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dui(t)

dt
= ν(ui−1 − 2ui + ui+1) − f i(ui) +

N∑
j=1

c jui ◦ dw j(t)

dt
, i ∈ Z, (1.1)

where u = (ui)i∈Z ∈ �2, Z denotes the integer set, ν is a positive constant, f i is a continuous func-
tion satisfying a dissipative and a growth condition, c j ∈ R, for j = 1, . . . , N, and w j are mutually
independent Brownian motions, where ◦ denotes the Stratonovich sense in the stochastic term.

Stochastic lattice differential equations arise naturally in a wide variety of applications where the
spatial structure has a discrete character and uncertainties or random influences, called noises, are
taken into account. These systems are used to model such systems as cellular neural networks with
applications to image processing, pattern recognition, and brain science [23–26]. They are also used
to model the propagation of pulses in myelinated axons where the membrane is excitable only at
spatially discrete sites. In this case, ui represents the potential at the i-th active site; see for example,
[8,9,46,43,37,38]. Lattice differential equations can also be found in chemical reaction theory [30,36,
39]. Eq. (1.1) is a one-dimensional lattice system with diffusive nearest neighbor interaction, a dissi-
pative nonlinear reaction term and a multiplicative white noise at each node. This may be the result
of an environmental effect on the whole domain of the system. Also, it can appear after a spacial
discretization of a parabolic stochastic differential equation.

The system with an additive noise was studied in [4,6,17,33,40,51] (see [50] for first-order retarded
lattice systems as well). Also, a second-order lattice dynamical system with additive noise was studied
in [49]. The case of a multiplicative noise has been considered in [15] and [33]. A sine-Gordon lattice
equation with multiplicative noise has been studied in [32].

Recently, there are many works on deterministic lattice dynamical systems. For traveling waves, we
refer the readers to [19,41,20,55,1,5] and the references therein. The chaotic properties of solutions
for such systems have been investigated by [19] and [22,47,21,29]. In the absence of the white noise,
the existence and properties of the global attractor for lattice differential equations of the type (1.1)
were established in [2,7,10,42,48,52–54].

The study of global random attractors was initiated by Ruelle [44]. The fundamental theory of
global random attractors for stochastic partial differential equations was developed by Crauel, De-
bussche, and Flandoli [27], Crauel and Flandoli [28], Flandoli and Schmalfuß [31], Imkeller and
Schmalfuß [35], and others. Due to the unbounded fluctuations in the systems caused by the white
noise, the concept of pullback global random attractor was introduced to capture the essential dy-
namics with possibly extremely wide fluctuations. This is significantly different from the deterministic
case.

In the present paper, we extend the results given in [15] by proving the existence of a random
global attractor for the stochastic lattice dynamical system (1.1) without assuming any Lipschitz con-
dition of the nonlinear term f i ensuring uniqueness of the Cauchy problem. Therefore, in order to
obtain the random attractor we use the general theory of attractors for multi-valued random dynam-
ical systems developed in [11]. Comparing with the case of uniqueness the main new difficulty which
appears is the proof of the measurability of the pullback attractor.

This paper is organized as follows. In Section 2, we introduce basic concepts concerning multi-
valued random dynamical systems and global random attractors. In Section 3, we show that the
stochastic lattice differential equation (1.1) generates a multi-valued strict cocycle. The existence of
the global random attractor is given in Section 4.

2. Multi-valued random dynamical systems

We recall now some standard definitions for set-valued non-autonomous and random dynamical
systems and some results ensuring the existence of a pullback and a random global attractor for these
systems.

A pair (Ω, θ) where θ = (θt)t∈R is a flow on Ω , that is,

θ :R× Ω → Ω,
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θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈R,

is called a non-autonomous perturbation.
Let P := (Ω,F ,P) be a probability space and a measurable non-autonomous flow θ :

θ :
(
R× Ω,B(R) ⊗F

) → (Ω,F). (2.1)

In addition, P is supposed to be ergodic with respect to θ , which means that every θt -invariant set
has measure zero or one for t ∈R. Hence P is invariant with respect to θt . The quadruple (Ω,F ,P, θ)

is called a metric dynamical system.
If we replace in the definition of a metric dynamical system the probability space P by its

completion Pc := (Ω,F ,P), the measurability property (2.1) is not true in general (see Arnold [3,
Appendix A]). However, for fixed any t ∈ R we have that

θt : (Ω,F) → (Ω,F)

is measurable.
Let X = (X,dX ) be a Polish space and let D :ω �→ D(ω) ∈ 2X be a multi-valued mapping. The set

of multi-functions D :ω �→ D(ω) ∈ 2X with closed and non-empty images is denoted by C(X). On
the other hand, P f (X) will be the set of all non-empty closed subsets of the space X . Thus, it is
equivalent to write that D is in C(X), or D :Ω �→ P f (X).

Let D :ω �→ D(ω) be a multi-valued mapping in X over P . Such a mapping is called a random set
if

ω �→ inf
y∈D(ω)

dX (x, y)

is a random variable for every x ∈ X . It is well known that a mapping is a random set if and only if
for every open set O in X the inverse image {ω: D(ω) ∩ O 	= ∅} is measurable, i.e., it belongs to F
[34, Proposition 2.1.4].

Clearly, this is also valid if we replace P by Pc and F by F . It is obvious that, if D is a random
set with respect to P , then it is also random with respect to Pc .

We now introduce non-autonomous and random dynamical systems.

Definition 2.1. A multi-valued map G :R+ ×Ω × X → P f (X) is called a multi-valued non-autonomous
dynamical system (MNDS) if:

(i) G(0,ω, ·) = idX ,
(ii) G(t + τ ,ω, x) ⊂ G(t, θτω, G(τ ,ω, x)) (cocycle property) for all t, τ ∈ R

+ , x ∈ X , ω ∈ Ω.

It is called a strict MNDS if, moreover,

(iii) G(t + τ ,ω, x) = G(t, θτω, G(τ ,ω, x)) for all t, τ ∈R
+ , x ∈ X , ω ∈ Ω.

An MNDS is called a multi-valued random dynamical system (MRDS) if the multi-valued mapping

(t,ω, x) �→ G(t,ω, x)

is B(R+) ⊗ F ⊗ B(X)-measurable, i.e. {(t,ω, x): G(t,ω, x) ∩ O 	= ∅} ∈ B(R+) ⊗ F ⊗ B(X) for every
open set O of the topological space X .
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We note that for any non-empty set V ⊂ X , G(t,ω, V ) is defined by

G(t,ω, V ) =
⋃

x0∈V

G(t,ω, x0).

We now formulate a general condition ensuring that an MNDS defines an MRDS.

Lemma 2.2. (See [11, Lemma 2.5].) Let Ω be a Polish space and let F be the Borel σ -algebra. Suppose that
(t,ω, x) �→ U (t,ω, x) is upper semi-continuous. Then this mapping is measurable in the sense of Definition 2.1.

A multi-valued mapping D is said to be negatively (positively) invariant for the MNDS G if
D(θtω) ⊂ G(t,ω, D(ω)) (G(t,ω, D(ω)) ⊂ D(θtω)) for ω ∈ Ω , t ∈ R

+. It is called strictly invariant if
it is both negatively and positively invariant.

Let D be a family of multi-valued mappings with values in C(X). We say that a family K ∈ D is
pullback D-attracting if for every D ∈D,

lim
t→+∞ distX

(
G
(
t, θ−tω, D(θ−tω)

)
, K (ω)

) = 0, for all ω ∈ Ω.

B ∈D is said to be pullback D-absorbing if for every D ∈D there exists T = T (ω, D) > 0 such that

G
(
t, θ−tω, D(θ−tω)

) ⊂ B(ω), for all t � T . (2.2)

We shall give now the concept of global pullback D-attractor. We need to consider a particular
set system (see [16,45]). Let D be a set of multi-valued mappings in C(X) satisfying the inclusion
closed property: if we suppose that D ∈ D and D ′ is a multi-valued mapping in C(X) such that
D ′(ω) ⊂ D(ω) for ω ∈ Ω , then D ′ ∈D.

Definition 2.3. A family A ∈ D is said to be a global pullback D-attractor for the MNDS G if it
satisfies:

(1) A(ω) is compact for any ω ∈ Ω;
(2) A is pullback D-attracting;
(3) A is negatively invariant.

A is said to be a strict global pullback D-attractor if the invariance property in the third item is
strict.

