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Abstract: Most of the surface integral equation (SIE) formulations for 
composite conductor and/or penetrable objects suffer from balancing 
problems mainly because of the very different scales of the equivalent 
electric and magnetic currents. Consequently, the impedance matrix usually 
has high- or ill-condition number due to the imbalance between the different 
blocks. Using an efficient left and right preconditioner the elements of the 
impedance matrix are balanced. The proposed approach improves the 
matrix balance without modifying the underlying SIE formulation, which 
can be selected solely in terms of accuracy. The numerical complexity of 
this preconditioner is O(N) with N the number of unknowns, and it can be 
easily included on any existing SIE code implementation. 
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1. Introduction 

Most practical electromagnetic scattering and radiation problems can be defined as a 
combination of conducting and penetrable objects. The surface integral equation (SIE) 
method [1] is perhaps the most powerful numerical method in the electromagnetic analysis of 
this kind of problems. It has demonstrated to be very accurate and efficient for the analysis of 
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composite objects with real conductors and dielectrics in radio frequency and microwave 
regimes [2–10]. Recently, this approach was successfully extended to the analysis of 
homogenized metamaterials and plasmonic problems [11–18] in the context of nanoscience 
applications. However, traditional SIE methods are still restricted to electrically small 
problems (small in terms of the wavelength) because the implicit discretization process of the 
SIE results in a dense matrix equation which is very expensive to solve and to store. In order 
to solve electrically large problems, advanced methods like the fast multipole method (FMM) 
[19] and its multilevel version (MLFMA) [20,21] are required in combination with iterative 
solutions of the matrix equation [22–24]. Nevertheless, many of the traditional SIE 
formulations lead to ill-conditioned matrix equations. A high condition number may cause 
problems in the numerical solution, such as slow convergence of iterative solvers (also 
depending on the clustering of eigenvalues) and even inaccuracy of the solution when the 
condition number is really high. 

The most typical way to improve the condition number of a matrix equation, and so its 
convergence in the context of an iterative algorithm, is preconditioning [25]. Some popular 
preconditioners are for example: the use of the diagonal elements of the matrix; the near-field, 
block-diagonal [26]; the incomplete LU factorization [27,28]; the multiplicative 
preconditioner using Calderon identities [29,30]; or inner/outer GMRES preconditioners 
[31,32]. Effective preconditioners are, however, computationally costly. 

An alternative way to improve the condition of the matrix is a proper choice of the SIE to 
be solved. The main reason for the poor conditioning of the SIE matrix is that the unknowns 
(the electric and magnetic surface current densities), and the integral equations (the electric 
and magnetic field integral equations), are of the very different scales. Usually the balance 
between the unknowns and between the equations is improved, for example, by multiplying 
the magnetic field integral equation (MFIE) with the wave impedance [33]; or scaling the 
magnetic, or electric, surface current density by the wave impedance [34–36] or both [37,38]. 
In these cases, the conditioning of the matrix is improved by using proper weighting 
coefficients and combination of the equations [8]. In fact, the widespread combined tangential 
formulation (CTF) can be seen as a weighted version of the original Poggio–Miller–Chang–
Harrington–Wu–Tsai (PMCHWT) formulation [34], in which the balance between the 
diagonal blocks of the matrix has been improved. And the same goes for the combined normal 
formulation (CNF), which can be seen as a variation of the original Müller formulation [2,39]. 
Anyway, the resultant matrices in all these SIE formulations are still unbalanced because, for 
example, when balancing the diagonal blocks of the matrices, the off-diagonal blocks become 
unbalanced. Otherwise, modifying the formulation through the appropriate selection of 
combination coefficients to improve block balance may affect other desirable properties. This 
is the case of CTF and PMCHWT when dealing with plasmonic problems. While CTF has a 
much better convergence than PMCHWT, this is at the expense of a lower accuracy, as has 
been demonstrated in [18]. 

In a recent paper [40], an efficient method to improve the balance between the unknowns 
and the equations and, hence, also between the matrix elements has been presented. The 
method is based on the use of normalized field quantities and unknowns together with 
carefully chosen scaling factors, achieving a reduction in the condition number of the SIE 
matrices of several orders of magnitude. 

