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Abstract In this work, we numerically study a
problem including several dissipative mechanisms.
A particular case involving the symmetry of the cou-
pling matrix and three mechanisms is considered,
leading to the exponential decay of the correspond-
ing solutions. Then, a fully discrete approximation of
the general case in two dimensions is introduced by
using the finite element method and the implicit Euler
scheme. A priori error estimates are obtained and the
linear convergence is derived under some appropri-
ate regularity conditions on the continuous solution.
Finally, some numerical simulations are performed to
illustrate the numerical convergence and the behavior
of the discrete energy depending on the number of
dissipative mechanisms.
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1 Introduction

Time decay of solutions in thermomechanics has
deserved much attention. One aspect corresponds to
the thermoelasticity. Dafermos [4] started this study
showing the asymptotic stability for the one-dimen-
sional case and the existence of undamped isother-
mal solutions for dimension greater than one. Several
authors proved the exponential decay later [16, 22] as
well as the polynomial decay (but not exponential) in
higher dimensions [12, 14, 15]. Similar results were
also obtained for other thermoelastic theories which
are not based on the Fourier law [1, 18-21].

Recently, in [6] Fernandez and Quintanilla stud-
ied the problem determined by the elasticity with n?
dissipative mechanisms, where n is the dimension
of the domain. They showed that, whenever the
matrix of the coupling coefficients is of the rank n?,
the decay of the solutions is exponential, but differ-
ent issues need to be considered. One could be if
the number n? of the dissipative mechanisms is opti-
mal. Another one could be to clarify how the num-
ber of dissipative coupling mechanisms affects to
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the decay of the solutions. This paper is addressed
to deal with these two questions.

The contribution [6] applies to the linearized the-
ory [5, 9, 10, 13], where we note that few symme-
tries are satisfied by the constitutive coefficients.
More symmetries are hold in the linear case. We
will prove that, whenever the matrix of coupling
coefficients satisfies the symmetries Aﬁj =Aj’.l. (see
system (4)), we can reduce the necessary number of
coupling dissipation mechanisms to obtain the
exponential decay. We point out that the linear the-
ory satisfies these conditions. To be precise, we
only need three dissipative mechanisms in dimen-
sion two and six in dimension three.

The mathematical aim of the contribution [6] was
analytical. So, it will be suitable to provide a numer-
ical study to the problem of the elasticity with sev-
eral dissipative mechanisms. In this sense, we will
introduce some fully discrete approximations of the
general case involving four dissipative mechanisms
(the two temperatures and the two mass diffusions),
providing a priori error estimates which lead to
the linear convergence of the algorithm. Later, we
will carry out some simulations (always in dimen-
sion two) referring to the different problems when
the coupling matrix has rank one, two, three and
four, respectively. Since we work with simulations,
we will be able to see the (numerical) exponen-
tial decay in all cases. This result should be inter-
preted as an approximation since the simulations
correspond to numerical approximations, but we
note that the introduction of an increasing number
of dissipative mechanisms provides that the rate of
the exponential decay (obtained from the numerical
approach) also increases. This fact is not surprising,
but this is the first mathematical contribution in this
aspect. We show a numerical proof that the decay of
the solution increases when we increase the number
of coupling dissipative mechanisms.

The plan of this article is as follows: in the next
section we recall the basic equations of the problem
as well as the results obtained in [6] in this sense.
Then, we focus on the case that we consider three
dissipation mechanisms and the coupling coef-
ficients satisfy a certain symmetry and we verify
that, in this case, there is also an exponential decay.
The numerical study of the problem is carried out
in the fourth section, obtaining some a priori error
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estimates and deriving the linear convergence under
adequate regularity conditions. In the fifth section,
we carry out some simulations when we incorpo-
rate different dissipation mechanisms and we check
how the decay rate increases as we introduce new
mechanisms.

2 Basic equations and assumptions

In this section, we describe the model and the required
assumptions on the data, and we recall some results
regarding the existence and uniqueness or the energy
decay (see [6] for further details).

Let us consider a two-dimensional bounded domain
B with a sufficiently smooth boundary which is made
of an elastic material coupled with (in general) four dis-
sipative mechanisms. From a physical point of view, we
can think that they are determined by two temperatures
and two mass diffusion processes. For the sake of sim-
plicity in the modeling, we assume that the material is
homogeneous and isotropic in the mechanical, thermal
and mass diffusion parts, but we do not impose this
requirement on the coupling coefficients. Therefore, the
general system is written as follows (see [6]):

,0” —MAM +(A+”) ]]1 glk’ (1)
my,0, = K,40, + AL i, + glﬁq(e,, 0,).

wherei,j,k=1,2and ,g,p =1, ..., 4, u; denotes the
displacement, 6,0, are the two temperatures, 65, 6,
are the other two dissipative variables which can be
seen as two mass diffusions (see [13]), p is the mass
density, 4,y are the Lamé constants, K; are related
with the thermal and diffusive conduct1v1ty, my; are
related with the thermal and diffusive capacity, Al are
the coupling terms and ékj corresponds to the coefﬁ—

cients associated to the relative temperatures (or
concentrations).

