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A B S T R A C T

Toppling of individual rock blocks resting on an inclined surface has often been observed in nature. This 
instability mechanism has typically been analysed for simple block geometries, considering the contact between 
the block and the base where it lies is a planar surface. In this study, the authors analyse the case where this 
contact is a regularly rough surface. To do that, the authors resort to analytical limit equilibrium formulations, 
laboratory physical models and discrete element methods. All these approaches show a consistent trend of 
behaviour, where roughness does affect the toppling response. Regularly rough surfaces are studied in detail and 
a general analytical formulation able to show the potential influence of roughness on the block toppling response 
is derived. Additionally, some considerations are provided regarding the combined effects of rough bases and 
rounded corners on toppling stability. The authors show how under particular circumstances, roughness can 
control the potential failure mechanism of a block to produce toppling instead of sliding, and they eventually 
discuss the impact of rough bases on the toppling response of natural rock blocks.   

1. Introduction

A key issue for rock slope stability analysis is the identification of the
potential failure mechanism of individual elements. Once it is identified, 
the stability of the slope can be analysed based on the rigorous estimate 
of the geometry of the potential failure and the geomechanical param
eters of the discontinuities and materials at stake (Hoek and Bray, 1974; 
Stead and Wolters, 2015). 

Traditional rock slope stability approaches typically contemplate 
planar, wedge, circular, and toppling failure as potential instability 
mechanisms. Whereas planar or wedge failure involve a small number of 
discontinuities, toppling phenomena involve many more. This renders 
the analysis more complex and less reliable. Moreover, toppling failure 
can generate different types of mechanisms involving one or various 
blocks (Wyllie and Mah, 2004). 

Additionally, the potentially rotating blocks can be fully detached 
from the rock mass due to pre-existing discontinuities or only partially 
detached, in which case the mechanism will involve flexural toppling 
(Aydan and Kawamoto, 1992; Adhikary et al., 1996; Adhikary and 

Dyskin, 2007), which needs to overcome tensile strength of part of a 
block. Analysis of single-block toppling cases were considered by early 
researchers (Ashby, 1971; Hoek and Bray, 1974; Sagaseta, 1986) 
assuming regular slab-like shaped and sharp-cornered blocks resting on 
planar tilted surfaces. These simple analyses were later on incorporated 
into more complex, multiple-element toppling models (Goodman and 
Bray, 1976). The last author of this paper has recently extended these 
studies to the case of more irregular blocks (Alejano, 2021). 

Some authors (Martin, 1990; Sjöberg, 1999) have suggested that 
failures associated with large-scale or deep-seated toppling are among 
the most common and relevant failure mechanisms in large rock open pit 
slopes. Nevertheless, these complex phenomena seem to be still not well 
understood (Muralha, 2002; Brideau and Stead, 2010). These toppling- 
related mechanisms are rather common according to the authors' 
experience and literature surveys (Alejano et al., 2010; Böhme et al., 
2013; Gu and Huang, 2016; Amini et al., 2017; Amini and Ardestani, 
2019; Alejano et al., 2019; Pérez-Rey et al., 2019) and still poorly 
known. 

Therefore, this study focuses on analysing the stability of a single 
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block resting on a regularly rough surface which may have a relevant 
impact on single-block toppling failure, affecting also the stability of 
more complex toppling related instabilities. 

Block stability against toppling can be analysed based on analytical 
techniques (Ashby, 1971; Goodman and Bray, 1976), numerical 
methods (Ishida, 1990; Barla et al., 1995; Lanaro et al., 1997) and 
physical models (Pérez-Rey et al., 2021). A combination of these ap
proaches is recommended with the aim of better understanding the 
mechanisms at stake and the relevance of the different parameters to 
stability. In this study, these techniques will be briefly recalled and 
resorted to. 

2. Previous studies 

2.1. Failure mechanisms involving toppling 

Toppling involves the rotation of rock columns or blocks about a 
fixed axis. This mechanism may include one single block or various 
blocks (Fig. 1). Additionally, two different mechanical toppling mech
anisms may take place. If the block or blocks prone to topple are already 
detached from the rock mass, the mechanism will be standard toppling. 
If not, we will refer to flexural toppling. Figs. 1a, c and d illustrate 
standard toppling scenarios, where blocks are fully detached from the 
rest of the rock mass. Figs. 1b, e and f show cases where blocks are not 
fully detached from the rock mass, so failure will involve flexural 
toppling. 

The simplest toppling mechanisms involve a single block. The sta
bility analysis of such cases is relatively simple (Ashby, 1971; Hoek and 
Bray, 1974; Sagaseta, 1986). Fig. 1a to c illustrates these mechanisms. If 
the block is not detached, a flexural toppling mechanism is prone to 
occur, so computations need to consider the role of rock tensile strength. 

However, the most common toppling failures found in nature involve 
several blocks. According to Goodman and Bray (1976), block toppling, 
flexural toppling, and block flexural toppling are the most frequent 
toppling failures of this kind involving some or many blocks. Wyllie and 
Mah (2004) described these mechanisms, illustrated in Fig. 1d to f, in 
more detail. 

Goodman and Bray (1976) and Wyllie and Mah (2004) among others 
have suggested the possible occurrence of a number of secondary 
toppling mechanisms. This refers to other mechanisms where toppling, 
as a behaviour mode, is excited by any other independent phenomenon 
where toppling would be otherwise unlikely to occur. A typical example 

would be a mechanism initiated by undercutting of the toe of the slope, 
which induces toppling in the crest of the slope. Also, complex failure 
mechanisms involving partial toppling combined with other sliding 
mechanisms have been described and analysed in the literature (Stead 
et al., 2006; Alejano et al., 2010, 2019; Gu and Huang, 2016; Amini 
et al., 2017). Secondary toppling and toppling combined with other 
mechanisms fall out of the scope of this study. 

The stability analysis against toppling was traditionally addressed 
based on analytical limit equilibrium methods (LEM) resorting to 
moment equilibrium equations. In early studies on toppling, simple 
physical models were also performed to check analytical approaches 
(Ashby, 1971), later extended to a wider number of situations and blocks 
of more complex geometry (Zhang et al., 2007; Alejano et al., 2015, 
2018a; Pérez-Rey et al., 2019, 2021). Moreover, from the early de
velopments of numerical modelling, discrete element approaches have 
been applied to analyse toppling phenomena (St John, 1972; Adhikary 
and Dyskin, 2007; Zheng et al., 2019). In the current study, all these 
three methods have been used together to analyse the problem at stake. 
Analytical, physical, and numerical approaches in the context of this 
study are briefly introduced in the following sub-sections. 

Even if single block toppling (Fig. 1a) has been rigorously studied for 
different geometries (Alejano et al., 2015; Pérez-Rey et al., 2019), no 
studies have addressed in due detail the case where the base of the block 
is a rough surface (Fig. 1c). In this paper, the authors present a first study 
analysing this contingency for the case of regularly rough bases. It will 
also be relevant to study how irregularly or unevenly rough bases affect 
single block toppling and how rough bases will affect block toppling of 
many blocks, but these topics fall out of the scope of this study. 

2.2. Analytical approaches 

The analytical approach to compute the stability of a block against 
toppling relies on the limit equilibrium method (LEM). The approach is 
generally set out in the form of a factor of safety formulation according 
to Eq. (1), which relates the stabilizing and overturning moments of all 
the forces acting in the block in relation to the position of the potential 
overturning axis, which needs to be previously identified. 