In this paper we propose a similar solution, although in this case the problem is addressed 
from novel and a strictly numerical point of view. The SIE matrix formulation is not modified 
anymore; namely, the balance between matrix elements is straightforwardly addressed during 
the iterative solution process by means of a left and right (L&R) diagonal matrix 
preconditioner. This allows improving the matrix balance independently of the formulation, 
which can now be selected solely in terms of accuracy for a given application. The proposed 
preconditioning formulation is developed in a general way, so that particular expressions can 
be derived for any particular SIE formulation. 

Numerical results show that, owing to the good balance between the matrix elements, the 
proposed preconditioner provides a significant reduction in the condition number. In this 
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paper, the proposed preconditioner has been tested for the conventional SIE formulations 
previously mentioned: PMCHWT formulation, CTF, the normal Müller formulation and 
CNF, and for the electric and magnetic current combined field integral equation (JMCFIE) 
[9], although it can be straight forwardly extended to any other formulation. 

2. Surface integral-equation formulations for composite penetrable bodies 

Let us consider a homogeneous penetrable object in a homogeneous (unbounded) medium. 
The exterior region is denoted by 1R and the interior region is denoted by 2R . Let us define 

with 0i riε ε ε=  the complex permittivity and with 0i riµ µ µ=  the complex permeability of 

region iR  with i = 1,2. riε  and riµ  are the complex valued relative permittivity and 

permeability constants of region iR  and 0ε , 0µ  are the constitutive parameters of vacuum. A 

time harmonic variation exp(jωt) is assumed and suppressed from the formulation. Let us 
denote with S the interface surface between regions 1R  and 2R . ˆ

in  denotes the unit vector 

normal to S and pointing toward iR , hence 2 1
ˆ ˆ= −n n . 

According to the equivalence principle [41] the electric field integral equation (EFIE) and 
the magnetic field integral equation (MFIE) can be formulated separately in each region iR . 

Two alternative formulations can be derived depending on how the fields are projected onto 
the surfaces surrounding this region. The tangential (T) equations in iR  are given by the 

following expressions [1,8]: 

 ( ) ( )tan tan

1
ˆT-EFIE : ( ) ( )

2
inc

i i i i i i i i iη − + × =J M n M EL K  (1) 

 ( ) ( )1

tan tan

1
ˆT-MFIE : ( ) ( )

2
inc

i i i i i i i i iη −+ − × =J M n J HK L  (2) 

In a similar way, the normal (N) equations in iR  can be written as 

 ( ) 1
ˆ ˆN-EFIE : ( ) ( )

2
inc

i i i i i i i i i iη× − − = ×n J M M n EL K  (3) 

 ( )1 1
ˆ ˆN-MFIE : ( ) ( )

2
inc

i i i i i i i i i iη−× + + = ×n J M J n HK L  (4) 

Here 
iη  is the intrinsic impedance in medium iR . The integro-differential iL  and iK  

operators are defined as 

 
2

1
( ) ( ') ( , ') ' ' ( , ') '

i i i i i i i
S S

i

jk G dS G dS
k

 
= + ∇ ∇ ⋅ 

 
∫ ∫X X r r r X r rL  (5) 

 
,

( ) ( ') ( , ') '
i i i i

S PV
G dS= ×∇∫X X r r rK  (6) 

where r denotes the observation points approaching to S  from the inner of region iR  and 

' S∈r  denotes the source points. '∇ ⋅  is the divergence in the primed (source) coordinates, PV 

denotes the principal value of the integral in Eq. (6), ik  is the wavenumber in iR , and 

 
exp( ' )

( , ')
4 '

i

i

jk
G

π

− −
=

−

r r
r r

r r
 (7) 
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is the homogeneous Green’s function in iR . ( ')inc

i
E r  and ( ')inc

i
H r  are the incident fields due 

to the sources located inside region iR , and ( ')iJ r  and ( ')iM r  are the equivalent electric and 

magnetic currents placed over the boundary surface S, as given by the equivalence principle 
for each region iR . According to the boundary conditions (continuity of tangential field 

components across the boundary surface S), the surface current densities in both sides of S 
should satisfy 1 2= −J J  and 1 2= −M M , thus the problem can be described using only one set 

of equivalent electric and magnetic currents on S, namely 1 2= = −J J J  and 1 2= = −M M M . 