We will impose the boundary conditions, for a.e.
X € 0B,

ui(x9 t) = O’ okJ(x? t)nj(x) = Oa (2)
where n; is the outward normal vector to the boundary
0B, forz =1,2and k=1, ...,4, and some initial con-
ditions, for a.e. x € B,

u(x,0) = u)(x),  i(x, 0) = v}(x),
0,(x,0) = 09(x), )



Meccanica (2023) 58:179-191

181

0 0

fori=1,2 and k=1, ...,4, where functions Uy Uy,
W0.19,6Y, 69, 69 and 67 represent the initial data of the

problem. We note that conditions (2) imply that there
is not displacement on the boundary and that the dis-
sipative mechanisms are isolated with respect to the
exterior.

We will impose the following conditions on the data:

G p>0,u>0,A4+u>0.

(i)  The matrices (m;), (k;) are symmetric, that is,

m; = m; and klj = kjl- fori,j=1,...,4.

(iii)  The matrices (m;), (k;) and (/;) are positive def-
inite, that is, there exist three positive constants
C,, C, and C;5 such that

my&E > C &g forevery vector (&),
;&6 = C¢8;  for every vector (&),
LE +2L,686 + 1,E > Cy(E +&).

Let W(;’2(B) and L*(B) be the well-known Sobolev
spaces and

ﬁwrﬂfeﬁwx/}M=0L
WL2(B) = W (B)n LgB(B).

Then, in [6] we proved the following.

Theorem 1 If u’ € W**(B), ) € W'*(B) and
0 € W*X(B)N LX(B), for i=1,2 and k=1,...,4,
then problem (1-3) has a unique solution.

Moreover, if the coupling matrix defined, from the
coefficients given in system (1), as

1 Al Al 4l
A%1 A52 A%l A%2
Ay A Ay Ay

4 44" 4T 4L
Al AT, A5 Ay

has rank 4, then the solutions to problem (1-3) decay
in an exponential way.

3 Case Aﬁj = AJ’,i and three dissipative mechanisms

As we pointed out before, four coupling mechanisms
are sufficient to guarantee the exponential decay for
the elasticity. The natural question is if we can relax

the number of couplings. A possible answer is that it
will be positive whenever we assume that Afj = A]Z.i for
every i, j, [ and we consider three dissipative mecha-
nisms. The proof of this fact is very easy from the
analysis proposed in [6]. For this reason, we are going
to sketch the proofs and to follow the similar steps
proposed there.

3.1 The problem

In this case, we consider the system (see lesan [11]):

pil; = HAu; + (A + /;)?Ajﬁ +f¥k9”€, @
my,0, = Kk;,40, + Ay i — épq(ﬂp =0,

where i,j,k=1,2and l,q,p = 1, ..., 3, which is simi-
lar to system (1). It is relevant to say that, in contrast
to the reference [6], we assume that [, p, g can be
1,2 or 3 and 5122 = - 112 = [ but the other combina-
tions vanish. From a physical point of view, we can
think that the dissipative mechanisms are determined
by the two temperatures and one mass dissipation
mechanism.

We will assume again conditions (i)-(iii) but now
i, j vary between 1 and 3, without the condition on /
since it now leads to a unique positive value /.

We combine system (4) with the initial conditions
(3) and the boundary conditions (2), but in the case
thatk = 1,2,3fora.e. x € B.

We can study the problem (4), (3) and (2) in the
Hilbert space:

H =W (B x [L*B))* X [L2(B)I’.

We can define the inner product associated with the
norm:

NGy, v, 0N = / (PV;‘T,' +my0.0, + 2uee; + Aeii%) da,
B

where ¢; = %(ui j +u;;). As usual, the bar denotes the
conjugated complex.

If U = (u;,v;,0,) we can write our problem in the
following abstract from:
dU

o =AU UO) = @6,

where
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u; Vi
Al v, | = 7' (wdu + A+ pu; +A56,,) |,
9d nd[(KlpAQP +A§kvi,k + 5‘,[”](0[7 - eq))

and ngmy, =64, with 6,, being the Kronecker
symbol.

At is was pointed out in [6] the domain of
the operator A is made by the elements of
the Hilbert space H such that viEWé’z(B),
HAu; + (A + pu;; € L*(B) and 6, € W>(B) N L2(B).
Therefore, the domain of the operator is dense.

At the same time, we have that

Re < AU, U >
—_ / (K,.je,.yme,: + 10, — 0,)0, — 92)) da <0,
B

Following the arguments used in the proof of Lemma
2 in [6] we can develop (word by word) a proof in the
sense that zero belongs to the resolvent of the opera-
tor A in our case.

Therefore, we can obtain the following.

Theorem 2 The operator A generates a C-semi-
group of contractions.

3.2 Exponential decay

In this subsection, we prove the exponential decay
of the solutions to our problem. It is relevant to say
that we assume that Aéj = Ajl.i, for every i,j = 1,2 and
[ =1,2,3, and that the matrix

1 1 1
All A12 A22

has rank 3.
Then, we get the exponential decay of the solu-
tions that we state as follows.

Theorem 3  The solutions to problem (2—4) decay in
an exponential way.

Proof The proof follows the same steps of the argu-
ments used in the proof of Theorem 2 in [6]. That
is, we need to prove that the imaginary axis is con-
tained in the resolvent of the operator A and that the
condition
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limsup ||(ipl — A7 < 0
[Bl—>c0
holds.