FoStoppling =

∑
Mstabilising

∑
Moverturning

(1)  

Fig. 1. Different mechanisms of single block toppling (upper row) and multiple block toppling (lower row): a) Toppling of a single-detached regular block b) Flexural 
toppling of a single block c) Toppling of a single-detached block with a rough base d) Block toppling of many blocks e) Flexural toppling of many blocks or slabs and f) 
Block-flexural toppling. 
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2.2.1. Stability of regular blocks 
For a regular slab-like block resting on a tilted plane (Fig. 2a), the 

stability can be computed according to Eq. (2), as proposed by Ashby 
(1971) and other researchers (Hoek and Bray, 1974; Goodman and Bray, 
1976): 

FoS =
Mstabilizing

Moverturning
=

Δx
2 ⋅W⋅cosα⥄

y
2⋅W⋅sinα = tan−1α⋅

(
Δx
y

)

(2) 

Δx/y is the inverse of slenderness. Based on this equation, a graph of 
potential instability mechanisms of a block can be plotted to analyse its 
trend towards sliding or toppling (Sagaseta, 1986). Additionally, by 
setting FoS = 1, one can derive the critical toppling angle, provided it is 
larger than the critical friction angle of the contact (otherwise the block 
will slide): 

αcrit. = tan−1
(

Δx
y

)

(3)  

2.2.2. Stability of blocks with rounded corners 
When observing fallen blocks with eroded corners in the field, Ale

jano et al. (2015) realized that, for rock slabs or blocks presenting reg
ular rounded corners, the potential rotation axis moves against dip. So, 
the trend to topple of round-cornered (of radius r) block (Fig. 2b) is 
larger than that of an equal size, sharp-cornered block, and it can be 
rigorously computed according to Eq. (4): 

FoS =
Mstabilizing

Moverturning
=

(
Δx
2 − r

)
⋅W⋅cosα⥄

y
2⋅W⋅sinα = tan−1α⋅

(
Δx − 2r

y

)

(4) 

This is relevant to this study because when cutting small blocks in the 
lab, it is difficult to obtain perfectly sharp-cornered blocks, and the ir
regularities of the corner can be analysed with the help of an equivalent 
radius of curvature (rc) of the corner at stake. Note that the tilt angle at 
which the round-cornered block topples, also called critical angle, can 
be derived from Eq. (5). 

αcrit. = tan−1
(

Δx − 2r
y

)

(5)  

2.3. Physical modelling 

Physical modelling of blocks for studying toppling implies prepara
tion of blocks with homothetic geometries to those under study. Simi
larity laws are fulfilled if homogeneous blocks (all material density 
equal) are used. These blocks are initially positioned on a horizontal 

base platform, which is then progressively tilted until sliding or toppling 
is observed. The toppling or sliding angle can be then compared with 
that determined from other approaches (analytical, numerical, etc.). 
Tests are typically repeated three times and the average value is 
computed as the relevant result. According to authors' experience, 
toppling critical angles tend to be rather uniform. However, sliding 
critical angles usually show higher variability due to the more complex 
nature of frictional sliding. 

Any block with the same geometry independently of its size will 
theoretically topple at the same critical angle. Only imperfections on the 
block corners and edges may slightly influence results. In conclusion, the 
application of physical modelling has been sufficiently verified for 
studying the toppling (and sliding) mechanism in rock blocks (Alejano 
et al., 2015; Pérez-Rey et al., 2019, 2021). 

For this study, relatively small block specimens with a regularly 
rough contact base were prepared. The tilt tests were performed with a 
tilting table designed by the University of Vigo (Fig. 3) (Alejano et al., 
2018b), where the block was placed on a horizontal platform and then 
the platform was tilted at a constant velocity until an instability phe
nomenon was observed. 

Physical toppling models for more complex geometries including 
flexural toppling typically resort to centrifuge tests that can produce 
failure in these more stable structures (Adhikary and Dyskin, 2007; 
Zhang et al., 2007). 

2.4. Numerical approaches: DEM modelling 

Numerical models can also be used to analyse toppling failure 
mechanisms and they are well suited to work with complex block ge
ometries. The Distinct Element Method (DEM), first proposed by Cundall 
(1971), associated with explicit integration approaches, is able to 
simulate both rigid and deformable blocks to model large displacements 
and rotations of block systems. 

In this research, the DEM-based universal distinct element code 
(UDEC) (ITASCA Cons. Group Inc, 2014) was selected to simulate the 
instability mechanism of blocks against toppling or sliding. UDEC has 
been widely used to study block systems in civil engineering and mining 
for decades (Alejano et al., 2012). It can include considerations of some 
dynamic and coupled processes that are difficult to address using stan
dard approaches (Mendes et al., 2020). Additionally, even when there 
exist various blocks and tensile failure appear, still a factor of safety can 
be computed based on strength reduction techniques (Dawson et al., 
1999; Alejano and Alonso, 2005). 

In the numerical simulations herein, the models are built with a 

Fig. 2. Representation of a) standard (sharp-cornered) Δx-width and y-height block resting on a tilted surface and b) round-cornered block of equal dimensions with 
corner radius r. 
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predetermined geometry. The block is located on a platform with the 
lower regular base fixed. Tentative models with various inclination 
angles are tested to bracket the critical angle at which the block topples 
or slides, as shown in Fig. 4. 

The stability against toppling of more complex elements can be 
studied by 3DEC (ITASCA Cons. Group Inc, 2019) numerical simula
tions. For these numerical studies, geomechanical parameters such as 
the normal and shear stiffness in the contact plane should be selected 
with care according to estimative techniques (Brideau and Stead, 2010; 
Muñiz-Menéndez et al., 2020). Additionally, based on this approach, 
static, pseudo-dynamic, and dynamic calculations can be performed 
(Lemos et al., 2011). 

3. Preparation of samples and geometries 

3.1. Experimental program 

Based on the approaches introduced in the previous section, the 
authors decided to carry out an experimental program to test against 
toppling small rock samples presenting a regularly rough base formed by 
triangular teeth of known dimensions. To do that, it was decided to 
create 7 blocks with various slenderness able to produce toppling or 
sliding, and regularly rough surfaces following the geometrical param
eters illustrated in Fig. 5. The rock used was a hard granite with a spe
cific weight of 25.8 kN/m3 and a uniaxial compressive strength about 
120 MPa; the used glue was a standard cyanoacrylate adhesive. 

These blocks were created using 2, 3 or 4 narrow slender rectangular 
rock slabs that were bevelled at a particular height with an angle of 
roughly 10◦ or 20◦. Then, these individual blocks were assembled by 
gluing the sides with same height to create the final symmetric (for 2 and 

Fig. 3. Tilting system used for the physical models developed at the University of Vigo.  

Fig. 4. Blocks located on a platform with different inclination angles (15◦and 25◦). The numerical models carried out in this study consist in preparing the models 
with increasing angles and check the instability mechanism (sliding or toppling) and the critical angle or angle at which the block model first topples or slides. 
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4 individual elements) or asymmetric (for 3) blocks. Regarding their 
geometry, N refers to the number of sub-blocks, a to the width of the 
individual sub-blocks, b to the smaller height of the individual sub-block 
and c to the difference between the larger and smaller heights of the 
individual sub-block. This produces assembled blocks of width Δx equal 
to N⋅a, and average height y equal to b + c/2. Regarding the regular 
roughness, the amplitude A will be equal to c and the wavelength λ equal 
to 2a, as depicted in Fig. 5. All blocks have a constant section d = 20 mm. 

The prepared samples, named blocks A to G are illustrated in Fig. 6 
and they include asymmetric and symmetric blocks. Every sample can 
be geometrically divided into several rectangles and triangles for 
computation purposes. Based on the geometric relations mentioned 
above, the geometry of every generated sample can be accurately 
measured and the results are presented in Table 1. 

For samples formed by an uneven number of sub-blocks (such as 3, 
for samples A, B and E), the block can be tilted in such a way that the 
rotation points are located at a peak or a valley. For an even number of 
blocks (such as 4, for samples C and D or 2, for samples F and G), the 
rotation point will be located either at a valley (for concaves base 
samples such as C and F) or at a peak (for convex base samples such as D 
and G). 

All these samples have been tilt tested to measure the critical angle of 
toppling or sliding of the blocks. They were tested three times in every 
direction until the instability was observed and the results were recor
ded to be compared with theoretical and numerical ones. 

3.2. Surface roughness and estimates of geometrical JRC 

Computing or estimating roughness is not a straightforward matter 
(Barton, 1973; Barton and Choubey, 1977; Tse and Cruden, 1979). 
Roughness is indeed a feature difficult to quantify by a single or a limited 
number of parameters and many different approaches can be used to do 
this. Moreover, rock mechanics studies have focused on quantifying 
roughness in terms of the mechanical response it produces, instead of in 
geometrical terms. 

Early attempts to explain and predict the shear strength of non- 
planar rock joints (Patton, 1966) focused on the observed dilatant 
behaviour of granular materials and rough surfaces, and proposed Eq. 
(6) for the shear strength (τ) of a rock-joint at low normal stresses: 

τ = σntan(ϕb + i) (6) 

Where σn is the effective normal stress, the angle i, also named 
effective roughness, is the average angle of deviation of displacement 
from the direction of the applied shear stress, and ϕb was the basic angle 
of friction of the rock that can be obtained through tilt tests on planar 
saw-cut rock surfaces (Alejano et al., 2018b). 