An appropriate modification of this definition for MRDS is the following.

Definition 2.4. Suppose that G is an MRDS and suppose that the properties of Definition 2.3 are
satisfied. In addition, we suppose that A is a random set with respect to Pc . Then A is called a
random global pullback D-attractor.

Now we recall two general results on the existence and uniqueness of pullback and random at-
tractors associated to MNDS and MRDS respectively, which were proved in [11].

Theorem 2.5. Suppose that the MNDS G(t,ω, ·) is upper semi-continuous for t � 0 and ω ∈ Ω . Let K ∈D be
a multi-valued mapping such that the MNDS is pullback D-asymptotically compact with respect to K , i.e. for
every sequence tn → +∞, and each ω ∈ Ω , every sequence yn ∈ G(tn, θ−tnω, K (θ−tnω)) is pre-compact. In
addition, suppose that K is pullback D-absorbing. Then, the set A given by

A(ω) :=
⋂
s�0

⋃
t�s

G
(
t, θ−tω, K (θ−tω)

)
(2.3)
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is a pullback D-attractor. Furthermore, A is the unique element in D with these properties. In addition, if G is
a strict MNDS, then A is strictly invariant.

Remark 2.6. When the property A ∈ D is not satisfied (or it is not imposed in Definition 2.3), some
difficulties may appear, for example, in proving the strict invariance of the attractor. This is the case
when D is just the set of all bounded subsets of X (see [13,14]).

Theorem 2.7. Let G be an MRDS and let the assumptions in Theorem 2.5 hold. Assume that ω �→ G(t,ω, K (ω))

is a random set for t � 0 with respect to Pc , and also that G(t,ω, K (ω)) is closed for all t � 0 and ω ∈ Ω .
Then, the set A defined by (2.3) is a random set with respect to Pc, so that it is a random global pullback
D-attractor.

3. Stochastic lattice differential equations

We consider a stochastic lattice differential equation

dui(t)

dt
= ν(ui−1 − 2ui + ui+1) − f i(ui) +

N∑
j=1

c jui ◦ dw j(t)

dt
, i ∈ Z, (3.1)

where u = (ui)i∈Z ∈ �2, Z denotes the integer set, ν is a positive constant, f i is a continuous function
satisfying the assumptions below, c j ∈ R, for j = 1, . . . , N, and w j are mutually independent two-
sided Brownian motions on the same probability space (Ω,F ,P).

We note that Eq. (3.1) is interpreted as a system of integral equations

ui(t) = ui(0) +
t∫

0

(
ν
(
ui−1(s) − 2ui(s) + ui+1(s)

) − f i
(
ui(s)

))
ds

+
t∫

0

N∑
j=1

c jui(s) ◦ dw j(t), i ∈ Z, (3.2)

where the stochastic integral is understood in the sense of Stratonovich.

Assumptions on the nonlinearity f i . Let f i :R→R satisfy the following assumptions:

(H1) For all x ∈ R, i ∈ Z,

f i(x)x � λx2 − c0,i,

where c0 ∈ �1, λ > 0.

(H2) For all x ∈ R, i ∈ Z, ∣∣ f i(x)
∣∣ � C

(|x|)|x| + c1,i,

where c1 ∈ �2, c1,i � 0, and C(·) � 0 is a continuous increasing function.
(H3) The maps f i :R→R, i ∈ Z, are continuous.
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For convenience, we now formulate system (3.1) as a stochastic differential equation in �2. Denote
by ‖ · ‖ the norm in the space �2, and by B , B∗ , C j , j = 1, . . . , N, and A the linear operators from �2

to �2 defined as follows. For u = (ui)i∈Z ∈ �2,

(Bu)i = ui+1 − ui,
(

B∗u
)

i = ui−1 − ui, (C ju)i = c jui

and

(Au)i = −ui−1 + 2ui − ui+1 for each i ∈ Z.

Then we find that

A = B B∗ = B∗B,

and (
B∗u, v

) = (u, B v) for all u, v ∈ �2.

Therefore (Au, u) � 0 for all u ∈ �2.
Let f̃ be the Nemytski operator associated with f i , that is, for u = (ui)i∈Z ∈ �2, let f̃ (u) =

( f i(ui))i∈Z . Then, thanks to (H1)–(H2), this operator is well defined, and we therefore have∥∥ f̃ (u)
∥∥2

�2 =
∑
i∈Z

∣∣ f i(ui)
∣∣2 �

∑
i∈Z

(
C
(|ui|

)|ui| + c1,i
)2 � 2M(u)‖u‖2

�2 + ‖c1‖2
l2 , (3.3)

where M(u) = maxi∈Z C(|ui |).
Similar to (3.3), one can easily see that f̃ also satisfies

f̃ (u, u) � λ‖u‖2
�2 − ‖c0‖�1 , ∀u ∈ �2, (3.4)

and that f̃ :�2 → �2 is continuous and weakly continuous (see [17] for a similar proof).
The system (3.1) with initial values u0 ≡ (u0,i)i∈Z ∈ �2 may be rewritten as an equation in �2 for

t � 0 and ω ∈ Ω,

u(t) = u0 +
t∫

0

(−ν Au(s) − f̃
(
u(s)

))
ds +

N∑
j=1

t∫
0

C ju(s) ◦ dw j(t). (3.5)

To prove that this stochastic equation (3.5) generates a random dynamical system, we will transform
it into a random differential equation in �2. This can be done thanks to the special form of the
stochastic term.

Before performing this transformation, we need to recall some properties of the Ornstein–
Uhlenbeck processes. Let us start by describing a probability space (Ω̃,F ,P) which will be useful
for our analysis. Consider

Ω̃ = {
ω ∈ C(R,R): ω(0) = 0

} = C0(R,R)

endowed with the compact open topology (see [3, Appendices A.2 and A.3]), where P is the corre-
sponding Wiener measure and F is the Borel σ -algebra on Ω . Let

θtω(·) = ω(· + t) − ω(t), t ∈R. (3.6)

Then (Ω̃,F ,P, (θt)t∈R) is a metric dynamical system.
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Let us consider the one-dimensional stochastic differential equation

dz = −αz dt + dw(t), (3.7)

for α > 0. This equation has a random fixed point in the sense of random dynamical systems gener-
ating a stationary solution known as the stationary Ornstein–Uhlenbeck process (see Caraballo et al.
[12] for more details). In fact, we have:

Lemma 3.1. (See Caraballo et al. [12].) There exists a {θt}t∈R-invariant subset Ω ∈ F of Ω̃ = C0(R,R) of full
measure such that

lim
t→±∞

|ω(t)|
t

= 0 for ω ∈ Ω,

and, for such ω, the random variable given by

z∗(ω) := −α

0∫
−∞

eατω(τ )dτ

is well defined. Moreover, for ω ∈ Ω , the mapping

(t,ω) �→ z∗(θtω) = −α

0∫
−∞

eατ θtω(τ)dτ = −α

0∫
−∞

eατω(t + τ )dτ + ω(t)

is a stationary solution of (3.7) with continuous trajectories. In addition, for ω ∈ Ω

lim
t→±∞

|z∗(θtω)|
|t| = 0, lim

t→±∞
1

t

t∫
0

z∗(θτω)dτ = 0,

lim
t→±∞

1

t

t∫
0

∣∣z∗(θτω)
∣∣dτ = E

∣∣z∗∣∣ < ∞. (3.8)

Remark 3.2. We now consider θ defined in (3.6) on Ω instead of Ω̃ . This mapping possesses the same
properties as the original one if we choose for F the trace σ -algebra with respect to Ω denoted also
by F .

Let us consider α = 1 and denote by z∗
j its associated Ornstein–Uhlenbeck process corresponding

to (3.7) with w j instead of w.

Then for any j = 1, . . . , N we have a stationary Ornstein–Uhlenbeck process generated by a random
variable z∗

j (ω) on Ω j with properties formulated in Lemma 3.1 defined on the metric dynamical

system (Ω j,F j,P j, θ). We set

(Ω,F,P, θ), (3.9)
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where

Ω = Ω1 × · · · × ΩN , F =
N⊗

i=1

Fi, P= P1 × P2 × · · · × PN ,

and θ is the flow of Wiener shifts.
Now, let us note that operator C j generates a strongly continuous semigroup (in fact, a uniformly

continuous group) of operators SC j (t). More precisely, SC j (t) is given by

SC j (t)u = ec jt u, for u ∈ �2.