In order to show the first condition, we use a con-
tradiction argument. Let us assume that this condition
does not hold and we will arrive to a contradiction.
Assuming that there exists f # 0 such that i belongs
to the spectrum, there will exist a sequence of real
numbers f, — f and a sequence of elements U, of
unit norm, at the domain of the operator A, such that

ifuj, — vy, > 0 in W2(B),
ipBvin — (Ml + (A + puy, ;; + A]{kGIH,k)

-0 in LXB),

ia)nmquqn - (quAeqn + éf?(am - em) + Afnlfm[”)

-0 in L*B),
where
1
fml = E(Vm,l + vl,m)‘

From the energy inequality, we see that 8,, — 0 in
W'2(B) fori = 1,2, 3. Then, we obtain

@, K40, + iA] e,., =0 in L*B),

where
1
Cpan = E(upmq +ltgnp)-
We multiply by Af,qepqn the jth-convergence and we
note that
-1 J
< w40, Apuepom > '
=—-<Vh,.0;'VA,e,,) >0,

as far as the H2—norm of @ 'u,, is bounded.
It then follows that

€ — 0 in L*(B).

If we use the Korn inequality we also obtain that

Uy, — 0 in L*(B),

we deduce that v,, — 0 in L[*(B) and we arrive to a
contradiction.

We also note that we can use the same argument
to prove the asymptotic condition and the theorem is
derived. O
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Remark 1 We have developed the analysis in the
two-dimensional case. For the three-dimensional
one, we would need that the corresponding coupling
matrix has rank six.

Remark 2 Two recent papers [7, 8] have extended
the decay results obtained in [6] to the type III and
the hyperbolic cases. It is worth saying that we can
also extend Theorem 3 to these alternative theories.
That is, it is possible to obtain the exponential decay
in two dimensions for the type III or the hyperbolic
cases in the case that Afj = A,l'i and the matrix (5) has

rank three.
4 Numerical analysis of a fully discrete scheme

In the rest of this work, we will simplify the system
(1) considerably in order to better demonstrate our
results. So, we will take particular values of tensors

All.k, my,, k;, and £, to obtain the following system:

pity = pduy + (A + pu;jy + B0, + b6,
+P305, + a4,
pity = pluy + (A + ;o + 16,5, + 0,
—B3031 = Pab4 s
c10y = K40, + iy g + ity ; = 1,(0) = 60,), ©
Cabh = K40, + Pyity o + ity +1,(6, = 6,),
36 = KA03 + P3ity 5 = ity + 15(05 = 0),
404 = kA0, + Pyiy  — Pyity 5 — 15(05 = 6,).

In this case, we will impose the following conditions

on the constitutive coefficients in order to guarantee
assumptions (i)-(iv)':

p>0,
u>0,

c; >0, >0,
A+u>0, x>0,

c3 >0,
>0,

c; >0,
>0 D

In this section, we present a fully discrete approxima-
tion of the simplified problem given by the system
(6) with boundary conditions (2) and initial condi-
tions (3), and we perform an a priori error analysis.
As usual, we will study the deformation of the body
over a finite time interval [0, 71, for a given final time
T>0.

I We note that we assume that [, = 0, but the analysis could
be extended without difficulties to the case /, # 0 whenever
L3 > l%.

First, we provide the variational formulation of
problem (6), (2) and (3). So, let us denote the two
components of the velocity by v, =i, and v, = i,
respectively. Let Y = L*(B) and H = [L*(B)]* and let
(-, )y and || - ||y (resp. (-, )y and || - || ;) be the usual
scalar product and the norm defined in Y (resp. H).
Moreover, let V be the variational space given by
V= Hé (B) and denote by || - ||, its usual norm.

Multiplying the equations of system (6) by ade-
quate test functions, using the Green’s formula and
the boundary conditions (2), we obtain the following
weak form.

Find the first component of the velocity
v; ¢ [0, T] — V, the second component of the velocity
vy & [0, T] — V, the first temperature 6, : [0,7] - V,
the second temperature 0, : [0, 7] — V, the first mass
diffusion 65 : [0,7] — V and the second mass diffu-
sion 6, : [0,T] — V such that v;(0) =, v,(0) =9,
0,(0) = 9?, 0,(0) = 02, 0;(0) = 02, 04(0) = 492 and, for
ae.te€[0,T]and for allw,r,s,z,m,l €V,

P (@), W)y + u(Vuy (1), Vw)y
+ A+ w(divu@),w )y = (0 (D), w)y
+ ﬁz(ez,z(t)a W)y + ﬂ3(93,2(f)7 W)y
+ 840041 (1), Wy,

P (1), Ny + u(Vuy (1), Vr)y
+ A+ w(divu(®),ry)y = p1(0,,0), )y
+ ﬁ2(92,1(t), r)y - ﬁ3(93,1(1‘)a r)y
- ﬂ4(94,2(t), V)y,

10,0, 9)y + x(VO,(1), V) + 1,(0,(t) — 0,5(2), 5)y

=111 (D, 9y + B (Va2 9y,
(10)

02(0,(1), 2)y + K(VO,(1), Vo) + 1, (02(1) — 0,(1), 2)y

= f(vi2(D, Dy + fr(v21(D), Dy,
(11

c3(05(H), m)y + k(VO5(t), V) + L;(05(2) — 0,(t), m)y

= ﬂ3(V1,2(1‘), m)y - ﬁ3(V2,1(f)a m)Y,
(12)

