
Path Planning with Drones at CSP

plants

Adrián Gutiérrez Camacho

Path Planning with Drones at CSP plants

Adrián Gutiérrez Camacho

Trabajo de fin de máster que forma parte de los
requisitos para la obtención del título de Máster
Universitario en Matemáticas por la Universidad
de Sevilla.

Dirigido por

José Miguel Díaz Báñez

Agradecimientos:

En primer lugar, me gustaría agradecer la inestimable ayuda de mi tutor, José Miguel
Díaz-Báñez, que ha sabido encauzar el trabajo y darme los hilos de los cuáles ir tirando
a lo largo de su desarrollo. También a mi jefe, el profesor Juan Sebastián Valverde por
ofrecernos un problema tan interesante y sobre todo realista. La aplicación de las
matemáticas es algo que siempre me ha fascinado. También querría agradecerle a mi
compañero José Morales, experto ya en el arte de las inspecciones en plantas CSP, por
darme toda la información de la que disponía para poder hacer el trabajo de formamás
realista. De igual manera, le agradezco a mi compañero Miguel Ángel Pérez-Cutiño
las aportaciones de ideas y correcciones que ha hecho del trabajo.

Por último, pero no menos importante, me gustaría agradecerle a todas las personas
que forman parte de mi vida personal y que son las que hacen posible mi dedicación
al trabajo de investigación: a mi pareja Miriam, que es el motor que me impulsa a
seguir siempre adelante, a mis amigos y amigas, que son capaces de sacarme de la
cabeza todas las cuentas y ecuaciones y dejarme solo una sonrisa, y a mi familia, sin
la cual nunca me hubiera propuesto estos objetivos y por supuesto nunca los habría
alcanzado.

Abstract

The goal of this work is to apply mathematics knowledge and skills to efficiently solve
a practical problem posed by the industry. We study an actual problem related to the
inspection of Concentrated Solar Power (CSP) plants. Due to the big extension of
solar fields, Unmanned Aerial Vehicles (UAV), commonly called drones, are used to
inspect all the tubes of the CSP plant. We introduce a new problem, named the drone
CSP inspection problem, that aims the computation of the tours to be performed by
the drone in order to cover the CSP plant so that some penalization function is min-
imized. Specifically, we take into account two objective functions: the total time or
the number of refills. First, we model the energy consumption of the UAV and the
individual time inspection costs in a realistic fashion and use them as inputs for the
procedures described. We also propose several formulations adapting classical opti-
mization problems. In addition, we prove that this particular problem is NP-complete
and develop some heuristics. An extensive comparison against the current approach
adopted by the industry shows best performance of our algorithms, saving a consid-
erable amount of time for inspection.

Resumen

El objetivo de este trabajo es aplicar conocimiento y habilidades matemáticas para re-
solver eficientemente un problema práctico propuesto por la industria. Estudiaremos
un problema real relacionado con la inspección de plantas de concentración solar de
potencia (CSP). Debido a la gran extensión de los campos solares se utilizan vehículos
aéreos no pilotados (UAV), comúnmente llamados drones, para inspeccionar todos
los tubos de la planta CSP. Introduciremos un nuevo problema, el problema de in-
spección CSP con drones, donde se propone calcular las trayectorias a realizar por
el dron de manera que se cubra la planta CSP mientras se minimiza una cierta fun-
ción de penalización. Concretamente, tendremos en cuenta dos funciones objetivo:
el tiempo total de inspección y el número de recargas que el dron necesita. Primero,
modelaremos el consumo de energía del UAV y los tiempos individuales de inspec-
ción de forma realista y los usaremos como entrada de los procedimientos descritos.
Propondremos varias formulaciones adaptando problemas de optimización clásicos.
Además, probaremos que este problema particular es NP-completo y desarrollaremos
algunos heurísticos. Comparando éstos con procedimiento actual adoptado por la in-
dustria, probamos que nuestros algoritmos tienen un mayor rendimiento, ahorrando
una considerable cantidad de tiempo total de inspección.

Contents

1. Introducing the problem. State of the art 1

1.1. The drone CSP inspection problem 5

1.2. Related classical problems . 8

2. Some formulations for the CSP problem 17

2.1. Modelling the energy consumption 19

2.2. Multiple Knapsack Problem approach 23

2.2.1. Generalized MKP . 24

2.2.2. Solver for GMKP . 26

2.3. Bin Packing Problem approach . 28

2.3.1. Some algorithms for BPP . 31

2.4. Exact Cover Problem approach . 35

2.4.1. The Johnson’s algorithm . 37

2.4.2. The Knuth’s Algorithm X . 38

3. Complexity and heuristics for the CSP problem 47

3.1. NP-completeness of CSP problem . 48

3.2. Algorithms for solving CSP problem 54

ii path planning with drones at csp plants

3.2.1. Adapting BPP heuristics . 54

3.2.2. Implementing GBPP with Gurobi 56

3.2.3. Implementing GMKP with Gurobi 59

3.2.4. Adapting ECP algorithms . 60

4. Results 65

4.1. BPP heuristics results . 68

4.2. GBPP results . 71

4.3. GMKP results . 73

4.4. ECP results . 76

4.5. Comparisons . 79

5. Conclusions 83

A. Kinematics for energy consumption weights and time costs 87

A.1. Takeoffs . 88

A.2. Landings . 89

A.3. Horizontal displacements . 89

A.4. Turnings . 90

A.5. Weights and costs computation . 90

1 Introducing the problem. State
of the art

It is known that the sunlight strikes the earth with more energy per hour that all
of the energy consumed by humans per year [1]. The solar energy is bigger than all
other renewable and fossil-based energy resources combined. Energy is nowadays an
indispensable good but inmost cases the energy demand doesn’tmatch its availability.
Thus, to provide a durable and widespread primary energy source, solar energy must
be captured, but also stored and used in a cost-effective fashion.

Solar energy has an unsteady nature, it varies during the days, which can be, for
example, sunnier or more cloudy, and along the year, because seasons impact deeply
in sun rays. In Figure 1.1 we can see the world solar energy map.

Figure 1.1: World solar energy map (borrowed from [1])

2 path planning with drones at csp plants

In this context, Concentrated Solar Power (CSP) plants are gaining increasing in-
terest, mostly by using the Parabolic Trough Collector system (PTC), although Solar
Power Towers (SPT) progressively occupy a significant marker position due to their
advantages in terms of higher efficiency, lower operating costs and good scale-up
potential.

The main problem that CSP plants face is the varying solar radiation flux through-
out the day/year. To enhance the CSP process, and improve the overall yield in com-
parison with older systems, plants usually incorporate technologies like Thermal En-
ergy Storage (TES) and Backup Systems (BS), which facilitate a continues and year
round operation and provide a stable energy supply in response to electricity demand.
In Figure 1.4 there is a representation of a TES in a PTC, which summarizes the perfor-
mance of a typical CSP plant of this type. In order to determine the optimum design
and operation of a CSP plant along the year, an accurate estimation of the daily so-
lar irradiation is needed. Also, CSP plants will only accept Direct Normal Irradiance
(DNI) to operate. In [1] the authors outline a procedure to calculate the hourly beam
irradiation flux.

Concentrated solar power (CSP) is an electricity generation technology that uses
heat provided by solar irradiation concentrated on a small area. Using mirrors, sun-
light is reflected to a receiver where heat is collected by a thermal energy carrier
(primary circuit), and subsequently used directly (in the case of water/steam)) or via
a secondary circuit to power a turbine and generate electricity. CSP is particularly
promising in regions with high DNI. There are mainly four available CSP technolo-
gies (see Figure 1.2): parabolic trough collector (PTC), solar power tower (SPT), linear
Fresnel reflector (LFR) and parabolic dish systems (PDS). These CSP technologies are
currently in medium to large-scale operation and mostly located in Spain and in the
USA, and also there are some projects for designing CSP plants at North Africa. In this
document we will focus on PTC plants, since it is the type of plant which originated
the problem addressed in this thesis, but we will describe the other plants because
they could lead to problems that may be presented, or solved, in a similar way.

Solar power towers (SPT), also known as central receiver systems (CRS), use a
heliostat field collector (HFC), i.e, a field of sun tracking reflectors, called heliostats,
that reflect and concentrate the sun rays onto a central receiver placed in the top of a
fixed tower. Heliostats are flat or slightly concave mirrors that follow the sun in a two
axis tracking. In the central receiver, heat is absorbed by a heat transfer fluid (HTF),
which then transfers heat to heat exchangers that power a steamRankine power cycle.
Some tower plants use direct steam generation, others use fluids like molten salts as

1. introducing the problem. state of the art 3

Figure 1.2: Mainly available CSP technologies, in lecture ordering: STP, PTC, LFR and
PDS (borrowed from [1])

HTF and storage medium. The concentrating power of the tower concept achieves
very high temperatures, thereby increasing the efficiency at which heat is converted
into electricity and reducing the cost of storage. Furthermore, the concept is highly
flexible, where designers can choose from a wide variety of heliostats, receivers and
transfer fluids. Some plants can have several towers to feed one power block.

Parabolic trough collector (PTC) plants consist of a group of reflectors (usually
silvered acrylic) that are curved in one dimension in a parabolic shape to focus sun
rays onto an absorber tube that is mounted in the focal line of the parabola. The
reflectors and the absorber tubes move in tandem with the sun as it daily crosses the
sky from the sunrise to sunset. The group of parallel connected reflectors is called the
solar field. Typically, thermal fluids are used as primary HTF, thereafter powering a
secondary steam circuit and Rankine power cycle. Other configurations use molten
salts and others use a direct steam generation system. The absorber tube (Figure 1.3),
also called heat collector element (HCE), is a metal tube and a glass envelope covering
it, with either air or vacuum between these two to reduce the convective heat losses
and allow for thermal expansion. The metal tube is coated with a selective material
that has high solar irradiation absorbance and low thermal remittance. The glass-
metal seal is crucial in reducing heat losses.

Linear Fresnel reflectors (LFR) approximate the parabolic shape of the trough sys-

4 path planning with drones at csp plants

Figure 1.3: Absorber element of a parabolic trough collector (borrowed from [1])

tems by using long rows of flat or slightly curved mirrors to reflect the sun rays onto
a downward facing linear receiver. The receiver is a fixed structure mounted over a
tower above and along the linear reflectors. The reflectors are mirrors that can follow
the sun on a single or dual axis regime. The main advantage of LFR systems is that
their simple design of flexibly bent mirrros and fixed receivers requires lower invest-
ment costs and facilitates direct steam generation, thereby eliminating the need of
heat transfer fluids and heat exchangers. LFR plants are however less efficient than
PTC and SPT in converting solar energy to electricity. Moreover, it is more difficult
to incorporate storage energy into their design.

Parabolic dish collectors (PDC) concentrate the sun rays at a focal point supported
above the center of the dish. The entire system tracks the sun, with the dish and re-
ceiver moving in tandem. This design eliminates the need for a HTF and for cooling
water. PDCs offer the highest transformation efficiency of any CSP system. PDCs
are expensive and have a low compatibility with respect of thermal storage and hy-
bridization. Promoters claim that mass production will allow dishes to compete with
larger solar thermal systems. Each parabolic dish has a low power capacity (typi-
cally tens of kW or smaller), and each dish produces electricity independently, which
means that hundreds or thousands of them are required to install a large scale plant
like built with other CSP technologies.

Within the commercial CSP technologies, parabolic trough collector (PTC) plants

1. introducing the problem. state of the art 5

are the most developed of all commercially operating plants. In terms of land occu-
pancy, PTC requires more land than SPT and LFR to produce a given output. PDC
has the smallest land requirement among CSP technologies. Water requirements are
of high importance for those locations with water scarcity, for example, in most of
the desserts. CSP requires water for cooling and condensing processes. Dry cooling
(using air instead of water) can be an effective alternative.

Figure 1.4: Thermal energy storage system in parabolic trough collector plant (bor-
rowed from [1])

1.1 The drone CSP inspection problem

In this work, the goal is to study a drone path planning problem in CSP plants. We
will focus on PTC ones, but this problem can be, at least partially, extended to other
CSP plant types or even to another optimization problems. CSP plants are composed
of regions or solar fields with absorber tubes or HCE (heat collector element) which
warm up some fluid to very high temperatures. The HCEs are covered with glasses
which are usually broken due to vibrations and other phenomena, and this leads to
heat losses (a pipe whose glass is broken will have leak of temperature in the fluid
inside) which, at the end, provoke a reduction in electrical availability.

Due to big extension of solar fields, it can be very hard to identify broken pipes
in order to fix them and recover the good performance of the plant. To overcome
this issue, a drone is used to inspect all the absorber tubes of the CSP plant, one-by-
one. This drone flies over the plant and takes thermal pics by means of an special

6 path planning with drones at csp plants

camera. Then, the drone CSP inspection problem or CSP problem, for short, asks
for the computation of the trajectories followed by the drone along the CSP plant
so that some penalization function is minimized: the needed time or the number of
refills. The constraint of the problem is the autonomy of the drone that can be set
to 30 min. Therefore, our goal is to study the complexity of the CSP problem and
propose optimal or sub-optimal solutions. To accomplish that, we explore various
related optimization problems in the literature, adapt them to our CSP problem and
develop heuristic algorithms based on the known heuristics for these problems. We
use the Python programming language to develop tools for solving, representing and
computing the solutions associated to each approach.

Moreover, we are specially interested in the practical value it might have for com-
panies engaged in drone inspections. In fact, this work has been developed in the
framework of Virtualmechanics1, a competitive company in the field of plants in-
spections. They put a real problem on the table and also have been reporting to us all
the information of particularities of the problem so that we could work with a real-
istic model. One of the purposes of this thesis is to improve the performance of the
current drone inspections that this company is conducting in CSP plants.

Figure 1.5: Typical CSP plant top view

Firstly, in order to state the model, we need to introduce the targets or points to
be visited by the drone. In a CSP plant the absorber elements are lied in couples:

1https://virtualmech.com/

1. introducing the problem. state of the art 7

the upstream tube and the downstream tube, one aside the other. Another constraint
of our problem is that these couples have to be analyzed consecutively by the drone
(although they can be inspected in any order). Because of this fact, we will model the
upstream and downstream pipes as one point to visit, instead of two. Then the input of
the problem is just a cloud of n points S and wewant to describe a set of tours starting
and ending at a given base station so that all the points are visited. In addition, this
couples are placed making big extensions called batches. Figure 1.6 shows two faced
batches with 41 elements to be covered. So, actually, we can identify our CSP plant
with a cloud of n points in R2 which are also separated in b batches. Unfortunately,
due to the limited battery life of the used small drone, the size of the problem becomes
very large if we consider the entire CSP plant as an instance. Moreover, the CSP plants
are delicate environments where accuracy is required and also laws usually do not
allow to fly drones far away from the pilot. There are similar limitations associated
with the RTK system and the drone antenna, which give the drone special accuracy
in those environments. Thus, we will focus in how to efficiently cover a pair of faced
CSP batches.

Figure 1.6: Picture with two faced CSP batches. The upper batch has 20 couples of
pipes and the lower batch has 21. We identify each couple with an inspection node

The problem is how specifically the drone can visit all the inspection points so
that the total time is minimized. More formally, given the complete digraph whose
nodes are the n points and the edges cost is given by the time to travel between the
nodes, which is the set of tours or cycles to visit all nodes of the graph in the minimum
time?. The constraints for each tour are the following:

8 path planning with drones at csp plants

All node which is different from the depot node (base station) must appear ex-
actly in one tour. On the other hand, all the tours must start and end at the
depot node. A set of tours verifying this and such that its union visits all the
nodes in the given graph is called a covering set.
The total energy consumption effectuated by the drone during a tour can not
be grater than the total battery level of the drone. In fact, we will use a 75% to
90% of the maximum battery level because of security reasons. A tour with this
characteristic is called feasible tour.

The CSP instances are defined by: the complete digraph G generated from the n

inspection points and the depot node, the energy costs wij , the inspection time costs
tij and the maximum level of battery W . In this scenario we consider two criteria
giving rise to the following CSP problems:

1. CSP problem 1: How could we design a covering set of feasible tours for a given
CSP instance minimizing the total inspection time?

2. CSP problem 2: How could we design a covering set of feasible tours for a given
CSP instance minimizing the total number of tours or refills the drone makes?

In this work, we usually use the term CSP problem for the two problems defined
above. However, the problems are different, as we will see in future sections, because
a solution for one could not be a solution for the other. However, due to the symmetry
of the instances, we will see that the two solutions can be quite similar. Moreover,
we could approximate the minimum time cost covering set by the covering set with
the lesser number of tours. We could also wonder about where to place the battery
station but, in fact, the places where it can be put are limited to the roads around
the CSP plant, with some of them crossing it. This is an interesting facility location
problem that is out of the scope in this work. We will suppose that the battery station
is placed in the road below or above any of the two faces batches, in a position whose
x coordinate is the mean of the x coordinates of the inspection nodes in the nearest
batch.

1.2 Related classical problems

In this section we will refer to some classical path planning problems that appear
in the literature that come to mind to relate with the CSP problem. We also will

1. introducing the problem. state of the art 9

see some recent related work. The notations and concepts will be useful in the CSP
modelling that we are going to develop in the next chapters but, we do not use these
problems to solve the CSP instances. Suppose we have a directed graph G = (V,E)

where V contains the n nodes or points to be visited by the drone and E is the set of
all the possible arcs or paths between two different nodes in V , i.e, G is a complete
digraph. The costs are asymmetric because of the wind. Let us define the decision
variables xij ∈ {0, 1} so that xij = 1 if and only if we use the arc (i, j) in our
solution. For sake of simplicity, a tour in G may be given as an ordered subset of
V , {i1, i2, . . . , in} which means we travel from ij to ij+1, j = 1, . . . , n − 1 and then
from in again to i1. The first known optimization problem to be related with the CSP
problem is the Travelling Salesman Problem (TSP) whose linear formulation can be
given ([2]) as:

(TSP) min
n∑

i,j=1

cijxij (1.1a)

s.t.:
∑

i=1,i ̸=j

xij = 1, j = 1, . . . , n (1.1b)∑
j=1,j ̸=i

xij = 1, i = 1, . . . , n (1.1c)

ui − uj + nxij ≤ n− 1, 2 ≤ i ̸= j ≤ n (1.1d)
ui ∈ {1, 2, . . . , n− 1}, i = 2, . . . , n (1.1e)
xij ∈ {0, 1} (1.1f)

This is known as the MTZ formulation of TSP. The objective function (1.1a) min-
imizes the total travel cost. The constraints (1.1b) and (1.1c) ensure that each node of
G is reached by an arc exactly once and that only another one leaves from it. (1.1d) are
the tour elimination constraints: using the dummy variables u2, . . . , un (excluding 1

as it is a depot node) which are forced to grow up in value with the order that the tour
has. The last constraints (1.1e) and (1.1f) are the domains of the decision variables.
However, if we want to be more realistic, we should deal with the fact that the drone
usually can not inspect all the nodes in graph without returning to the battery station
(BS). In fact, the limit of duration in past real CSP inspections has been usually about
9 of these points (around 30 minutes of battery). We have a certain kind of capacity
limitation in our problem. Because of that, the duration of the battery will be an addi-
tional parameter to consider in the model. Also, we must include the BS in our graph
as the depot or 0-node. Capacity and depot are key words that remind to the Vehicle
Routing Problem (VRP), which we have formulated here in a Dantzig, Fulkerson and

10 path planning with drones at csp plants

Johnson way:

(V RP) min
n∑

i,j=1

cijxij (1.2a)

s.t.:
∑

i∈V,i ̸=j

xij = 1, j ∈ V \{0} (1.2b)∑
j∈V,j ̸=i

xij = 1, i ∈ V \{0} (1.2c)∑
i∈V

xi0 = K (1.2d)∑
j∈V

x0j = K (1.2e)∑
i ̸∈S

∑
j∈S

xij ≥ r(S), ∀S ⊆ V \{0}, S ̸= ∅ (1.2f)

xij ∈ {0, 1}, ∀i, j ∈ V (1.2g)

In this formulation,K is the number of available vehicles (the number of tours or
charges needed by the drone to visit all the inspection points) and r(S) the minimum
number of vehicles needed to serve a set S. The VRP optimal solution is the minimal
low-cost set of tours, which start and end in a depot node, that reach all the nodes of
the graph while ensuring enough capacity in each of them. In our problem we have a
vehicle (drone) which has to visit n nodes, starting from the BS depot, while watching
its battery duration. When the drone reaches a minimum amount of battery it has to
come back to the base station and start a new one tour. The main goal is to plan the
tours in order to minimize the time we spent in the CSP inspection. Although this
model has similarities with our problem, this formulation is still too simple.