Among the various possibilities of combination of the integral equations Eqs. (1)–(4), we 
have chosen the procedure of [7] to derive two stable and well tested SIEs. The 1/ T-EFIEη  is 

combined with the N-MFIE, and the N-EFIE is combined with the T-MFIEη  leading to the 

electric current combined field integral equation (JCFIE) and the magnetic current combined 
field integral equation (MCFIE) in region iR : 

 1JCFIE T-EFIE N-MFIE
i i i i i i

a bη −= +  (8) 

 MCFIE N-EFIE T-MFIEi i i i i ic d η= − +  (9) 

The JCFIE and MCFIE equations for regions 1R  and 2R  are then combined respectively 

to obtain two independent integral equations for the two unknown functions J and M: 

 

( ) ( )
( ) ( )

( )
( ) ( )

1 1
1 1 1 1 2 2 2 2tan tan

1 1
1 1 1 1 2 2 2 2

1 1
1 1 2 2 1 2

1 1
1 1 1 2 2 2 1 1 2 2tan tan

JCFIE: ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

1 1
ˆ ( )

2 2

ˆ ˆ ,inc inc inc inc

a a

b n b n

a a n b b

a a b n b n S

η η

η η

η η

η η

− −

− −

− −

− −

− + −

+ × + − × +

+ − × + +

= − + × + × ∈

J M J M

J M J M

M J

E E H H r

L K L K

K L K L

 (10) 

 

( ) ( )
( ) ( )

( ) ( )

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2tan tan

1 2 1 1 2 2

1 1 2 2 1 1 1 2 2 2tan tan

ˆ ˆMCFIE : ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
ˆ( ) ( )

2 2

ˆ ˆ ,inc inc inc inc

c n c n

d d

c c d d n

c c d d S

η η

η η

η η

η η

− × − + × −

+ + + +

+ + − − ×

= − × − × + − ∈

J M J M

J M J M

M J

n E n E H H r

L K L K

K L K L

 (11) 

3. Discretization of the integral equations 

To obtain the equivalent currents the standard method of moments (MoM) procedure is 
applied to the two previous equations. The equivalent currents are expanded into a sum of 
known vector basis functions nf  in the form 

 ; ;
n n n n ij

n n

J M S= = ∈∑ ∑J f M f r  (12) 

where nJ and nM are the unknown expansion complex coefficients. Substituting Eq. (12) into 

Eq. (10) and Eq. (11) and applying the Galerkin testing procedure, a system of linear 
equations is derived from the integral equations, as follows: 

#168596 - $15.00 USD Received 15 May 2012; revised 26 Jun 2012; accepted 26 Jun 2012; published 13 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  17241



 

( ) ( )

( ) ( )

( )

1 1 1 2 1 2
1 1 2 2

1 1 1 2 1 2
1 1 2 2

1 1
1 1 2 2 1 2

' ' ' '

1 1
( ) '

2 2

' ,

mn n mn n mn n mn n

n S n S

mn n mn n mn n mn n

n S n S

mn n mn n

n S n S

m m

a A J B M a A J B M

b B J A M b B J A M

a a I M b b I J

E H m S

η η

η η

η η

− −

∈ ∈

− −

∈ ∈

− −

∈ ∈

− + −

+ + − +

   + − + +   

= + ∈

∑ ∑

∑ ∑

∑ ∑
 (13) 

 

( ) ( )

( ) ( )

( ) ( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

1 2 1 1 2 2

' ' ' '

1 1
'

2 2

' ,

mn n mn n mn n mn n

n S n S

mn n mn n mn n mn n

n S n S

mn n mn n

n S n S

m m

c A J B M c A J B M

d B J A M d B J A M

c c I M d d I J

E H m S

η η

η η

η η

∈ ∈

∈ ∈

∈ ∈

− − + −

+ + + +

 + + − −    

= + ∈

∑ ∑

∑ ∑

∑ ∑
 (14) 

where the following quantities have been defined: 