(04D, Dy + kx(VO,(1), VD) + 15(0,(1) — 05(2), Dy

= ﬂ4(V1,1(t)a l)y - ﬂ4(V2,2(t), l)y,
(13)
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where u(f) = (u,(t), u,(t)) represents the displace-
ment field and its components are recovered from the
relations:

ul(t)z/ vl(s)ds+u?,
0. (14)
uy(t) = / vy (s) ds + ul.
0

Now, we provide the fully discrete approximation of
the variational problem (8-14). This is done in two
steps. First, in order to obtain the spatial approxima-
tion we assume that the domain B is polyhedral and
let us denote by 7" a regular finite element triangula-
tion in the sense of [3]. Thus, we construct the finite
dimensional space V" C V given by

Vi={weCcB)nV; w?ﬂ_ € P(Tr) 15)
VTr € T').

In the above definition, P,(7r) represents the space of
polynomials of degree less or equal to one in the ele-
ment 77, i.e. the finite element space V" is made of
continuous and piecewise affine functions, and 2 > 0
is the spatial discretization parameter. Moreover, we
assume that the discrete initial conditions, denoted by

u?, v and 9}9’1 (for i=1,2 and j=1,...,4), are
given by

=P, =P, =P,

th 90’1 Pheo 90’1 Pheo (16)

9°h P"eo 9°h P"eo

where P" is the classical finite element interpolation
operator over yh (see, e.g., [3]).

In order to obtain the discretization of the time
derivatives, we use a uniform partition of the time
interval [0, 7], denoted by 0 =1, < t; < .- <ty =T,
with step size k=T/N and nodes t, =nk for
n=20,1,...,N. For a continuous function z(¢), we use
the notation z" = z(z,) and, for the sequence {7" }” —0
we denote by 67" = (2" — z*~!)/k its corresponding
divided differences.

Thus, applying the well-known implicit Euler
scheme, the fully discrete approximations of problem
(8-14) are the following.

@ Springer

Find the discrete first component of the velocity
{vhk "IN, C V", the discrete second component of
the ve1001ty {vhk” Ne V", the discrete first tem-
perature {Qhk” };V C Vh the discrete second tempera-
ture {Ohk”}N C Vh the discrete first mass diffusion
{th"}N , C Vh and the discrete second mass diffu-
sion {th"}N C V" such that vhko =0 tho =,
o0 = 90h o0 = %", 0”“) 90h o0 egh and,

for n= 1 N and for all wh, rh sh 2", mh e vh

p(5v}11k’”, wh)y + ,u(Vu’llk’” vwhy,

+ A+ m(diva™, why, = g0, why

i (17)
+ Br(055, h)y+ﬁ3(9§”‘2", wh)y
+ Bu(0)5" W)y,
p(GVE" My + u(Vil Vi,
+ A+ m(diva™, ), = g0 7y
(18)

+ Ba (055" 1)y = B30 1y
= B0 )y

427

180" sMy + k(VOI", Vs,
hk,n hk,n
+ 100" — 0", sy (19)

hk,n h hkn h
= ﬂl(vlylnas )Y + ﬂ](vz’zn’s )Y7

(802" Yy + (VO V),
+ 1O = 01" 2y (20)

hk, h hk.on o _h
= ﬂZ(Vl 2n7Z )Y + ﬂ2(V2’1n7 s )Y7

3 (802" myy + K (VOIS V),
+ l3(ehk,n _ eitk,n’ mh)y (21)

hk, hk, h
- ﬂ%(vl 2”7 )Y - ﬁ3(v21”1”’ m )Ya

(801" 1)y + (VO VI,

1 (ghk,n _ ggk,n’ ", 22)
= B0 Iy = B O5S 1y,
where 1/ (uhk" ey represents the discrete dis-

placement field and 1ts components are recovered
from the relations:
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n
hkj
u}l’k’” =k Z v I 4 u(l)h,
J=1
n (23)
Mk _ hkj . Oh
U, = k Z vy,

=

It is worth noting that, under conditions (7), by using
Lax-Milgram lemma it is easy to show that the above
fully discrete problem has a unique solution.

In the rest of this section, our aim will be to obtain
some a priori error estimates for the numerical errors
V=V and 07 — 07" fori = 1,2and j = 1,..., 4

Subtracting variational Eq. (8) at time ¢ = ¢, for a test
function w = w” € V", and discrete variational Eq. (9)
we find that, for all w* € V",

p( = 8V Wy, + (V@ = U, V',
+(A + p)(div @" — u*m), wﬁ)y
—B1 (0}, = 07" Wy = By(0;, = 055" wh)y

1,1 227
hk, hk,
B30, — 015" W)y — B0, — 01" W), =0,

and so, it follows that, for all w" € V*,

"1 hk,n n hk,n
p(V] =8V Vi = v ")y

+U(V @} = 1)), VO, =)y
+(A + ) (div @ — w1 =V )y

Ik, Ik,
—p 0y, - 01,1’1"’]11 =y

ik, hk,
=p(03, 02,2n’ V=" "y

ik hk,
—55(05, - 03,2n"’111 -y

s Ik,
—BaO}, = 07" v = vy

= p(i" — 5v’l’k’", Vi—why
+u(V () = i), VO = wh)y

+(A + w)( div (" — u*m), o] - wh)yl)y

hk,
—Bi(0} = 07",V = why
hk,n h
_ﬁ2(0;’2 - 9%](2 ’V}f - W )Y
SN h
a0, = 03 =y
N
—ﬁ4(02”1 - 94‘1 V= Wh)y.