A more advanced version of VRP is the Capacitated Vehicle Route Problem (CVRP)
[3]. Its formulation is pretty similar to the previous one, but we must add some new
components. In this case, let G = (V,H, c) a complete directed graph with V =

{0, 1, 2, . . . , n} as the nodes and H = {(i, j) : i, j ∈ V, i ̸= j} as the arcs, where
node 0 is the depot for a fleet of p vehicles with the same capacity Q. Each node
i ∈ V \{0} has a certain positive demand di ≤ Q. We also consider a travel cost cij
associated with each arc (i, j) ∈ H . The minimum number of vehicles to needed to
serve all customers is ⌈

∑n
i=1 di
Q
⌉ (note we could also add a battery efficiency coefficient

to consider uncertainty). The binary decision variables xrij ∈ {0, 1} are defined to

1. introducing the problem. state of the art 11

indicate if vehicle r, r ∈ {1, 2, . . . , p}, traverses an arc (i, j) ∈ H in an optimal
solution. Then, the linear programming model of the CVRP can be written as:

(CV RP) min

p∑
r=1

n∑
i=0

n∑
j=0,i ̸=j

cijxrij (1.3a)

s.t.:
p∑

r=1

n∑
i=0,i ̸=j

xrij = 1, j ∈ V \{0} (1.3b)

n∑
j=1

xr0j = 1, r ∈ {1, . . . , p} (1.3c)

n∑
i=0,i ̸=j

xrij =
n∑

i=0

xrji, j ∈ V, r ∈ {1, . . . , p} (1.3d)

n∑
i=0

n∑
j=1,i ̸=j

djxrij ≤ Q, r ∈ {1, . . . , p} (1.3e)

p∑
r=1

∑
i∈S

∑
j∈S,i̸=j

xrij ≤ |S| − 1, ∀S ⊆ V \{0}, S ̸= ∅ (1.3f)

xrij ∈ {0, 1},∀r ∈ {1, . . . , p}, i, j ∈ V, i ̸= j (1.3g)

The objective function (1.3a) minimizes the total travel cost of all the vehicles in
the fleet. The degree constraints (1.3b) ensure that each node is visited by exactly
one vehicle. The flow constraints (1.3c) and (1.3d) guarantee that each vehicle can
leave the depot only once, and the number of the vehicles arriving at each customer
and entering the depot is equal to the number of the vehicles leaving. The capacity
constraints (1.3e) make sure that the sum of the demands of the customers visited in
a route is less than or equal to the capacity of the vehicle performing the service. The
tour elimination constraints (1.3f) ensure that the solutions contains no cycles dis-
connected from the depot. The last constraints (1.3g) specify the definition domains
of the variables. This model is known as a three-index vehicle flow formulation and
has the drawback that the number of inequalities in (1.3f) grows exponentially with
the number of nodes.

A more related problem is studied in [4]. Although the costs and topologies in
their graphs are different to the ones in a CSP problem, the goal is the same: a drone
has to visit a set of points S, while recharging its battery in some locations of a dis-
crete set C , minimizing the total trip time. They studied how to estimate, through a

12 path planning with drones at csp plants

regression model, the battery consumption of determined drone flight actions. The
regression uses the basic kinematics of the drone as prediction variables. We want to
take advantage of this work using their model to compute realistic energy consump-
tion weights. The authors also develop some heuristics to give approximations to the
problem. Mainly, their contributions are:

1. A model the energy consumption of drones, considering various flight scenar-
ios.

2. A study on the joint problem of flight tour planning with recharging optimiza-
tion for drones with the goal of completing a tour mission for a set of locations
of interest in the shortest time.

3. A real implementation of their algorithms in an intelligent drone management
system, which supports real-time flight path tracking and re-computation in
dynamic environments.

Since we borrow some notation of that paper, we include here more details on
their model and frormulation. Consider a set of cities S that a drone has to visit, and
a set of charging stations C where a drone can charge its battery. The base location
or depot of drones is denoted by {v0}. The problem is to find a sequence of locations
or flight plan in S ∪ C , such that the drone can start its tour at v0, visit all sites in
S and then returns to the depot, with the objective of minimizing the total trip time,
while keeping the SoC (state-of-charge) within the operational range.

Given a pair of locations (u, v), the flight path between them is noted by l(u, v),
and the flight time by τ(u, v). Let f(l(u, v), τ(u, v)) be the energy consumption re-
lated to a drone travelling along l(u, v) within flight time τ(u, v). Also, let V =

S ∪ C ∪ {v0}. For a drone flying between two sites u, v ∈ V , there is a battery
consumption by an amount of ndf(u, v). If the drone returns to a charging station
u ∈ C , it can recharge its battery by an amount of energy ncb(u). The coefficients nd

and nc stand for discharging and charging efficiency performance. In addition, when
recharging its battery there will be a incurred charging time denoted as τc(b(u)). Let
T ⊆ S∪C∪{v0} be a flight plan and denote its k-th location by Tk. In order to find a
flight plan which minimizes the total trip time (travel and charging time) it is needed
to impose that T1 = T|T | = v0.

Let xk be the SoC when arriving at Tk, assuming that xk ∈ [B0, B1], that is, the
SoC lies within a feasible range. The lower bound B0 ensures sufficient energy for
the drone to return to the depot. Then, the drone flight plan optimization problem
(DFP) is formulated as follows:

1. introducing the problem. state of the art 13

(DFP) min
T,b(·),x

|T |−1∑
k=1

τ(Tk, Tk+1) +

|T |∑
k=1: Tk∈C

τc(b(Tk)) (1.4a)

s.t.: T1 = T|T | = v0 (1.4b)
S ⊆ T ⊆ S ∪ C ∪ {v0} (1.4c)

xk =

xk−1 − ndf(l(Tk, Tk+1), τ(Tk, Tk+1))

if Tk ∈ S

xk−1 + ncb(Tk+1)− ndf(l(Tk, Tk+1), τ(Tk, Tk+1))

if Tk ∈ C

(1.4d)
B0 ≤ xk ≤ B1 (1.4e)

This formulation accounts for the situation of recharging the drone without filling
up the entire battery. Our CSP inspection problem is not as complex in that aspect:
at C the drone replaces its battery obtaining xk = B1. Also, for us, C = {v0}, that
is, our depot is the only charging station. The authors then developed some heuristic
algorithms to apply its DFP problem and found lemmas to support its work with some
theory.

In [5], the authors study the Drone Arc Routing Problems (DARP) and its rela-
tion with the Postman Arc Routing Problems. The main difference is that drones can
travel directly between any two points in the plane without following the edges of the
network. Thus the DARP is a continuous optimization problem with infinite feasible
solutions. However, they solve it as a discrete optimization problem by approximat-
ing curves as polygonal chains. In their research, they consider a set of drones that
must jointly service a set of edges of a network. Drone start and end at a specified
vertex (depot) and have a route length limit that applies to the total route (capacity).
Arc routing problems consist of, given a network, and given a set of lines that are re-
quired to be covered, each one with an associated cost, finding a tour covering all the
required lines with total minimum cost. Typical examples are the Chinese Postman
Problem , the Rural Postman Problem. They give same results relating optimal drone
tours with optimal postman tours. Specifically, the Drone Arc Routing Problem is:
Given a set of lines or curves on the plane, each one with an associated service cost,
and a point called the depot, and assuming that the cost of deadheading between any
two points of the plane is the Euclidean distance, find the minimum cost tour starting
and ending at the depot that services all the given lines and curves. They develop

14 path planning with drones at csp plants

an algorithm which uses upper bounds and branch-and-cut procedures for solving
instances of their problems. After that, they present a procedure for generating ran-
domDARP instances and show the results obtained. In addition, they explore how the
problem can generalize to have several vehicles instead of one. In our work, the com-
ponents of the graph to be covered are not the edges but vertices. Also, our graphs
present a simple topology that we want to use to design the algorithms.

In [6] a system onboard an UAV to monitor CSP plants using open source hard-
ware and software was developed with customization capabilities depending on use.
The thermal inspection of absorber tubes at a CSP plant was performed. The pro-
posed methodology is more efficient than traditional methods based on walking with
a thermal gun through the solar plant. They also try to reduce the inspection time
although their inspections seem less intensive than ours. In [7] heuristic methods
for the task allocation and collision-free path planning for three robots working in a
industrial plant inspection is developed. There were ninety fixed locations in a plant,
which were to be inspected by three robots after traveling through the minimum dis-
tance. Moreover, overall task completion time was to be as minimum as possible. A
genetic algorithm (GA) was used for the task allocation, and A* algorithmwas utilized
for path planning. A* algorithm is a graph search technique used to find a path from
a given initial node to the pre-specified goal node. On the other hand, Genetic Al-
gorithm (GA) is a population-based probabilistic search and optimization technique
based on Darwin’s principle of natural selection. The matematical formulation of
their problem made the following assumptions: each robot executes only one task at
a time, only one robot is required for each task, each task is executed only once, all
task must be executed and all robots start from the depots at the same time. Another
interesting problem that we could state in our work is doing CSP inspections using
more than one drone, and then distribute the inspection nodes among the drones.

A review of path planning, routing algorithm and routing protocols is presented
in [8]. They compare algorithms and methods in order to find the best ones for each a
application. Among the introduced UAV path planning algorithms are: conventional
ones, cell based, model based (linear, for example), and learning based (neural net-
works, evolutionary). The work is a detailed state of the art of methods to solve these
type of problems. In [9] the authors present the Energy Efficient Coverage Path Plan-
ning problem, which resembles a bit to our CSP problem. They perform measure-
ments to understand the energy consumption of a drone. The authors studied the
consumption of the drone after travel a straight line distance, the effect of velocity
and the effect of turning. They prove that turning most increases energy consump-
tion, as we had suppose to happen. The EECPP problem goal is to cover an arbitrary

1. introducing the problem. state of the art 15

area containing obstacles using multiple drones minimizing the maximum energy re-
quired for any individual drone to traverse its assigned path. Their problem seemed
NP-hard so they developed some heuristic approaches, improving previous proposed
algorithms and results.

In the next sections our purpose is to model the CSP problem, propose some MIP
formulations and some heuristics, and also evaluate them using realistic instances. In
addition, given that we know the current path planning strategy which pilots perform
during inspections, we can compare this current solution with those obtained by the
proposed methods.

2 Some formulations for the CSP
problem

In this chapter our aim is to find some formulations which may seemed suitable,
and also worthy, for the CSP problem. It is pretty obvious that the graphs made from
CSP plant layouts present a lot of symmetry, and we must take advantage of that.
However, if we want to obtain realistic exact solutions we have to develop formu-
lations and exact approaches. After solving exact instances of the CSP problems we
might be able to discover certain patterns. These patterns could guide us to develop
heuristics for the problem.

Now, we are going to widely explain how CSP inspections work. To accomplish
the inspection, CSP plant owners subcontract a maintainer which carries out the task
of collect the needed data, process it and then send an evaluation report to the client.
This work focuses in how the data is collected so we do not give many details of the
processing and evaluation parts. The data used by the maintainers is composed by
mainly consecutive pics from the pipes in a CSP plant. These pics are taken with a
thermal camera which is integrated into a drone and they show the potential heat leak
points in pipes. Also, the maintainer must, at the same time, subcontract a pilot in
order to use a drone. Due to delicacy of the environment and the potential appearance
of errors in the drone flight, it is not possible to only rent a drone without its pilot.
Generally, drone pilots use KML files to record the tours that their drones will travel in
given inspections. KML files are used, among others, by Google Earth software. Each
tour is saved as a collection of coordinates or waypoints to be visited by the drone
during the inspection. In each experiment, the CSP plant is divided in subsets of pipes
called missions. The sets are usually composed of 3 pipe couples, although sometimes
they can only have two of them or have the third couple separated from the others
(and halved). In Figure 2.1 we have plotted a cloud of points, corresponding to an
actual full CSP plant, partitioned in 54 missions which have been extracted from 54

18 path planning with drones at csp plants

different KML files. They were used in a real CSP inspection and the numbers reflect
the order in which the inspection was performed, which is the current path planning
solution adopted by the company.

Figure 2.1: Cloud of points from KML files partitioned in missions in an actual CSP
inspection.

The path planning strategy during the inspection related to Figure 2.1 consisted of
sequentially visiting all the couples in each mission, and recharging the battery when
needed (this usually happens after doing 3 or 4 missions of 3 points each one). This
current solution (we will refer it with this name in future comparisons) might not be
the best because it implies many changes of drone flight direction, which have been
proved to increase the time and battery costs.

Along this section we will present different approaches to find exact solutions
for CSP instances. To do that, we will use some classical problems as the Knapsack
Problem (specifically in its generalization, the Multiple Knapsack Problem), the Bin
Packing Problem and the Exact Cover Problem. Before that, we must define the weights
and costs for travelling between the nodes of each instance graph.

2. some formulations for the csp problem 19

Figure 2.2: Cloud of points extracted from KML files used by drone pilot in actual
CSP inspections. Every blue and red point pair stands for a couple of upstream and
downstream pipes

2.1 Modelling the energy consumption

In order to control the SoC (state-of-charge) we will need to compute the energy
costs that battery suffers due to displacements effectuated by the drone. Wewill model
4 different trajectory types:

Takeoff: when doing a tour, the drone starts at the base or charging station
point, at ground level, and it has to take off from it in order to visit the interest
points. We will assume that takeoffs and landings are done in vertical. We will
use the notation At for this action.
Horizontal displacement: the drone moves in XY plane at some altitude which
we will assume as constant. This is the trajectory made between points of inter-
est and from/to the base station (the drone first takes off in vertical until reaches
some altitude and then does an horizontal displacement to the first node in tour
or comes from the last node doing an horizontal displacement and then lands
in vertical). Its notation will be Ah.
Landing: when finishing a tour, the drone has to return to base station and land
in it. This vertical displacement, noted Al, is the counterpart of takeoff.

20 path planning with drones at csp plants

Turning: optionally, but very often, a drone effectuates a turn to head its ob-
jective (in general, a node to inspect) and then, at the arrival, to head parallel
to the pipe. In addition, during the inspection phase, inside a node, the drone
needs to turn at least 3 times, in U shape, to visit the entire couple defining
a point of interest. It is important to remark that one of the most expensive
displacements a drone can do are the ones which imply more turnings, in the
sense of increasing the time and energy costs. We will refer to turns as Ag.

The notations for each type of action will help us to differentiate states of the
energy consumption parameters, as their values change with the action performed.
Let [0, T] = [0, t1] ∪ [t1, t2] ∪ [t2, T] be the time interval during the performance of a
given action. Also, each displacement type (except turnings) will be decomposed in
three parts:

1. Acceleration part: the drone increases its speed in the direction of movement
(horizontal, vertical or negative vertical) by using propellers. This is an uni-
formly accelerated rectilinear motion (linear acceleration is negative). This part
lasts from t = 0 to t = t1.

2. Uniform part: the drone moves with constant speed in the desired direction.
This is an uniformly rectilinear motion (linear acceleration is zero). It lasts
from t = t1 to t = t2.

3. Braking part: the drone decreases its speed in the direction of movement, until
it is 0. This is an uniformly decelerated rectilinear motion (linear acceleration
is positive). It lasts from t = t2 to t = T .

Turning is considered to be uniform motion, so it has neither acceleration nor
braking parts. So now, we can distinguish an action or displacement by its type,
A ∈ A = {At, Ah, Al, Ag}, and the time interval when it occurs, t ∈ [0, t1], [t1, t2]
or [t2, T]. In addition, note that the total acceleration of an object, a⃗T , can be decom-
posed as linear acceleration, a⃗, plus the gravity acceleration, g⃗. We will define the
gravity vector1 as g⃗ = [0, 0,−9.81]m/s2. For example, in order to positively acceler-
ate while ascending, the drone has to generate a positive vertical linear acceleration
Z component.

Moreover, we must use some formula to compute the energy consumption from
drone kinematics. For this we will use [4] and also [10]. In the articles, authors de-

1We will assume that Z axis is perpendicular to ground and positive while ascending.

2. some formulations for the csp problem 21

fine a standard regression model which allows to compute the instantaneously power
consumption, P̂ , as function of s = [v⃗xy, a⃗xy, v⃗z, a⃗z, ω⃗xy,m] where:

v⃗xy and a⃗xy are the horizontal speed and acceleration vectors.
v⃗z and a⃗z are the vertical speed and acceleration vectors.
ω⃗xy is the horizontal wind speed vector.
m is the constant mass of the drone payload.

Then, P̂ can be computed2 as follows:

P̂ (s) =

β1

β2

β3

T ∥v⃗xy∥
∥a⃗xy∥

∥v⃗xy∥∥a⃗xy∥

+

β4

β5

β6

T ∥v⃗z∥
∥a⃗z∥
∥v⃗z∥∥a⃗z∥

+

β7

β8

β9

T m

v⃗xy · ω⃗xy

1

 = βT ŝ

where ŝ = [∥v⃗xy∥, ∥a⃗xy∥, ∥v⃗xy∥∥a⃗xy∥, . . . , 1]. If during a period T the parameters
needed for computation remain unaltered, the energy consumption can be computed
as Ê = P̂ ·T . However, the reader would likely observe that 2/3 of each displacement
type which we have defined is not constant in speed. To tackle this, we will generalize
the energy consumption computation in a more analytic fashion. Let s be now a time
dependent function modelling the kinematics state of the drone, which also depends
on the action type performed. FixedA ∈ A, we could define the instantaneous energy
consumption during an infinitesimal period dt (where the state s remains constant)
as:

dÊ(s(t)) = P̂ (s(t)) · dt = βT ŝ · dt

and then compute Ê(s(t)) integrating along [0, T]. In the Appendix A there is a more
detailed explanation of howwe can compute kinematics states for each action in order
to obtain Ê.