For perfectly regular rough surfaces (Fig. 5), “i” can be computed as 
the dip of the regular teeth, that is: 

i = tan−1

⎛

⎜
⎝

A
λ /2

⎞

⎟
⎠ = tan−1

(c
a

)
(7) 

We will use this effective roughness or “i” angle value to quantify the 
regular roughness of the discontinuities artificially created for this 
study. However, other parameters are defined below with the aim of 
extending our study to irregularly rough based blocks in the future and 
clarifying the roughness characterization parameters. 

Joint Roughness Coefficient (JRC) is a purely empirical and me
chanical (non-geometrical) parameter, first introduced by Barton (1973) 
to fit a curvilinear strength criterion to rock joints according to Eq. (8). 

JRC =
tan−1(τ/σn) − ϕb

log10

(
JCS
σn

) (8) 

Where JCS is the uniaxial compressive strength of the joint walls. 
Later, Barton and Choubey (1977) attempted to select the most typical 
geometrical profiles that produce equivalent JRC mechanical values 
based on tests in the lab (Fig. 7.a). These profiles (Fig. 7.a) are now 
widely used to quantify joint roughness in field and lab studies in an 
estimative manner. This parameter is also recommended for field rock 
mass characterization (ISRM, 2007). Remark that still JRC is a me
chanical parameter, even if it is often quantified based on geometrical 
grounds. 

Barton and Choubey (1977) also proposed to obtain JRC from field 
tilt tests based on the sliding angle (α) of the test and the effective 
normal stress generated by the gravitational force acting on the upper 
half of the block (σn0) according to Eq. (9): 

JRC =
α − ϕr

log10

(
JCS
σn0

) (9) 

Remark that they changed in this proposal ϕb, related to intact rock 
to ϕr, the residual friction angle to account for potential weathering and 

Fig. 5. Geometrical information concerning the preparation of samples for testing, considering a sample formed by 7 individual sub-blocks for illustrative purposes.  
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Fig. 6. Engineered granite blocks with a regular rough base. The values of the geometrical parameters are presented for every block.  

Table 1 
Geometrical parameters of the physical model blocks prepared.  

Models Type N a (mm) b (mm) c (mm) Δx (mm) y (mm) A (mm) λ (mm) 

A Peak-valley 3 15 94 5 45 96.5 5 30 
B Peak-valley 3 14 135 5 42 137.5 5 28 
C Valley (convex) 4 20 158 7 80 161.5 7 40 
D Peak (concave) 4 20 242 7 80 245.5 7 40 
E Peak-valley 3 30 120 5 90 122.5 5 60 
F Valley (convex) 2 30 118 5 60 120.5 5 60 
G Peak (concave) 2 30 123 5 60 125.5 5 60  
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polishing conditions of the joint walls. For our samples, the average 
value of the lab-measured basic friction angle is 30◦, but due to repeti
tive testing and variability, the actual residual friction angle of the 
contacts can be in the range between 24◦ and 31◦. 

For regular surfaces, we can consider that α-ϕr will be logically equal 
to the effective roughness “i” and for our regular rough samples Eq. (10) 
stands. 

JRC =
i

log10

(
JCS
σn0

) (10) 

Barton (1981), based on the analysis of 200 specimens with a length 
of 0.1 m and some more on larger replicas, proposed a method to esti
mate JRC based on the length of the profile L and amplitude of the joint 
A, as in Eq. (11). 

JRC ≅ k⋅A

/

L where
k = 400 for L = 0.1 m
k = 450 for L = 1.0 m
k = 500 for L = 10 m

(11) 

He also provided a chart (Fig. 7.b) to compute the corresponding JRC 
for different joint geometries, widely used in practice in combination 
with Barton's comb. 

The authors have obtained in Eq. (12) a rough estimative equation 
that can represent the values proposed in the Barton (1981) chart. 

JRC =
1

2.05
⋅

A(mm)

L(m)0.917 (12) 

This approach can be acceptable for large discontinuities as those 
found in the field, but the scale does not adapt to the small artificial 
discontinuity sizes at stake. 

With the aim of avoiding the subjectivity of estimates of JRC by 
comparison with typical profiles, Tse and Cruden (1979) analysed 
different correlations between geometrical roughness parameters and 
JRC. They eventually found that one of the most suitable ones was Z2 as 
defined by Myers (1962), which refers to the root mean square of the 
first derivative of a two-dimensional profile under scrutiny: 

Z2 =
1
L

∫ x=L

x=0

(
dy
dx

)2

(13) 

Where L is the length of the profile and x and y its coordinates. The 
best fit found by Tse and Cruden (1979) for JRC was: 

JRC = 32.2 + 32.47⋅log Z2 (14) 

With the aim of studying toppling on regular rough sources subjected 
to very low normal stresses, we have resorted to JRC approaches as 
presented in Eqs. (10), (12) and (14) to obtain estimative roughness of 
our samples. To compute this, the detailed geometry of every block is 
accounted for and the relevant geometrical and mechanical parameters 
(including V, volume; ρ, density; W, weight of the block; S, contact area; 
σn, normal stress and i, effective roughness) are reported in Table 2 with 
the corresponding JRC results. 

Different approaches produce quite different results for our samples. 
The reasons behind the discrepancies are, all in all, associated with the 
mechanical focus of JRC. In this way, Eqs. (11) and (12) apply to large- 
scale discontinuities rather than to smaller ones and Eqs. (13) and (14) 
were developed based on natural regular profiles, which can be digita
lized into numerous segments. Both of them though resort ultimately to 
the mechanical response to quantify JRC. 

Therefore, for the samples (A-G) studied in this paper, we will use the 
effective roughness “i” as the reference roughness parameter. However, 
we suggest resorting to JRC computed as in Eq. (10) as a reference value, 
in case we want to extend the presented results to irregular rough sur
faces as those often found in nature. 

Moreover, we will later show how the main relevant parameter in 
terms of toppling response in relation to roughness of joints is the ratio 
A/y, that is, the amplitude of the surface roughness in relation to block 
height. λ/Δx will only affect block widths below the roughness wave
length, which are difficult to find in practice. 

4. Stability against toppling of slab-like blocks resting on tilted 
regularly rough bases 

In case the base of a block is a rough surface, this roughness does 
affect its stability. In section 2, we introduced simple-geometry analyt
ical expressions for blocks resting on tilted bases and we explained how 
it was possible to compute through other approaches. The idea is to 
extend these approaches to different blocks presenting roughness fea
tures that determine their mechanical response to toppling focusing on 
the samples illustrated in Fig. 6. 

4.1. Analytical formulations 

The authors have worked out the equations to compute factors of 
safety (FoS) and critical angles of toppling for the blocks prepared. To do 
that, the corresponding moment calculations have been adapted for the 

Fig. 7. a) Typical roughness profiles to estimate JRC in the field according to Barton and Choubey (1977); b) Chart to estimate JRC starting from the length and the 
amplitude of a profile based in Barton (1981). 
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different available blocks, by subdividing them into triangular or rect
angular individual elements and different possible positions of the 
rotation axis (peak or valley). Blocks were assumed to present perfect 
edge corners. The detailed calculations are presented in Appendix A. The 
formulae obtained are compiled in Fig. 8 for each type of block and 
position (peak and valley), depending on the geometrical parameters 
used to prepare the block, namely a, b and c. 

On the other hand, Alejano et al. (2015) realized that when pre
paring small rock blocks and subjecting them to tilt tests in the lab, the 
critical toppling angle tended to be somewhat smaller than computed. 
This was associated to the irregularities produced in the block edges in 
the cutting process. In fact, the saw-cut blocks have no perfectly sharp 
edges or corners, but irregular, and this irregularity is mechanically 
equivalent to consider the blocks having rounded edges, particularly in 
that acting as a rotation axis. 

Accordingly, for blocks with rough bases, the irregularities of the 
edges may also play a relevant role in stability. Alejano et al. (2015) 
showed how to compute the stability of a block with rounded corners 
against toppling, both in terms of the factor of safety affected by this 
radius of curvature and on a critical angle (Eqs. (3) and (4)). 

To account for this effect of irregularities in blocks with rough bases, 
the authors have also computed the toppling factors of safety and critical 
angles for the case of blocks at stake. In the case of blocks with square 
corners, the equivalent radius of curvature is the only parameter 
affecting the calculations. However, in blocks with non-square corners 
(this study), it is necessary to know not only the curvature radius but 
also the angle of the corner affected and if the rotation axis is located in a 
peak or a valley of the rough surface (Fig. 9). 