Now, keeping in mind that

en _ s hkno o hkn
POy =8V v =)

+p(8v] - SV}I'I"", V=

hk,n hk.n
p(6v] — vy V= iy

14 hik, — hk,n—1
> 2y - - v =R
u(V @ =, V=),

= u(V ) =), VGl = uy

UV (] =y "), V(6uf = 5ul ")y,
u(V @ = ), V(sul - 6ul),

U . _ —

> {1V = 3, = 1V =i )

O], = O v = whyy = =07 = 0", (7 = W) )y,

. hk,n
v :hi(v’l‘ — vV =V Dy
n
™)

1

where v} = (V] — v’]l_l)/k and Su| = (u] — u’]l_l)/k,
after some algebraic manipulations and using several
times Cauchy-Schwarz inequality and Cauchy’s ine-
quality ab < ea® + --b?, we find that, for all w" € V",

P Bk )12 —1 _ k=12
2y =V = vy =R
H hkny 12 -1 hk,n=1y12
w2 {1V = = IV = I |
+(A+ ) div @" —un, (Gu — 51l )y
hk, Ik, hk, hk,
=PiO0] =0, "V = v Dy = 503, = 0,7 Vi = v Ty
hk, hk, hk, hk,
—Pa(05, = 035" v =V )y = BaO] = 0,1V = vy
< O] = 84115 + Nty = SufII5 + v} = w5
107 = O + 110 = 03" Iy + 1103 — 03" Iy
k, k, hk,
+10; = 63115+ 1Iv] = ™11 + 1V G = I,

+ div @, — )| + (50! — ul™", ur — wh)>.

Proceeding in a similar form, we obtain the error esti-
mates for the second component of the velocity field,
for all ¥ € V",

4 n N n— =
2 { I =B = g =B
ﬂ n gL n— SN
+ 2 IV = I, - Ve = I |
+(A + w)(div @ — u*n), @Sul = 51l 5)y
_ﬁl(‘gfz _ Ohk’" V— vhk,n)y

~

12 °72 2
(65, = 61" V5 =5y
+B3(07, = 035" v =)y
+By(0), = 0,57 Vs =)y

< (1% = BvIB, + llay = Susl, + vy = 1
+107 = 0,115, + 1165 — 6”115 + 1107 — 05113
+10; = 6315+ 1Iv; =I5
HIV@y = uy “DIIF, + 1| div (@, — w5

+(6uy — 5ugk’", uy = r’1)>,
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— -1 _ -1
where 6v) = (V) —vi™")/k and 6ul) = (u) — uy ") /k.

Combining the previous two estimates and taking
into account that

um, div (5u”
hk, 2
Iy

(A+ w(div@"
> At ”{u div (" —

2k
~lldiv @ —ur R,

— su™my),

it leads, for all w", " € V",

p hik, — hk,n—1
2 = I = =
U hk,
+2k{||V<u1 — I
_ hk,n—1
—IV@ = I |
A+ u .
+7{ || div (" — uhk’")H%
_“ div (un—l _ uhk,n—l)”%/
_ﬂl(en ehkn’ no_ vhk,n)Y
ﬁz(gn _ g;zkln rll _ V/I1k,n)Y
9 0%!/3}1 yll }lk,ﬂ
=505, = 055, vi = v Dy

ik, S
—ha(0}, =6, ’1’ iy

H /) n— =
{||V(u2 — I = 1V = DI |

%
hk, 2 -1 hk,n—1112
2 {s = I = v =
B0,
B0, — 03" V5 =5y
00, = 0"y =y
ik, hk,
H0(03, = 045"V, vy "y
1 n| 2 ny2 h 2
< O = VI + i = s+ 1 = wI
107 =071 + 110, ~ 9§""||2+||9" 63" |13
+16; = 0115 + 1V} = ""||2+||V<u uy I,
+lI diV(un—uﬁ")llﬂ‘}+(5v1 ViR =)

+IV; - 5Z"II§2+ Il — 5u§|lzk+ II2V’§ -5
S W
+V5 =yl + V@S —uy )l
n hk'l n h

+(5v2 - 5\/2 vy=r)).
Now, we obtain the error estimates for the first tem-
perature. If we subtract variational Eq. (10) at time
t = t, for a test function s = s" € V, and discrete vari-
ational Eq. (19), we obtain, for all s" € V",