 ( )
m

i

mn m i n
A dS

∆
= ⋅∫ f fL  (15) 

 ( )
m

i

mn m i n
B dS

∆
= ⋅∫ f fK  (16) 

 ˆ' ( )
m

i

mn m m i n
A dS

∆
= ⋅ ×∫ f n fL  (17) 

 ˆ' ( )
m

i

mn m m i n
B dS

∆
= ⋅ ×∫ f n fK  (18) 

 
m

mn m n
I dS

∆
= ⋅∫ f f  (19) 

 ˆ' .
m

mn m m n
I dS

∆
= ⋅ ×∫ f n f  (20) 

 ( ) ( )1 1
1 2 2tan tanm

inc inc

m m i i j
E a E a E dSη η− −

∆
 = ⋅ − ∫ f  (21) 

 ( ) ( )1 1 1 2 2 2tan tanm

inc inc

m m
H d H d H dSη η

∆
 = ⋅ − ∫ f  (22) 

 1 1 2 2
ˆ ˆ'

m

inc inc

m m m m
E c n E c n E dS

∆
 = − ⋅ × + × ∫ f  (23) 

 1 1 2 2
ˆ ˆ'

m

inc inc

m m m m
H b n H b n H dS

∆
 = ⋅ × + × ∫ f  (24) 

Regrouping terms in Eq. (13) and Eq. (14), the system of linear equations can be 
expressed in the usual dense matrix system form: 

 I V=Z  (25) 

where the impedance matrix Z can be written as 

 
1 1

2 2

J M

J M

 
=  

 

Z Z
Z

Z Z
 (26) 

with the elements given by 
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 1 1 2 1 2
1 2 1 2 1 2

1
' ' ( )

2
J

mn mn mn mn mn mna A a A b B b B b b I= + + − + +Z  (27) 

 1 1 1 1 2 1 1 1 2 1 1
1 1 2 2 1 1 2 2 1 1 2 2

1
' ' ( ) '

2
M

mn mn mn mn mn mna B a B b A b A a a Iη η η η η η− − − − − −= − − + − + −Z  (28) 

 2 1 2 1 2
1 1 2 2 1 1 2 2 1 1 2 2

1
' ' ( ) '

2
J

mn mn mn mn mn mnd B d B c A c A d d Iη η η η η η= + − + − −Z  (29) 

 2 1 2 1 2
1 2 1 2 1 2

1
' ' ( )

2
M

mn mn mn mn mn mnd A d A c B c B c c I= + + − + +Z  (30) 

Similarly we define [ ]I J M
T

=  and 1 2
V V V

T

 =   , with superscript T indicating 

vector transposition, and where 

 1 'V
m m m

E H= +  (31) 

 2 ' .V
m m m

E H= +  (32) 

Different known formulations can be obtained depending on the selection of the complex 
combination parameters , , ,i i i ia b c d  for 1,2i =  (see Table 1). 

4. Numerical balance of the impedance matrix 

The impedance matrix in Eq. (26) has a four block structure. At this point, we will address the 
balance between the elements inside this matrix. Looking at the definition of the elements 
given in Eqs. (27)–(30), and considering that the quantities given in Eqs. (15)–(20) are the 

same order of magnitude, namely, ' ' '( ) ( ) ( ) ( ) ( ) ( )i i i i i i

mn mn mn mn mn mn
O A O A O B O B O I O I≈ ≈ ≈ ≈ ≈  

≈ Θ  for 1,2i = , the order of the four blocks of Z  becomes 

( )
1 1

1 2 1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2 1 2 1 2

( , , , ) ( , , , , , )

( , , , , , ) ( , , , )