Now, we have all the ingredients needed to model the energy costs for visiting a
point of interest in our CSP plant. We will distinguish between trips where the drone
is coming from the base station node (beginnings), trips where the drone is going
to the base station node (endings) and trips where the drone is travelling between
points of interest (normal trips). In beginnings, the drone starts with a takeoff, heads
(turning) to the next node to visit and then does an horizontal displacement. The
endings start heading the depot node, horizontal movement is performed and then
the landing happens. The normal trips are just turnings to the following node and

2Obviously we will need the values of β = [β1, . . . , β9] but we will discuss this question later.

22 path planning with drones at csp plants

horizontal displacements between nodes. There is an important detail in how the
energy costs are modelled, they depend on current and previous visited node: let wt

ij

be the energy consumption of the drone when it is travelling from node i to node j,
i, j ∈ {0, 1, . . . , n}, i ̸= j, that is,

wt
ij = Ê(s(i, j))

where, here, s(i, j) models the parameter state the drone will present if it travels
from i to j. However, we usually don’t just visit the nodes but we also inspect them
(except for the depot). The inspection cost associated to the node i ̸= 0, we

i , can be
computed creating fictitious nodes along pipes and performing normal trips between
them. Recall that when we reach a point of interest and the inspection begins, the
drone flies until the end of pipe, jumps to the other part of the couple, and finishes
at the beginning of it. So, actually, the start position at node i and the end position
after inspection doesn’t match. But we can just create fictitious nodes i1, i2, i3, i4 and
compute the energy costs by parts, we

i = Ê(s(i1, i2)) + Ê(s(i2, i3)) + Ê(s(i3, i4)),
where i1 stands for the start position coordinates at i, i2 represents the coordinates
at the end of the first pipes, i3 plays as the coordinates at the end of the other part of
the loop and i4 defines the end position coordinates (see Figure 2.3). Clearly, we will
use different i and j nodes coordinates when computing wt

ij (output coordinates for i
and input coordinates for j) that when gettingwt

ji (output coordinates for j and input
coordinates for i). The depot node is the only one with the same input and output
coordinates.

Figure 2.3: Fictitious nodes scheme for inspection cost computation at nodes i, j with
trajectories of inspection (in blue) and between nodes (in red).

Besides the energy consumption costs, the time costs ttij model the spent time of
going from i to j. To compute them, we could use basic kinematics formulas and the

2. some formulations for the csp problem 23

distance between the nodes, d(i, j) (if the speed is constant, the spent time equals to
the distance divided by the speed). This is deepened in the Appendix A. There is also
an inspection time cost, tei , which can be computed creating fictitious nodes as we

i . To
sum up, we define tij = ttij + tei and wij = wt

ij + we
i as travel-inspection time costs

and energy weights between nodes i and j, respectively.

In order to model the costs of coming from the base station and returning to it,
we create a fictitious node 0′ which is at the same XY coordinates as 0 but at some
altitude above it, z0. Then, the costs wt

0j can decompose in a takeoff from 0 to 0′ and
an horizontal displacement from 0′ to j (similar for wt

i0, which implies a landing from
0′ to 0). Evidently, wi0 = wt

i0 because in this node there is no inspection. However,
to be more realistic, the time costs at depot node will be ti0 = tti0 + tr, where tr is the
recharging or battery replacement time cost.

2.2 Multiple Knapsack Problem approach

In this section we look at the CSP problem as an instance of theMKP. Suppose that
now the n points to visit are items from a collection. We want to pack these items in k
bins (tours or cycles) with k in {1, . . . , n}. Each of the items has a weight (associated
energy consumption) and a profit, which is related with the time cost. At the same
time, each bin has a maximum weight capacity (total battery energy when it is full of
charge), which we denote byW . Then, we would like to choose the items that will be
in each bin in the most efficient way, i.e, maximizing the profits while ensuring the
weight of formed bins is less than W . The Multiple Knapsack Problem is known in
the literature as an immediate extension of Knapsack Problem, and which is NP-hard
in the strong sense [11].

The basic formulation for Multiple Knapsack problems can also be found in [11],
and it is as follows: let n the number of items,m the number of knapsacks (k ≤ n) and
let pj = the profit of item j, wj the weight of item j and ci the capacity of knapsack
i. We want to select m disjoint subsets of items so that the total profit of selected
items is a maximum, and each subset can be assigned to a different knapsack whose
capacity is no less than the total weight of items in the subset:

24 path planning with drones at csp plants

(MKP) max z =
m∑
i=1

n∑
j=1

pjxij (2.1a)

s.t.:
n∑

j=1

wjxij ≤ ci, i ∈M = {1, . . . ,m} (2.1b)

m∑
i=1

xij ≤ 1, j ∈ N = {1, . . . , n} (2.1c)

xij = 0 or 1, i ∈M, j ∈ N (2.1d)

Where xij = 1 if item j is assigned to knapsack i and xij = 0 otherwise. When
m = 1 the MKP reduces to the 0-1 (single) knapsack problem.

However, we cannot use this formulation directly. Firstly, we want to pack all
the items in any of the bins, but the constraint (2.1c) admits to not assign a item
to any bin. In fact, another problem which is related to MKP and CSP problem is the
Generalized Assignment Problem, which ensures that all the tasks or items are assigned
to exactly one task processor or bin. Also, the profits and weights that model our
problem depend on the previous visited point or, in knapsack terms, the last added
item. These complications will be tackle in the following.

The main idea is to consider the nodes to visit as items and the tours as knapsacks
with some capacity, i.e, the energy battery level when the drone is full of charge.
In the following, we will develop a Mixed Integer Programming formulation which
generalizes the MKP so that we can use it to solve instances of our particular problem.

2.2.1 Generalized MKP

Firstly, let V = {0, 1, . . . , n}, V = {1, . . . , n} and K = {1, . . . ,m} be the items
and knapsacks sets, respectively, where m ≤ n is fixed. If we recalled MKP formula-
tion from Section 2, we would like to have just one wj and pj by node. However, the
profits and the weights usually depend on previous visited node. To overcome this,
let:

yij =

{
1 if item i ∈ V goes before item j ∈ V

0 otherwise

2. some formulations for the csp problem 25

Then, we can compute the weight of node j as wj =
∑
i∈V

wijyij . To compute the profit

of node j pj , suppose that we have pij as the profit for going from node i to j, then
pj =

∑
i∈V

pijyij . On the other hand, let:

xjk =

{
1 if item j ∈ V is assigned to knapsack k ∈ K

0 otherwise

Actually, xjk are the main decision variables in our problem that assign nodes to
knapsacks. The extra yij variables are needed for our CSP problem. Then, the MIP
formulation for the GMKP could state as follows.

(GMKP) max z =
∑

i ̸=j∈V

∑
k∈K

pijyijxikxjk (2.2a)

s.t.:
∑

i ̸=j∈V

wijyijxikxjk ≤ W, ∀k ∈ K (2.2b)∑
k∈K

xjk = 1, ∀j ∈ V (2.2c)∑
j∈V

xjk =
∑

i ̸=j∈V

yijxikxjk, ∀k ∈ K (2.2d)

2yij ≤ max
k∈K

xik + xjk, ∀i ̸= j ∈ V (2.2e)∑
k∈K

x0k = m,
∑
i∈V

yi0 = m,
∑
j∈V

y0j = m (2.2f)

∑
i∈V

yij = 1, ∀j ∈ V ,
∑
j∈V

yij = 1, ∀i ∈ V (2.2g)

Li + wijyij −W (1− yij) ≤ Lj (2.2h)
yijwij ≤ Lj ≤ W, ∀i ∈ V, ∀j ∈ V , i ̸= j, (2.2i)
Lj ∈ R, ∀j ∈ V , xjk, yij ∈ {0, 1} ∀i ̸= j ∈ V, k ∈ K (2.2j)

The objective function (2.2a) maximizes the total profit in all the knapsacks. The
terms of the sum, pijyijxikxjk, mean that we are only adding a profit when the items i
and j are assigned, in this order, to the same bin, i.e, we visit node i and then node j in
the same tour k. The first two constraints, (2.2b) and (2.2c), correspond to the ones at
MKP formulation, with slight changes: for example, we impose that every itemwhich
is not the depot must be assigned to some bin. Also, the capacities between knapsacks

26 path planning with drones at csp plants

remain constant and equal to W . The capacity constraints are formulated using the
same idea as objective function, we are only adding a given weight wij when item j is
assigned to bin k preceded by item i, which is also assigned to bin k. Constraint (2.2d)
ensures that the number of items assigned to a given bin k matches the sum of item
pairs (i, j) that are assigned to bin k being j preceded by i. Constraint (2.2e) ensures
that if j is preceded by i, then they are assigned to the same bin: xik, xjk ∈ {0, 1} so
maxk∈K xik, xjk ∈ {1, 2} (it can be zero because we have to assign i and j to some
bin). This maximum will be 2 if and only if exists k ∈ K with xik = xjk = 1. So, if
yij = 1 (i is assigned before j) the inequality implies that i, j are assigned to the same
bin. Constraints at (2.2f) mean that the depot node is assigned to all them initialized
bins and also that it goes before and goes after other items the same number of times.
This means that we start and end tours at this node. Constraints at (2.2g) force all
the items j ∈ V to go before and after another item, that is, all the nodes are reached
exactly once in a tour. Constraints (2.2h) are useful to ensure the continuity of the
route and to eliminate tours that doesn’t include the depot node. The continuous
variables Lj, j ∈ V show the drone battery consumption after visiting node j. We
use the constraints at (2.2i) to define lower and upper bounds for Lj . The load or
accumulated battery consumption Lj must be greater or equal than the weight wij

only if i goes before j in the same bin. On the other hand, the load is not allowed to
surpass the battery capacityW . Finally, constraints at (2.2j) define the domain of load
and decision variables and indexes.

2.2.2 Solver for GMKP

In order to obtain exact solutions to our CSP problem instances via the GMKP for-
mulation wewill need some sort of solver. In this work we have decided to useGurobi.
The Gurobi Optimizer is a commercial optimization solver for linear programming
(LP), quadratic programming (QP), quadratically constrained programming (QCP),
mixed integer linear programming (MILP), mixed-integer quadratic programming
(MIQP), and mixed-integer quadratically constrained programming (MIQCP). The
Gurobi Optimizer supports a variety of programming andmodeling languages includ-
ing: C++, Java, MATLAB, R and Python, and also links to standard modeling languages
as AMPL. The selected programming language in this work was Python, so this solver
fits enough our needs. Also, we acquired an academic license in order to access a big-
ger computation power. The Gurobi Optimizer also includes a number of features to
support the building of optimization models including support for:

2. some formulations for the csp problem 27

A powerful Python modeling API3 that integrates with vector and matrix ob-
jects from NumPy and SciPy, two of the main libraries in Python.
Multiple objective functions with flexibility in how they are prioritized.
General constraints as MIN, MAX, ABS, AND, OR, and indicator constraints
help avoid having to turn commonly occurring constraints into linear con-
straints.
Client-server computing, to offload optimization or tuning runs to a compute
server.
Cloud computing, to perform optimization or tuning jobs in the cloud.
Distributed computation, to harness the power of multiple machines working
together on a single optimization or tuning job.

The use of Gurobi in Python is very simple, aswe can see in the next example. Suppose
we want to optimize the next model:

max x+ y + 2z (2.3a)
s.t.: x+ 2y + 3z ≤ 4 (2.3b)

x+ y ≥ 1 (2.3c)
x, y, z ∈ {0, 1} (2.3d)

We can program this model with library Gurobipy in Python as follows:
1 import gurobipy as gp
2 from gurobipy import GRB
3 # Create a new model
4 m = gp.Model("mip1")
5 # Create variables
6 x = m.addVar(vtype=GRB.BINARY , name="x")
7 y = m.addVar(vtype=GRB.BINARY , name="y")
8 z = m.addVar(vtype=GRB.BINARY , name="z")
9 # Set objective
10 m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)
11 # Add constraint: x + 2 y + 3 z <= 4
12 m.addConstr(x + 2 * y + 3 * z <= 4, "c0")
13 # Add constraint: x + y >= 1
14 m.addConstr(x + y >= 1, "c1")
15 # Optimize model
16 m.optimize ()
17 for v in m.getVars ():

3Application Programming Interface is a software intermediary that allows two applications to talk
to each other

28 path planning with drones at csp plants

18 print(’%s %g’ % (v.varName , v.x))
19 print(’Obj: %g’ % m.objVal)

The two first lines are imports: we import gurobipy library to have access to its func-
tions and classes through the prefix gp and also import class GRB which contains
useful constants we use to define the variables domain. The next line is for creating
the model. Lines 6 to 8 define variables x, y, z as binary ones. Line 10 set the objec-
tive function of the model. After that we add the constraints of our model. Line 16
starts the process of optimization of the model. The last lines print the optimal solu-
tion and value. This was a simple model that also had a simple code implementation.
However, Gurobi is flexible enough to allow us implement the GMKP formulation,
although that implementation won’t be as simple.

2.3 Bin Packing Problem approach

Nowwe put an instance of the CSP problem as an instance of another well-known
problem in the literature, the Bin Packing Problem (BPP). It is similar to the Multiple
Knapsack Problem but, in this case, we would like to minimize the number of bins
rather than maximize the total profit among them. The BPP is NP-hard in the strong
sense [11]. The BPP can be described, using the terminology of knapsack problems,
as follows. Given n items and n knapsacks (or bins), with

wj = weight of item j,

c = capacity of each bin,
assign each item to one bin so that the total weight of the items in each bin does
not exceed c and the number of bins used is a minimum. One possible mathematical
formulation of the problem is:

(BPP) min z =
n∑

i=1

yi (2.4a)

s.t.:
n∑

j=1

wjxij ≤ cyi, ∀i ∈ N = {1, . . . , n} (2.4b)

n∑
i=1

xij = 1, ∀j ∈ N (2.4c)

xij ∈ {0, 1} ∋ yi, i, j ∈ N (2.4d)

2. some formulations for the csp problem 29

where

yi =

{
1 if bin i is used
0 otherwise

xij =

{
1 if item j is assigned to bin i

0 otherwise

A formulation that generalizes BPP one could give us the minimum number of tours
(or returns to the battery station) that the drone can do in a given inspection,m∗. We
denote this formulation by GBPP. If we combine GBPP with the GMKP formulation,
we could find the bestm∗ tours to perform the inspection, in the sense of minimizing
the total time cost. However, we must highlight that finding the minimum number of
tours needed to properly4 cover the inspection using GBPP and then solve the GMKP
may lead us to a solution worse than if we use more tours, as it is shown in the Figure
2.4. If we consider the instance which is described in the figure, is obvious that we
have enough battery to visit all the nodes and then return to base. If we do this, i.e,
if we use one tour, the minimum total time cost we can achieve is 8, because to cover
both sides we need to spend 3 units of time costs, to travel to the other side of the
graph costs 4 units and return to base costs 1. Now, consider we use two tours, one
for each side of the graph, that is, for example, {0, 1, 2} and {0, 3, 4}, then the total
profit is 3 + 3 = 6, which is less than using one tour. To overcome this, we can solve
multiple GMKP instances for m = m∗,m∗ + 1, . . . and observe the behaviour of the
obtained solutions. Nevertheless, solutions for GMKP using fewer number of tours
usually give the optimal in total time cost.

In addition, in order to use the BPP for solving the CSP problem, we must adapt
this formulation to one which accounts for the restrictions of our situation. The main
differences are related to weights dependence on previous assigned items. Another
difference, as we have commented in GMKP, is that we have a depot node acting as
a required item to assign to each bin, the 0-item. So, let us now consider the Gen-
eralized Bin Packing Problem (GBPP), based on BPP and GMKP, where k varies in
K = {1, . . . , n} and we are supposing that we have enough capacity to, at least, visit
any of the nodes (adding it to some bin) and returning to base station (adding the
0-item to the same bin), that is, W ≥ w0jx0jk + wj0xj0k, ∀j, k ∈ {1, . . . , n}5. Also,

4Not violating the problem constraints.
5This supposition will be done in all the instances because if they do not verify this, they are

infeasible instances.

30 path planning with drones at csp plants

Figure 2.4: Counterexample: There are instances for which using a non-optimal num-
ber of tours can lead to less total time cost. Time costs are the red values above edges
and they are the same in both directions

the let wij be the same weights as in GMKP. In addition, let:

yk =

{
1 if bin k ∈ K is used
0 otherwise

xjk =

{
1 if item j ∈ V is assigned to knapsack k ∈ K

0 otherwise

aij =

{
1 if item i ∈ V goes before item j ∈ V

0 otherwise

The formulation would be as follows:

2. some formulations for the csp problem 31

(GBPP) min z =
n∑

k=1

yk (2.5a)

s.t.:
∑

i ̸=j∈V

wijaijxikxjk ≤ Wyk, ∀k ∈ K (2.5b)∑
k∈K

xjk = 1, ∀j ∈ V (2.5c)∑
j∈V

xjk =
∑

i ̸=j∈V

aijxikxjk, ∀k ∈ K (2.5d)

2aij ≤ max
k∈K

xik + xjk, ∀i ̸= j ∈ V (2.5e)∑
k∈K

x0k = z,
∑
i∈V

ai0 = z,
∑
j∈V

a0j = z (2.5f)

∑
i∈V

aij = 1, ∀j ∈ V ,
∑
j∈V

aij = 1, ∀i ∈ V (2.5g)

Li + wijaij −W (1− aij) ≤ Lj (2.5h)
aijwij ≤ Lj ≤ W, ∀i ∈ V, ∀j ∈ V , i ̸= j, (2.5i)
Lj ∈ R, ∀j ∈ V , yk, xjk, aij ∈ {0, 1} ∀i ̸= j ∈ V, k ∈ K (2.5j)

This formulation has also several constraints. These are very similar to the ones
in GMKP formulation, with slight changes: in the capacity constraints (2.5b), we have
Wyk in the right side, which means that we must initialize bin k if we want to assign
items to it. Also, in the depot node constraints (2.5f) we use z =

n∑
k=1

yk instead of m.

It is because it does not make sense to define a constant number of initialized bins:
The depot node appears in tours as many times as tours are initialized.

As in GMKP, we can implement this GBPP formulation in Gurobi Optimizer and
obtain exact solutions to our CSP instances, but for the problem of finding the smallest
number of feasible tours to cover the inspection graph. Then we can use this solution
as seed for initializing the GMKP iterations.