Then we denote

T (ω) := SC1

(
z∗

1(ω)
) ◦ · · · ◦ SCN

(
z∗

N(ω)
) = e

∑N
j=1 c j z∗

j (ω)Id�2 ,

which is clearly a homeomorphism in H = �2. The inverse operator is well defined by

T −1(ω) := SCN

(−z∗
N (ω)

) ◦ · · · ◦ SC1

(−z∗
1(ω)

) = e−∑N
j=1 c j z∗

j (ω)Id�2 .

For simplicity, let us denote δ(ω) = ∑N
j=1 c j z∗

j (ω). It easily follows that ‖T −1(θtω)‖ has sub-

exponential growth as t → ±∞ for any ω ∈ Ω . Hence ‖T −1‖ is tempered. According to Remark 3.2
we can change our metric dynamical system with respect to Ω . However the new metric dynamical
system will be denoted by the same symbols (Ω,F ,P, θ).

We now argue in a heuristic informal way. Let us consider the change of variable

v(t) = T −1(θtω)u(t) = e−δ(θtω)u(t), (3.10)

where u is a solution to (3.5). Then,

dv(t) = e−δ(θtω) du(t) −
N∑

j=1

c je
−δ(θtω)u(t) ◦ dz∗

j (θtω)

= e−δ(θtω)
(−ν Au(t) − f̃

(
u(t)

) + δ(θtω)u(t)
)

dt

= (−ν Av(t) − e−δ(θtω) f̃
(
eδ(θtω)v(t)

) + δ(θtω)v(t)
)

dt.

So we can consider the following evolution equation with random coefficients but without white
noise

dv

dt
= −ν Av + δ(θtω)v − e−δ(θtω) f̃

(
eδ(θtω)v

)
, (3.11)

and initial condition v(0) = v0 ∈ H .
From (H1) and for every x ∈ R we obtain

e−δ(θtω) f i
(
eδ(θtω)x

)
x � e−2δ(θtω)

(
λe2δ(θtω)x2 − c0,i

)
= λx2 − e−2δ(θtω)c0,i . (3.12)

Now we establish the following result.
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Theorem 3.3. Let T > 0 and v0 ∈ H be fixed. Then, for every ω ∈ Ω, Eq. (3.11) admits at least a solution
v(·,ω, v0) ∈ C([0, T ], �2).

Proof. For any fixed T > 0 and ω ∈ Ω , and thanks to similar arguments as those in [17, p. 169] (no-
tice that the mapping (t, v) �→ F (t, v) = −ν Av + δ(θtω)v − e−δ(θtω) f̃ (eδ(θtω)v) is weakly continuous),
(3.11) possesses at least a local solution v(·;ω, v0) ∈ C([0, Tmax), �

2), where [0, Tmax) is the maximal
interval of existence for the solution of (3.11). We prove now that this local solution is a global one.
From (3.11), (3.12) and the fact that (Av, v) � 0, for all v ∈ �2, it follows that

d

dt

∥∥v(t)
∥∥2 = 2

(−ν(Av, v) − (
e−δ(θtω) f̃

(
eδ(θtω)v

)
, v

) + δ(θtω)‖v‖2)
� −2λ‖v‖2 + 2δ(θtω)‖v‖2 + ‖c0‖�1 e−2δ(θtω)

� ‖c0‖�1 e−2δ(θtω) + (−2λ + 2δ(θtω)
)‖v‖2, (3.13)

and, by Gronwall’s lemma,

∥∥v(t)
∥∥2 � e−2λt+2

∫ t
0 δ(θsω)ds‖v0‖2 + ‖c0‖�1

t∫
0

e−2δ(θrω)e
∫ t

r (−2λ+2δ(θsω))ds dr,

whence

∥∥v(t)
∥∥2 � e−2λt+2

∫ t
0 δ(θsω)ds‖v0‖2 + ‖c0‖�1

t∫
0

e−2δ(θrω)e−2λ(t−r)+2
∫ t

r δ(θsω)ds dr

� e−2λt+2
∫ t

0 δ(θsω)ds‖v0‖2 + ‖c0‖�1 e−2λt+∫ t
0 δ(θsω)ds

t∫
0

e−2δ(θrω)+2λr−2
∫ r

0 δ(θsω)ds dr.

If we denote β(ω) = maxt∈[0,T ](‖c0‖�1 e−2λt+∫ t
0 δ(θsω)ds

∫ t
0 e−2δ(θrω)+2λr−2

∫ r
0 δ(θsω)ds dr) and α(ω) =

2
∫ T

0 |δ(θsω)|ds, we then have ∥∥v(t)
∥∥2 � ‖v0‖2eα(ω) + β(ω), (3.14)

which implies that the solution v is defined in [0, T ] (in fact in [0,+∞); see [42]). �
Now, we say that u(·) = u(·,ω, u0) is a solution of (3.5) (or (3.1)) if

u(t) = eδ(θtω)v
(
t,ω, e−δ(ω)u0),

where v(·,ω, e−δ(ω)u0) is a solution of (3.11) with initial value e−δ(ω)u0.
Let S(v0,ω) be the set of all solutions to (3.11) corresponding to the initial datum v0 ∈ �2 and

ω ∈ Ω .
We define the multi-valued map G :R+ × Ω × �2 → P (�2) as follows

G
(
t,ω, u0) = {

eδ(θtω)v(t): v ∈ S
(
e−δ(ω)u0,ω

)}
. (3.15)

Arguing in a standard way (see e.g. [13,14]), it can be proved that (3.15) is a strict cocycle. Namely,
the next result holds.
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Lemma 3.4. The map G defined by (3.15) satisfies G(0,ω, ·) = Id�2 and G(t +τ ,ω, x) = G(t, θtω, G(τ ,ω, x)),
for all t, τ ∈ R

+ , x ∈ �2 , ω ∈ Ω .

4. Existence of global random attractors

In this section, we prove the existence of a global random attractor for the random lattice dy-
namical system generated by Eq. (3.1). As universe D we will consider the family of multi-valued
mappings D in �2 with D(ω) ⊂ B�2 (0,ρ(ω)), the closed ball with center zero and radius ρ(ω), which
possesses sub-exponential growth, i.e.

lim
t→±∞

log+ ρ(θtω)

t
= 0, ω ∈ Ω.

D is called the family of sub-exponentially growing multi-functions in C(�2). Notice that inclusion
closed property of D also holds. Our main result is the following.

Theorem 4.1. Assume conditions (H1)–(H3). Then G is an MNDS which has a unique pullback global strictly
invariant D-attractor A(ω).

If, moreover, we assume that λ >
∑N

j=1 |c j|E(|z∗
j |), then G is a multi-valued random lattice dynamical

system which possesses a unique global random D-attractor.

To prove this theorem we will use Theorems 2.5 and 2.7. In order to ensure that our strict co-
cycle G satisfies the assumptions in the theorem above, we will proceed in the following way. First,
we will prove that there exists a pullback D-absorbing set for G in D. Second, we will prove that
G is asymptotically compact. Next, we will check that G has closed values (hence, G is an MNDS)
and that it is upper semi-continuous, obtaining thus the existence of a D-pullback attractor. Finally,
under the additional assumption λ >

∑N
j=1 |c j|E(|z∗

j |) we shall prove that G is an MRDS and that
the pullback D-attractor is measurable with respect to Pc , proving that it is a pullback random
D-attractor.

We remark that in order to obtain the existence of a pullback D-attractor we need only conditions
(H1)–(H3). Condition λ >

∑N
j=1 |c j|E(|z∗

j |) is necessary only for the measurability of the pullback
D-attractor and the process G .

4.1. Existence of the pullback absorbing set for the MNDS

In the following sections we assume that conditions (H1)–(H3) hold.
We first need to prove that there exists a pullback D-absorbing set, i.e., a set K (ω) such that, for

all B ∈D and a.e. ω ∈ Ω, there exists T B,ω > 0 such that

G
(
t, θ−tω, B(θ−tω)

) ⊂ K (ω), for all t � T B,ω.