J M

J M

f a a b b g a a b b
O O

h c c d d f c c d d

η η
η η

  Θ Θ   
= ≈      Θ Θ   

Z Z
Z

Z Z
 (33) 

where f, g and h are functions which note linear combinations of the combination parameters 
( , , ,i i i ia b c d ) and the intrinsic impedances (

iη ) of the media on both sides of surface S  (i = 

1,2) according to the expressions of Eqs. (27)–(30). 
Thereafter, since the combination parameters , , ,i i i ia b c d  are defined in the same way 

inside each region (although they might actually have different values when they depend on 
the constitutive parameters of the media), we can assume that they are the same order of 
magnitude. So, let us assume that 1 2( ) ( )O a O a a≈ ≈ , 1 2( ) ( )O b O b b≈ ≈ , 1 2( ) ( )O c O c c≈ ≈ , 

and 1 2( ) ( )O d O d d≈ ≈ . Similarly, we can assume that 1 2( ) ( )O Oη η η≈ ≈ . 

With the previous considerations we can rewrite the expression of Eq. (33) as follows: 

 
1 1

2 2

( )
( )

( ) ( )

J M

J M

a b
a b

O

c d c d

η
η

Θ +   Θ +   ≈          Θ + Θ + 

Z Z

Z Z
 (34) 

In order to appreciate/study the imbalance in the order of magnitude between the different 
blocks of matrix Z , let us consider a normalized version of the above expression, in which 
the order of magnitude has been normalized with respect to the order of magnitude of 1JZ : 
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 ( ) ( )
( )1

1
1

( ) ( )

( ) ( )

norm J

O
O

c d c dO

a b a b

η

η

 
 
 = ≈
 + +
 + + 

Z
Z

Z
 (35) 

In the next table we present ( )norm
O Z  for the most usual SIE formulations. 

Table 1. Combination parameters , , ,i i i ia b c d  and ( )norm
O Z  for the five formulations 

considered 

Formulation ai for i = 1,2 bi for i = 1,2 ci for i = 1,2 di for i = 1,2 ( )
norm

O Z  

PMCHWT ηi 0 0 1/ηi 
2

1 1

1 1

η

η η

 
 
 

 

CTF 1 0 0 1 
1 1

1

η

η

 
 
 

 

CNF 0 1 1 0 
1 1

1

η

η

 
 
 

 

JMCFIE 1 1 1 1 
1 1

1

η

η

 
 
 

 

Müller 0 µi εi 0 
2

1 1

1 1

η

η η

 
 
 

 

Looking at Table 1, it becomes clear that in the PMCHWT formulation the diagonal 

blocks differ by a factor of 2η , while the off-diagonal blocks are the same order and differ by 

a factor of η with the diagonal blocks. In the case of CTF, the diagonal blocks are the same 
order (which is the main objective of this formulation, thus greatly improving the 
convergence with respect to PMCHWT), but consequently the off-diagonal blocks differ by a 

factor of 2η , and by a factor of η with respect to the diagonal blocks. Otherwise, CNF 

behaves similar to CTF, with equal diagonal blocks but with off-diagonal blocks differing by 

a factor of 2η and by a factor of η with regard to the diagonal blocks. Finally, Müller 

formulation behaves in the same way that the PMCHWT formulation. It can be concluded that 
in all formulations the strong imbalance between the impedance matrix blocks leads to high 
condition numbers, which causes bad convergence and/or lose of accuracy. 

To circumvent the previous problems, it would be desirable to simultaneously balance the 
four blocks of each impedance submatrix, thus improving the condition number and 
convergence of the overall matrix system. Based on Eq. (35), such well-balanced submatrices 
could be straightforwardly obtained by applying the following block-wise Hadamard product: 

 
1 1

2 2

1

( ) 1 ( )

( ) ( )

J M

J M
a b a b

c d c d

η

η

 
   = + +   
   + + 

Z Z
Z

Z Z
ɶ ⊙  (36) 

Different designations can be made for a, b, c, d and η. In this work, we have selected for 
these parameters the outer medium values: a = a1, b = b1, c = c1, d = d1, and η = η1, although 
other possibilities also work properly, such as choosing the arithmetic or geometric means or 
the vacuum equivalent values, among others. 
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5. Left and right preconditioner 

The previous balancing scheme of the impedance matrix can be straightforwardly included in 
the matrix equation of Eq. (25) for any given formulation by applying the following change of 
basis: 

 1
I I

R

−= Mɶ  (37) 