2.3.1 Some algorithms for BPP

Now we mention some heuristic algorithms for solving BPP that can be useful
to find good approximations for large instances. We use the work ([11], Chapter

32 path planning with drones at csp plants

8). The simplest approximate approach to the bin packing problem is the Next-Fit
(NF) algorithm: the first item is assigned to bin 1. Items 2 to n are then considered
by increasing indices: each item is assigned to the current bin, if it fits, otherwise
a new bin is initialized, which becomes the new current one. It can be proven that
NF (I) ≤ 2z(I), beingNF (I) the solution value provided by the NF algorithm for an
instance I and z(I) the optimal value. The current solution adopted by the company
at the CSP inspections is a sort of Next-Fit procedure. A basic Python implementation
of Next Fit algorithm follows ([15]):

1 def nextfit(weight , c):
2 res = 0 #Number of initialized bins
3 rem = c #Remaining capacity in current bin
4 for _ in range(len(weight)): #Loop in each item
5 if rem >= weight[_]: #Checking if can assign next item to

current bin
6 rem = rem - weight[_]
7 else: #If cannot ...
8 res += 1 #Initialize new bin
9 rem = c - weight[_] #Update remaining capacity
10 return res

Evidently, we would have to adapt this a bit more to record the items which are as-
signed to each bin, to have a full solution. But essentially, this is its Python imple-
mentation.

A better algorithm, the First-Fit (FF), considers the items according to increasing
indices and assigns each item to the lowest indexed initialized bin into which it fits.
Only when the current item cannot fit into any initialized bin, is a new bin intro-
duced. This algorithm has also related bounds: FF (I) ≤ 1.7z(I) + 2. Its Python
implementation, also borrowed from [15], is:

1 def firstFit(weight , n, c):
2 res = 0 # Initialize result (Count of bins)
3 # Create an array to store remaining space in bins
4 # there can be at most n bins
5 bin_rem = [0]*n
6 # Place items one by one
7 for i in range(n):
8 # Find the first bin that can accommodate
9 # weight[i]
10 j = 0
11 while(j < res):
12 if (bin_rem[j] >= weight[i]):
13 bin_rem[j] = bin_rem[j] - weight[i]

2. some formulations for the csp problem 33

14 break
15 j+=1
16 # If no bin could accommodate weight[i]
17 if (j == res):
18 bin_rem[res] = c - weight[i]
19 res= res+1
20 return res

The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current
item to the feasible bin (if any) having the smallest residual capacity. Also, there is
another known algorithm in the literature which is theWorst-Fit (WF). One could say
that it is the inverse of BF: it assigns items to the least tightest bin. If the item does not
fit in any bin, then it will be assigned to a new one. Their Python implementations
are6:

1 def bestFit(weight , n, c):
2 res = 0;# Initialize result (Count of bins)
3 # Create an array to store
4 # remaining space in bins
5 # there can be at most n bins
6 bin_rem = [0]*n;
7 # Place items one by one
8 for i in range(n):
9 # Find the first bin that
10 # can accommodate
11 # weight[i]
12 j = 0;
13 # Initialize minimum space
14 # left and index
15 # of best bin
16 mini = c + 1;
17 bi = 0;
18 for j in range(res):
19 c1 = bin_rem[j] >= weight[i]
20 c2 = bin_rem[j] - weight[i] < mini
21 if (c1 and c2):
22 bi = j;
23 mini = bin_rem[j] - weight[i];
24 # If no bin could accommodate weight[i],
25 # create a new bin
26 if (mini == c + 1):
27 bin_rem[res] = c - weight[i];

6The Python implementation of Worst-Fit have been easily adapted from C++ implementation at
the reference.

34 path planning with drones at csp plants

28 res += 1;
29 else: # Assign the item to best bin
30 bin_rem[bi] -= weight[i];
31 return res;

1 def worstFit(weight , n, c):
2 res = 0;# Initialize result (Count of bins)
3 # Create an array to store
4 # remaining space in bins
5 # there can be at most n bins
6 bin_rem = [0]*n;
7 # Place items one by one
8 for i in range(n):
9 # Find the first bin that
10 # can accommodate
11 # weight[i]
12 j = 0;
13 # Initialize maximum space
14 # left and index
15 # of worst bin
16 mx = -1;
17 wi = 0;
18 for j in range(res):
19 c1 = bin_rem[j] >= weight[i]
20 c2 = bin_rem[j] - weight[i] > mx
21 if (c1 and c2):
22 wi = j;
23 mx = bin_rem[j] - weight[i];
24 # If no bin could accommodate weight[i],
25 # create a new bin
26 if (mx == -1):
27 bin_rem[res] = c - weight[i];
28 res += 1;
29 else: # Assign the item to best bin
30 bin_rem[wi] -= weight[i];
31 return res;

Assume now that the items are sorted so that w1 ≥ w2 ≥ · · · ≥ wn, and then
NF, FF, BF or WF is applied. The resulting algorithms are called Next-Fit Decreasing
(NFD), First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD) and Worst-Fit Decreas-
ing (WFD). It has been proven (Johnson, Demers, Ullman, Garey and Graham, 1974)
that FFD(I) ≤ 11

9
z(I) + 4. However, during the resolution of our CSP realistic

instances, we have found that using these techniques leads to worse solutions than
if we apply an opposite procedure for ordering: instead of decreasing ordering we

2. some formulations for the csp problem 35

will consider an increasing ordering of weights, that is, select the next node which is
the closest. The adaptation of this four basic bin packing heuristics to solve our CSP
problem is done easily. First, we must rearrange the weights wij in a matrix where
row i indicates the energy costs of going from node i to node j (indicated by column)
and inspecting it. Each bin will be initialized with 0-item inside. When we introduce a
new item into the bin, we look at the row associated with the last item assigned to the
bin. We must save the last added item of each bin in order to know which row look
at in each iteration. Also, we can sort the values in the row by an ordering strategy
in each iteration, omitting assigned items.

2.4 Exact Cover Problem approach

The Exact Cover Problem (ECP) reminds us to children puzzles or maybe the times
we spent hours solving a Sudoku, problems where we have to construct a matching of
pieces or numbers in a certain way. The statement is as follows: given a collection S

of subsets of a setX , an exact cover is a subcollection S∗ of S such that each element
inX is contained in exactly one subset in S∗. The decision problem of decide whether
suchS∗ exists is known as the ECP. It is also NP-Complete (in fact, it is one ofKarp’s 21
NP-complete problems), like the CVRP,MKP and BPP. This problem can be represented
as a binary matrixAwhere we would like to find a subset of rows such that if we sum
them by components we obtain a row full of ones (that is, each column in the subset
of rows has exactly one non-zero value). Each column is an element of X and each
row is a subset of S.

As we have commented, Sudoku problem can be formulated with ECP. Another
example of Exact Cover Problem is the Pentomino, which is a puzzle where pieces are
made of five unit squares connected edge-to-edge and the aim is to form a rectangular
or squared shape using the given pieces (the Tetris game is based on this). Figure 2.5
shows a pentomino puzzle. Obviously, there are also tetramino’s puzzles and other
extensions. In addition, the n queens problem is a slightly generalized exact cover
problem. The n queens problem is a generalization of the eight queens puzzle of
placing 8 non-attacking queens on an 8× 8 chessboard. For this generalization there
are solutions for all natural numbers n with the exception of n = 2, 3.

Now, we are going to explain further ECP through the next detailed example: let
S = A,B,C,D,E, F be a collection of subsets of a set X = {1, 2, 3, 4, 5, 6, 7} such

36 path planning with drones at csp plants

Figure 2.5: A 6x10 pentomino puzzle example

that:

A = {1, 4, 7}, B = {1, 4}, C = {4, 5, 7}, D = {3, 5, 6}, E = {2, 3, 6, 7}, F = {2, 7}.

Then the subcollection S∗ = {B,D, F} is an exact cover of X using S, since each
element inX is contained in exactly one of the subsets. Moreover, the given S∗ is the
only exact cover, as the following argument demonstrates: because A and B are the
only subsets containing 1, an exact covermust containA orB, but not both. If an exact
cover contains A, then it doesn’t contain B, C, E or F, as each of these subsets overlap
withA. ThenD is the only remaining subset, but the collection {A,D} doesn’t cover
the element 2. So, there is no exact cover containing A. On the other hand, if an
exact cover contains B, then it doesn’t contain A or C , as each of these subsets has
an element on common with B. Because D is the only remaining subset containing
5, D must be part of the exact cover. If an exact cover contains D, then it doesn’t
contain E, as E overlaps D. Then F is the only remaining subset, and the collection
{B,D, F} is indeed an exact cover. Clearly, the hardness of this problem grows when
there are a lot of subsets in S and X is big.

Now, we want to explain how we can relate the Exact Cover Problem with the
CSP one. Suppose we have a directed graph G = (V,E) where V is the set of nodes
where inspections take place and E are the possible paths between two of the nodes.
What we are looking for is a collection of cycles, C , such that it covers the entire
set V and we don’t repeat a node v in two of the cycles, that is, a ECP where pieces
are cycles. Obviously, there might be more than one solution. Since we have a drone
battery restriction, many of the cycles that may appear in some solutions could be in-
feasible, so we will remove them from potential solutions to the CSP problem. Finally,
when we have found the feasible solutions, we will keep that with the minimum time
consumption or size, in the sense of less tours performed.

In order to solve CSP problem by ECP, we must associate weights to cycles: a

2. some formulations for the csp problem 37

cycle will be feasible if it correspond to a feasible tour, that is, the total weight of the
cycle doesn’t exceed a given battery consumption bound, W . Also, we can associate
profits or costs to each cycle and maximize or minimize them, respectively. Note that
each cycle will start and end in the depot node (because the drone has to recharge its
battery), so S is the collection of all the cycles (subsets of V) which visit the depot
node, and whose total weight is less or equal thanW . Actually, we are not interested
in all the cycles, but in the elementary ones (see [12]), which are those where no
vertex appears twice (except the first one which matches the last one), and also two
elementary cycles are different if they are not cyclic permutations of each other. There
are exactly:

n−1∑
i=1

(
n

n− i+ 1

)
(n− i)!

elementary cycles in a complete digraph with n vertices.

Computing the total weight of a cycle can be done as follows: let c = {u, v, v′, u}
the visited nodes in a given one (u is the depot node), then we will compute w(c) =
w(u, v)+w(v, v′)+w(v′, u), wherew(i, j) are computed like in the previous sections,
given a pair of nodes i, j.

The ECP has been studied for a long time as it is derived from the famous Set
Cover Problem, but nowadays there are few efficient algorithms for solving it. In our
research we have found two main references that will help us with the task of solving
CSP problem instances. First of all, we need to obtain the collection S, and this is not
current because, at the beginning, the feasible cycles inG are unknown, although we
know that there will be a large number of them if there are many vertices and edges.
For this first task we will use the Johnson’s Algorithm for finding all elementary cycles
in a given digraph, deeply explained in [12]. We must keep only the elementary cycles
that visit the depot node.

2.4.1 The Johnson’s algorithm

The Johnson’s algorithm finds all the elementary circuits of a digraph in time
bounded by O((n + e)(c + 1)) and space bounded by O(n + e), where there are n

vertices, e edges and c elementary circuits in the graph. The algorithm is faster than
previous ones because it considers each edge at most twice between any one circuit
and the next in the output sequence. We can also consider elementary paths, which
are paths where no vertex appears twice.

38 path planning with drones at csp plants

In this document, we will be using a nonrecursive, iterator/generator version of
Johnson’s algorithmwhich is implemented in the Python library networkx. In fact, we
have found that for regular instances of CSP problem, where N ≈ 40, it is very diffi-
cult to found all elementary circuits with arbitrary length. To overcome this disadvan-
tage, we use an adapted version of networkx’s implementation which only consider
paths whose length is dominated by a given limit L. Also, we have modified it to only
search for paths starting at 0 node, which are actually the ones we want to obtain.
Another possible relaxation we can assume is to only use edges between neighboring
nodes, instead of considering a complete digraph.

This algorithm allows us to obtain all the elementary circuits with maximal length
L ≤ 13 of particular graphs with N ≈ 40 nodes and |E| edges (those related to
neighboring nodes in two faced batches associated graphs) relatively quickly. Since
the drone usually inspects 9 to 10 interests points before returning for charging, it
seems like this adapted Johnson’s algorithm is good enough for our purposes.

2.4.2 The Knuth’s Algorithm X

To solve ECP in Python, we have used some libraries which implement the danc-
ing links technique of Donald Knuth for his Algorithm X, which solves ECP instances.
In the following we will briefly explain how the algorithm Xworks and also detail the
dancing links technique which leads to DLX algorithm and give a small example in
order to understand better how it operates.

Once he have obtained all elementary circuits S in graph G we can transform
the instance of the CSP problem in one for Exact Cover Problem. S is a collection
of subsets of V = {0, 1, . . . , N} all of them starting at 0 (or at least containing it,
we can reorder them). To reduce the computational costs of solving the ECP, we also
can discard every cycle in S such that its total associated weight exceeds W , that is,
infeasible cycles, obtaining S∗. We will solve the ECP instance (S∗, V) using a Python
implementation of the Donald Knuth’s X algorithm, described in [13]. We probably
will obtain several possible exact covers C for our instance, due to typical big size
of S∗. In order to solve the CSP problems 1 and 2 associated with the instance, we’ll
select the best cover solution C∗ in terms of total inspection time cost and number of
cycles used, respectively.

The Knuth’s Algorithm X is an algorithm that finds all solutions to an exact cover
problem. DLX is the name given to Algorithm X when it is implemented efficiently

2. some formulations for the csp problem 39

using Donald Knuth’s Dancing Links technique on a computer. It is a straightfor-
ward recursive, nondeterministic, depth-first7, backtracking algorithm used by Don-
ald Knuth to demonstrate an efficient implementation called DLX, which uses the
dancing links technique. Dancing links is a technique for reverting the operation of
deleting a node from a circular doubly linked list8. The idea of DLX is based on the
observation that in circular doubly linked list of nodes, if we let L[x] and R[x] point
to the predecessor and successor of that element,

L[R[x]]← L[x], R[L[x]]← R[x]

remove x from the list, while

L[R[x]]← x, R[L[x]]← x

will put x back into the list again, assuming that L[x] andR[x] haven’t been modified.
Knuth observed that a naive implementation of his Algorithm Xwould spend an inor-
dinate amount of time searching for 1’s. To improve this search time from complexity
O(n) to O(1), Knuth implemented a sparse matrix where only 1’s are stored. At all
times, each node in the matrix will point to the adjacent nodes to the left and right
(1’s in the same row), above and below (1’s in the same column), and the header for its
column (a special node each column will have, they form the control row consisting
of all the columns which still exist in the matrix9). Each row and column in the matrix
will consist of a circular doubly-linked list of nodes.

The reciprocal procedures for deleting and re-adding an element x to a doubly
linked list are extremely useful when updates to a data structure are not indented to
be permanent. For example, this occurs in backtrack programs, which enumerate all
solutions to a given set of constraints. Backtracking is also called depth-first search.
These programs can require to maintain a very large stack and might take too much
time, if we use a naive implementation. The Dancing Links technique improve the
performance in this algorithms. For example, the exact cover problem, which we can
represent by amatrixA consisting of 0’s and 1’s such that wewant to select a subset of
the rows where the digit 1 appears in each column exactly once, is a natural candidate

7Algorithm which searches in tree or graph data structures by starting at a root node and exploring
as far as possible along each branch before backtracking.

8A linked data structure that consists of a set of sequentially linked records called nodes. Each
node contains three fields: references to the previous and to the next node in the sequence and one
data field.

9Also, each column header may optionally track the number of nodes in its column, so that locating
a column with the lowest number of nodes is of complexity O(n) rather than O(mn). Selecting a
column with a low node count is a heuristic which improves performance in some cases.

40 path planning with drones at csp plants

for backtracking. The algorithm X, that we will use for solving it, is detailed in the
following:

Algorithm 1: Algorithm X
input : A

output: Solutions to exact cover problem represented by A

1. If A is empty, the problem is solved; terminate successfully.
2. Otherwise, choose a column, c (deterministically, we can select it by the
lowest node count, for example).
3. Chose a row, r, such that A[r, c] = 1 (non-deterministically).
4. Include r in the partial solution.
5. For each j such that A[r, j] = 1,

6. delete column j from matrix A;
7. for each i such that A[i, j] = 1,

8. delete row i from matrix A.
9. Repeat this algorithm recursively on the reduced matrix A.

The non-deterministic choice of r means that the algorithm generates indepen-
dent subalgorithms. Each subalgorithm inherits the current matrix A, but reduces it
with respect to a different row r. If a column c is entirely zero, there are no subalgo-
rithms and the process terminates unsuccessfully. The subalgorithms form a search
tree in a natural way, with the original problem at the root and with level k con-
taining each subalgorithm that corresponds to k chosen rows. Any systematic rule
for choosing column c in this procedure will find all solutions, but some rules work
much better than others. Golomb and Baumert suggested choosing, at each stage of a
backtrack procedure, a subproblem that leads to the fewest branches, whenever this
can be done efficiently. In the case of an exact cover problem, this means that we want
to choose at each stage a column with fewest 1’s in the current matrix A. We will see
that dancing links allow us to do this quite nicely.

A way to implement algorithm X is to represent each 1 in the matrix A as a data
object x with five fields L[x], R[x], U [x], D[x], C[x]. Rows of the matrix are doubly
linked as circular lists via the L and R fields (“left” and “right”) and columns are
doubly linked as circular lists via the U andD fields (“up” and “down”). Each column
list also includes a special data object called its list header. The list headers are part
of a larger object called a column object. Each column object y contains the fields
L[y], R[y], U [y],D[y] and C[y] of a data object and two additional fields, S[y] (“size”)
and N [y] (“name”). The size is the number of 1’s in the column, and the name is a

2. some formulations for the csp problem 41

symbolic identifier for printing the answers. The C field of each object points to the
column object at the head of the relevant column. L and R fields of the list headers
link together all columns that still need to be covered. This circular list also includes
a special column object called the root, h, which serves as a master header for all the
active headers. Fields U [h], D[h], C[h], S[h] and N [h] aren’t used. To deepen this
with more detail, consider the following 0-1 matrix:

A =

0 0 1 0 1 1 0

1 0 0 1 0 0 1

0 1 1 0 0 1 0

1 0 0 1 0 0 0

0 1 0 0 0 0 1

0 0 0 1 1 0 1

It represents an exact cover problem with an exact cover formed by rows {1, 4, 5}.
This matrix would be represented by the objects shown in Figure 2.6, if we name
the columns A, B, C, D, E, F and G. The diagram wraps around toroidally at the top,
bottom, left, and right. The C links are not shown because they would mess up the
pic. Every C field points to the topmost element in its column.