Let us start with v(t) = v(t,ω, e−δ(ω)u0), a solution of (3.11) for some u0 ∈ B(θ−tω). Then, by arguing
as in (3.13) we obtain

∥∥v(t)
∥∥2 � e−2λt+2

∫ t
0 δ(θsω)ds‖v0‖2

+ ‖c0‖�1 e−2λt+2
∫ t

0 δ(θsω)ds

t∫
0

e−2δ(θrω)+2λr−2
∫ r

0 δ(θsω)ds dr. (4.1)

Let us now substitute ω by θ−tω and v0 by e−δ(θ−tω)u0 in the expression of v(·). We then have that
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∥∥v
(
t, θ−tω, e−δ(θ−tω)u0

)∥∥2

� e−2λt+2
∫ t

0 δ(θs−tω)ds
∥∥e−δ(θ−tω)u0

∥∥2

+ ‖c0‖�1 e−2λt+2
∫ t

0 δ(θs−tω)ds

t∫
0

e−2δ(θr−tω)+2λr−2
∫ r

0 δ(θs−tω)ds dr

� e−2λt−2δ(θ−tω)+2
∫ 0
−t δ(θsω)ds‖u0‖2 + ‖c0‖�1

t∫
0

e−2δ(θr−tω)−2λ(t−r)+2
∫ t

r δ(θs−tω)ds dr

� e−2λt−δ(θ−tω)+2
∫ 0
−t δ(θsω)ds‖u0‖2 + ‖c0‖�1

0∫
−t

e−2δ(θrω)+2λr+2
∫ 0

r δ(θsω)ds dr

� e−2λt−2δ(θ−tω)+2
∫ 0
−t δ(θsω)ds‖u0‖2 + ‖c0‖�1

0∫
−∞

e−2δ(θrω)+2λr+2
∫ 0

r δ(θsω)ds dr. (4.2)

Notice that, thanks to the properties of the Ornstein–Uhlenbeck process z∗
j , it follows that

0∫
−∞

e−2δ(θrω)+2λr+2
∫ 0

r δ(θsω)ds dr < +∞.

Taking into account that for any u0 ∈ B(θ−tω) it holds

u(t, θ−tω, u0) = eδ(ω)v
(
t, θ−tω, e−δ(θ−tω)u0

)
,

we have

∥∥u(t, θ−tω, u0)
∥∥2 � eδ(ω)e−2λt−δ(θ−tω)+2

∫ 0
−t δ(θsω)dsd

(
B(θ−tω)

)2

+ eδ(ω)‖c0‖�1

0∫
−∞

e−2δ(θsω)+λs+2
∫ 0

s δ(θrω)dr ds,

where d(B(θ−tω)) denotes the supremum of the norm of the set B(θ−tω).
Denoting

R2(ω) = 2eδ(ω)‖c0‖�1

0∫
−∞

e−2δ(θsω)+λs+2
∫ 0

s δ(θrω)dr ds

and noticing that

lim eδ(ω)e−2λt−δ(θ−tω)+2
∫ 0
−t δ(θsω)dsd

(
B(θ−tω)

)2 = 0,

t→+∞
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it follows that

K (ω) = B�2

(
0, R(ω)

)
(4.3)

is a pullback D-absorbing set. We thus have the next result:

Lemma 4.2. K (ω) defined by (4.3) is a pullback D-absorbing set.

We will now prove that K ∈D. To this end, we only have to check that

lim
t→+∞ e−βt R(θ−tω) = 0, for all β > 0.

Indeed, observe that

e−βt R2(θ−tω) = 2e−βteδ(θ−tω)‖c0‖�1

0∫
−∞

e−2δ(θs−tω)+λs+2
∫ 0

s δ(θr−tω)dr ds

= 2e−βteδ(θ−tω)‖c0‖�1

−t∫
−∞

e−2δ(θsω)+λ(s+t)t+2
∫ −t

s δ(θrω)dr ds

= 2e− β
2 teδ(θ−tω)−2

∫ 0
−t δ(θrω)dr‖c0‖�1

−t∫
−∞

e−2δ(θsω)+λs+(λ− β
2 )t+2

∫ 0
s δ(θrω)dr ds.

If β � 2λ the result follows directly. Let β < 2λ. By the properties in (3.8) we have

∣∣−2δ(θsω)
∣∣ � β

4
|s|, 2

∣∣∣∣∣
0∫

s

δ(θrω)dr

∣∣∣∣∣ � β

4
|s|,

if s � −t � −T (β,ω). Hence,

e−βt R2(θ−tω) � 2e− β
2 teδ(θ−tω)−2

∫ 0
−t δ(θrω)dr‖c0‖�1

−t∫
−∞

e(λ− β
2 )(t+s) ds

= 2e− β
2 teδ(θ−tω)−2

∫ 0
−t δ(θrω)dr ‖c0‖�1

λ − β
2

→ 0, as t → +∞.

4.2. Asymptotic compactness

In order to prove the asymptotic compactness for the MNDS G we first prove the following lemma.

Lemma 4.3. Let u0(ω) ∈ K (ω), the absorbing set given by (4.3). Then for every ε > 0, there exist
T (ε,ω) > 0 and N(ε,ω) > 0 such that any solution u(·) of Eq. (3.1) given by u(t) = eδ(θtω)v(t) with
v(·) ∈ S(u0(θ−tω)e−δ(θ−tω), θ−tω), satisfies∑

|i|�N(ε,ω)

∣∣ui
(
t, θ−tω, u0(θ−tω)

)∣∣2 � ε, for all t � T (ε,ω).
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Proof. Choose a smooth function ρ such that 0 � ρ(s)� 1 for s ∈ R
+ , and

ρ(s) = 0 for 0 � s � 1, ρ(s) = 1 for s � 2.

Then there exists a constant C such that |ρ ′(s)| � C for s ∈R
+ .

We first consider the random equation (3.11) with v(t) = e−δ(θtω)u(t). Let k be a fixed integer
which will be specified later, and set x = (xi)i∈Z with xi = ρ(

|i|
k )vi . Then taking the inner product of

Eq. (3.11) with x in �2, we get

d

dt

∑
i∈Z

ρ

( |i|
k

)
|vi|2 = −2ν(Av, x) + 2δ(θtω)

∑
i∈Z

ρ

( |i|
k

)
|vi|2

− 2e−δ(θtω)
∑
i∈Z

ρ

( |i|
k

)
f i
(
eδ(θtω)vi

)
vi . (4.4)

We now estimate the terms in (4.4) as follows. First we have

(Av, x) = (B v, Bx)

=
∑
i∈Z

(vi+1 − vi)(xi+1 − xi)

=
∑
i∈Z

(vi+1 − vi)

[(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
vi+1 + ρ

( |i|
k

)
(vi+1 − vi)

]

=
∑
i∈Z

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(vi+1 − vi)vi+1 +

∑
i∈Z

ρ

( |i|
k

)
(vi+1 − vi)

2

�
∑
i∈Z

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(vi+1 − vi)vi+1.

By the property of the cut-off function ρ , we obtain the estimate∣∣∣∣∑
i∈Z

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(vi+1 − vi)vi+1

∣∣∣∣ � ∑
i∈Z

|ρ ′(ξi)|
k

|vi+1 − vi||vi+1|

� C

k

∑
i

(|vi+1|2 + |vi||vi+1|
)
� 2C

k
‖v‖2,

which yields that

(B v, Bx) � −2C‖v‖2

k
. (4.5)

For the third term in (4.4), using condition (H1) we have

−2e−δ(θtω)
∑
i∈Z

ρ

( |i|
k

)
f i
(
eδ(θtω)vi

)
vi � 2e−2δ(θtω)

∑
i∈Z

ρ

( |i|
k

)
c0,i − 2λ

∑
i∈Z

ρ

( |i|
k

)
|vi|2. (4.6)

Then, from (4.4)–(4.6) it follows that
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d

dt

∑
i∈Z

ρ

( |i|
k

)
|vi|2 + (

2λ − 2δ(θtω)
)∑

i∈Z
ρ

( |i|
k

)
|vi|2

� 4νC

k

∥∥v
(
t,ω, e−δ(ω)u0

)∥∥2 + 2e−2δ(θtω)
∑
i∈Z

ρ

( |i|
k

)
c0,i . (4.7)

By using Gronwall’s lemma, we have that for t � T K = T K (ω),

∑
i∈Z

ρ

( |i|
k

)∣∣vi
(
t,ω, e−δ(ω)u0(ω)

)∣∣2

� e
−2λ(t−T K )+2

∫ t
T K

δ(θsω)ds ∑
i∈Z

ρ

( |i|
k

)∣∣vi
(
T K ,ω, e−δ(ω)u0(ω)

)∣∣2

+ 4νC

k

t∫
T K

e−2λ(t−τ )+2
∫ t
τ δ(θsω)ds

∥∥v
(
τ ,ω, e−δ(ω)u0

)∥∥2
dτ

+
t∫

T K

e−2λ(t−τ )+2
∫ t
τ δ(θsω)ds−2δ(θτ ω) dτ

∑
i∈Z

ρ

( |i|
k

)
c0,i . (4.8)

Replace ω by θ−tω. We then estimate each term on the right-hand side of (4.8). From (4.1) with t
replaced by T K and ω by θ−tω, it follows that

e
−2λ(t−T K )+2

∫ t
T K

δ(θs−tω)ds ∑
i∈Z

ρ

( |i|
k

)∣∣vi
(
T K , θ−tω, e−δ(θ−tω)u0(θ−tω)

)∣∣2

� e−2λt+2
∫ t

0 δ(θs−tω)ds−2δ(θ−tω)
∥∥u0(θ−tω)

∥∥2 + ‖c0‖�1

T K∫
0

e−2δ(θs−tω)−2λ(t−s)+2
∫ t

s δ(θr−tω)dr ds.