As shown in Fig. 9, r refers to the distance between the position of the 
rotation point for a sharp edge and the new rotation point for round 
corner and rc is the radius of the equivalent round corner. Additionally, 
an angle is needed for the calculations: δp (= i effective roughness), 

which is the angle of roughness of the sub-triangle for toppling around a 
peak rotation axis or δv (= 90-i) the complementary angle of effective 
roughness for toppling around a valley axis. The corresponding com
putations are presented in due detail in Appendix B and the equations to 
compute the radius of curvature needed to produce toppling at a 
particular critical angle for the different possible geometries of blocks 
tested are presented in Fig. 10. 

Here, the curvature radii of blocks E-valley and F are not included, 
since they did not show toppling. Therefore, for the case of block E, only 
for the peak rotation axis, the radius of curvature is considered. 

In order to analytically study the stability of samples A to G illus
trated in Fig. 6, based on the limit equilibrium method, it is possible to 
apply the analytical formulae developed in Appendices A and B and 
presented in Figs. 8 and 10. 

4.2. Physical models 

An experimental program was designed to study the stability in 
terms of factor of safety or the critical angle against toppling of rock 
blocks with regularly rough discontinuity bases subjected to tilt tests 
under laboratory conditions. The idea was to test the mechanical 
response of the blocks presented in section 3.1. 

The tilt tests are carried out on a tilt table, where blocks are placed 
and the lower part of each block is fixed on the platform (Fig. 3). Then, 
the tilting table is progressively tilted until the upper part of the block 
topples or slides (as shown in Fig. 11). The tilting velocity for all tests is 
set constant and equal to 20◦/min, following similar procedures as for 
basic friction angle estimates via tilt-tests (Alejano et al., 2018b). All the 
samples are tested three times until toppling or sliding is observed. The 
result is the average of the three values recovered,. The physical records 
are compared with the analytical and numerical ones below. 

Table 2 
JRC values of models A-G calculated by Eqs. (10), (12) and (14).  

Models Rotation axis V (cm3) ρ (g/cm3) W (N) S (cm2) σn (kPa) i (◦) JCS (MPa) JRC (Eq. (10)) JRC (Eq. (12)) JRC (Eq. (14)) 

A Peak-valley 86.85 2.64 2.25 9.0 2.29 18.4 120 3.9 41.9 16.7 
B Peak-valley 115.50 2.64 2.99 8.4 3.43 19.6 120 4.3 44.6 17.7 
C Valley 258.40 2.64 6.68 16.0 3.88 19.3 120 4.3 34.6 19.4 
D Peak 392.80 2.64 10.16 16.0 6.12 19.3 120 4.5 34.6 19.4 
E Peak-valley 220.50 2.64 5.70 18.0 2.83 9.5 120 2.0 22.2 6.9 
F Valley 144.60 2.64 3.74 12.0 2.92 9.5 120 2.1 32.2 6.9 
G Peak 150.60 2.64 3.89 12.00 2.97 9.5 120 2.1 32.2 6.9  

Fig. 8. Roughness geometry sketches, for the different types of blocks and positions of the rotation axis, and critical angle equations for the different types of blocks 
as computed in Appendix A. 
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4.3. Numerical models 

UDEC (ITASCA Cons. Group Inc, 2014) is a 2D code based on the 

discrete element method, so it can be used to solve differential stress- 
strain equations that control the behaviour of assemblies of rigid or 
deformable blocks. This code has been successfully used to study the 

Fig. 9. Blocks with round corner of different equivalent radii: a) peak axis; b) valley axis.  

Fig. 10. Equations for computing the radius of the corners that will produce the instability of the block for predetermined critical angle. These equations are 
developed in Appendix B. 

Fig. 11. Physical model tests for block E, where the failure mechanism can be observed E: a) toppling with peak axis; b) sliding in valley direction.  
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failure mechanisms of jointed rock masses, and particularly to analyse 
the toppling of rock blocks (Alzo'ubi, 2009; Alejano, 2021). 

For this study, all blocks are modelled as rigid blocks, so no defor
mation can occur within them. Only relative movements of blocks can be 
reproduced, which represent the typical conditions of toppling in the 
field and in the physical models presented. The block representing the 
tilting table and the base block are always fixed (displacement totally 
restraint). Regarding geometrical conditions and in order to represent 
perfect geometrical blocks, a curvature radius r = 1e-7 m was used. The 
numerical procedure consisted in preparing the model with a particular 
tilt angle and running it subjected to gravity to check if the block re
mains stable or if it topples or slides. Various trials are run for different 
tilting angles to identify the smaller tilt angle at which each block be
comes unstable. 

Models are prepared to represent the corresponding regular rough
ness and block geometries, and input data files are created representing 
increasingly tilted bases. The block is located on a platform with the 
lower regular rough fixed base (Fig. 12). Based on initial estimations and 
after some trials as with planar contacts, the normal and shear contact 
stiffnesses are set to kn = 103 GPa/m and ks = 10 GPa/m, respectively. 
The friction angle (ϕ) of the contacts used in these numerical models is 
30◦ as tested in the lab according to standards (Alejano et al., 2018b). 
This implies that, generally, we will observe sliding mechanisms for tilt 
angles around ϕ  + i, with i as in Table 2, in case this value is smaller than 
the critical toppling angle. This will not hold for blocks F and E-valley. 
For block F, this angle will be ϕ- i, and for block E in the valley position a 
complex mechanism arise. These exceptions will be discussed in more 
detail in section 4.5. 

UDEC contemplates the use of rounded corners (with a radius r) on 
blocks modelled to avoid bifurcation processes in the calculation pro
cedure. For all the simulations carried out in this section, this radius is 
fixed at 1e-7 m to represent sharp edge blocks. 

Tentatively trying different models with various increasing tilt an
gles in intervals of 0.1◦, the critical toppling/sliding angle corresponds 
to the lowest value at which an instability mechanism occurs. 

Fig. 12 illustrates the simulations carried out to analyse the response 
of sample A for an initial position of the rotation axis in a peak (Fig. 12.a) 
and in a valley (Fig. 12.b). Models were carried out for different lower 
tilt angles until, at the presented cases the upper block toppled, which 
occurred in the peak case for a tilt angle of 26.2◦ and in the valley case 
for a tilt angle of 23.9◦. 

Toppling was not observed in all cases. For instance, for the simu
lation of sample E (Fig. 13), it occurs for a tilt angle of 37.4◦ when the 
sample was in a peak position (Fig. 13a). However, when the sample was 
in a valley position, a complex mechanism involving sliding arises 
instead of toppling for a tilt angle of 26.7◦ (Fig. 13b). This sliding 
response was also observed in the corresponding physical experiment 
(Fig. 11b). 

It is relevant to remark that, as this case of block E shows, the fact 
that a block has a rough surface can affect the potential instability 
mechanism, in such a way that the location of the rotation axis (peak or 
valley) may produce a different response. This issue is not usually 
accounted for when analysing the stability of blocks against toppling or 
sliding and it will be commented in the discussion section. 

After performing all the numerical simulations of the critical angle of 
toppling or sliding, numerical results are illustrated in Table 3, together 
with the analytical and physical model outcomes. 

4.4. Analysis of results 

Table 3 compiles the obtained results. The following comments are 
related to all blocks but F and E-valley. The first observation to be made 
is that the stability of the blocks is basically the same for the analytical 
and numerical results, with minor inaccuracies of less than 0.1◦ for all 
cases where toppling is observed. Therefore, the numerical results can 
be considered as validated for the scope of this study. 

The second observation is that physical results are smaller, typically 
2◦ to 4◦, than the estimated value according to analytical or numerical 
approaches. This smaller value is attributed to irregularities in block 
edges, which can be analysed in terms of corner rounding. 

For the asymmetrical samples (A, B and E), the difference between 
the case presenting the axis in a peak or a valley is about 3–4◦ for the 
samples with i around 10◦. In sample E this difference cannot be 
computed because for the valley position the sample slides, as explained 
below. 

In previous studies, irregular and slightly rounded corners of the 
saw-cut sub-elements were typically observed when preparing the lab 
samples. This affects the stability response of these block models (Ale
jano et al., 2015). For instance, as illustrated in Table 3, the block C with 
a sharp edge would topple at 25.4◦, but in the physical model, it topples 
at 21.7◦. Based on the analytical approach considering round corners 
from Appendix B and shown in Fig. 9, it is possible to compute the 

Fig. 12. Numerical modelling UDEC results of evolution of block A in tilt tests when positioning the block in such a way that the potential rotation axis is in a) a peak 
and b) a valley. 
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equivalent radius of curvature that will produce the critical angle 
observed in the physical models. These equivalent radii for the toppling 
blocks (sliding results are removed) are presented in Table 4. 