Figure 2.6: Four-way-linked representation of the exact cover problem (borrowed
from [13])

The non-deterministic algorithm to find all exact covers can now be cast in the
following explicit, deterministic form as a recursive procedure search(k), which is

42 path planning with drones at csp plants

invoked initially with k = 0. But, before to see the pseudo-code of the procedure,
let’s define some concepts:

Operation of printing the current solution. We successively print the rows con-
tainingO0, O1, . . . , Ok−1, where the row containing data objectO is printed by
printing N [C[O]], N [C[R[O]]], N [C[R[R[O]]]], etc.
Operation of choose a column object c. We could simply set c← R[h] (leftmost
uncovered column). Or if we want to minimize the branching factor, we could
select the column with the smallest number of 1’s (we can obtain it by using S
fields and iterating j in R[h], R[R[H]],. . . , while j ̸= h).
Operation of covering column c. Removes c from the header list and removes
all rows in c own list from the other column lists they are in:
Algorithm 2: COV ER(c)

1. Set L[R[c]]← L[c] and R[L[c]]← R[c].
2. For each i← D[c], D[D[c]], . . . , while i ̸= c,

3. for each j ← R[i], R[R[i]], . . . , while j ̸= i,
4. set U [D[j]]← U [j] and D[U [j]]← D[j],
5. set S[C[j]]← S[C[j]]− 1.

Operation of uncovering column c. Notice that uncovering takes place in pre-
cisely the reverse order of covering operation, using the fact that re-adding an
element undoes deleting it from the list. We must be careful to unremove the
rows from bottom to top, because we removed them from top to bottom. Simi-
larly, it is important to uncover the columns of row r from right to left, because
we covered them from left to right.
Algorithm 3: UNCOV ER(c)

1. For each i← U [c], U [U [c]], . . . , while i ̸= c,
2. for each j ← L[i], L[L[i]], . . . , while j ̸= i,

3. set S[C[j]]← S[C[j]] + 1.
4. set U [D[j]]← j and D[U [j]]← j,

5. Set L[R[c]]← c and R[L[c]]← c.

We can note this operations as PRINT, CHOOSE, COVER and UNCOVER. Once
we have defined them, we can state the search(k) algorithm:

2. some formulations for the csp problem 43

Algorithm 4: search(k)

1. If R[h] = h, PRINT the current solution.
2. Otherwise, CHOOSE a column object c.
3. COVER column c.
4. For each r ← D[c], D[D[c]], . . . , while r ̸= c,

5. set Ok ← r;
6. for each j ← R[r], R[R[r]], . . . , while j ̸= r,

7. COVER column j;
8. search(k + 1);
9. for each j ← L[r], L[L[r]], . . . , while j ̸= r,

10. UNCOVER column j.
11. UNCOVER column c and return.

The reader may observe that this pseudo-code is pretty similar to Algorithm X’s
one, although it explore all the possible reductions of matrix respect to rows r in a
recursive andmore efficient way. To understand the printed solutions, we will explain
another possible representation for matrixA. Recall that we named its seven columns
A to G, so what if we just name rows by the sequence of letters associated with their
non-zero columns? If we do this we can get:

A =

0 0 1 0 1 1 0

1 0 0 1 0 0 1

0 1 1 0 0 1 0

1 0 0 1 0 0 0

0 1 0 0 0 0 1

0 0 0 1 1 0 1

⇐⇒

CEF

ADG

BCF

AD

BG

DEG

.

Consider, for example, what happens when search(0) is applied to the data of the
matrixAwhich we defined before, as it is represented by the four-way-linked objects
in Figure 2.6. Firstly, column A is covered by removing both of its rows from their
other columns, the structure now takes the form of Figure 2.7. Continuing search(0),
when r points to the A element of row (A,D,G), we also cover columns D and G. Figure
2.8 shows the status as we enter search(1), this data structure represents the reduced
matrix B C E F

0 1 1 1

1 1 0 1

 ⇐⇒
(
CEF

BCF

)
.

44 path planning with drones at csp plants

Figure 2.7: The links after column A in Figure 2.6 has been covered (borrowed from
[13])

Now search(1) will cover column B, and there will be no 1’s left in column E. So
search(2) will find nothing. Then search(1) will return, having found no solutions,
and the state of Figure 2.8 will be restored. The outer level routine, search(0), will
proceed to convert Figure 2.8 back to Figure 2.7, and it will advance r to the A element
of row (A,D). Now the reduced matrix would be:

B C E F G

0 1 1 1 0

1 1 0 1 0

1 0 0 0 1

 ⇐⇒

CEF

BCF

BG

 .

After some few steps more, the solution will be found. It will be printed as AD

BG

CEF

 .

The solution obtained matches with the subset of rows {1, 4, 5} that we gave before
explaining the search(k) procedure. The main problem we will face when using this
approach is that even being the DLX algorithm such an efficient one, our CSP graphs
have a lot of nodes and then the collection S is too large. To reduce at most the size of

2. some formulations for the csp problem 45

subcollectionS, wewill only consider some certain edges inG, thosewhich are drawn
in Figure 2.9. That is, the edges will be those between neighboring nodes, in the sense
of being placed immediately next to another node (vertical, horizontal or diagonally).
This doesn’t apply to depot node: It will have arcs leaving to and arriving from every
other node. Doing this we are relaxing the processing of the ECP approach. However,
since n ≈ 40 in the most faced batches pairs, we have find that usually the algorithm
can’t solve the ECP in a satisfactory amount of time, because there are many (> 1010)
different solution covers and it is computationally hard to sort them by its number of
tours or total inspection time. Even n ≈ 20 is a high size for solving a CSP instance
using ECP, but we should be able to, at least, develop a divide and conquer simple
algorithm to chop the faced batches pairs in computationally feasible instances for
ECPmethod. Then we canmerge the sub-solutions in order to approximate the global
one.

Figure 2.8: The links after columns D andG in Figure 2.7 have been covered (borrowed
from [13])

46 path planning with drones at csp plants

Figure 2.9: Neighboring nodes edges in graph when using the ECP approach (depot
node and associated edges are omitted for clarity)

3 Complexity andheuristics for the
CSP problem

In the previous chapters we have related the CSP problem with several classical
problems in the operational research field, many of them are related to situations that
the mankind faces every day. We find typical examples in companies as Amazon,
and also the post offices, delivery and logistic enterprises. Every day, they solve TSP
generalizations, schedule and assignment problems, bin-packing problems, etc. In this
chapter we present some heuristics based on approaches proposed for these classical
problems to give sub-optimal solutions for the CSP problem. Thementioned problems
have one thing in common, they are NP-complete, in a nutshell, they are very hard
to solve for instances with a relative small size. We will proof in this chapter that
the CSP problem 2 is also NP-Complete and we conjecture the same result for CSP
problem 1.

The classical problems that we have presented in this document are mainly the
following:

Capacitated Vehicle Route Problem (CVRP): a natural generalization of classical
Travelling Salesman Problem (TSP). It models the problem of find a set of tours
(the tours do not overlap except for the depot) that visits all the nodes in a given
weighted graph while keeping the total accumulated demand of each tour less
or equal than a given limitQ. This clearly remind us to the drone and its battery
duration: our drone also has to do many tours while keeping its battery state
under the limit. We add this problem here because it helped modelling CSP
problemwith concepts and ideas, although we have not implemented it to solve
CSP instances.
Multiple 0-1 Knapsack Problem (MKP): this generalizes one of the most known
problems in operation research, the 0-1 Knapsack Problem (KP). Basically, the

48 path planning with drones at csp plants

MKP consists in how to fill a certain number of bins, each of them with a given
capacity limit (which the sum of assigned items’ weights can not surpass), while
maximizing the associated profits between all the bins or total profit. We can
identify bins with tours and items with nodes to visit and adapt the philosophy
of MKP to the CSP problem.
Bin Packing Problem (BPP): this problem is twinned with KP and MKP because
in these problems we maximize the total profit, in the BPP we minimize the
number of used bins (which remains fixed in MKP). The problem is to find an
assignment of the items to bins such that we use the minimum needed number
of bins while ensuring that the total weight limit in each of them is not sur-
passed. As well as for the MKP, we can identify bins with tours and items with
nodes, while the weights are the battery consumption costs.
Exact Cover Problem (ECP): this is culturally associated to the resolution of
Sudokus, puzzles like pentominos, or the n-queens problem. Briefly, the problem
consists in select a subset of pieces that, in union, complete a given universe set
while non-overlapping between them. In this case, we can identify feasible
cycles to be performed by the drone along the nodes and try to complete the
inspection to all the nodes by selecting a subset from the feasible cycles set.

3.1 NP-completeness of CSP problem

Weprove that the decision problem associated to the CSP problem 2 is NP-complete.
We review here some concepts needed in the proof. A decision problem X is a (pos-
sible infinite) set of binary strings where an instance is a finite binary string s, of
length |s| and algorithm A solves X if A(s) = Y ES ⇐⇒ s ∈ X . We say that
algorithm A runs in polynomial time if for every instance s, it terminates in at most
p(s) steps, where p is some polynomial. [14] The class P consists of those (decision)
problems that are solvable in polynomial time. Specifically, they are the problems that
can be solved in time O(nk) for some constant k, where n is the size of the input to
the problem.

Another important concept is certification algorithm: it checks whether a pro-
posed solution is a YES instance. Algorithm C is an efficient certifier for X if C is a
polynomial time algorithm that takes two inputs (s, t) and there exists a polynomial
p() so that for every s, s ∈ X ⇐⇒ there exists a string t such that |t| ≤ p(|s|) and
C(s, t) = Y ES. For example, consider the problem if given integer s, is s compos-
ite? An efficient certifier for this problem is just the euclidean division algorithm: if

3. complexity and heuristics for the csp problem 49

s = 12, t = 4 we divide s by t and look at the remainder, if it is 0 then s is a YES
instance for this problem, else we have no conclusion.

The set NP is the set of all decision problems for which there exists an efficient
certifier. It is well known that P ⊆ NP , because if X ∈ P we can use any of the
possible polynomial time algorithms for solving instance s inX as a current certifier
for the algorithm. The reciprocal, NP ⊆ P , it has not been proved or refuted yet.
However, for practical purposes, great part of the community accepts the conjecture
of NP = P as false. In addition, it can be defined the set EXP, which is the set of all
decision problems solvable in exponential time on a deterministic Turing machine. It
can be proven thatNP ⊆ EXP : ifX ∈ NP there is a certifier C forX and then we
can use it on all possible solutions t (performing a brute force procedure), and return
YES if C(s, t) returns YES for any of these. A relation between sets P, NP and EXP
can be seen in Figure 3.1.

Figure 3.1: Diagram of the relation between sets P, NP, NP-complete and EXP

The notion of showing that one problem is no harder/easier than another is very
useful in NP-completeness theory. We take advantage of this idea in almost every
proof, as follows. Let us consider a decision problem A, which we would like to solve
in polynomial time. We call the input to a particular problem an instance of that
problem. For example, in BPP, an instance would be a particular tuple (N, k, (wj), c),
where N is the number of items, k is a particular integer, (wj) is the weights array
and c is the bins capacity. Now suppose that we already know how to solve a different
decision problem B in polynomial time. Finally, suppose that we have a procedure
that transforms any instance α of A into some instance β of B with the following
characteristics:

The transformation takes polynomial time.

50 path planning with drones at csp plants

The answers are the same. That is, the answer for α is “yes” if and only if the
answer for β is also “yes”.

We call such a procedure a polynomial-time reduction algorithm. It provides us a
way to solve problem A in polynomial time:

1. Given an instance α of problem A, use a polynomial-time reduction algorithm
to transform it to an instance β of problem B.

2. Run the polynomial-time decision algorithm for B on the instance β.
3. Use the answer for β as the answer for α.

There are two principal polynomial reductions:

Problem X polynomial reduces (Cook-Turing) to problem Y , X ≤P Y if ar-
bitrary instances of problem X can be solved using polynomial number of
standard computational steps plus polynomial number of calls to “oracle”1 that
solves problem Y .
Problem X polynomial transforms (Karp) to problem Y if given any input x
to X , we can construct an input y such that x is a YES instance of X if and
only if y is a YES instance of Y (we require |y| to be of size polynomial in |x|).
Polynomial transformation is polynomial reduction with just one call to oracle
for Y , exactly at the end of the algorithm for X .

The technique of reduction relies on having a problem already known to be NP-
complete, so we need a first NP-complete problem. The first natural problem which
was shown to be NP-complete was the boolean satisfiability problem or B-SAT, which
asks whether the variables of a given Boolean formula can be consistently replaced
by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.

A problem Y in NP (1) with the property that for every problemX in NP,X poly-
nomial transforms to Y (2) is said to be a NP-complete problem. If a problem Y satis-
fies (2) but not necessarily (1) is called NP-hard. These are the “hardest computational
problems” in NP. What the definition means is that if any NP-complete problem can
be solved in polynomial time, then every problem in NP has a polynomial-time solu-
tion, that is, P = NP. Despite years of study, though, no polynomial-time algorithm has
ever been discovered for any NP-complete problem, and they are called “intractable”

1Suppose that we have a hypothetical algorithm for solving problem Y in polynomial time

3. complexity and heuristics for the csp problem 51

(these are unlikely to be solvable given limited computing resources). Most natu-
ral problems in NP are either in P or NP-complete. Packing problems (Set-Packing,
Independent-Set), covering problems (Set-Cover, Vertex-Cover), sequencing problems
(Hamiltonian-Cycle, TSP), partitioning problems (3-Color, Clique), constraint satis-
faction problems (SAT, 3-SAT) and numerical problems (Subset-Sum, Partition, Knap-
sack) are six basic genres and paradigmatic examples of NP-complete problems. But,
we would like to prove that problems are NP-complete without directly reducing ev-
ery problem in NP to the given one. For this, we will use the next recipe to establish
NP-completeness of a given problem Y :

1. Show that Y ∈ NP . In general this step consists in to find an efficient certifier.
2. Select a known NP-complete problem X .
3. Describe an algorithm that computes a function f mapping every instance x of

X to an instance f(x) of Y .
4. Prove that the function f satisfies x inX if and only if f(x) in Y for all instance

x.
5. Prove that the algorithm computing f runs in polynomial time.

In this work, we have proven that the CSP problem 2 (that is, the CSP problem in
its tours minimization2 version) is a NP-complete problem. Before the theorem, we
have to reformulate the CSP problem 2 as a decision one:

CSP decision problem: let fix N ∈ Z≥1, k ∈ {1, . . . , N}. Consider a CSP in-
stance, i.e, a set of N inspection nodes, which form a weighted complete digraph
G = (V,E, (wij)) with associated energy consumption weights wij, i ̸= j ∈ V =

{0, 1, . . . , N} as edge costs, and a total weight limit W . Is there a covering set of
feasible tours for the given instance such that |S| ≤ k?

Theorem 3.1. CSP decision problem is NP-complete.

Proof. First of all, we will define an efficient certifier for CSP decision problem. Con-
sider an instance I = (N, k, (wij),W) and suppose we have a solution candidate S,
which is a set of cycles.

1. We check that |S| ≤ k, otherwise, S is not a solution for the decision problem.
2. Then we must check that every node different from the depot is allocated in

exactly one of the tours, and that the depot node appears in all tours exactly
2Recall we distinguish between minimize the total inspection time and minimize the number of

needed tours for inspection. They are two related problems, but not the same.

52 path planning with drones at csp plants

once. Otherwise, S is not a solution. This is clearly a simple task which can be
done in polynomial time.

3. In addition, we must compute the total weight in each s ∈ S and check that is
less or equal thanW . Otherwise, S is not a solution. This task is also performed
in polynomial time. We define

w(s) = w({0, j1, j2, . . . , jr}) = w0j1 + wj1j2 + · · ·+ wjr0

as the total energy weight of s ∈ S.

If S passes all the checkings, then the instance is a YES instance for CSP decision
problem. It is easy to see that the asymptotic running time of this certifier algo-
rithm is polynomial. Namely, CSP problem is a NP one. Let’s now see which of the
NP-complete problems is easier to polynomial transform to the CSP problem. The
classical NP-complete problem that we have chosen here is the Bin Packing decision
problem: deciding ifN items can fit into a specified number k of bins, given an array
wj of weights associated to each item j ∈ {1, . . . , N} and capacity value c for the
bins. We are following the steps of the recipe now:

1. We have already shown that CSP ∈ NP .
2. The NP-complete problem that we use in the proof will be BPP.
3. Now we are going to describe an algorithm to define the function f which

transforms an instance of BPP into an instance of CSPP. Consider x of BPP,
x = (N, k, (wj), c). Let f be the function which maps x → f(x), which is an
instance for CSP decision problem, then

f(x) = f(N, k, (w1, . . . , wN), c) =

N + 1, k,

0 w1 w2 · · · wN

w0 0 w2 · · · wN

w0 w1 0 · · · wN
...
w0 w1 w2 · · · 0

 , c+ w0

 ,

where w0 can be chosen as 1
N

N∑
j=1

wj , for example. Note that the matrix (wij)

is formed using w0 and the (wj) weights array. This matrix represents the arc
costs in a complete digraph G = (V,E,C) where V = {0, 1, . . . , N} is the
node set, E = {(i, j) : u ̸= v ∈ V } is the edge set, and C = {cij = wj : (i, j) ∈
E} is the edge costs set. The computation of the algorithm is almost direct,
and is clear that it runs in polynomial time (the most complicated operations

3. complexity and heuristics for the csp problem 53

are computing a mean and reordering (w0, w1, . . . , wN) in a specific way in a
(N + 1)× (N + 1) matrix). In Figure 3.2 it is shown how this function works.

Figure 3.2: Transforming an example of BPP instance into a CSP one by f

4. The fourth step is about prove that x is a YES instance for BPP if and only if
f(x) is a YES instance for CSPP.
Suppose, first, that x is a YES instance for BPP, so there exists a collection B of
bins bl = {i1, . . . , ir} such that |B| ≤ k and w(bl) := wi1 + · · · + wir ≤ c for
each bl ∈ B. Now consider f(x) = (N +1, k, (wij), c+w0). For each bl we can
construct Cl = {0, i1, . . . , ir}, which is a cycle in G that starts from zero node
and don’t repeat intermediate nodes (as all items in bl are different). It’s pretty
evident, by Figure 3.3 that w(Cl) = wi1 + · · ·+wir +w0 ≤ c+w0. Then, each
feasible bin produces a feasible cycle. Besides, there the same number of bins
that cycles, as we have defined a one-to-one correspondence here, |{Cl}| ≤ k.
So f(x) is a YES instance for CSPP.
On the other hand, suppose that f(x) = (N + 1, k, (wij), c + w0) is a YES
instance for CSPP. Then there exists a collection of cycles C such that |C| ≤ k

and for each Cl = {0, i1, . . . , ir} ∈ C , w(Cl) = wi1 + · · ·+wir +w0 ≤ c+w0.
Let’s define bl = {i1, . . . , ir}. Since w0 + w(bl) = w(Cl) ≤ c + w0, then
w(bl) ≤ c and then bl is a feasible bin. As before, we have the same number of
bins that cycles, hence |{bl}| ≤ k. Thus, x is a YES instance for BPP. Further
explanation can be found in Figure 3.3.