Thus, using (3.8), there is a T1(ε,ω) > T K (ω) such that if t > T1(ε,ω), then

e
−2λ(t−T K )+2

∫ t
T K

δ(θs−tω)ds ∑
i∈Z

ρ

( |i|
k

)∣∣vi
(
T K , θ−tω, e−δ(θ−tω)u0(θ−tω)

)∣∣2

� 1

3
εe−δ(ω). (4.9)

Next, we estimate (using again (4.1))

4νC

k

t∫
T K

e−2λ(t−τ )+2
∫ t
τ δ(θs−tω)ds

∥∥v
(
τ , θ−tω, e−δ(θ−tω)u0

)∥∥2
dτ

� 4νC

k

∥∥u0(θ−tω)
∥∥(t − T K )e−2λt+2

∫ t
0 δ(θs−tω)ds−2δ(θ−tω)

+ 4νC

k
‖c0‖�1

t∫
T

(
e−2λ(t−τ )+2

∫ t
τ δ(θs−tω)dse−2λτ+2

∫ τ
0 δ(θs−tω)ds
K
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×
τ∫

0

e−2δ(θr−tω)+2λr−2
∫ r

0 δ(θs−tω)ds dr
)

dτ

= 4νC

k

∥∥u0(θ−tω)
∥∥(t − T K )e−2λt+2

∫ t
0 δ(θs−tω)ds−2δ(θ−tω)

+ 4νC

k
‖c0‖�1

t∫
T K

τ∫
0

e−2λ(t−r)+2
∫ t

0 δ(θs−tω)ds−2δ(θr−tω)e−2
∫ r

0 δ(θs−tω)ds dr dτ

= 4νC

k

∥∥u0(θ−tω)
∥∥(t − T K )e−2λt+2

∫ t
0 δ(θs−tω)ds−2δ(θ−tω)

+ 4νC

k
‖c0‖�1

t∫
T K

τ∫
0

e−2λ(t−r)+2
∫ t

r δ(θs−tω)ds−2δ(θr−tω) dr dτ .

Then, using (3.8), there exist T2(ε,ω) > T K (ω) and N1(ε,ω) > 0 such that if t > T2(ε,ω) and
k > N1(ε,ω), then

4νC

k

t∫
T K

e−2λ(t−τ )+2
∫ t
τ δ(θs−tω)ds

∥∥v
(
τ , θ−tω, e−δ(θ−tω)u0

)∥∥2
dτ � 1

3
εe−δ(ω). (4.10)

Since c0 ∈ �1, by using (3.8), there exists N2(ε,ω) > 0 such that for k > N2(ε,ω)

t∫
T K

e−2λ(t−τ )+2
∫ t
τ δ(θsω)ds−2δ(θτ ω) dτ

∑
i∈Z

ρ

( |i|
k

)
c0,i �

1

3
εe−δ(ω). (4.11)

Therefore, by letting

T (ε,ω) = max
{

T1(ε,ω), T2(ε,ω)
}
,

N(ε,ω) = max
{

N1(ε,ω), N2(ε,ω)
}
,

we have for t > T (ε,ω) and k > N(ε,ω),

∑
|i|�2k

∣∣vi
(
t, θ−tω, e−δ(θ−tω)u0(θ−tω)

)∣∣2 �
∑
i∈Z

ρ

( |i|
k

)∣∣vi
(
t, θ−tω, e−δ(θ−tω)u0(θ−tω)

)∣∣2 � εe−δ(ω),

which, thanks to relation (3.10), implies that∑
|i|�N(ε,ω)

∣∣ui
(
t, θ−tω, u0(θ−tω)

)∣∣2 � ε.

This completes the proof of the lemma. �
We are now ready to show the asymptotic compactness of K .
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Theorem 4.4. For ω ∈ Ω , G is asymptotically compact with respect to K (ω): each sequence

pn ∈ G
(
tn, θ−tnω, K (θ−tnω)

)
with tn → ∞ has a convergent subsequence in �2 .

Proof. Consider (tn)n∈N with limn→∞ tn = ∞ and pn ∈ G(tn, θ−tnω, K (θ−tnω)). Then, there exists
xn ∈ K (θ−tω) such that pn ∈ G(tn, θ−tnω, xn). We will show that {pn}n∈N possesses a convergent sub-
sequence. Since K (ω) is a bounded absorbing set, for large n, pn ∈ K (ω). Thus, there exist v ∈ �2 and
a subsequence of {pn}n∈N (still denoted by {pn}n∈N) such that{

pn}
n∈N → v weakly in �2. (4.12)

Next, we show that the above weak convergence is actually a strong convergence, i.e., for each ε > 0
there is N∗(ε,ω) > 0 such that for n � N∗(ε,ω)∥∥pn − v

∥∥� ε.

Thanks to Lemma 4.3, there exist N∗
1(ε,ω) > 0 and K1(ε,ω) > 0 such that for n > N∗

1∑
|i|�K1(ε,ω)

∣∣pn
i

∣∣2 � 1

8
ε2. (4.13)

On the other hand, since v ∈ �2, there exists K2(ε) such that∑
|i|�K2(ε)

|vi|2 � 1

8
ε2. (4.14)

Letting K (ε,ω) = max{K1(ε,ω), K2(ε)}, by the weak convergence (4.12), we have for each |i| �
K (ε,ω) as n → ∞

pn
i → vi,

which implies that there exists N∗
2(ε,ω) > 0 such that when n � N∗

2(ε,ω),

∑
|i|�K (ε)

∣∣pn
i − vi

∣∣2 � 1

2
ε2. (4.15)

Let N∗(ε,ω) = max{N∗
1(ε,ω), N∗

2(ε,ω)}. Then, from (4.13), (4.14) and (4.15) we obtain for n �
N∗(ε,ω) ∥∥pn − v

∥∥2 =
∑
i∈Z

∣∣pn
i − vi

∣∣2

=
∑

|i|�K (ε)

∣∣pn
i − vi

∣∣2 +
∑

|i|>K (ε)

∣∣pn
i − vi

∣∣2

� 1

2
ε2 + 2

∑
|i|>K (ε)

(∣∣pn
i

∣∣2 + |vi|2
)

� ε2.

Hence, pn converges to v strongly. �
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4.3. Existence of the pullback attractor

Let us now prove other properties of the cocycle G.

Lemma 4.5. Let v0n be a sequence converging to v0 in �2 and fix T > 0. Then, for any ω ∈ Ω and ε > 0, there
exists K (ε,ω) such that for any solution vn(·) ∈ S(v0n,ω) it follows∑

|i|�2K (ε,ω)

∣∣vn
i (t)

∣∣2 � ε, ∀t ∈ [0, T ]. (4.16)

Moreover, there exist v(·) ∈ S(v0,ω) and a subsequence vnk satisfying

vnk → v in C
([0, T ], �2). (4.17)

Proof. For any ε > 0 there exist K1(ε), N1(ε) such that∑
i∈Z

∣∣v0n
i − v0

i

∣∣2
<

ε

4
, ∀n � N1,

∑
i∈Z

ρ

( |i|
K

)∣∣v0
i

∣∣2
<

ε

4
, ∀K � K1.