The computed rounding value is generally in the range of 3 to 6 mm, 
except for block D where large irregularities are detected. 

As it can be observed, the occurrence of irregular corners tends to 
make the real blocks less stable than computed theoretically for straight 

corners. This induces a decrease in factor of safety of about 0.15 to 0.2 
units on average for the small blocks tested. For some actual larger rock 
blocks in the field, it is estimated that this effect could be even more 
relevant (Pérez-Rey et al., 2019). 

4.5. Relevant considerations 

Three methods, including theoretical analyses, physical tests and 
numerical models, were used to understand block toppling on rough 
base surfaces. Analytical and numerical results coincide. Physical results 
are also similar, being the observed differences attributed to imperfec
tions generated in the cutting process, particularly relevant for the 
blocks with rougher surfaces (i = 20◦). 

In physical tests and numerical models, block F and E-valley and F 
slid rather than toppled. The theoretically computed sliding angle is 
larger than the one observed. The observed behaviour is explained as 
follows for each case. 

For block F, no contact between the upper right hand side sub- 
element and the base along down-dip direction occurs when tilted 
around 10◦ or more (normal stress was concentrated in the down-dip or 
left part of the base, according to Fig. 6.f). The analytical critical sliding 
angle is ϕ - i (20.5◦), which is smaller than the analytical critical toppling 
angle 25.6◦. When the tilt angle of both physical and numerical models 
gets to 20.5◦, sliding in the down-dip or left part tends to occur, although 
due to the geometry this sliding is constrained. The energy of sliding 
makes the block to ultimately toppling. This means that the initial 
instability mechanism is sliding, but due to geometrical constraints after 
sliding some mm, then the block tends to topple around the external 
corner. The concentration of normal stress plays here a key role. 

For block E, theoretically, the block will slide at the analytical critical 
angle 39.5◦ (toppling at 35.2◦, if so). However, a complex phenomenon 
occurs. After some tilting there is no contact between the upper sub- 
elements along down-dip base of the right-hand side (Fig. 6.e), so 
most of the normal stress is concentrated in the intermediate sub- 
element. At 14.5◦, the block tends to topple around the only peak 
point in the surface, but the whole block does not topple due to 
geometrical constraints: movement is limited in the left-hand side 
element. As tilting continues, the normal stress will be slowly transferred 
from the intermediate sub-element contact to the left one. This decrease 
in normal stress will produce a decrease in shear stress so that corre
sponding to sliding is attained in this intermediate contact, which will 
produce sliding when attaining 26.7◦ physically or 27.5◦ numerically. 
The block that slightly rotated at 14.5◦, starts now to slide at about27◦

and after some sliding run (Fig. 13.b, numerical and physical), it ulti
mately topples (Fig. 11-b, physical). 

Fig. 13. Numerical simulation of block E: a) topples with peak axis; (b) slides with valley axis.  

Table 3 
Critical toppling or sliding angles of the tested samples according to analytical 
solutions (Fig. 8), tilt tests and numerical models.  

Models Position of 
rotation axis 

i (◦) αslide (◦) =
ϕb + i 

αana.(◦) αphys.(◦) αnum.(◦) 

A Peak 18.4 48.4 26.2 23.5 26.2 
Valley 18.4 48.4 23.9 19.8 23.9 

B Peak 19.6 49.6 17.6 15.0 17.6 
Valley 19.6 49.6 16.4 12.6 16.4 

C Valley 19.3 49.3 25.4 21.7 25.3 
Valley 19.3 49.3 25.4 21.4 25.3 

D Peak 19.3 49.3 18.5 15.3 18.5 
Peak 19.3 49.3 18.5 15.1 18.5 

E Valley 9.5 39.5 35.2 26.7* 27.5* 
Peak 9.5 39.5 37.5 37.4 37.4 

F Valley 9.5 20.5 25.6 20.5* 20.5* 
Valley 9.5 20.5 25.6 20.5* 20.5* 

G Peak 9.5 39.5 26.5 23.8 26.4 
Peak 9.5 39.5 26.5 23.9 26.4 

* The observed mechanism is sliding. 

Table 4 
Analytical and physical critical angles for the toppling samples and equivalent 
curvature radius analytically computed (Fig. 10) to produce the observed re
sults. Also, the analytical FoS corresponding to the observed failure physical 
critical angle is computed.  

Models Position of 
rotation 
axis 

αana.(◦) 
(Individual 
formula) 

αphys.(◦) αnum.(◦) rc(mm) FoS 
for 
αphys. 

A Peak 26.22 23.5 26.2 3.36 1.13 
Valley 23.89 19.8 23.9 3.61 1.23 

B Peak 17.60 15.0 17.6 4.49 1.18 
Valley 16.41 12.6 16.4 4.12 1.32 

C Valley 25.40 21.7 25.3 5.66 1.20 
Valley 25.40 21.4 25.3 6.09 1.21 

D Peak 18.54 15.3 18.5 10.06 1.22 
Peak 18.54 15.1 18.5 10.68 1.25 

E Peak 37.48 37.4 37.4 0.13 1.00 
G Peak 26.47 23.8 26.4 3.82 1.13 

Peak 26.47 23.9 26.4 3.68 1.13  
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This kind of circumstances occur for blocks when the roughness 
wave-length is small (1 or 1.5 times) in relation to block width, which 
will be a case rather uncommon in practice. Theoretically, sliding will 
occur when the sum of the friction angle of the contact base plus the 
positive or negative angle of the saw-tooth face are larger than the dip 
angle when instability happens; but block movement can be constrained 
by geometry. Additionally, due to variation in normal forces in the 
contacts, irregularities in the shape of the contacts including irregular 
edges and surfaces polishing, it will be difficult to predict behaviour in 
these cases. 

The experimental results tended to be smaller than the theoretical 
ones due to imperfections during cutting, resulting in some rounded 
edge effect of the blocks. This justifies the need of considering the 
equivalent curvature radius of saw-cut corners to obtain accurate re
sults, according to formulae presented in Appendix B. 

5. General equations of rock blocks with regular rough base 

Based on the results observed for the tested blocks, we try to 
generalize the analytical approach, so it can be widely applied to any 
block resting on a regular rough surface and, additionally, to irregular 
rough based blocks, as usually found in nature. This general approach 
will be evaluated with the tested blocks and it will be analysed in some 
detail to obtain some relevant general conclusions. 

5.1. General formulation to compute the stability of a block resting on a 
regularly rough base 

The geometry of the prepared blocks was synthetically described 
through parameters N, a, b, and c. These parameters, useful for the 
preliminary calculations, are now used to compute more general 
geometrical and regular roughness parameters (Fig. 5) including Δx or 
block width, y or average block height, A or roughness amplitude, and λ 
or roughness wavelength. 

The position of the rotation axis in relation to the amplitude of the 

roughness is very relevant to analyse stability. The authors will focus on 
the mid-position equivalent to a non-rough base, formulated on previous 
calculations (Eqs. (1) and (2)) and, particularly, in the two extreme 
positions denoted as peak, the highest possible axis location rendering 
the most stable case, and valley, the lowest possible axis location rep
resenting the least stable condition. 

The value N, representing the number of sub-elements needed to 
create the physical sample, can now be computed, based on the block 
width and the roughness wavelength, as N = 2Δx/λ. Similarly, simple 
equations can be used to derive all the initial simplified values N, a, b, 
and c, starting from the general parameters Δx, y, A, and λ or vice-versa. 

It is relevant to note, at this point, that for homogenous blocks (equal 
density in the whole block), the scale of the block does not affect the 
toppling behaviour, so all homothetic blocks will behave in the same 
manner in relation to toppling response. Based on this consideration, 
and to generalize the computations, we have initially considered the 
parameters potentially affecting toppling results. They include the 
number of blocks (N), the inverse slenderness (Δx/y), the relative 
amplitude (A/y), and the relative wavelength (λ/Δx). Ranges of 
expectable values of these parameters have been selected as shown in 
Fig. 14. Ranges of N = 2, 3, 4 and 7 (even if this value was not finally 
computed), Δx/y = 2/3, 1/2, 1/3 and 1/5, A/y = 1%, 2%, 5% and 10% 
and λ/Δx = 1, 1/2, 1/5, and 1/10 were considered. 

Considering that all the triangle elements over the contact are sym
metric, such as in the cases for an even number of sub-blocks, it is 
possible to compute their effect in a simplified manner. The weight 
component of these triangles parallel to the contact line will produce 
overturning moments for the case of the rotation axis in the position of 
the valley and stabilizing moments for the case of the axis in a peak 
position. The arm of these moments will locate 1/6 A over the axis valley 
position in the first case, and 1/3 A below the axis peak position in the 
second, according to the position of the centre of gravity in a triangle. 