@ Springer

(07 = 807", M)y + (V0! —

+, (0" - .9’“‘" o -
hkn

_ﬁl(vl,l 11 s S h)Y

hk, h
07 =01, V5"
92 »")’ Sh)y
hk,
ﬂl (Vg’z - vz’znv Sh)y = Oa

and therefore, we find that, for all s € V",

AN hk,n n hk,n
(0] — 00, ,thk— 0,y "
+K(V(O" hke ", V(" hka Ny
+H,(07 — O — (07 — 01, 07 —
_/311("11 - V}fk1n’9n 0,"")y
" hk,n 9;1 9}1kn
B vy, =y 1)y
An hkn n
= c,(6f = 807", 91 — ")y
+K (VO = 6", V(0" — ")y
+, (0" — 07" . — (07— )", 0m — sy
—pO, = }1’](1”’ 0} - My
-B(vVs, — ’;;',9" - "y

hk.n
01 )Y

Since

(0" — 807", 01 — 01", = ¢ (07 -

+p(59” 50"“ oi eh’“")y,
c1(5¢9” - 59’”‘ ”,9” 0 ")y

{ue" ORI — o — 0,

hk hk,
(v21 Vi 20 = My = =] = v 07 =51 Dy

n on hk.n
507,01 — 6",

using again several times Cauchy-Schwarz inequal-
ity and the above commented Cauchy’s inequality, we
obtain, for all s € V*,

¢ n n— =
{167 =015 ey — 612 |

ks ik,
=pvi, - V0T =0y

I Ik,
=pi(vy, =V, 5 9n 0"y

< (1167 = 86715 + 15 — "1, + 116y — 6711
hk, hk, hik,
1165 = 63115+ 1IV] = Vi IS+ Iv; = Vi1

n hk.n  pn
+(80" — 507", 0" —sh)y),

where 667 = (0] — 07‘1)/k.

In a similar way, we obtain the error estimates for
the other temperature 6, and the two mass diffusions
05 and 6, (we skip the details for the sake of clarity):
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C2 0}1 ehk,n 2 911—1 ehk,n—l 2 ﬂ ”vn _ vhk,n”2 _ ”V"_l _ vhk,nfl”2
E “ ) “y_” 2 Y ”y 2k 1 1 Y 1 1 Y
—By (v, = VIS 01 — 0, 2 {1V = I = IV = DI )
’ hkon hk,n +u . . o .
=B (V5 = vy 105 =0,y +2—k{|| div @" — w12 — || div @"! — u l)||2Y}
A 2 2 hk,n 2 H n g n— N—
< C(lle’; — 805113 + 1165 = 2115, + N} — 6/""1I5 +ﬂ{ VG =2 = 1Vl =l 1)||§,}
hk,n 2 hk,n 2 hk,n 2 P n n f— c,n—
+105 = 07" M1y + IV = Vil + Hlvy = vyl +or U IV = IS = g =
2 72 My 1 My 2= 2 My 2k
hk,n h n n n— hk,n—
+(507 — 602", 07 — ¢ )y), +%—]'<{||91 =611~ oyt - o1 )
C3 [ 1 _ ghkay2 _ j1gn-1 _ ghkn=12 w2 {10y - 03I — oy - 04 |
o o3 — 65"y — 15~ — 65l 2k " L
W gkn g _ gl + {0y = I — ey - 05 |
=B, = V5,05 =037y 2k ’ ) ’
n’ h}c,n " Tken +_{ ”071 _ ehk,n”2 _ ”07171 _ ohk,n—l ”2 }
+h(vy = vy 103 =03y e o
< (19 = W8+l = 3B, + vy = w',

< (163 = 605112 + 1163 = m"I% + 1165 = 0312
H10; = 0551 + vy =I5+ vy =1
+(807 — 802", 07 —mh), ),

{1105 - 015 e — 61 |

Ik, k.,

=B =V 0 = 0,y
ik, ik,

HBa(vy, = Va5 - 05 — 0y

A hk,

< C(IIt‘)g1 = 804115 + 116y = I"1I5, + 1165 — 65™"115,
hk, hk, hk,

+16) = 0,715 + V] = vl + vy = vy

+(80" — 50", 0" — l”)y),

n _ (gn n—1 n_ (gn n—1
where 60 = (0, — 0,7")/k, 665 = (05 — 077")/k and

n_ (gn n—1
50" = (07 — 0"y /k.

Combining all the estimates of the two com-
ponents of the velocity, the two temperatures and
the two mass diffusions, it follows that, for all

Wh, rh’ Sh, zh,mh, lh c Vh,

+167 = 0115 + 1105 — 6115 + ey — 5511
16 = 0515 + v =W + IV = ™I,
+ div @ — w2+ Gul - su" ut — wh
HIV5 = 8V + Ny — iy 15, + 1vs = 115,
+Ivg =515 + IV @ = I,

+(Oul — sul" ut — Py + 107 — 5072

+(807 — 501" 01 — sy + (162 — 56212

+102 = 212 + (802 — 504" 01 — 2,

+167 — 502112 + (567 — 562", 07 — mh),

+107 = 802112 + (807 — 801", 07 — M),

+107 = "5, + 1605 = m"II5, + 116} — l”llzv>.