54 path planning with drones at csp plants

Figure 3.3: We have that x is a YES instance for BPP if and only if f(x) is a YES
instance for CSP. Where x is the example instance from Figure 3.2

5. We have noted yet that the algorithm which defines f runs in polynomial time.
This ends the proof.

In the next section we will explain how transform classical algorithms and proce-
dures for solving known NP problems to solve CSP instances.

3.2 Algorithms for solving CSP problem

In this section we will show the modifications we made to classical algorithms for
solving the CSP problems 1 and 2.

3.2.1 Adapting BPP heuristics

In the Bin Packing Problem section we described four heuristics that could be
adapted to the CSP problem 2. Although our problem is similar to BPP, there is a
main difference: CSP weights depend on previous visited node. This affects in two
ways: we have to record our last location and also we did not know at first how to
sort the items if we would want to apply the sorting versions of these heuristics. For
example, let us analyze the following adaptation of Best-Fit algorithm:

3. complexity and heuristics for the csp problem 55

1 def bestfitCSP(N,w,W):
2 items = list(range(1,N+1))
3 bins = [[]]*N
4 last_item = 0
5 res = 0# Initialize result (Count of bins)
6 # Create an array to store remaining space in bins
7 # there can be at most n bins
8 bin_rem = [W]*N
9 # Place items one by one
10 while items:
11 # Find the first bin that can accommodate weight[i]
12 j = 0
13 # Initialize minimum space left and index of best bin
14 mini = W + 1
15 bi = 0
16 item = items.pop (0)
17 for j in range(res):
18 last_item = bins[j][-1]
19 travel = w[last_item][item]+w[item][0]
20 c1 = bin_rem[j] >= travel
21 c2 = bin_rem[j] - travel < mini
22 if c1 and c2:
23 bi = j
24 mini = bin_rem[j] - travel
25 last_item_bi = last_item
26 # If no bin could accommodate weight[i], create a new bin
27 if (mini == W + 1):
28 bin_rem[res] -= w[0][item]
29 bins[res] = [0,item]
30 res += 1
31 last_item = item
32 else: # Assign the item to best bin
33 bin_rem[bi] -= w[last_item_bi][item]
34 bins[bi]. append(item)
35 solution = [b for b in bins if len(b) >0]
36 return solution ,res

We first initialize some lists for theN +1 items (inspection and depot nodes), the
N possible bins, and the remaining space or energy in each bin. We also initialize
the last item variable at 0 (we start from the depot node). Then we enter a loop until
items list is empty. At each iteration, we get the index of the next item to assign
from the remaining unassigned items. Once we have the next item, we search for
the bin with minimum space left and its index. Note that weights depend on last
item which is assigned to each bin. If the item can fit in any of the bins, then a new

56 path planning with drones at csp plants

one is filled. Otherwise, we assign it to the best bin, those with minimum space left.
Also we have added some variables to save and return the solution assignment of
items. The adaptations are pretty similar for all the mentioned heuristics and their
sorting versions, then we omit here the other codes. In the sorting versions, the main
difference is that we select the next item by a given ordering procedure. In this work,
we select the next item which returns the smaller weight, given the last added item
to each bin. We denote these versions by NFS, FFS, BFS and WFS.

3.2.2 Implementing GBPP with Gurobi

In this section we will analyze the implementation of the Generalized Bin Pack-
ing Problem formulation with Python and Gurobi. To accomplish this task, we have
defined a Python function, SolverBPP_MIP, which takes an input instance and returns
the exact solution for GBPP as a MIP problem.

1 def SolverBPP_MIP(instance):
2 #Getting instance relevant parameters
3 _,n,w,W,_,_ = instance
4 points = [i for i in range(1,n+1)] #points to inspect
5 nodes = [0]+ points #nodes set
6

7 # Creating Gurobi model
8 model = Model("Generalized_BPP")
9

10 # Defining variables
11 ind_y_vars = [i for i in nodes]
12 y = model.addVars(ind_y_vars ,vtype=GRB.BINARY ,name=’y’)
13 ind_a_vars = [(i,j) for i in nodes for j in nodes if i!=j]
14 a = model.addVars(ind_a_vars ,vtype=GRB.BINARY ,name=’a’)
15 ind_x_vars = [(j,k) for j in nodes for k in points]
16 x = model.addVars(ind_x_vars ,vtype=GRB.BINARY ,name=’x’)
17 ind_s_vars = [(i,j,k) for i in nodes for j in nodes for k in

points if j!=i]
18 s = model.addVars(ind_s_vars ,vtype=GRB.INTEGER ,lb=0,ub=2,name

=’sum’)
19 z = model.addVars(ind_a_vars ,vtype=GRB.INTEGER ,lb=1,ub=2,name

=’summax ’)
20 b = model.addVars(ind_s_vars ,vtype=GRB.BINARY ,name=’bmult ’)
21 ind_L_vars = [i for i in points]
22 L = model.addVars(ind_L_vars ,vtype=GRB.CONTINUOUS ,lb=0,ub=W,

name=’L’)
23

3. complexity and heuristics for the csp problem 57

24 # Setting objective function
25 model.setObjective(quicksum(y[i] for i in nodes),GRB.MINIMIZE

)
26

27 # Defining Constraints
28 model.addConstrs(quicksum(a[i,j]*w[i,j]*b[i,j,k] for i in

nodes for j in nodes if j!=i) <=W*y[k] for k in points)
29 model.addConstrs(b[i,j,k] == x[j,k]*x[i,k] for i in nodes for

j in nodes for k in points if j!=i)
30 model.addConstrs(quicksum(x[j,k] for k in points)==1 for j in

points)
31 model.addConstrs(quicksum(x[j,k] for j in nodes)== quicksum(a[

i,j]*b[i,j,k] for i in nodes for j in nodes if j!=i) for k in
points)

32 model.addConstrs(quicksum(a[i,j] for i in nodes if j!=i)==1
for j in points)

33 model.addConstrs(quicksum(a[i,j] for j in nodes if j!=i)==1
for i in points)

34 model.addConstrs (2*a[i,j]<=z[i,j] for i in nodes for j in
nodes if j!=i)

35 model.addConstr(quicksum(x[0,k] for k in points)== quicksum(y[
i] for i in points))

36 model.addConstr(quicksum(a[i,0] for i in points)== quicksum(y[
i] for i in points))

37 model.addConstr(quicksum(a[0,j] for j in points)== quicksum(y[
i] for i in points))

38 model.addConstrs(w[i,j]*a[i,j] <= L[j] for i in nodes for j
in points if j!=i)

39 model.addConstrs(L[i]+w[i,j]*a[i,j]-W*(1-a[i,j]) <= L[j] for
i in points for j in points if j!=i)

40 model.addConstrs(s[i,j,k] == x[i,k]+x[j,k] for i in nodes for
j in nodes for k in points if j!=i)

41 model.addConstrs(z[i,j] == max_(s[i,j,k] for k in points) for
i in nodes for j in nodes if j!=i)

42

43 # Optimization
44 model.params.outputflag = 0 #Silent mode: 0
45 model.optimize ()
46

47 # Extracting solution in a more fancy structure
48 b = model.ObjVal
49 x_sol = np.zeros ((n+1,n))
50 x_list = []
51 a_sol = np.zeros ((n+1,n+1))
52 a_list = []
53 for v in model.getVars ():

58 path planning with drones at csp plants

54 if v.varName [0] in [’s’,’L’,’y’,’b’]:
55 continue
56 if v.xn > 0.9:
57 row ,col = [int(i) for i in v.VarName [2: -1]. split(’,’)

]
58 if v.VarName [0] == ’x’:
59 x_sol[row ,col -1] = float(v.xn)
60 x_list.append ((row ,col ,float(v.xn)))
61 else:
62 a_sol[row ,col] = float(v.xn)
63 a_list.append ((row ,col))
64 a_list_copy = a_list.copy()
65 sequences = []
66 while a_list_copy:
67 seq = []
68 ai = a_list_copy.pop (0)
69 last = ai[1]
70 seq.append(ai)
71 while last != 0:
72 al = [aj for aj in a_list_copy if aj[0]== last]
73 if len(al) == 0:
74 print("FAILED")
75 break
76 ai = al[0]
77 last = ai[1]
78 seq.append(ai)
79 a_list_copy = [a for a in a_list_copy if a!=ai]
80 sequences.append(seq)
81 solution = []
82 for seq in sequences:
83 sol = [t[0] for t in seq]
84 solution.append(sol)
85

86 return solution

We first extract the weights wij , total weight limit W and the number of in-
spection nodes n. We use n to define points and nodes sets, which correspond to
V or K and V in GBPP formulation. Then we generate the Gurobi model and de-
fine the variables xjk, aij, yk, Lj and two auxiliar ones, sijk = xik + xjk ∈ {0, 1, 2}
and zij = maxk∈K xik + xjk ∈ {1, 2}, which we use to implement the constraints
2yij ≤ maxk∈K xik + xjk for i ̸= j = 0, . . . , n. We also define variables bijk which
will stand for products xikxjk. After that, we add the objective function and the con-
straints to our problem. The objective function minimizes the number of initialized
bins. The constraints are those described in Chapter 2, in the GBPP section. The

3. complexity and heuristics for the csp problem 59

only difference is the definition of auxiliary variables to compute the products and
the maximum sum of xjk pairs. Finally, we launch the optimization and then ex-
tract the solution in a more convenient format: we would like to return a covering
of feasible tours with minimum size. We express it as a list of tours, for example
solution = [[0, 1, 2, 3], [0, 4, 5, 6]] means that we cover the inspection with two tours
which are walked in that order.

As long as we have seen, Gurobi Optimizer can not solve GBPP instances for
N = 40, at least with an academic license. However, we managed to solve N = 20

instances, which is half a faced batches pair. Therefore, we can halve the pair and
solve each half as a CSP instance, joining the solutions as a global one.

3.2.3 Implementing GMKP with Gurobi

The implementation of the Generalized Multiple Knapsack Problem formulation
with Python and Gurobi is pretty similar to the given for GBPP. The main differences
with GBPP implementation are the following:

It solves CSP problem 1. That is, it maximizes total inspection profit. We define
the profit of inspections as negative inspection time costs so that maximizing
profits is minimizing time costs. Total profits closer to 0 mean that we spend
little total inspection time.

1 model.setObjective(quicksum(y[i,j]*p[i,j]*b[i,j,k] for i in
nodes for j in nodes for k in K if j!=i),GRB.MAXIMIZE)

GMKP takes the number of initialized binsm as a constant. For example:
1 model.addConstr(quicksum(x[0,k] for k in K)==m)

Since we do not know which m is the best for solving CSP problem 1, we
can find the minimum number of feasible tours that is needed for covering
the inspection, m∗, using GBPP. Then, we will have that GMKP is feasible for
m = m∗,m∗ + 1, . . . , n. Finally, we can perform a search of best the covering
in the multiple defined GMKP problems. We usually will find that is enough to
only solve instances form = m∗,m∗+1,m∗+2 in order to obtain satisfactory
solutions.

Since we cannot find solutions for GBPP with N = 40 in a satisfactory amount
of time, we are not able to solve GMKP for these large instances. However, we could

60 path planning with drones at csp plants

solve the problem for N = 20, which is half faced batches pair. In addition, we could
consider relaxations for the GMKP, as the neighboring nodes one, which states that
the only allowed edges are the associated with neighboring nodes and the associated
with the depot node. This relaxation allows us to solve instances untilN = 40 nodes.

3.2.4 Adapting ECP algorithms

In this section we will explain how we combine Johnson’s algorithm and Algo-
rithm X to solve the CSP problems (versions 1 and 2). The code is the following:

1 import numpy as np
2 from algorithm_x import AlgorithmX
3 import graph_utils as gu
4 from graph_utils import tic ,toc
5 def SolverECP(instance ,cycle_limit_length =13,
6 maxit = -1,timeLimit=-1, stop_when_imp =0,plot=True):
7 # Getting instance
8 G,N,w,W,p,pos2 = instance
9 print(’\n’+’-’*30+’ ECP SOLVER ’+’-’*30)
10

11 # Getting cycles. Applying Johnson ’s algorithm
12 limit = cycle_limit_length
13 C = list(gu.limit_simple_cycles(G,limit ,start =0))
14 Cw = [c for c in C if gu.GetCycleWeight(c,w)<=W]
15

16 # Solving ECP. Applying AlgorithmX with DLX implementation
17 C0 = [c[1:] for c in Cw]
18 C0.sort(key=lambda x:-len(x))
19 solver = AlgorithmX(N)
20 for i,c0 in enumerate(C0):
21 solver.appendRow(np.array(c0) -1, i+1)
22 solutions = solver.solve()
23

24 # Getting optimal covers
25 tStart = tic()
26 i0 = 0
27 C0_arr = np.array(C0,dtype=’object ’)
28 min_len_sols = []
29 min_len = N
30 max_profit_sols = []
31 max_profit = -1e10
32 n_covers = 0
33 tsol = gu.GetcurrentSolution(N, W, w)

3. complexity and heuristics for the csp problem 61

34 tsol_profit = gu.GetCoverProfit(tsol , p)
35 tStartGetSols = tic()
36 print("Starting getting covers process ... (feasible cycles:

{})"\
37 .format(len(Cw)))
38 for solution in solutions:
39 cover_rows = [s-1 for s in solution]
40 cover = C0_arr[cover_rows]
41 current_profit = gu.GetCoverProfit(cover ,p)
42 current_len = len(cover)
43 n_covers += 1
44 if current_len < min_len:
45 min_len = current_len
46 min_len_sols = [cover]
47 elif current_len == min_len:
48 min_len_sols.append(cover)
49 if current_profit > max_profit:
50 max_profit = current_profit
51 max_profit_sols = [cover]
52 elif current_profit == max_profit:
53 max_profit_sols.append(cover)
54 # Terminate because of max iteration exceeded
55 i0 += 1
56 if maxit > 0:
57 if i0 >= maxit:
58 print("\nMAXIT_Warning: there are more than {}

covers!"\
59 .format(maxit))
60 break
61 # Terminate because of time limit exceeded
62 if timeLimit >0:
63 if toc(tStartGetSols)>timeLimit:
64 print("\nTIMELIM_Warning: processing has exceeded

{}s of processing"\
65 .format(timeLimit))
66 break
67 # Terminate because of max iteration exceeded
68 if stop_when_imp > 0:
69 current_imp = (tsol_profit -current_profit)/

tsol_profit
70 if current_imp >= stop_when_imp:
71 print("\nReached an improvement of {:.2f}% over

current solution"\
72 .format(current_imp *100))
73 break
74 # Stats

62 path planning with drones at csp plants

75 if i0 %10000==0:
76 print("\rECP (current ,best) - iter: {}, profit: ({:.2

f} ,{:.2f}), len: ({} ,{})"\
77 .format(i0 ,current_profit ,max_profit ,

current_len ,min_len),end=’’)
78 # Optimizing criteria
79 ## Max profit criteria
80 F = max_profit_sols
81 nmax_len = len(F)
82 ## Min length criteria
83 F1 = min_len_sols
84 nmin_len = len(F1)
85 F1.sort(key = lambda x: gu.GetCoverProfit(x,p))
86 print("Ellapsed (global): {}, CycleLengthLimit: {},

FeasibleCycles: {}, Covers: {}".format(toc(tStart),limit ,len(
Cw),n_covers))

87

88 # Print sol
89 print("RESULTS SUMMARY (min length criteria , nsols: {}):".

format(nmin_len))
90 print("\tItems in each bin:")
91 for i,kn in enumerate(F1[-1]):
92 s = [0]+[s for s in F1[-1] if set(s)==set(kn)][0]
93 print("\tBin {}: {}\ tOrdering: {}".format(i+1 ,[0]+kn,s))
94 print()
95 print("RESULTS SUMMARY (max profit criteria , nsols: {}):".

format(nmax_len))
96 print("\tItems in each bin:")
97 for i,kn in enumerate(F[-1]):
98 s = [0]+[s for s in F[-1] if set(s)==set(kn)][0]
99 print("\tBin {}: {}\ tOrdering: {}".format(i+1 ,[0]+kn,s))
100 print()
101 print("current solution: Profit: {:.2f},\tN.bins: {}".format(

gu.GetCoverProfit(tsol ,p),len(tsol)))
102 print("{}: Profit: {:.2f},\ tImprovement: {:.2f}%,\tN.bins: {}

".format(
103 "ECP (min length criteria)",
104 gu.GetCoverProfit(F1[-1],p),
105 (gu.GetCoverProfit(tsol , p)-gu.GetCoverProfit(F1[-1],p))/

gu.GetCoverProfit(tsol , p)*100,
106 len(F1[0])))
107 print("{}: Profit: {:.2f},\ tImprovement: {:.2f}%,\tN.bins: {}

".format(
108 "ECP (max profit criteria)",
109 gu.GetCoverProfit(F[-1],p),

3. complexity and heuristics for the csp problem 63

110 (gu.GetCoverProfit(tsol , p)-gu.GetCoverProfit(F[-1],p))/
gu.GetCoverProfit(tsol , p)*100,

111 len(F[-1])))
112 print(’\n’+’-’*25+’ END OF SOLVER ’+’-’*25)
113

114 # Plot sol
115 if plot: gu.PlotSolution(F1[-1],pos2 ,sufix=’ ECP (min length)

N={}’.format(N))
116 if plot: gu.PlotSolution(F[-1],pos2 ,sufix=’ ECP (max profit)

N={}’.format(N))
117

118 return F[-1],F1[-1]

We first get the instance parameters and define a warning message. We will talk
about the warning later. The procedure consists in:

1. Firstly, we use Johnson’s algorithmwith limited cycles length to find all the ele-
mentary cycles of length≤ L, starting at the depot node, in the given instance.

2. Then, we keep only the feasible cycles. This define an input for Exact Cover
Problem.

3. We solve the Exact Cover Problem for X = {1, . . . , n} and S the obtained
feasible cycles starting at depot node.

4. Once we have collect all the possible exact covering sets, we start a search of
the optimal solutions for both CSP problem 1 and CSP problem 2. Solutions for
CSP problem 2 are sorted by total inspection cost in order to return that with
minimal needed time.

This last part can be very time expensive. To overcome this, we have added some
terminations parameter to stop the search before be completed. If we had to do this,
then a warning text would be displayed. In the algorithm, profits of coverings are
computed using function GetCoverProfit, which belongs to an auxiliary library.

We have mentioned that this procedure is not very efficient when we have to visit
many inspection nodes, i.e, N ≥ 10. For example, in a complete digraph with 11

nodes (10 inspection nodes plus the depot one) related to a realistic CSP instance, we
have that the subcollection of feasible elementary cycles, S, has a size greater than
6.6 · 106. For this reason, in ECP approach we only solve CSP instances with the
neighboring nodes relaxation: only edges associated with neighboring nodes (and all
possible edges (0, j), (j, 0) for j = 1, . . . , N) are considered. Doing this, a N = 10

realistic instance has |S| ≈ 1.6 ·104 feasible cycles which gives almost 3 ·105 possible

64 path planning with drones at csp plants

exact coverings. However, even this relaxation is not enough for a N = 20 instance.
Because of that we came up with the termination criteria. An alternative approach
could be divide a the CSP instance into overlapped smaller sub-instances and then
merge its solutions by a local search or another procedure in the overlapping zones.
Both procedures might not return the optimal solution but may return a satisfactory
one which improves the current solution adopted by the company.