Therefore, the equations were computed for the critical angles for the 
cases of peak axis position and valley axis positions (Fig. 15), and where 
it can be checked that null amplitude solutions (A = 0) converge to that 

Fig. 14. Change in block morphology according to the four parameters considered for analysing results.  
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of a standard block with a planar base. Moreover, it can be checked that 
when applying these formulae to non-symmetric blocks, for instance, 
that showing 3 sub-blocks, the error made in the calculations is below 
0.1◦, usually below the measurement accuracy. 

Based on the approach developed in Fig. 15, it is also possible to 
obtain general FoS formulations for toppling of blocks with regularly 
rough bases including the case of a block in the peak position (Eq. 15): 

FoSpeak = tan−1α⋅
Δx/y

1 − A
y − 1

12
A2

y2

(15) 

And the FoS for the case of a block in the valley position (Eq. 16): 

FoSvalley = tan−1α⋅
Δx/y

1 + A
y − 1

4
A2

y2

(16) 

Note that if the amplitude of roughness is set to 0 in any of these 
formulae (planar surface) the original Eq. (2) is recovered. 

FoS = tan−1α⋅
Δx
y

(17) 

The individual formulae (section 4.1) are perfectly rigorous analyt
ical expressions computed for every possible geometry of the prepared 
blocks. The general formulation was obtained as a good approximation 
that produces very low errors and that can be more suitable for practical 
application. For small wavelength roughness, there can be significant 
differences between individual and general approaches. For individual 
formulae, it has been possible to implement the effect of round corners, 
something not possible for the general approach. 

5.2. Application of general formulae to tested blocks 

The results obtained using these general formulae are highly 
consistent with the ones based on the original expressions shown in 
Table 5. The difference between the calculated toppling angles is below 

Fig. 15. General computation of the critical angle for blocks resting on a regular rough surface.  
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0.03◦ and, therefore, negligible for practical purposes. This general 
formulation works well for blocks with a regularly rough contact base 
and could ease the extrapolation to blocks with irregularly rough bases. 

5.3. Considerations on the impact of roughness on the stability of blocks 
against toppling 

Aiming at understanding the influence of the roughness (in terms of 
relative amplitude) on the potential toppling of blocks, we have repre
sented in Fig. 16, the factors of safety of different individual blocks in 
relation to tilt angle. The graph illustrates the response in terms of fac
tors of safety (FoS) related to tilt angle (α) of three possible simple ge
ometry blocks (inverse slenderness or Δx/y equal to 1/2, 3/4 and 1) 
considering the peak and valley positions for a large relative amplitude 
(A/y) of 10%. 

In this graph, different aspects can be highlighted. First, the angle of 
toppling will be that corresponding to FoS = 1 for the planar surface 
case, namely 27◦ for inverse slenderness 0.5, 37◦ for 0.75 and 45◦ for 1. 
However, if a relative amplitude of 10% is considered, the potential 
variability between peak and valley positions will induce critical 
toppling angle for ranges up to nearly ±3◦, which can be rather relevant 
when analysing the stability of single blocks. For instance, the 0.75 in
verse slenderness block could topple for an angle of 34.3◦ (for the valley 
case), but it could still stand until attaining the tilting surface at an angle 
of 40◦ (for the case of the rotation axis in a peak position). 

Conversely, this potential variability associated with roughness and 
the position of the rotation axis will have a relevant impact on FoS 

computations. Accordingly, we have highlighted in the graph three 
cases. The first one analyses the 0.5 inverse slenderness block on a 
surface tilted 20◦; the standard FoS will be 1.37 but it will range between 
1.25 for a valley axis to 1.53 to a peak axis always for a relative 
amplitude A/y of 10%. This variation of ±0.15 units of FoS (roughly 
30%) can take place in association with a rough base in a block. Similar 
values can be derived for other block slenderness as shown in Table 6. 

Also in Table 6, the same cases are considered, with extreme (peak 
and valley) values associated with a 5% of relative amplitude, instead of 
the 10% used for the example in the graph. In this case, the variation 
diminishes to up to ±0.1 units of FoS (roughly 20%), which can still 
induce important errors in instability estimates. 

In conclusion, the computed formulation and the illustrative graph 
show how the fact of having a rough base can influence the stability of 
individual blocks against toppling. 

6. Discussion 

Failure mechanisms involving toppling are affected by natural dis
continuities, whose geometry and geomechanical features can induce 
potential inaccuracies when analysing its stability in a simplistic 
manner. In nature, it is not difficult to find rock blocks prone to topple. 
This may endanger infrastructures, buildings and people's safety, so it is 
important to assess the stability of these blocks. 

In the past decades, methods were proposed to analyse the stability 
of blocks against toppling, but there were still some open issues. In some 
cases, especially for those blocks with a relatively complex geometry and 
a rough base, it is still difficult to rigorously analyse its stability. The 

Table 5 
Critical angle for toppling blocks tested according to the individual block 
formulae, the general formulation and the numerical approach.  

Models Position of 
rotation axis 

αana.(◦) (General 
formula) 

αana.(◦) (Individual 
formulae) 

αnum.(◦) 

A Peak 26.19 26.22 26.2 
Valley 23.92 23.89 23.9 

B Peak 17.59 17.60 17.6 
Valley 16.43 16.41 16.4 

C Valley 25.41 25.40 25.3 
D Peak 18.54 18.54 18.5 
E Peak 37.45 37.48 37.4 
G Peak 26.47 26.47 26.4  

Fig. 16. Computation of factors of safety for three different slender blocks for planar, peak and valley positions according to Eqs. (15), (16) and (17).  

Table 6 
Examples of FoS against toppling variation for different situations.  

Block Inverse of 
slenderness 
Δx/y 

Rel. 
amplitude 
A/y 

Tilt 
angle 
α(◦) 

FoSplanar FoSpeak FoSvalley 

1 0.5 0.1 20 1.37 1.53 1.25 
2 0.75 0.1 25 1.61 1.78 1.46 
3 1 0.1 30 1.73 1.92 1.57 
4 0.5 0.05 20 1.37 1.44 1.30 
5 0.75 0.05 25 1.61 1.69 1.53 
6 1 0.05 30 1.73 1.82 1.65  
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presented study contributes to this endeavour, even if it is recognized 
that the appropriate estimation and application of the needed parame
ters is still difficult. 

Based on the general equations of rock blocks with a regularly rough 
base presented in this study, it is possible to analyse the stability of a 
single rock block resting on a rough surface. Here, we consider only 
regularly rough bases, i.e., the regular saw-tooth contact base. Future 
work will advance towards extending this study to the case of blocks 
with irregular rough bases. 

Based on the formulations provided and test results, JRC as typically 
used may not be suitable to study the role of roughness on toppling 
stability, since it was thought and developed to study the frictional 
behaviour, that controls sliding. Susceptibility to toppling is more 
related to the position of the centre of gravity of the rock block in 
relation to the rock block base, which can be affected by the position of 
the rotation axis and the relative amplitude of the base roughness. 

Furthermore, the study of this paper can also be of help to produce 
more accurate stability estimates of stability of rock boulders (Fig. 17a 
and b) or other singular rock blocks (Fig. 17c and d). The last author 
studied the stability of a natural granite ellipsoidal boulder roughly 8-m 
length and 3-m height (Pérez-Rey et al., 2019), as shown in Fig. 17a, 
resting on a small contact area of about 0.6 m2. The critical angle against 
toppling was estimated to be 31.4◦ for a planar contact, which is larger 
than the estimated dip angle 27◦. 

The boulder was computed to be stable in the current condition, both 
for sliding and toppling. If roughness on the contact could be estimated 
and accounted for and the location of the rotation axis known, this 
critical angle could be reduced or increased. Accordingly, for these 
blocks close to equilibrium, a good knowledge of the geometry of the 
contact and the presented equations could be of help to better assess and 
fine-tune stability computations. 

To illustrate this, we resort to the classic stability graph for toppling 
and sliding of blocks initially proposed by Ashby (1971), and we 
consider 4 regular blocks whose slenderness and tilting angle position 
are as indicated in Table 7. Considering a planar block contact, all these 
blocks will slide, as illustrated in Fig. 18a. However, if we consider a 
rough base (with A/y = 1%), the results are different. According to the 
formulation presented: block 1 will be stable; blocks 2 and 4 will be 
stable, but they will topple if the axis is in a valley position and block 3 
will topple, but it will be stable, if the axis is in a peak position (Table 7, 
Fig. 18b). In conclusion, considering the roughness of a block base can 
be important to analyse its potential failure mechanism and stability. 