Multiplying the above estimates by k£ and summing up
to n, we find that, for all {WhJ};l:l’ (i} (st
{yn

j=r =

L AmM Y Y v
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hk,n 2 hk, 2 :
Vi =vi™ Iy + VG = w1 + 1l div @ —u
hk,nv (12 hk.np 2 hk,n 2
IV = ) + 15 = I+ 6] — 017
A2 (2 12
+105 = 0,771y + 1105 = 057" 11y + 116} — 0,7
n

< Ckz (1) = 6V, 15 + 11, = 6, I, + 1, — w1,

N
Iy

+||e’ - 0‘””||2 + 116, = 6112 + 116} - 02112
+16, — eL"’fnz +1v) - hduz + VG, - ””)MZ
+|| div (@ —uh’w)u2 +(51/ —5vhkd Vi —w’w)
HIV, — V113 + ||u’ — ul ||2 + II\/ 3
+V, —v’*z*’nz + ||W h"")llz +11¢] —60’ 112
+(8V, — SV, v, ~ i)+ 16, — s"|I2,

+(59’ - 59%’“ 0, — sty + ||6] - 60, ||2

+116, —zhduz +(5¢ - 5604, ev —zhd)y

+||6“ LA ||2 + ||9f m :'||2

+(59’ —59th 0, — mhd)y+ 16, — 50,112

+6), - lhz/||2v + (50 — 60" 0] — th)y>
OV = VI + 11 = w1 + 1) =
HIV =12 + 116° — 6112 + 1169 — 69|12

+169 = 6112 + 1162 — 021 )

Finally, taking into account that

n
k Y6V, = oV v —whi)
J
=0 - v}l'k’", Vi = whm) + (v(l)h - v(l), vi —whh)

+ 0 = A = = T - W),
j=1

where similar estimates can be found for v,, 6,, 6,, 0;
and 6,, applying a discrete version of Gronwall’s ine-
quality (see [2]) we obtain the following a priori error
estimates result.

Theorem 4 Let the assumptions (7) still hold. If we
denote by (v|,v,,0,,6,,05,0,) the solution to Problem
(8—14) Cll’ldby{\/l:k’n hk,n ehkn ehkn ehkn ehkn N the
solution to Problem (17 23) then we have the follow-
ing a priori error estimates, for all {th}N0 {r x’}] 0’

(W (MY ()Y (Y C Ve,
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hk,n 2 hk,ny 12
max { V] = /I + 1V - 1

0<n<N
+ ”VZ _ vlzlk,n||2 + ”911 _ ehk,n”2 + ||0n _ Hhk,nHZ

VG = a2, + 105 - 051 + 1165 - 0113 |
N

<Ck Y (Wi — V115 + llie, — suII5
j=1

+ V) = W 4 |19, = 8112 + i, — sul |2,

+ IV, = 12 + 116 = 60112 + 16 — sM113

+ 116, — 86112 + 116, — 112 + 116 — 60112

10, = I+ 16] = 615 + 116} = 11, )

+ € max { V] = w3+ 15 = 1
+ 11607 = "1 + 1165 = 115 + 1165 — w5

16 = 113 |

N-1

L R R AR I
Jj=1

S U CAR A

+16] = 5" = @ = "I

+ 10, = =@ =G

+ 1165 = m" = (@ = m" I

+ ”92 _ lh‘l _ (9?—1 _ lh,j+1)“?/]

2

h(2 Oh (2 0h
+c(||v1—v1 I+ ) = 1, + N = w1

0 2 0 0h 12 0 0h 12
+ ”V2 _vz ”y + ”91 - 01 ”y + ”02 - 92 ”y

0 0h |12 0 0h |12
109 = 031 + 1169 - 613,

where C is a positive constant which does not depend
on parameters h and k.

It is worth noting that, from the above estimates we
can derive the convergence order of the approximations
provided by the fully discrete problem (17-23). For
instance, under the additional regularity, fori = 1,2 and
[=1,2,3,4,

u; € C1([0, TI;H*(B)) N H*(0, T;Y) N H*(0, T;V),
6, € C([0, TI;H*(B)) n H'(0, T;V) n H*(0, T;Y),
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the algorithm is linearly convergent, that is, there
exists a positive constant C, independent of the dis-
cretization operators £ and k, such that

hk,n hk,n hk,n

Jn n n
max {11 = vy o+ D =l + g = o

k. k. k.
VG = vy " lly + 107 — 0" lly + 1105 — 67"l

+02 = 82, + 116 — ej;"’"uy} < Ch+5).

5 Numerical results

In this final section, we present a numerical example
to show the accuracy of the approximations and the
dependence on the number of dissipation mechanisms.

The numerical scheme obtained in Problem VP'*
was implemented on a 3.2 GHz PC using MATLAB,
and typical run (using parameters h = \/5 /8 and
k = 0.01) took about 0.12 s of CPU time.

First, we will demonstrate the numerical conver-
gence of the algorithm. As a simple example, in order
to show the accuracy of the approximations, we con-
sider the two-dimensional domain B = (0,1) x (0, 1)
and we will divide it into 2nd” triangles.

We have employed the following data in these
simulations:

A=3,
ﬁ4=1,

k=2,
I, =2.