Hence,

∑
i∈Z

ρ

( |i|
K

)∣∣v0n
i

∣∣2 � 2

(∑
i∈Z

ρ

( |i|
K

)∣∣v0n
i − v0

i

∣∣2 +
∑
i∈Z

ρ

( |i|
K

)∣∣v0
i

∣∣2
)

< ε, (4.18)

if n � N1 and K � K1. Obviously, modifying K1 appropriately, the result holds true for all n. Also, in
view of (4.1) there exists R0(ω, T ) > 0 such that∥∥vn(t)

∥∥ � R0(ω, T ), ∀t ∈ [0, T ], ∀n. (4.19)

Using inequality (4.7) and the continuity of t �→ δ(θtω), one can find K2(ε,ω) such that

d

dt

∑
i∈Z

ρ

( |i|
K

)∣∣vn
i

∣∣2 − 2δ(θtω)
∑
i∈Z

ρ

( |i|
k

)∣∣vn
i

∣∣2 � ε, if K � K2.

Using Gronwall’s lemma and (4.18) we obtain

∑
|i|�2K (ε)

∣∣vn
i (t)

∣∣2 �
∑
i∈Z

ρ

( |i|
K

)∣∣vn
i (t)

∣∣2

� εe2
∫ t

0 δ(θsω)ds + ε

t∫
0

e2
∫ t

r δ(θsω)ds dr (4.20)

� εR1(ω, T ),

if K � max{K1, K2}, so that (4.16) holds.
Fix now t ∈ [0, T ]. In view of (4.19), passing to a subsequence, we can state that vn(t) → w weakly

in �2. Then, for any σ > 0, there exist N2(σ ) and K3(σ ) such that
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∥∥vn(t) − w
∥∥2

�2 �
∑

|i|�K3(σ )

∣∣vn
i (t) − wi

∣∣2 +
∑

|i|>K3(σ )

∣∣vn
i (t) − wi

∣∣2

�
∑

|i|�K3(σ )

∣∣vn
i (t) − wi

∣∣2 + 2
∑

|i|>K3(σ )

∣∣vn
i (t)

∣∣2 + 2
∑

|i|>K3(σ )

∣∣wi(t)
∣∣2

< σ,

if n � N2. Hence, vn(t) → w strongly in �2. It follows that the sequence vn(t) is pre-compact for
any t . Now, using (3.3) and that ‖Avn(t)‖�2 � 4‖vn(t)‖�2 over (3.11), we have that∥∥∥∥dvn(t)

dt

∥∥∥∥
�2
� 4ν

∥∥vn(t)
∥∥

�2 + δ(θtω)
∥∥vn(t)

∥∥
�2

+ e−δ(θtω)
(
2M

(
vn(t)

)∥∥vn(t)
∥∥

�2 + ‖c1‖�2

)
.

By (4.19), ∥∥∥∥ d

dt
vn(t)

∥∥∥∥
�2
� R2(ω, T ), ∀n ∈N, ∀t ∈ [0, T ],

proving that the sequence vn is equi-continuous. The Ascoli–Arzelà theorem implies the existence of
a subsequence vnk converging in C([0, T ], �2) to some function v(·). It is then easy to show that v is
a solution of (3.11). Also, it is clear that v(0) = v0. �

Lemma 4.5 implies several consequences.

Corollary 4.6. For any ω ∈ Ω and t � 0 the graph of the map u0 �→ G(t,ω, u0) is closed. Hence, G possesses
closed values.

Proof. For pn ∈ G(t,ω, u0
n) there is vn(·) ∈ S(e−δ(ω)u0

n,ω) such that pn = eδ(θtω)vn(t). Assume that
pn → p and u0

n → u0. Applying Lemma 4.5 we obtain, passing to a subsequence, that vn → v in
C([0, t], �2), where v(·) ∈ S(e−δ(ω)u0,ω). Therefore, p = eδ(θtω)v(t) ∈ G(t,ω, u0). �
Corollary 4.7. G is a strict MNDS.

Proof. It follows from Lemma 3.4 and Corollary 4.6. �
Corollary 4.8. For any ω ∈ Ω and t � 0, the map G(t,ω, ·) has compact values.

Proof. Let pn ∈ G(t,ω, u0) be an arbitrary sequence. Take vn(·) ∈ S(e−δ(ω)u0,ω) such that pn =
eδ(θtω)vn(t). By Lemma 4.5 there exists v(·) ∈ S(e−δ(ω)u0,ω) satisfying vnk → v in C([0, t], �2) for
some subsequence. Hence, pnk = eδ(θtω)vnk (t) → eδ(θtω)v(t) ∈ G(t,ω, u0) in �2. �
Proposition 4.9. For any ω ∈ Ω and t � 0, the map u0 �→ G(t,ω, u0) is upper semi-continuous.

Proof. Suppose the opposite. Then there exist u0, t > 0, a neighborhood O of G(t,ω, u0) and
sequences u0

n → u0, pn ∈ G(t,ω, u0
n) such that ξn /∈ O. Let pn = eδ(θtω)vn(t), where vn(·) ∈

S(e−δ(ω)u0
n,ω). By Lemma 4.5 we obtain that, up to a subsequence, vn → v in C([0, t], �2), where

v(·) ∈ S(e−δ(ω)u0,ω). Thus, pn → eδ(θtω)v(t) ∈ G(t,ω, u0) in �2, which is a contradiction. �
Finally, we have the following result, which proves the first part of Theorem 4.1.
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Theorem 4.10. The MNDS G possesses a unique pullback global strictly invariant D-attractor A(ω), defined
by (2.3), where K (ω) is the set given in (4.3).

Proof. This theorem follows from Theorem 2.5 using Corollary 4.7, Lemma 4.2, Theorem 4.4 and
Proposition 4.9. �
4.4. The random attractor

In order to ensure that A(ω) is a random pullback D-attractor we need to check that it is a
random set, i.e., its measurability. For this aim we need to obtain some properties concerning the
map ω �→ G(t,ω, K (ω)), where K (ω) ∈ D is the pullback D-absorbing set given in Lemma 4.2. Also,
we have to prove that G is an MRDS.

Assume further that

λ >

N∑
j=1

|c j|E
(∣∣z∗

j

∣∣). (4.21)

For M ∈N, we consider the sets

ΩM :=

⎧⎪⎪⎨⎪⎪⎩
ω ∈ Ω:

∣∣δ(θtω)
∣∣ � ε|t|,

t∫
0

∣∣δ(θsω)
∣∣ds �

(
N∑

j=1

|c j|E
(∣∣z∗

j

∣∣) + ε

)
|t|,∣∣ω j(t)

∣∣ � ε|t|, ∀ j, for |t|� M

⎫⎪⎪⎬⎪⎪⎭ , (4.22)

where

0 < 2ε < λ −
N∑

j=1

|c j|E
(∣∣z∗

j

∣∣).
These sets are well defined in view of Lemma 3.1 and condition (4.21).

Lemma 4.11. Ω = ⋃
M ΩM .

Proof. Let us show that for any ω ∈ Ω there exists M such that ω ∈ ΩM , which will imply that
Ω = ⋃

M ΩM .

Since limt→±∞
|z∗

j (θtω)|
t = 0 and limt→±∞

|ω j(t)|
t = 0, there exists M(ε) such that

∣∣z∗
j (θtω)

∣∣ � ε∑N
j=1 |c j|

|t|,
∣∣ω j(t)

∣∣ � ε|t|, ∀ j, if |t|� M,

and

∣∣δ(θtω)
∣∣ � N∑

j=1

|c j|
∣∣z∗

j (θtω)
∣∣ � ε|t|, if |t|� M.
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By the property limt→±∞
∫ t

0 |z∗
j (θsω)|ds

t = E(|z∗
j |) arguing in a similar way we have

t∫
0

∣∣δ(θsω)
∣∣ds �

(
N∑

j=1

|c j|E
(∣∣z∗

j

∣∣) + ε

)
|t|, for |t|� M. �

We need the continuity of the map R× ΩM � (t,ω) �→ δ(θtω), which implies that ΩM ∈F .

Lemma 4.12. The set ΩM is closed, hence, ΩM ∈ F and it is a Polish space. The map R× ΩM � (t,ω) �→
δ(θtω) is continuous.