7. Conclusions 

Different types of toppling mechanisms occur in natural and mining 
slopes and road cuts in rock masses. The simplest mechanism of toppling 
involves one simple geometry block resting on a planar surface and 
already detached from the rest of the rock mass. This case was studied in 

Fig. 17. a) View of the “Pena do Equilibrio” granite boulder in Ponteareas, Galicia, Spain, b) A similar but larger boulder in Matopos (Zimbabwe) c) Granite slab-like 
block prone to toppling and d) Two granite slab-like blocks already toppled, both these last cases at Monte Pindo, Galicia, Spain. 

Table 7 
Theoretical analysis of four blocks.  

Block Inverse of 
slenderness 
Δx/y 

Tilt angle 
α(◦) 

Stability planar 
base 

Stability rough 
base 

1 > tan(ϕb + i) ϕb + 1 Slides Stable 
2 > tan(ϕb + i) ϕb + i - 1 Slides Stable, topples if 

valley 
3 tan ϕb < Δx/y < tan 

(ϕb + i) 
ϕb + i - 1 Slides Topples, stable if 

peak 
4 tan ϕb < Δx/y < tan 

(ϕb + i) 
ϕb + 1 Slides Stable, topples if 

valley  
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the past for somewhat simple geometries, but the influence of a potential 
rough surface base has not been so far addressed. 

The study builds on previous works where the stability of rock blocks 
of particular geometry was investigated. The toppling stability of a rock 
block resting on a regularly rough surface is then rigorously analysed by 
means of limit equilibrium analytical methods, physical tests with small 
saw-cut rock blocks and discrete element numerical models. The results 
of theoretical analyses, physical tests and numerical models are 
consistent, indicating that roughness does affect the toppling response. 

Moreover, roughness can affect the type of instability mechanism to 
which a particular block is more prone to, either sliding or toppling. 
Certainly, for many actual rock blocks, the influence of roughness on the 
stability of blocks will be scarcely relevant. However, under some cir
cumstances, roughness can play a relevant role. Therefore, it is conve
nient to have available tools to account for roughness within stability 
calculations against toppling, as those developed in this paper. 

A general but simple formulation is proposed for computing the 
factor of safety against toppling of a block resting on a regularly rough 
surface. Slenderness and the relation of roughness amplitude to block 
height have shown to be the most relevant parameters. This formulation 
can be used to assess the potential influence of roughness on any 
particular scenario. This study ultimately contributes to a better un
derstanding of the role of surface roughness on toppling-related 

instabilities in rock masses. 
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Appendix A. Appendix 

A.1. Individual equations for estimating the factor of safety and critical toppling angle of all the tested blocks (A-G) 

In this study, the analytical computation of the factor of safety (FoS) against toppling is based on the limit equilibrium method, which relates the 
stabilizing and overturning moments related to a potential rotation axis, as stated in Eq. (1). The angle at which a particular block topples when resting 
on a tilted surface or, critical angle of toppling, can also be computed by equating FoS to 1. These values can be computed for any block by 
decomposing it into rectangle and triangle-shaped elements. The detailed individual computation for all the physical blocks prepared as shown in 
Fig. 7 and for the two possible directions of tilting including peak and valley rotation axes is presented in this Appendix A. Remark that for all 
computation, the rotation axis is located on the origin of the coordinate system. 

A.1.1. Blocks A, B, and E rotating around a peak and a valley axis 
It can be easily identified that blocks A, B, and E have similar geometry conditions assembled by saw-cut pieces, therefore, the following com

putations are suitable for all the three blocks. Blocks A, B and E are asymmetrical and can be divided into two situations including peak and valley axis. 
In the case of a block with the rotation axis in a peak (Fig. A1.1a), the equation for estimating the FoS decomposing the block into its six sub- 

elements is as follows: 
∑

Mstabilizing = w1cosα⋅
(a

2
+ 2a

)
+ w2cosα⋅

(a
2

+ a
)

+ w3cosα⋅
a
2
+

+w4cosα⋅
(

2a
3

+ 2a
)

+ w5cosα⋅
(a

3
+ a

)
+ w6cosα⋅

2a
3

+

+(w4 + w5 + w6)sinα⋅
c
3

(A1.1)  

∑
Moverturning = (w1 + w2 + w3)sinα⋅

b
2

(A1.2) 

Where α is the dip of the tilting surface; wi are the weights of the different sub-elements, a, b and c are specific lengths of the block (Fig. A1.1). 
Accounting for the fact that w1 = w2 = w3 and w4 = w5 = w6, the computation of the FoS can be simplified to: 

FoStoppling =
c2

3b2 +

(
27ab + 14ac

9b2

)

⋅tan−1α (A1.3) 

Equating FoS to 1 for limit equilibrium, the critical angle for toppling in Fig. A1.1a can be derived: 

αcrit. = tan−1
(

27ab + 14ac
9b2 − 3c2

)

(A1.4)  

Fig. A1.1. a) Blocks A, B and E toppling with peak axis; b) block A, B and E toppling with valley axis.  

Similarly, in the case of a block with a valley axis (as shown in Fig. A1.1b), 
∑

Mstablizing = w1cosα⋅
(a

2
+ 2a

)
+ w2cosα⋅

(a
2

+ a
)

+ w3cosα⋅
a
2

+

+w4cosα⋅
(a

3
+ 2a

)
+ w5cosα⋅

(
2a
3

+ a
)

+ w6cosα⋅
a
3

(A1.5)  

∑
Moverturning = (w1 + w2 + w3)sinα⋅

(
b
2

+ c
)

+ (w4 + w5 + w6)sinα⋅
2c
3

(A1.6) 

J.-Y. Gui et al.                                                                                                                                                                                                                                   



Engineering Geology 313 (2023) 106982

18

The simplified equation of FoS can be again obtained as: 

FoStoppling =

(
27ab + 13ac

9b2 + 18bc + 6c2

)

⋅tan−1α (A1.7) 

The toppling angle αcrit (Fig. A1.1b) can be computed as: 

αcrit. = tan−1
(

27ab + 13ac
9b2 + 18bc + 6c2

)

(A1.8)  

A.1.2. Block C rotating around a valley axis 
Fig. A1.2a refers to the case where the block C rotates with a valley axis, and we obtain, 

∑
Mstabilizing = w1cosα⋅

(a
2

+ 3a
)

+ w2cosα⋅
(a

2
+ 2a

)
+

+w3cosα⋅
(a

2
+ a

)
+ w4cosα⋅

a
2

+ w5cosα⋅
(

2a
3

+ 3a
)

+

+w6cosα⋅
(a

3
+ 2a

)
+ w7cosα⋅

(
2a
3

+ a
)

+ w8cosα⋅
a
3

(A1.9)  

∑
Moverturning = (w1 + w2 + w3 + w4)sinα⋅

(
b
2

+ c
)

+

+(w5 + w6 + w7 + w8)sinα⋅
2c
3

(A1.10) 

Based on the fact that w1 = w2= w3= w4 and w5 = w6= w7= w8, 

FoStoppling =

(
12ab + 6ac

3b2 + 6bc + 2c2

)

⋅tan−1α (A1.11) 

So, the critical angle of toppling in Fig. A1.2a, 

αcrit. = tan−1
(

12ab + 6ac
3b2 + 6bc + 2c2

)

(A1.12)  

Fig. A1.2. a) Block C toppling with valley axis; b) block D toppling with peak axis.  

A.1.3. Block D rotating around a peak axis 
Fig. A1.2b shows the detail of block D with a regular rough base rotating around a peak pivot, 

∑
Mstabilizing = w1cosα⋅

(a
2

+ 3a
)

+ w2cosα⋅
(a

2
+ 2a

)
+ w3cosα⋅

(a
2

+ a
)

+

+w4cosα⋅
a
2

+ w5cosα⋅
(a

3
+ 3a

)
+ w6cosα⋅

(
2a
3

+ 2a
)

+

+w7cosα⋅
(a

3
+ a

)
+ w8cosα⋅

2a
3

+ (w5 + w6 + w7 + w8)sinα⋅
c
3

(A1.13)  

∑
Moverturning = (w1 + w2 + w3 + w4)sinα⋅

b
2

(A1.14) 
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Accounting for the fact that w1 = w2= w3= w4 and w5 = w6= w7= w8, the equation of FoS can be simplified to, 

FoStoppling =
c2

3b2 +

(
4ab + 2ac

b2

)

⋅tan−1α (A1.15) 

Then, the critical angle of toppling, 

αcrit. = tan−1
(

12ab + 6ac
3b2 − c2

)

(A1.16)  

A.1.4. Block F rotating around a valley axis 
In the case of block F with the rotation axis in a valley as depicted in Fig. A1.3 a, we can obtain, the following formulae.

