1.

Furthermore, in Fig. 3 we show the evolution of the solution at the point x = 0
for variables A and C . We recall that this point corresponds to the center of the real
domain, but since there is symmetry only half of it is simulated.

4.2.2 Case 2

Next, we study the following case:

� = (0, 1), λ2 = 1, λ3 = 0.5, λ4 = 0.5, λ5 = 12,
μA = 10, μB = 0.2, δA = 0.02, δB = 0.1.

We assume again that parameter λ1 varies and we use the same initial conditions and
discretization parameters. In this case, the steady state solution is not reached until
time t = 13.5.

In Fig. 4 we plot the steady state solutions for variables A and B, for three values
of λ1.

In Fig. 5 we also show the evolution of A and B with time.
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Fig. 4 This figure directly correlates with Fig. 7 in [5]
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Fig. 5 Evolution of the solution at x = 0 with time
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Fig. 6 This figure directly correlates with Fig. 8 in [5]
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4.2.3 Case 3

Finally, we consider the case obtained with the following data:

� = (0, 1), λ2 = 1, λ3 = 0.5, λ4 = 10, λ5 = 12,
μA = 10, μB = 0.2, δA = 0.02, δB = 0.1,

where, again, we assume that λ1 varies and we use the same initial condition and
discretization parameters. The steady state solution for the case with λ1 = 0 is reached
at time t = 13.3; while for the case with λ1 = 0.01 is reached at t = 16.4.

In Fig. 6 we plot the steady state solutions for variables A and B, for three values
of λ1.
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