Proof. Let tn → t0, ωn → ω0, where ωn ∈ ΩM and ω0 ∈ Ω . Then

∣∣δ(θtnωn) − δ(θt0ω0)
∣∣ =

∣∣∣∣∣
N∑

j=1

c j

( 0∫
−∞

esθtnωnj(s)ds −
0∫

−∞
esθt0ω0 j(s)ds

)∣∣∣∣∣
�

N∑
j=1

|c j|
0∫

−∞
es

∣∣θtnωnj(s) − θt0ω0 j(s)
∣∣ds

�
N∑

j=1

|c j|
( 0∫

−∞
es

∣∣ωnj(s + tn) − ω0 j(s + t0)
∣∣ds + ∣∣ωnj(tn) − ω0 j(t0)

∣∣).

In view of the definition of ΩM for |τ | � M we have |ωnj(τ )| � ε|τ |. Also, by ωn → ω0 it is clear
that |ω0 j(τ )| � ε|τ | if |τ | � M. Therefore, |ωnj(τ ) − ω0 j(τ )| � |ωnj(τ )| + |ω0 j(τ )| � ε(|τ | + |τ |), if
|t| � M . Thus, for any β > 0, there exists T (β) > t0 (and then T (β) > tn also) such that

N∑
j=1

|c j|
−T∫

−∞
es

∣∣ωnj(s + tn) − ω0 j(s + t0)
∣∣ds � 2

N∑
j=1

|c j|
−T∫

−∞
es2ε

(|s| + |t|)ds <
β

3
,

where |t0| < |t| (and thus, again, we can assume |tn| < |t|). Thus, if we take n0(β, T (β)) such that

N∑
j=1

|c j|
∣∣ωnj(s + tn) − ω0 j(s + t0)

∣∣ <
β

3
,

N∑
j=1

|c j|
∣∣ωnj(tn) − ω0 j(t0)

∣∣ <
β

3
,

for any s ∈ [−T ,0] and n � n0, we then obtain∣∣δ(θtnωn) − δ(θt0ω0)
∣∣ < β, if n � n0.

We have proved that δ(θtnωn) → δ(θt0ω0), so that ω0 satisfies the properties in (4.22), and then
ω0 ∈ ΩM . Thus, we have proved that ΩM is closed (hence, ΩM ∈F ) and also that the map R× ΩM �
(t,ω) → δ(θtω) is continuous.
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Finally, as a subspace of Ω , the space ΩM is separable and metrizable. Since ΩM is closed and Ω

is complete, ΩM is also complete, and then a Polish space. �
Let FΩM be the trace σ -algebra of F with respect to ΩM and let BΩM (a, r), a ∈ ΩM , r > 0, be a

ball in ΩN . These balls can be generated by BΩ(a, r)∩ΩM where BΩ(a, r) is a ball in Ω . The same is
true for all open sets in ΩM . Hence FΩM is just the Borel σ -algebra of ΩM . Moreover, since ΩM ∈F
we have FΩM ⊂F .

Let us define

PΩM (A) := P(A), for A ∈ FΩM ,

that is, PΩM is just the restriction of P to FΩM . Also, let FΩM be the completion of FΩM with respect
to PΩM .

The following facts can be proved as in [11].

(1) PΩN is a finite measure on (ΩN ,FΩN ).
(2) If A ∈FΩM , then A ∈F .

Now we establish the continuity of the random radius R(ω) given in Lemma 4.2 over ΩM . We
recall that

R2(ω) = 2eδ(ω)‖c0‖�1

0∫
−∞

e−2δ(θsω)+2λs+2
∫ 0

s δ(θrω)dr ds.

Lemma 4.13. The map ω �→ R(ω) is continuous on ΩM .

Proof. Let ωn → ω0 in ΩM . By Lemma 4.12 we have

e−2δ(θsωn) → e−2δ(θsω0) as n → ∞.

The convergence δ(θtnωn) → δ(θt0ωn) and the continuity of t �→ δ(θtωn) imply that δ(θtωn) converges
to δ(θtω0) uniformly with respect to t in a finite interval, so that |δ(θrωn)| is uniformly bounded
on any finite interval [a,b]. Thus, by δ(θrωn) → δ(θrω0) and the existence of some L such that
|δ(θrωn)| � Ls , for all n and r ∈ [s,0], Lebesgue’s theorem implies that

0∫
s

δ(θrωn)dr →
0∫

s

δ(θrω0)dr.

Hence,

e−2δ(θsωn)+2λs+2
∫ 0

s δ(θrωn)dr → e−2δ(θsω0)+2λs+2
∫ 0

s δ(θrω0)dr, for any s � 0,

as n → ∞. On the other hand, by (4.22) we obtain the majorant

e−2δ(θsωn)+2λs+2
∫ 0

s δ(θrωn)dr � e2(λ−2ε−∑N
j=1 |c j |E(|z∗

j |))s
, for s �−M.

Then by Lebesgue’s theorem and condition (4.21) we have

−T∫
e−2δ(θsωn)+2λs+2

∫ 0
s δ(θrωn)dr ds →

−T∫
e−2δ(θsω0)+2λs+2

∫ 0
s δ(θrω0)dr ds.
−∞ −∞
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On the other hand, by |δ(θrωn)| � LT , for all n and r ∈ [−T ,0], we get

e−2δ(θsωn)+2λs+2
∫ 0

s δ(θrωn)dr � e2LT +2T LT , for s ∈ [−T ,0].

Hence, again by Lebesgue’s theorem

0∫
−T

e−2δ(θsωn)+2λs+2
∫ 0

s δ(θrωn)dr ds →
0∫

−T

e−2δ(θsω0)+2λs+2
∫ 0

s δ(θrω0)dr ds.

Since by Lemma 4.12 we have eδ(ωn) → eδ(ω0) , the continuity of ω �→ R(ω) follows. �
Concerning ΩM we can obtain stronger properties for the cocycle G .

Lemma 4.14. The map R
+ × ΩM × �2 � (t,ω, u0) �→ G(t,ω, u0) is upper semi-continuous.

Proof. If this is not true, then there exist u0, t0 > 0, ω0 ∈ ΩM , a neighborhood O of G(t0,ω0, u0)

and sequences tn → t0, ωn → ω0 in ΩM , u0
n → u0 in �2, ξn ∈ G(tn,ωn, u0

n) such that ξn /∈O. We shall
prove that, up to a subsequence, ξn → ξ ∈ G(t0,ω0, u0), which is a contradiction.

Let vn(·) ∈ S(v0n,ωn) be such that ξn = eδ(θtn ωn)vn(tn), where v0n = e−δ(ωn)u0n . By Lemma 4.12
we have that δ(θtnωn) → δ(θt0ω0) and v0n → v0 = e−δ(ωn)u0.

Due to these properties and (4.1), arguing as in Lemma 4.13 it follows that (4.18) and (4.19) hold,
where T > tn , T > t0, and R0 is a common constant for any ωn .

Lemma 4.12 and the continuity of t �→ δ(θtω0) imply that δ(θ·ωn) → δ(θ·ω0) in C([0, T ]). Then,
using inequalities (4.7) and (4.19), we can find K (ε) and α > 0 such that

d

dt

∑
i∈Z

ρ

( |i|
K

)∣∣vn
i

∣∣2 � α
∑
i∈Z

ρ

( |i|
k

)∣∣vn
i

∣∣2 + ε, if K � K (ε).

Using Gronwall’s lemma and (4.18) we obtain

∑
|i|�2K (ε)

∣∣vn
i (t)

∣∣2 �
∑
i∈Z

ρ

( |i|
K

)∣∣vn
i (t)

∣∣2 � εeαt + ε

t∫
0

eα(t−r) dr

� ε

(
eαT + eαT − 1

α

)
. (4.23)

As in the proof of Lemma 4.5 we obtain that the sequence vn(t) is pre-compact for any t. By (3.3),
(4.19) and the fact that δ(θ·ωn) → δ(θ·ω0) in C([0, T ]), we obtain∥∥−ν Avn(t) + δ(θtωn)vn(t) − e−δ(θtωn) f̃

(
eδ(θtωn)vn(t)

)∥∥2
�2 � C0, ∀n ∈ N, ∀t ∈ [0, T ],

so that ∥∥∥∥ d

dt
vn(t)

∥∥∥∥
�2
� C1, (4.24)

which proves that the sequence vn is equi-continuous. The Ascoli–Arzelà theorem implies then the
existence of a subsequence vnk converging to some function v(·) in C([0, T ], �2).
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From the continuity of the maps f̃ :�2 → �2 and (t,ω) �→ δ(θtω) it is easy to show that v(·) is a
solution of (3.11). Also, it is clear that v(0) = v0.