Fig. A1.3. a) Block F toppling with valley axis; b) Block G toppling with peak axis.  

∑
Mstablizing = w1cosα⋅

(a
2

+ a
)

+ w2cosα⋅
a
2

+ w3cosα⋅
(

2a
3

+ a
)

+ w4cosα⋅
a
3

(A1.17)  

∑
Moverturning = (w1 + w2)sinα⋅

(
b
2

+ c
)

+ (w3 + w4)sinα⋅
2c
3

(A1.18) 

Based upon w1 = w2 and w3= w4, 

FoStoppling =

(
6ab + 3ac

3b2 + 6bc + 2c2

)

⋅tan−1α (A1.19) 

Then, the critical toppling angle can be calculated, 

αcrit. = tan−1
(

6ab + 3ac
3b2 + 6bc + 2c2

)

(A1.20)  

A.1.5. Block G rotating around a peak axis 
Block G illustrated in Fig. A1.3 b is symmetrical and rotated with a peak axis. 

∑
Mstabilizing = w1cosα⋅

(a
2

+ a
)

+ w2cosα⋅
a
2

+ w3cosα⋅
(a

3
+ a

)
+

+w4cosα⋅
2a
3

+ (w3 + w4)⋅sinα⋅
c
3

(A1.21)  

∑
Moverturning = (w1 + w2)sinα⋅

b
2

(A1.22)  

FoStoppling =

(
6ab + 3ac
3b2 − c2

)

⋅tan−1α⋅ (A1.23) 

The critical toppling angle can be obtained, 

αcrit. = tan−1
(

6ab + 3ac
3b2 − c2

)

(A1.24)  
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Appendix B. Appendix 

B.1. Individual equations for estimating the equivalent round corner radius for toppling of tested blocks (A, B, C, D, E-peak, and G) 

Sometimes toppling is affected by the occurrence of irregularities in the corners. This effect can be analysed by considering that the corner of the 
rotation axis is rounded presenting a curvature radius, as analysed in section 2.2.2 for the simpler case. To account for this effect, in this Appendix B, 
we present the detailed individual calculations of factors of safety for the case of the blocks tested, in case they are considered to present round corners. 
Additionally, we include the computation of the equivalent curvature radius (rc) as defined in section 4.1.1, for every block including peak and valley 
rotation axes, according to the particular critical angle physically observed (αphys.). 

B.1.1. Block A, B and E-peak rotating with peak axis 
Blocks A, B and E are asymmetrical with similar geometries; therefore, the failure mechanism of toppling can be computed for peak (Fig. A2.1a) 

and valley axes (Fig. A2.1b). As mentioned in physical tests, block E slid with the valley axis, so the equivalent curvature radius (rc) was not 
considered. Additionally, an angle is needed for the calculations: δp (= i effective roughness) which is the angle of roughness of the sub-triangle for 
toppling around a peak rotation axis or δv (= 90-i) the complementary angle of effective roughness for toppling around a valley axis. 

For the case depicted in Fig. A2.1a, 
∑

Mstabilizing = w1cosα⋅
(

2a +
a
2

− rcosδP

)
+ w2cosα⋅

(
a +

a
2

− rcosδP

)
+

+w3cosα⋅
(a

2
− rcosδP

)
+ w4cosα⋅

(

2a +
2a
3

− rcosδP

)

+

+w5cosα⋅
(

2a
3

+
2a
3

− rcosδP

)

+ w6cosα⋅
(

2a
3

− rcosδP

)

+

+(w4 + w5 + w6)sinα⋅
(c

3
− rsinδP

)

(A2.1)  

∑
Moverturning = (w1 + w2 + w3)sinα⋅

(
b
2

+ rsinδP

)

(A2.2)  

FoStoppling =

(
27ab + 14ac − 9rcosδP⋅(2b + c)

9b2 + 18brsinδP

)

⋅tan−1α +
c2 − 3crsinδP

3b2 + 6brsinδP
(A2.3) 

For limit equilibrium condition of physical test, where FoS = 1, 

r =
27ab + 14ac +

(
3c2 − 9b2

)
tanαphys.

(18b + 9c)
(
tanαphys.sinδP + cosδP

) (A2.4) 

Then we can get the equivalent curvature radius (rc), 

rc = r⋅tan
(

δP + 90◦

2

)

(A2.5)  

rc =
27ab + 14ac +

(
3c2 − 9b2

)
tanαphys.

(18b + 9c)
(
cosδP + sinδPtanαphys.

) ⋅tan
(

δP + 90◦

2

)

(A2.6)  

Fig. A2.1. a) Blocks A, B and E-peak toppling with peak axis; b) blocks A and B toppling with valley axis.  
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B.1.2. Block A and B rotating with valley axis 
For the case of blocks A and B rotating with valley axis as shown in Fig. A2.1b, 

∑
Mstablizing = w1cosα⋅

(
2a +

a
2

− r⋅sinδV

)
+ w2cosα⋅

(
a +

a
2

− r⋅sinδV

)

+w3cosα⋅
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2
− r⋅sinδV

)
+ w4cosα⋅

(a
3

+ a +
a
2

+
a
2

− r⋅sinδV

)
+

w5cosα⋅
(

2a
3

+
a
2

+
a
2

− r⋅sinδV

)

+ w6cosα⋅
(a

3
− r⋅sinδV

)

(A2.7)  

∑
Moverturning = (w1 + w2 + w3)sinα⋅

(
b
2

+ c − r⋅cosδV

)

+(w4 + w5 + w6)sinα⋅
(

2c
3

− r⋅cosδV

) (A2.8)  

FoStoppling = tan−1α⋅
27ab + 13ac − 9rsinδV ⋅(2b + c)

9b2 + 6c2 + 18bc − 9rcosδV ⋅(2b + c)
(A2.9)  

r =
27ab + 13ac −

(
9b2 + 6c2 + 18bc

)
tanαphys.

(18b + 9c)
(
sinδV − cosδV ⋅tanαphys.

) (A2.10)  

rc =
27ab + 13ac −

(
9b2 + 6c2 + 18bc

)
tanαphys.

(18b + 9c)
(
sinδV − cosδV ⋅tanαphys.

) ⋅tan
δV

2
(A2.11)  

B.1.3. Block C rotating with valley axis

Fig. A2.2. a) Block C toppling with valley axis; b) Block D toppling with peak axis.  

For the case of block C rotating with valley axis as shown in Fig. A2.2 a, 
∑
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[
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) ]
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(A2.12)  

∑
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(
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+ c − rcosδV

)

+(w5 + w6 + w7 + w8)sinα⋅
(
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) (A2.13) 
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FoStoppling =
4ab + 2ac − rsinδV ⋅(2b + c)

b2 + 2c2

3 + 2bc − rcosδV ⋅(2b + c)
⋅tan−1α (A2.14)  

r =
4ab + 2ac − tanαphys.⋅

(
b2 + 2

3c
2 + 2bc

)

(
sinδV − cosδV ⋅tanαphys.

)
⋅(2b + c)

(A2.15)  

rc =
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b2 + 2

3c
2 + 2bc

)

(
sinδV − cosδV ⋅tanαphys.

)
⋅(2b + c)

⋅tan
δV

2
(A2.16)  

B.1.4. Block D rotating with peak axis 
For the case of block D rotating with valley axis as shown in Fig. A2.2 b, 
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b
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(A2.18)  

FoStoppling = tan−1α⋅
16ab + 8ac − 4rcosδP⋅(2b + c)

4b2 + 8brsinδP
+

c2 − 3crsinδP

3b2 + 6brsinδP
(A2.19)  

r =
12ab + 6ac +

(
c2 − 3b2

)
tanαphys.

(6b + 3c)
(
cosδP + sinδPtanαphys.

) (A2.20)  
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)
tanαphys.

(6b + 3c)
(
cosδP + sinδPtanαphys.

)⋅tan
(

δP + 90◦

2
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(A2.21)  

B.1.5. Block G rotating with peak axis 
For the case of block G rotating with valley axis as shown in Fig. A2.3, 
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FoStoppling =
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(A2.26)   
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Fig. A2.3. Block G toppling with peak axis.  
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