 V V
L

= Mɶ   (38) 

where 
LM  and 

RM  are diagonal matrices (2N × 2N) as follows: 

 }{ 11 11 1 22 22 1diag [ ... ] ,[ ... ]
L N N

α α α α× ×=M  (39) 

 }{ 11 11 1 22 22 1diag [ ... ] ,[ ... ]
R N N

β β β β× ×=M  (40) 

With these changes Eq. (25) can be written as 

 I V=Zɶ ɶ ɶ  (41) 

where we have defined 

 
L R

=Z M ZMɶ  (42) 

The diagonal values of the diagonal matrices in Eq. (39) and Eq. (40), 11 22 11, ,α α β  and 

22β , can be obtained by comparing Eq. (42) to Eq. (36). For simplicity in the derivation of the 

wanted elements, we will take 11 11 1α β= = . So, the coefficients for the left and right diagonal 

matrices that balance the impedance matrix blocks are given by 

 

11 11

22

22

1

1a b

c d

α β

β η

α
η

= =

=

+
=

+

 (43) 

In Table 2 we summarize the combination and preconditioning coefficients for the usual 
formulations, where µ = µ1 and ε = ε1 according to the previous choice made for a, b, c, d and 
η. 

Table 2. Combination ( , , ,a b c d ) and preconditioning ( 11 22 11 22, , ,α α β β ) coefficients for 

the five formulations considered 

Formulation a b c d 11α  22α  11β  22β  

PMCHWT η 0 0 1/η 1 η 1 η 
CTF 1 0 0 1 1 1/η 1 η 
CNF 0 1 1 0 1 1/η 1 η 

JMCFIE 1 1 1 1 1 1/η 1 η 
Müller 0 µ ε 0 1 η 1 η 

Using the above definitions, Eq. (41) is a well-balanced system with low condition 
number which can be easily solved using any iterative scheme. Once Eq. (41) is solved, the 
solution to the original electromagnetic problem is finally obtained from Eq. (37) as 

I I
R

= M ɶ . 
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Regarding the computational cost, the matrices involved in the preconditioner are 
diagonal, so the required number of multiplications become O(N), N being the number of 
unknowns. 

6. Numerical examples 

The condition number of the matrix corresponding to each conventional SIE formulation 
under consideration is studied next. Spheres of different size and different permittivity values 
have been considered. The Rao-Wilton-Glisson (RWG) [42] basis functions have been used 
for the discretization of the problems. The analyses have been carried out at an exterior 
(vacuum) wavelength of λ0 = 546 nm and a mean mesh size of λ0/15 has been considered in all 
cases except for the smallest sphere, where a mesh refinement was required in order to 
guarantee the geometrical sphericity. 

Figure 1 shows the matrix condition number with and without preconditioner for several 
dielectric spheres characterized by εr = 2.1 that have been analyzed using the five 
formulations. The condition number is represented as a function of k0r, where k0 is the wave 
number in vacuum and r the radius of the sphere. The results of Fig. 2 and Fig. 3 correspond 
to a gold plasmonic sphere with εr = −5.84−j2.11 [43] and a high-contrast dielectric sphere of 
εr = 25, respectively. 

Despite the electrical properties of the sphere material, the general conclusion that can be 
extracted for all formulations is that a strong reduction in the condition number is obtained 
when the proposed preconditioning scheme is applied. Of course, other considerations 
regarding the different behavior of each formulation depending on the material properties 
could be pointed out. However, this issue has been the subject of previous studies 
[8,17,18,23,39,40,44] and it is out of the scope of this work, whose main objective is to show 
that the proposed L&R preconditioner provides a reduction of several orders of magnitude in 
the condition number when considering any of the usual SIE formulations and different 
permittivity values as is illustrated in Figs. 1, 2 and 3. 

 

Fig. 1. Condition number without/with preconditioner vs. sphere size for dielectric spheres of εr 
= 2.1 analyzed with the five formulations. 
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Fig. 2. Condition number without/with preconditioner vs. sphere size for Au spheres (εr = 
−5.84−j2.11) analyzed with the five formulations. 