4 Results

In this chapter we show the results obtained for some particular CSP instances.
We highlight that we want these instances to be as realistic as possible such that our
results can guide themaintainer companies to improve their drone inspections perfor-
mance. As we have commented in previous chapters, a CSP instance with N = 40 is
computationally infeasible by the exact procedures described in this document. Also,
a real CSP plant countswithmanymore than 40 nodes. However, we can follow differ-
ent relaxation procedures to obtain good enough solutions, in the sense of improving
the current company solution:

We can solve exact CSPP1 and CSPP2 instances with GBPP and GMKP, respec-
tively, for N ≤ 20. This is enough to ensure that the current solution can be
improved by other path planning strategies. An approach could be divide hor-
izontally (that is, using the mean x-coordinate as the limit between halves) a
pair of batches with N ≈ 40 nodes into instances of N ≤ 20 nodes. After
solving the two instances we would define the global solution as the union of
the solutions. For the depot node we consider two different locations (one in
each sub-solution) because it is possible to change its position while the drone
is working and the cost of this action is almost negligible.
As we will see, there are certain patterns that appear in exact solutions for
GMKP in the solved instances. These patterns make evident that solutions in-
clude mostly edges associated with neighboring nodes. This information may
guide us to develop newheuristics based on the shape of the CSP instance graph.
By the moment, we could state the following hypothesis: Solutions only com-
posed of edges associated with neighboring nodes might be good solutions.
The adapted BPP heuristics actually can solve big instances in few seconds, and
we have found that the improvement over current company solution is usually
very high (depending on the heuristic). When instances size grows sorting ver-
sions of heuristics still return good feasible solutions. The sorting function used

66 path planning with drones at csp plants

at each step to choose the next item performs an increasing sort of weights for
remaining items.
Recall that the target of this work is to improve path planning strategies cur-
rently used in drone inspections of entire CSP plants. Since we only can solve
the problem for few nodes (and CSP plants might have many of them), we must
divide our inspection task in small zones (solvable CSP instances). The global
proposed solution will be the union of the solutions in the different zones or
partitions of the plant. We can estimate the total inspection time of the full CSP
inspection multiplying the total time in a solvable instance by the size of the
plant partition. In this section we show the comparison using the actual CSP
plant from Figure 2.1. This is a small size CSP plant with 156 pairs of upstream
and downstream tubes, i.e, 156 inspection nodes.

Also, note that the CSP instances graphs present a lot of symmetry. This symmetry
makes us think that the improvement margin is small, comparing to graphs with a
different organization. Anyway, even if we only saved some minutes by instance, it
could lead to a significant improvement when considering all the instances by plant.
Suppose that we had a large CSP plant as the Noor Power Station at Morocco, which
is a 510 MW plant. The CSP plant has approximately 500 inspection nodes (pairs of
pipes to inspect). In that plant, saving minutes for 10 to 40 sized sub-instances may
give an overall saving of hours.

During this section we will use some particular CSP instances. They are instances
for N = 10, 20 and 40 inspection nodes. Their energy consumption weights and
inspection time costs are closer to those experienced during the last CSP inspections
performed by the company Virtualmechanics, based on conversations we had with
some of the workers ([16]). They told us that the drone usually performs 9 or 10
inspections before returning to base station, and we also agreed that most expensive
edges are those who force the drone to turn the most. In Figure A.4 (in the Appendix
A) we can observe this realistic weights for the N = 10 CSP instance. We only
have added edges associated with neighboring nodes and with the depot node for
better clarity. In all the instances we consider a West to East wind direction. Due to
this, horizontal and diagonal edges have wij ̸= wji while vertical ones have equal
weights in both directions (recall that wind component of standard regression model
for weights computation is v⃗xy · ω⃗xy). We observe a lot of symmetry in the edge
weights, in fact, because the distances between neighboring nodes are constant, each
node has the same weights for travelling to another neighboring node (different from
the depot). Wewill see more evidences about this symmetry in the solutions obtained.

4. results 67

In addition, battery total limitW is set as 0.75·274Wh, which is the maximum energy
of battery models of the drone used in inspections. The 0.75 coefficient is for security:
The drone must not run out of battery when it is flying over the critical zones of CSP
plants. The current company solution for the 10 nodes instance is shown in Figure
4.1, which gives a covering with two feasible tours. We plot the tours as paths in
figures to facilitate their comprehension and clarity. As we commented before, the
drone usually returns after 9 to 10 inspections. Figures 4.2 and 4.3 do the same for
the N = 20, 40 instances, which return a covering with 3 and 5 tours. In Figure A.5
we can see the profits pij for the neighboring edges and depot node of the 10 nodes
CSP instance. The total profits for the instancesN = 10, 20, 40 are 1920 s, 4004 s and
7978 s, respectively. During this section, our purpose will be to show results obtained
with proposed algorithms and compare them with these current company solutions.
We will see that, although we usually can not obtain exact solutions for big sized
instances, the improvement over current company solution is good enough from an
industrial point of view. The first part of the section is divided in sub-sections, each
one related to a certain approach.

Figure 4.1: Total profit of current company solution with N = 10: 1920 s = 32min

68 path planning with drones at csp plants

Figure 4.2: Total profit of current company solution with N = 20: 4004s s ≈ 67min

Figure 4.3: Total profit of current company solution with N = 40: 7978 s ≈ 132min

4.1 BPP heuristics results

The results of the BPP-based heuristics are shown in this sub-section. This is the
fastest approach for solving CSP instances due to its low computational cost. For
example, an instance with N = 40 can be resolved in 0.01 s with the heuristic BPP

4. results 69

solver that we developed, which applies the four heuristics presented in this work
and the sorting versions. However, we must keep in mind that this procedure solves
CSP problem 2, although it may return good feasible solutions for CSP problem 1. For
obtaining this results, we have implemented the adapted algorithms in Python and
also have included them into a more fancy style. A typical output for the N = 10

instance presented before is the following:

1 -------------- BPP (Heuristic) SOLVER -------------
2 Ellapsed (global): 0.0
3 Current solution: Profit: -2007.00 , N.bins: 2
4 NF: Profit: -2007.00, Improvement: -0.00%, N.bins: 2
5 NFS: Profit: -1565.00, Improvement: 22.02% , N.bins: 1
6 FF: Profit: -2007.00, Improvement: -0.00%, N.bins: 2
7 FFS: Profit: -1565.00, Improvement: 22.02% , N.bins: 1
8 BF: Profit: -2007.00, Improvement: -0.00%, N.bins: 2
9 BFS: Profit: -1565.00, Improvement: 22.02% , N.bins: 1
10 WF: Profit: -2007.00, Improvement: -0.00%, N.bins: 2
11 WFS: Profit: -1565.00, Improvement: 22.02% , N.bins: 1
12

13 ---------------- END OF SOLVER -----------------

The total elapsed time during the processing of the 4 heuristics in its two versions
(normal and sorting) is displayed in line 1. Line 2 shows the profit and number of
used bins (tours) for the current company solution. Next lines show the total profits
(negative total inspection times), the improvement over the current company solu-
tion and number of used bins obtained, by each heuristic: Next-Fit (sorting), First-
Fit (sorting), Best-Fit (sorting) and Worst-Fit (sorting). As we have highlighted, BPP
heuristics solve CSP problem 2, that is, the minimization total tours problem. For that,
we expected to rarely find good enough solutions for CSP problem 1 (minimizing to-
tal inspection time cost). However, as we can observe in the output for the N = 10

instance, we managed to improve the current solution in a 22.02% with the sorting
versions of these heuristics. This saves 442 seconds, which is more than 7 minutes!
CSP inspections are developed in all pipes of the plant (≈ 160−180 inspection nodes,
in small CSP plants). So, if we divided the CSP plant in groups of ten nodes and apply
the two strategies, we would obtain an overall improvement of approximately two
hours! In Figures 4.4 and 4.5 we represent the two solutions obtained by these ap-
proaches (the FFS, BFS and WFS heuristics return the same covering). Also, we have
surprisingly found that good enough solutions for the N = 40 instance are given by
these procedures. Figures 4.7 and 4.6 show the solutions obtained (in this case the
BFS, FFS and WFS also concur).

70 path planning with drones at csp plants

Figure 4.4: Total profit of NF, FF, BF and WF solutions with N = 10: 2007 s

Figure 4.5: Total profit of FFS, BFS and WFS solutions with N = 10: 1565 s

4. results 71

Figure 4.6: Total profit of FF and BF solutions with N = 40: 7944 s

Figure 4.7: Total profit of NFS, FFS, BFS and WFS solutions with N = 40: 6466 s

4.2 GBPP results

The Generalized Bin Packing Problem that we have developed in this document
aims to solve the CSP problem 2. As its purpose is not minimizing the total inspection
time, the obtained solutions include many edge crossings that likely delay the total
inspection time costs. In fact, we use this algorithm to feed the Generalized Multiple

72 path planning with drones at csp plants

Knapsack Problem, which needs to specify the number of used bins. If we combine
the two procedures, we can obtain very good solutions for CSPP1, even exact ones
for N ≤ 20 instances. However, when N is bigger, for example 30 or 40, the problem
becomes computationally infeasible, spending lot of time without finding solutions,
even if we apply relaxations like the neighboring nodes ones or if we configure the
Gurobi Optimizer to find at least approximate solutions. A typical output for aN = 10

instance is the following:
1 --------------- BPP (MIP) SOLVER ------------
2 Ellapsed (global): 2.6068475246429443
3 RESULTS SUMMARY (min length criteria , nsols: 2):
4 (Retrieving solution with maximum associated profit)
5 Items in each bin:
6 Bin 1: [0, 3, 5, 9, 10, 6, 1, 7, 4, 8, 2]
7

8 Current company solution: Profit: -2007.00, N.bins: 2
9 BPP -MIP: Profit: -1761.00 , Improvement: 12.26% , N.bins: 1
10

11 --------------- END OF SOLVER ---------------

Figure 4.8: Total profit of GBPP exact solution with N = 10: 1761 s

Line 2 shows elapsed time solving the CSP instance. The next lines summary the
results: the solver finds 2 solutions with minimum number of tours, and it selects
that with minimum inspection time cost (maximum profit). After that it comes the
solution and the summary of total profit, improvement over current company solution
and number of bins. We observe that this instance returns a solution worse than the

4. results 73

given ones by the previous heuristics. Figures 4.8 and 4.9 represent the exact solution
of GBPP for the N = 10 and N = 20 instances.

Figure 4.9: Total profit of GBPP exact solution. with N = 20: 3517 s

4.3 GMKP results

The GMKP problem is responsible for solving the CSP problem 1, that is, the total
inspection time minimization problem. In order to relax this formulation when the
size of the instance is big (N = 30 or N = 40), we can consider the hypothesis
on the neighboring nodes and reduce the number of variables and constraints. Until
N ≈ 20 we can obtain exact solutions by this procedure. Recall that this formulation
requires as input the number of used bins m. Our idea is to solve the CSP problem 2
by GBPP, obtaining the minimum number of feasible tours m∗ needed for cover the
graph and use it as input. Although technically (we saw an example) the best solution
in terms of CSP problem 1 can use more tours than best solution for CSP problem 2,
we have observed that this rarely occurs, probably due to the symmetry of the graphs.
A typical output of this procedure for the N = 10 CSP instance is shown below.

1 ------------------ MKP SOLVER -----------------------
2 Ellapsed (global): 0.1405172348022461
3 RESULTS SUMMARY (max profit criteria , nsols: 9):
4 Items in each bin:
5 Bin 1: [0, 8, 3, 7, 2, 6, 1, 10, 5, 9, 4]
6

74 path planning with drones at csp plants

7 Current company solution: Profit: -2007.00, N.bins: 2
8 GMKP: Profit: -1564.00, Improvement: 22.07% , N.bins: 1
9

10 ------------------- END OF SOLVER ------------------

Line 2 shows the elapsed time in the processing. The next lines show the results
summary: the solver has found 9 optimal solutions, then it is shown the selected
solution and the comparison between company solution profits and GMKP ones. The
improvement ascend to 22.07%, the inspection of ten nodes lasts 1564 seconds. Figures
4.10 and 4.11 represent the optimal solutions of CSP problem 1 for instances with
N = 10 and N = 20. We see that the solutions present a lot of symmetry and
that mainly use edges associated with neighboring nodes. We also observe that the
solutions avoid horizontal edges, which imply a longer turning phase than other ones,
and focuses in use vertical and diagonal arcs. These patterns show that maybe a
possible heuristic to develop could be one which smartly chooses between diagonal
and vertical edges composing a good covering of feasible tours. As we commented
before, the GBPP approach can not solve instances for N > 20 and therefore we do
not know exactly the value of m∗, in order to use it as input for GMKP. For large
instances we use the BPP heuristics, which usually give one or two more bins that
optimal solutions, at least for the used instances. That information gives an estimation
of a good m for feeding the GMKP, and we can also try use one or two less bins that
the returned by the heuristics to see if it is feasible. Another interesting point in the
GMKP is the neighboring relaxation: as commented above, if we only consider edges
associated with neighboring nodes, we can relax the formulation and solve instances
for N ≥ 30. We call this the relaxed GMKP. This relaxation can also apply for the
GBPP but we have found that it does not increase the solver performance very much.
The exact solution for the relaxed GMKP with N = 30 is shown in Figure 4.12. We
also have even found an exact solution for a N = 40 CSP instance using relaxed
GMKP displayed in Figure 4.13. The gap between the best lower bound found and
the objective value was of < 2% after 49 minutes of processing. After approximately
24 hours and 30 minutes, the gap was of 0.18%, with a best lower bound of 6448.5 s.
The processing stopped with an elapsed time of 25 hours and 46 minutes. So, the final
exact solution of 6460 s is the optimal for the relaxed GMKP in the N = 40 instance
and it would return a saving over the current company solution of 25 minutes and 20
seconds.

4. results 75

Figure 4.10: Total profit of GMKP exact solution with N = 10: 1564 s

Figure 4.11: Total profit of GMKP exact solution with N = 20: 3158 s

76 path planning with drones at csp plants

Figure 4.12: Total profit of relaxed GMKP exact solution with N = 30: 4837 s

Figure 4.13: Total profit of relaxed GMKP approximate solution with N = 40: 6460 s

4.4 ECP results

Among all the procedures described in this document, Exact Cover Problem one is
the most expensive from the computational point of view. We even can not compute
the exact solution for the N = 10 instance. However, we have managed to obtain
good enough solutions aggregating different relaxations:

4. results 77

Instead of considering the complete digraph, we only keep the edges associated
with neighboring edges and the ones who joint the depot node with the inspec-
tion nodes. This obviously leads to sub-optimal solutions but they are usually
good enough solutions.
We add some termination criteria to the algorithm, in the part that searches for
optimal solutions for CSP problems 1 and 2. These criteria are three: maximum
number of iterations of the search, time spent in the search and improvement
over the current company solution.

Combining the relaxation and the termination criteria we could obtain solutions
even for aN = 40 CSP instance. The output for theN = 10 instance is shown below:

1 ------------------- ECP SOLVER ---------------------
2 Starting getting covers process ...
3 ECP (current ,best) - iter:
4 290000 , profit: (-1942.00 , -1593.00), len: (4,1)
5 Ellapsed (global): 155.21034479141235 , CycleLengthLimit: 13,

FeasibleCycles: 15798, Covers: 299613
6 RESULTS SUMMARY (min length criteria , nsols: 1506):
7 Items in each bin:
8 Bin 1: [0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5] Ordering: [0, 6,

1, 7, 2, 8, 3, 9, 4, 10, 5]
9

10 RESULTS SUMMARY (max profit criteria , nsols: 2):
11 Items in each bin:
12 Bin 1: [0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5] Ordering: [0, 6,

1, 7, 2, 8, 3, 9, 4, 10, 5]
13

14 Current company solution: Profit: -2007.00, N.bins: 2
15 ECP (min length criteria): Profit: -1593.00, Improvement:

20.63% , N.bins: 1
16 ECP (max profit criteria): Profit: -1593.00, Improvement:

20.63% , N.bins: 1
17

18 ----------------- END OF SOLVER -----------------

First line shows a message that helps to know when the searching part of the al-
gorithm starts. After that we added a dynamic printing that shows the best solution
found and the current solution at the iteration (this message updates after some itera-
tions). The next lines show the counting of feasible cycles and covers found, and also
the selected cycle length limit. As we can see, the cycle limit length is loose enough
because there are no feasible cycles with that length. During the searching process

78 path planning with drones at csp plants

the algorithm tries to solve both CSP problems, because we could find a counterexam-
ple where the minimum number of tours doesn’t give the best total inspection time.
Therefore, the results summary is divided in two sections, one for each problem. We
usually find many coverings with minimal number of tours (1506 for the N = 10

instance). We note that the neighboring nodes relaxation makes the total profit to be
sub-optimal, as we know that GMKP exact total profit is lower. However, it is only
29 seconds slower. Figures 4.14, 4.15, 4.16 illustrate approximate solutions for the in-
stances with N = 10, 20, 40. In order to obtain the solutions for the two big sized
instances, we used a time limit of 1 and 2 hours, respectively, as termination criteria.
We also note that solutions abuse of diagonal and vertical edges and mainly avoid to
use horizontal ones. This makes sense because horizontal edges imply most expen-
sive turnings than vertical or diagonal ones. We highlight that we also can use the
ECP approximate solutions to obtain a good m for feeding the GMKP and obtain a
good solution.

Figure 4.14: Total profit of relaxed ECP exact solution with N = 10: 1593 s

4. results 79

Figure 4.15: Total profit of relaxed ECP solution with N = 20 after 1 h of time pro-
cessing: 3272 s

Figure 4.16: Total profit of relaxed ECP solution with N = 40 after 2 h of time pro-
cessing: 6863 s

4.5 Comparisons

After analyzing the behaviour of the different approaches one by one, in this sec-
tion we conclude with a direct comparison of them. We have been applying these

80 path planning with drones at csp plants

procedures to a certain configuration of weights and profits which stands for realistic
ones, for instances sizes of N = 10, 20, 30, 40. We can observe the patterns that the
solutions manifest and improve the current company solutions from the beginning
of the last section. The reader may probably think that solutions obtained are log-
ical with the values of the graphs in Figures A.4 and A.5: The weights and profits
present lot of symmetry. However, we study instances with graphs based on real-
istic CSP plants layouts, which present lot of symmetry too. Solutions are merely a
consequence of this fact. We now elaborate on the comparison between the obtained
solutions in instances with N = 20, 40. We focus in these medium and big sized
instances because N = 10 instance was used as an example of individual studies.