It follows that ξnk → ξ = eθt0 ω0 v(t0) ∈ G(t0,ω0, u0), which is a contradiction. �
Now, the following result is a consequence of Lemma 2.2.

Corollary 4.15. The map (t,ω, u0) �→ G(t,ω, u0) is B(R+) ⊗FΩM ⊗B(�2)-measurable.

We need now some properties of the map ΩM � ω �→ G(t,ω, K (ω)). For this aim we shall use the
following auxiliary lemma.

Lemma 4.16. Let v0n → v0 weakly in �2 , ωn → ω0 in ΩM and fix T > 0. Then there exist v(·) ∈ S(v0,ω0)

and a subsequence vnk ∈ S(v0nk ,ωnk ) such that

vnk → v weakly in L2(0, T ;�2),
vnk (t) → v(t) weakly in �2 for all t ∈ [0, T ].

Proof. In view of (4.1) and arguing as in Lemma 4.13 there exists R0 > 0 such that∥∥vn(t)
∥∥

�2 � R0, ∀t ∈ [0, T ], ∀n.

Arguing now as in Lemma 4.14 we have ∥∥∥∥ d

dt
vn(t)

∥∥∥∥
�2
� C0. (4.25)

Hence, there exist v,χ ∈ L2(0, T ;�2) such that, up to a subsequence,

vn → v,
d

dt
vn → d

dt
v, F ωn

(·, vn(·)) → χ weakly in L2(0, T ;�2), (4.26)

where F ωn (t, vn(t)) = −ν Avn(t) + δ(θtωn)vn(t) − e−δ(θtωn) f̃ (eδ(θtωn)vn(t)).
Let ϕ(·) ∈ C1([0, T ]) be a function such that ϕ(T ) = 0 and ϕ(0) = 1 and let ξ ∈ �2. Then

d

dt

(
vn, ξϕ

) = (
F ωn

(
t, vn(t)

)
, ξ

)
ϕ(t) + (

vn(t), ξ
)
ϕ′(t).

Integrating over (0, T ) and using (4.26) we have

0 = (
vn(0), ξ

) +
T∫

0

(
F ωn

(
t, vn(t)

)
, ξ

)
ϕ(t)dt +

T∫
0

(
vn(t), ξ

)
ϕ′(t)dt

→ (
v0, ξ

) +
T∫

0

(
χ(t), ξ

)
ϕ(t)dt +

T∫
0

(
v(t), ξ

)
ϕ′(t)dt = 0. (4.27)

On the other hand, since v(t) is absolutely continuous, we have
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d

dt
(v, ξϕ) =

(
dv

dt
, ξ

)
ϕ(t) + (

v(t), ξ
)
ϕ′(t)

= (
χ(t), ξ

)
ϕ(t) + (

v(t), ξ
)
ϕ′(t) for a.a. t ∈ (0, T ),

so

0 = (
v(0), ξ

) +
T∫

0

(
χ(t), ξ

)
ϕ(t)dt +

T∫
0

(
v(t), ξ

)
ϕ′(t)dt. (4.28)

Hence, (4.27), (4.28) imply that v(0) = v0.
Therefore, for any ξ ∈ �2 we have

(
vn(t), ξ

) = (
v0n, ξ

) +
t∫

0

(
dvn

dτ
, ξ

)
dτ → (

v0, ξ
) +

t∫
0

(
dv

dτ
, ξ

)
dτ = (

v(t), ξ
)
,

where the last equality follows from v, dv
dt ∈ L2(0, T ;�2) and v(0) = v0. Hence,

vn(t) → v(t) weakly in �2 for all t ∈ [0, T ].

It follows from the weakly continuity of the map f̃ :�2 → �2 and the continuity of (t,ω) �→ δ(θtω)

that

F ωn
(
t, vn(t)

) → F ω0
(
t, v(t)

)
weakly in �2 for all t ∈ [0, T ].

Also by (3.3) we obtain ∣∣(F ωn
(
t, vn(t)

)
, ξ

)∣∣ � C1‖ξ‖�2 , ∀n ∈ N, ∀t ∈ [0, T ],

and then Lebesgue’s theorem gives(
F ωn

(
t, vn(t)

)
, ξ

) → (
F ω0

(
t, v(t)

)
, ξ

)
in L1(0, T ) for all ξ ∈ �2.

Thus,

F ω0
(·, v(·)) = χ,

and

v(t) = v0 +
t∫

0

dv

dτ
dτ = v0 +

t∫
0

F ω0
(
τ , v(τ )

)
dτ , for all t ∈ [0, T ],

which implies that v(·) ∈ S(v0,ω0). �
Lemma 4.17. The map ΩM � ω �→ G(t,ω, K (ω)) is FΩM -measurable for any t � 0. Also, G(t,ω, K (ω)) is
closed for all t � 0, ω ∈ ΩM .
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Proof. It is well known [18, Chapter III] that D(ω) is a random set with respect to Pc if and only if
the graph of D(ω), given by

Gr(D) := {
(ω, x) ∈ ΩM × �2: x ∈ D(ω)

}
,

belongs to FΩM ⊗ B(�2). Thus, in order to prove the first statement it is sufficient to show that the
graph of the map ω �→ G(t,ω, K (ω)) belongs to FΩM ⊗B(�2), and this is true if the graph is closed.

Let ω → ω0 in ΩN and ξn → ξ in �2, where ξn ∈ G(t,ωn, u0n) and u0n ∈ K (ωn). We have to show
that ξ ∈ G(t,ω0, K (ω0)). Take vn(·) ∈ S(e−δ(ωn)u0n,ωn) such that ξn = eδ(θtωn)vn(t).

By the definition of K (ω) we have that vn0 = e−δ(ωn)u0n satisfies ‖v0n‖�2 � e−δ(ωn)R(ωn). Then by
Lemmas 4.12, 4.13 we obtain, passing to a subsequence, that vn0 → v0 weakly in �2, where ‖v0‖�2 �
e−δ(ω0)R(ω0), and u0n → u0 = eδ(ω0)v0 ∈ K (ω0) weakly in �2.

In view of Lemma 4.16 there exist v(·) ∈ S(v0,ω0) and a subsequence such that

vn(t) → v(t) weakly in �2 for all t ∈ [0, T ].
Thus, ξn = eδ(θtωn)vn(t) → eδ(θtω0)v(t) weakly in �2, so that ξ = eδ(θtω0)v(t) ∈ G(t,ω0, u0) ⊂
G(t,ω0, K (ω0)).

As the graph is closed, it is obvious that G(t,ω, K (ω)) is closed for all t � 0, ω ∈ ΩM . �
The following result, together with Theorem 4.10, proves completely Theorem 4.1.

Theorem 4.18. The MNDS G is an MRDS. Also, the pullback D-attractor A(ω) given in Theorem 4.10 is a
random set with respect to F , and then it is the unique random global pullback D-attractor for G.

Proof. Let us prove that G is an MRDS. As G is an MNDS, it remains to show that the map (t,ω, x) �→
G(t,ω, x) is B(R+) ⊗F ⊗B(�2)-measurable. Let O be an open set of �2. Then, by Corollary 4.15, we
have that the set

AM,O := {
(t,ω, x) ∈R

+ × ΩM × �2: G(t,ω, x) ∩O 	= ∅}
belongs to B(R+) ⊗FΩM ⊗B(�2), so that AM,O ∈ B(R+) ⊗F ⊗B(�2). Hence{

(t,ω, x) ∈R
+ × Ω × �2: G(t,ω, x) ∩O 	= ∅}

=
∞⋃

N=1

{
(t,ω, x) ∈R

+ × ΩM × �2: G(t,ω, x) ∩O 	= ∅}
=

∞⋃
N=1

AN,O ∈ B
(
R

+) ⊗F ⊗ B
(
�2),

and then G is an MRDS.
Furthermore, in view of Lemma 4.17, the map ΩM � ω �→ G(t,ω, K (ω)) is FΩM -measurable for

any t � 0. Hence, for a fixed t � 0, the set

CN,O := {
ω ∈ ΩM : G

(
t,ω, K (ω)

) ∩O 	= ∅}
belongs to FΩM , and then

{
ω ∈ Ω: G

(
t,ω, K (ω)

) ∩O 	= ∅} =
∞⋃

CM,O ∈ F .
N=1
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In view of Theorem 2.7 the pullback D-attractor A(ω) is a random set with respect to F , and
then it is the unique random global pullback D-attractor for G . �
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