 

Fig. 3. Condition number without/with preconditioner vs. sphere size for dielectric spheres of εr 
= 25 analyzed with the five formulations. 

Due to the reduction in the condition number, the proposed preconditioner makes even 
possible to reach fast convergence with typically slowly converging formulations such as 
Müller and especially PMCHWT. To illustrate this fact, the analysis of a gold sphere 
involving 24000 unknowns (larger sample of Fig. 2) is presented next as an example of an 
advantageous use of the preconditioner. PMCHWT would be the preferable choice to solve 
such a problem, because it has demonstrated to be the most accurate formulation among the 

#168596 - $15.00 USD Received 15 May 2012; revised 26 Jun 2012; accepted 26 Jun 2012; published 13 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  17247



considered approaches to deal with plasmonic problems [18]. However, when the electrical 
size increases and the direct solution is not possible, iterative schemes are required and the 
analysis through PMCHWT becomes unfeasible due to its well-known convergence problems. 
In the case of conventional materials, CTF is usually proposed as an alternative to PMCHWT 
since its weighting coefficients lead to better convergence [8,23]. This behavior is clearly 
illustrated in Fig. 4, where the plasmonic problem has been solved iteratively by means of 
GMRES (restart 30). The convergence problems of PMCHWT (without preconditioner) are 
overcome when CTF is applied. Nevertheless, additionally to convergence, the accuracy of 
the obtained results must be also considered when it comes to selecting a formulation. With 
this aim, the following definition for the normalized root mean square (RMS) error of the 
bistatic radar cross section (RCS, σ) with respect to the analytical Mie’s series result [45] has 
been considered: 

 
( )2

max( )

Mie

rms

Mie

N
e

σ σ

σ

−
=

∑
 (44) 

with N the number of RCS samples. An error of 2.01⋅10−4 has been obtained for PMCHWT 
with both direct and precorrected iterative solutions, while an error of 0.013 has been obtained 
for CTF. These values show that, unlike in conventional problems, CTF leads to an important 
lack of accuracy in the context of plasmonic problems despite its good iterative convergence. 
This is in accordance with the behavior reported in the thorough comparison of [18]. 

Under the above conditions, the use of a low-cost L&R preconditioner that improves the 
convergence without affecting the nature of the SIE formulation constitutes the best option. 
Figure 4 shows that the pursued improvement of the PMCHWT convergence is attained with 
the preconditioner proposed in this work, enabling the accurate analysis of the problem. In 
fact, even taking the result after only 8 outer iterations (relative residue below 10−3) an error 
level of 2.06⋅10−4 is already obtained. As expected, improvement on the iteration convergence 
is not observed with the preconditioned CTF since convergence essentially depends on the 
good balance of the diagonal blocks, which is already satisfied by CTF without applying the 
preconditioner. 

 

Fig. 4. Iterative convergence of PMCHWT formulation and CTF solved with GMRES(30) with 
and without preconditioner. 
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7. Conclusion 

An efficient left and right (L&R) diagonal preconditioner has been presented to balance the 
different-scale blocks of the impedance matrix in the context of SIE-MoM formulations. The 
good balance between matrix elements and between electric and magnetic unknowns is 
straightforwardly obtained during the iterative solution, without altering the formulation at all. 
This allows fixing the condition number and convergence issues regardless the applied 
formulation, which can now be selected solely in terms of accuracy for a given application, 
without worrying at all about its convergence properties. The results demonstrate that the 
preconditioner leads to significantly better conditioned systems, making even possible to 
reach fast convergence with typically very slowly converging formulations. Indeed, this is the 
case with PMCHWT. Although this formulation has demonstrated to be very accurate in 
plasmonics, its lack of convergence prevented its use in the case of large problems where the 
direct solution is not feasible. The proposed preconditioner overcomes this difficulty 
achieving the desirable combination of fast convergence and high accuracy with the 
PMCHWT formulation. 

Finally, the proposed preconditioning scheme is completely general. Proper expressions 
can be easily derived for any particular SIE formulation. Besides, due to its simplicity and low 
cost of O(N), it can be easily and efficiently integrated into any existing MoM 
implementation. 
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