/’t:ls ﬂ]zs’ ﬂzzl,

ﬁ3=2,

p=1,
L, =1,

By using the following initial conditions, for all
(x,y) eB=(0,1)x(0,1),

u?(x,y) = v?(x,y) =x(x—Dyly—-1) fori=1,2,
9[0(x,y) =x(x—1lyly—-1) forl=1,2,3,4,
considering homogeneous Dirichlet boundary con-

ditions in the boundaries and the (artificial) supply
terms, for all (x,y,1) € Bx (0, 1),

Fi(x,y,0) = —€'2x(x— 1)+ 10y(y — 1)
+H2x-1D)2y - 1D+ 2xQy—-1D(x—-1)
+y(14x = )y — 1) = y(x — Dy — 1))/2),

Fy(x,y,0) = =€’ (10x(x — 1) + 2y(y — 1)
+4(2x — D2y — 1) + 3xQ2y — D(x — 1)
—(y(x = D@y = 1))/2),

Fi(x,1) = —€'(4x(x — 1) + 4y(y — 1) + 5x(2y — D(x — 1)
+5y2x— Dy — 1D —xy(x = Dy — 1)),

Fyx,0) = =€ (dx(x— 1) +4y(y — ) +x2y — D(x = 1)
+y2x - Dy -1 —xyx = Dy — 1)),

Fs(x,t) = —e'(dx(x — 1) +4y(y — D)+ x(2y - D(x — 1)
—y2x - Dy —-1)—xyx— Dy - 1),

Fe(x, 1) = —'dx(x— 1D +4yy—1)—2xQy - DH(x—1)
+2y2x— Dy =1 —xy(x = Dy — 1)),

the exact solution to the above two-dimensional
problem can be found and it has the form, for
(x,y,1) € BX[0,1]:

ul(x’y’ t) = u2(x’ys t) = etx(x - l)y()’ - 1)3
91(x7y7 t) = Hz(x’y’ t) = et'x(x - 1))’()’ - 1)’
03(x, 3, 1) = 0,(x,,1) = e'x(x = Dy(y — D).

Thus, the approximation errors estimated by

hk.n hk,n

hk,
max {11V} =il + =y + Vs =4y

0sn<N h;c hk. hk.
+||I/tg - Mz ‘n”V + ”0;1 - 91 ’n“Y + ”6}21 - 02 ’n”Y

hk, hk,
+l05 - 041l + N0 - 01, |

are shown in Table 1 (multiplied by 10) for some val-
ues of the discretization parameters s and k. Moreo-
ver, by using the diagonal of this table the evolution
of the error depending on the parameter 4 + k is plot-
ted in Fig. 1. As can be seen, the convergence of the
algorithm is achieved, although the linear conver-
gence obtained in the previous section under some
additional regularity conditions, does not seem to be
found.

Now, our aim is to compare the effect of the num-
ber of dissipation mechanisms in the evolution of
the discrete energy. We assume now that there are
not supply terms, and we use the final time 7 = 10,
the following data (common for the four problems
described later):

p=01 u=1, A=3, k=2, p =5,

and the initial conditions, for all (x,y) € B,
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Table 1 Numerical errors nd L k— 002 0.01 0.005 0.002 0.001 0.0005

(x10) for some values of &

and k 4 1025812 1.074774  1.109445 1134610  1.143854  1.148656
8 0268864 0273948 0278066  0.281175  0.282343  0.282958
16 0076438  0.071040  0.068958  0.068016  0.067772  0.067666
32 0031775 0023314 0019590 0017610 0017011  0.016726
64 0023159  0.012733  0.008005  0.005490  0.004747  0.004403
128 0022199 0011145  0.005746  0.002697  0.001787  0.001376

u?(x,y) = v?(x,y) =xx—Dyly—-1) for i=1,2,
0'(x,y) = x(x— Dy(y—1) forl=1,2,3,4.

We define the following four problems:

Problem 1 the problem with a unique dissipation
mechanism. In this case, we only consider the
temperature 6, and the data g, = 1.

Problem 2 the problem with two dissipation mech-
anisms. Now, we consider the two temperatures 8,
and 6, and thedata f, = f, =1, = 1.

Problem 3 the problem with three dissipation
mechanisms. The case with the two temperatures
0, and 6,, and one mass diffusion 6;, where we use
thedatafy =p, =1, =p; =1

Problem 4 the problem studied in the previ-
ous section, which is solved with the data

Bi=bh=L=ph=p=L=1

Taking the discretization parameter k = 0.001 and a

ver

y fine finite element mesh, the evolution in time

of the discrete energy of the above four problems is

plo

Numerical error

tted in Fig. 2 (in both natural and semi-log scales).
0.12
01r
0.08 -
0.06 -
0.04 -
0.02 -
0 ‘ ‘ ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0.05 0.06

h+k

Fig. 1 Asymptotic constant error

@ Springer

As can be seen, every energy converges to zero and
an exponential decay seems to be achieved in the four
cases. Moreover, it is clear that, when the number of
dissipation mechanisms increases, the energy decay

seems to be faster.

E(t)

log E(t)
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|
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[ Problem 3
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Fig. 2 Evolution in time of the discrete energy for different
dissipation mechanisms (natural and semi-log scales)
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6 Conclusions

In this paper, we have analyzed a problem of elastic-
ity with several dissipative mechanisms from the ana-
lytical and numerical points of view.

From the analytical point of view, we have seen
that, if we assume that the coupling coefficients sat-
isfy the symmetry A; = A;i, we only need three dissi-
pative mechanisms (in dimension two) to guarantee
the exponential energy decay; however, to know if
three mechanisms are sufficient when this symmetry
does not hold is an open question yet.

From the numerical point of view, we have pro-
vided a fully discrete approximation of a weak form
of the above thermomechanical problem, and we
have proved a main a priori error estimates result. In
a numerical example, we have also shown the dis-
crete energy decay of the solutions and we have seen
that, when the number of dissipative mechanisms
increases, the rate of the decay of the solutions also
increases.
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