Procedure Nºbins Total inspection time (s) Improvement (%) CSP Problem
Current 3 4004 — 1, 2
NF (NFD) 3 (2) 4004 (3160) 0.0 (21.08) 2
FF (FFD) 3 (2) 4004 (3160) 0.0 (21.08) 2
BF (BFD) 3 (2) 4004 (3160) 0.0 (21.08) 2
WF (WFD) 3 (2) 4004 (3160) 0.0 (21.08) 2
GBPP 2 3517 12.16 2
GMKP 2 3158 21.13 1
ECP 2* 3272* 18.28* 1, 2

Table 4.1: Comparison between different approaches for solving CSP problems 1 and
2 in a N = 20 instance. *: approximate solution for neighboring relaxation after 1
hour of searching process

The case N = 20 is displayed in Table 4.1. The columns of the comparison ta-
bles stand for: the used procedure, the number of used bins of the solution returned,
the total inspection time costs, the improvement over current solution and the CSP
problem which applies (although we could use feasible solutions in both, CSPP1 and
CSPP2). For example, NF, FF, BF andWF approaches do not improve the current com-
pany solution. This is usually the behaviour of these procedures, that are very simple
ones. However, their sorting versions obtain an improvement very high (21.08%), even
better than obtained by ECP algorithm (18.28%). The four heuristic solutions are sur-
passed only by GMKP solution (21.13%). The GMKP solution, as an exact one, is the
optimal for the CSP instance withN = 20 and the given configuration of weights and
profits. GBPP is used to ensure that minimal number of tours is 2 (although is pretty
obvious than graph can not be covered with one tour and heuristics approach has
returned 2 as solution) and feed the GMKP exact solver. It is important to remark that
bigger instances can have worse solutions than partitioning it into two sub-instances

4. results 81

and the sum its profits: for example, N = 10 instance has as optimal value 1564 but
N = 20 has 3158 > 2 · 1564. These is due to the position of the base station, which
affects to edges joining the depot node with the others. However, this times are es-
timations and probably it is better to limit the moves of the base station. Solutions
returned by GMKP and sorting BPP heuristics are very close, their objective values
differ in 2 seconds. On the other hand, the elapsed processing times for the proce-
dures are≈ 35.23 s in the GMKP and< 0.01 s in the heuristic solver, which is a large
difference. The GBPP solver elapses 219.54 seconds to solve a N = 20 instance. The
ECP solution is obtained after waiting one hour using the termination criteria.

Procedure Nºbins Total inspection time (s) Improvement (%) CSP Problem
Current 5 7978 — 1, 2
NF (NFD) 5 (4) 7978 (6466) 0.0 (18.95) 2
FF (FFD) 5 (4) 7944 (6466) 0.43 (18.95) 2
BF (BFD) 5 (4) 7944 (6466) 0.43 (18.95) 2
WF (WFD) 5 (4) 7978 (6466) 0.0 (18.95) 2
GBPP —* —* —* 2
GMKP 4 6460*** 19.03*** 1
ECP 4** 6863** 13.98** 1, 2

Table 4.2: Comparison between different approaches for solving CSP problems 1 and 2
in aN = 40 instance. *: we can not solve GBPP forN = 40. **: approximate solution
for neighboring relaxation after 2 hour of searching process. ***: exact solution for
the relaxed GMKP

Another comparison for a big size instance with 40 inspection nodes is presented
in Table 4.2. This instance stands for two faced batches in a CSP plant, like in Figure
1.6. This is the more realistic instance solved by the procedures developed in this
work. We ignore the optimal solution as we only managed to solve it by approximate
and relaxed procedures, specifically, with neighboring relaxation and, in the case of
ECP, with a termination criteria. The instance was not solvable by GBPP, at least
in a satisfactory amount of time, so its solution is not displayed. As in the previous
comparison, NF, FF, BF and WF solutions do not improve (or improve a little), the
current solution. On the other hand, the sorting versions of heuristics perform very
well (18.95%), obtaining improvements better than ECP (13.98%) and close to the one
returned by GMKP (19.03%), which is the best solution of comparison. As we use
a sorting function inside the algorithm for selecting the next item with the smallest
weight, we indirectly restrict the procedure to neighboring nodes (although it is not
impossible to choose another one). This explains why sorting BPP heuristics and

82 path planning with drones at csp plants

GMKP solutions are pretty similar, although they differ a lot in the processing time:
GMKP spent more than one day to finding the solution while heuristics solver spends
less than one second. Using the GMKP solution we can save 25 minutes every two
batches pair. In small CSP plants with 8 batches, it leads to an overall saving of 1 hour
and 40 minutes. In big sized CSP plants, as Noor, we can save until 5 hours and 15
minutes from the total inspection current company solution, which would spend 27
hours and 42minutes. This could be the difference between spending 3 or 4 days in the
CSP inspection. That is, this information may have positive economical implications.

5 Conclusions

In this work, a collaborating research between university and industry, we have
studied a realistic problem which affects to maintainer companies in the performance
of drone inspections at CSP plants. CSP plants are essential for renewable energy and
therefore, for the present and future of humanity. One main problem that arises in
CSP plants is that collector tubes elements, which are very important components,
present heat leakage like we would like to localize. As CSP plants are big extensions
and also the points of interest are difficult to reach by humans, a drone inspection
is suitable for the task of inspecting such points. Drone inspections are often used
in critical environments like these in order to develop some maintenance tasks that
are slow to perform by humans or by other procedures. The task developed by the
drone consists in overfly the tubes of the plant while taking thermal pics. Currently,
a collaborating company is performing the inspections with a path planning strategy
based on intuition more than mathematical approaches, as they are more focused in
the important data post-processing than in the optimization problem for collecting
them. However, an improvement of the total time spent in inspections would clearly
increase the economical profits of their work. Therefore, they raised the CSP problem.
Our main purpose have been to study the problem of finding the best path planning
strategy for performing this kind of drone inspections in CSP plants. Specifically, our
aim is solving CSP problems 1 and 2, described in Chapter 1.

The tubes are grouped in couples thatmust be visited one after another. Because of
this fact, we abstract the tubes couples to one interest point, and model the CSP plant
layout as many of such points. In addition, CSP plants can be divided in zones called
batches, which contain many points to inspect. A small sized CSP plant counts with
160 to 180 inspection nodes (8 batches). In larger CSP plants, this quantity ascends
to ≈ 500 inspection points (12 to 14 batches). This situation could lead to very large
instances to solve and we focus to smaller instances, for example two batches, and
solve them. This also makes sense because the drone can not fly very far away from

84 path planning with drones at csp plants

the pilot in critical environments.

We considered two problems related with the inspections of CSP plants, namely
the CSP problem 1 and the CSP problem 2. The former asks for a minimization in
the inspection total time while the latter proposes minimizing the number of tours.
We have developed a series of procedures, which are based in classical optimization
problems, we have adapted and implemented them in Python programming in order
to solve CSP instances, and compared the results obtained with the current solution
adopted by the company Virtualmech. The CSP instances where we evaluated the
procedures were configured to be as realistic as possible in such a way the solutions
obtained will be suitable estimations for real scenarios. The results show improve-
ments over the current solution of almost 20% for instances with 40 inspection points.
This supports the use of mathematics instead of only good intuition.

In addition, during the work we also have proven that the CSP problem 2 is NP-
complete. We think that the CSP problem 1 could also be proven to be NP-complete,
if we use the MKP in the reduction.

Finally, although we have made some advances in the study of path planning with
drones at CSP plants, there are still some loose ends, which could give ideas for future
research in this area:

It is necessary to model the real energy consumption weights of the currently
used drone. The company uses a DJI Matrice 300RTK1 drone model. We have
tried several times to extract the kinematics information from log files gener-
ated during the inspections but we have not succeed. It would be very useful
for the continuity of the work to manage extract this information and then use
it to compute the beta coefficients of the standard regression model explained
in the Chapter 2.
The formulations developed to solve the CSP problems 1 and 2, by exact pro-
cedures, GMKP and GBPP, respectively, are very complex formulations that
use many variables and constraints. This makes difficult to solve big sized in-
stances exactly. Developing new smaller formulations may be helpful to reduce
the computational cost seems possible.
Another research line could be to improve our control over Gurobi Optimizer. It
includes several features and functionalities. Awell-chosen configuration could
increase the performance of the exact procedures and reduce the computational
cost.

1https://www.dji.com/es/matrice-300/specs

5. conclusions 85

We can also experimented with the neighboring relaxations. For example, we
have restricted the edges of the graph to be neighbors no further than 1 in
the x coordinates, but we could increase that threshold and compare both the
improvement and the elapsed processing time with the original neighboring
relaxation.
We observed that the obtained showed some particular patterns. These patterns
could be divided into: using a zigzag strategy and using a diagonal strategy.
That is, we start from a point and move only using vertical or diagonal edges
associated with neighboring nodes. We could use this information as an idea
for developing a smart heuristic algorithm which sequentially decides between
using some types of edges to cover the graph of the CSP instance.
Finally, in real situations, the edge weights are changing during a working day,
for example, with wind changes. Therefore, there is a clear need in the inspec-
tion of CSP plants for online route planning algorithms that use incomplete
information that is acquired in a dynamic manner.

A Kinematics for energy consump-
tion weights and time costs

In this appendix, the aim is to compute realistic values for energy consumption
weights wij . We use basic classical kinematics equations to model the kinematics
state, s of a drone travelling during the CSP inspection. The given inputs are:

vmax
xy m/s, the maximum horizontal speed (in module) reached by the drone.
vmax
z m/s, maximum speed module while ascending.
v−max
z m/s, maximum speed module while descending.
aaxy,h m/s2, horizontal acceleration module of the drone when it’s moving hor-
izontally, during the acceleration part.
abxy,h m/s2, horizontal acceleration module of the drone when it’s moving hor-
izontally, during the braking part.
az,h m/s2, vertical acceleration component of the drone when it’s moving hor-
izontally. It remains constant in the three parts, keeping the drone at the same
z coordinate.
aaz,t m/s2, vertical acceleration component of the drone when it’s taking off,
during acceleration part.
abz,t m/s2, vertical acceleration component of the drone when it’s taking off,
during braking part.
aaz,l m/s2, vertical acceleration component of the drone when it’s landing, dur-
ing acceleration part.
abz,l m/s2, vertical acceleration component of the drone when it’s landing, dur-
ing braking part.
d(i, j)m, distance between node i and node j.
vmaxr
xy m/s, maximum speed module when returning to base.
amaxr
xy m/s2, maximum acceleration module when returning to base.

88 path planning with drones at csp plants

ztarget m, constant vertical distance between the take-off zone and the inspec-
tion points.
g = [0, 0,−9.80665]m/s2, gravity acceleration vector.
ωmax rad/s, angular velocity during turnings. It remains constant.
m kg, constant payload. This value is senseless for us because we don’t have a
load.
ωxy m/s, horizontal proyection of wind speed.

A.1 Takeoffs

Takeoff kinematics can be modelled using equations for uniform and accelerated
rectilinear motion. Suppose the drone is on the ground and we want to elevate
it ztarget meters. It firstly starts the vertical motion by accelerating at aaz,t, until it
reaches vmax

z and begins to move uniformly. At the end it brakes at abz,t and arrives
at ztarget with vz = 0. In Figure A.1 we can observe the behaviour of z components
for acceleration, speed and position vectors of a drone during a takeoff with inputs:
ztarget = 20m, aaz,t = 10m/s2, abz,t = −10m/s2, vmax

z = 4.5m/s.

Figure A.1: Drone kinematics during a takeoff. The magnitudes that don’t appear are
supposed to remain constant.

a. kinematics for energy consumption weights and time costs 89

A.2 Landings

Suppose the drone is on the air and we want it to land from zstart meters. It firstly
starts the motion by descending at aaz,l, until it reaches v−max

z and begins to move
uniformly. At the end it brakes at abz,l and arrives to ground with vz = 0. In Figure A.2
we can observe the behaviour of z components for acceleration, speed and position
vectors of a drone during a landing with inputs: ztarget = 20m, aaz,l = 8m/s2, abz,l =

−8m/s2, vmin
z = 3.5m/s.

Figure A.2: Drone kinematics during a landing. The magnitudes that don’t appear are
supposed to remain constant.

A.3 Horizontal displacements

Suppose the drone is on the air and we want it to travel in straight line between
two inspection nodes, i and j, or more generally, between two locations with co-
ordinates [x0, y0, z0] and [x1, y1, z1]. At first the drone is hovering at (x, y, z) =

(x0, y0, z0). We suppose it is already heading its target. Then it accelerates at aaxy,h
until reach vmax

xy and performs a uniform motion. Before it arrives at (x, y, z) =

(x1, y1, z1) it performs the braking part and decelerates at abxy,h. At target, vxy = 0.
During this displacement, the z components of acceleration, speed and coordinate
remain constant. In Figure A.3 we can observe the behaviour of x components for
acceleration, speed and position vectors of a drone during a horizontal displacement

90 path planning with drones at csp plants

between locations (0, 0, 20)m and (10, 10, 20)mwith inputs: vmax
xy = 4m/s, amax

xy =

10m/s2.

Figure A.3: Drone kinematics for x components during a horizontal displacement.
The kinematics for y components is pretty similar and the z components don’t vary.

A.4 Turnings

Turnings are modelled as simple uniform rotation at a given constant angular
velocity ωmax. We suppose that the drone always turns at the same velocity, it doesn’t
perform neither acceleration nor braking part. We also consider that it always choose
the orientation of turning with the smallest arc length, respect to the initial and target
angles. The angles are defined by convention or using the director vector associated
with the displacement from i to j. For example, we suppose that the drone starts at
base station with an initial angle of π/2 rad respect the OX axis. The kinematics of
this part is computed using simple equations: we know the initial and target angle
and the angular velocity, so we know how much time the process lasts.

A.5 Weights and costs computation

The process is then simple, knowing the kinematics we know how much the ac-
tion last and which are the components for accelerations and velocities. Then we can

a. kinematics for energy consumption weights and time costs 91

use the firsts to compute inspection time costs: tij is the last value of the time array
associated with kinematics of going from i to j. On the other hand, the accelera-
tion and velocities components are used in the standard regression model showed at
Chapter 2 to obtain thewij values, i.e, the energy consumption weights of going from
i to j. Finally, in order to evaluate the standard regression model, we need some beta
coefficients values for that. In [4] and [10] the authors present 3 vectors standing for
beta coefficients obtained from 3 different drone models. In this work we have been
working with these values, specifically with 3DR-Solo ones, in order to evaluate the
model and obtain realistic weights. This model was chosen because weights behave
qualitatively pretty similar to the energy consumption behaviour of the drone used
at real CSP inspections by the company.

Figure A.4: Realistic energy consumption weights computed for an inspection graph
with 10 nodes. Wind horizontal vector: ω⃗xy = (1, 0). Beta coefficients model: 3DR-
Solo

92 path planning with drones at csp plants

Figure A.5: Realistic inspection time costs computed for an inspection graph with 10
nodes

Bibliography

[1] H.L. Zhang, J. Baeyens, J. Degrève, G. Cacères. (2013). Concentrated solar
power plants: Review and design methodology. Renewable and Sustainable
Energy Reviews, 22, 2013, Pages 466-481

[2] C. E. Miller, A. W. Tucker, and R. A. Zemlin. 1960. Integer Programming For-
mulation of Traveling Salesman Problems. J. ACM 7, 4 (Oct. 1960), 326–329.
DOI:https://doi.org/10.1145/321043.321046

[3] Borcinova, Zuzana. (2017). Two models of the capacitated vehicle
routing problem. Croatian Operational Research Review. 8. 463-469.
10.17535/crorr.2017.0029.

[4] Tseng, C. M., Chau, C. K., Elbassioni, K. M., & Khonji, M. (2017). Flight
tour planning with recharging optimization for battery-operated autonomous
drones. CoRR, abs/1703.10049.

[5] Campbell, J. F., Corberán, Á., Plana, I., & Sanchis, J. M. (2018). Drone arc rout-
ing problems. Networks, 72(4), 543-559.

[6] Mesas-Carrascosa, F. J., Verdú Santano, D., Pérez Porras, F., Meroño-Larriva,
J. E., & García-Ferrer, A. (2017). The development of an open hardware and
software system onboard unmanned aerial vehicles to monitor concentrated
solar power plants. Sensors, 17(6), 1329.

[7] Jose, K., & Pratihar, D. K. (2016). Task allocation and collision-free path plan-
ning of centralized multi-robots system for industrial plant inspection using
heuristic methods. Robotics and Autonomous Systems, 80, 34-42.

[8] Amarat, S. B., & Zong, P. (2019). 3D path planning, routing algorithms and
routing protocols for unmanned air vehicles: a review. Aircraft Engineering
and Aerospace Technology.

94 path planning with drones at csp plants

[9] Modares, J., Ghanei, F., Mastronarde, N., & Dantu, K. (2017). Ub-anc planner:
Energy efficient coverage path planning with multiple drones. In 2017 IEEE
international conference on robotics and automation (ICRA) (pp. 6182-6189).
IEEE.

[10] Tseng, C. M., Chau, C. K., Elbassioni, K., & Khonji, M. (2017). Autonomous
recharging and flight mission planning for battery-operated autonomous
drones. arXiv preprint arXiv:1703.10049.

[11] Martello, Silvano and Toth, Paolo. (1990) Knapsack problems: algorithms and
computer implementations. New York, NY, USA: John Wiley & Sons, Inc.

[12] Johnson, D. B. (1975). Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, 4(1), 77-84.

[13] KNUTH, D. E. (2000). Dancing links. Millennial Perspectives in Computer Sci-
ence. Houndmills., 187.

[14] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction
to Algorithms Second edition Cambridge.

[15] Dheeraj Gupta, (28 Jul, 2021). GeeksforGeeks. Bin Packing Problem
(Minimize number of used Bins). Recovered on 20th August 2021 from
https://www.geeksforgeeks.org/bin-packing-problem-minimize-number-of-
used-bins/.

[16] Morales, J., Valverde, J.S., Virtualmechanics, S.L (2021). Drone inspection at
CSP plants interviews [Personal interviews].

https://www.geeksforgeeks.org/bin-packing-problem-minimize-number-of-used-bins/
https://www.geeksforgeeks.org/bin-packing-problem-minimize-number-of-used-bins/

	Introducing the problem. State of the art
	The drone CSP inspection problem
	Related classical problems

	Some formulations for the CSP problem
	Modelling the energy consumption
	Multiple Knapsack Problem approach
	Generalized MKP
	Solver for GMKP

	Bin Packing Problem approach
	Some algorithms for BPP

	Exact Cover Problem approach
	The Johnson's algorithm
	The Knuth's Algorithm X

	Complexity and heuristics for the CSP problem
	NP-completeness of CSP problem
	Algorithms for solving CSP problem
	Adapting BPP heuristics
	Implementing GBPP with Gurobi
	Implementing GMKP with Gurobi
	Adapting ECP algorithms

	Results
	BPP heuristics results
	GBPP results
	GMKP results
	ECP results
	Comparisons

	Conclusions
	Kinematics for energy consumption weights and time costs
	Takeoffs
	Landings
	Horizontal displacements
	Turnings
	Weights and costs computation

