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Abstract: This paper introduces a new classification algorithm of the instance-based 
learning type. Training records are converted into patterns associated with a known 
class label, and stored permanently into a trie1-like tree structure along with other 
helpful information. Classifying new records is done selecting from the trie two best 
patterns as solutions hypotheses. Best pattern selection is done using standard distance 
metrics, a strength function and an exclusive values concept. Classification tests done 
on several data files have shown very accurate results.  

Keywords: supervised learning, instance-based, pattern strength, exclusive values, trie. 

1 Introduction 
Supervised learning techniques, known also as classification, belong to the areas of Ma-
chine Learning and Knowledge Data Discovery. In general, their goal is to build up al-
gorithms able to predict class labels in data files or whole databases. Training records of 
known class labels are used in the creation of the algorithm. Later, these are used to 
predict unknown classes previously unseen records. A plethora of methods and tools 
exists for this purpose. Among them: classification tree induction [23], [16], Bayesian 
classification methods [5], [9], neural networks [26], genetic algorithms [13], [17], and 
others2. Motivation for this work is around the following topics: 

a) To treat data in such a way as to make them independent from attribute types. 

                                                
1 Pronounced “try”, taken from the middle part of word “retrieve” [12] 

2 See also a comparison of Data Mining Tools in [10]. 
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b) Have not one general hypothesis model but many hypotheses functions for records to 
be classified. c) To use data structures that soften somehow problems of attribute selec-
tion and threshold value typical of binary decision trees. [32].  

2 Problem Definition 
Let us consider the closed universe formed by a data file R composed of a finite set of m 
records r.                     

 R = {r1, r2,..,rm }                                     (1) 
We consider set R as formed by a training subset RT and a test subset RX, such that  

R = RT ∪ RX. The first one will be used to learn data patterns and to help developing the 
classification algorithm. RX is used for testing and algorithm verification. In a given re-
cord r, we find a finite sequential set of attributes S.                                                    

                                        S = {A1, A2, Ai… An }, a nonempty set.                                   (2)      

Every attribute Ai ∈ S can take vi values belonging to a set Ti, where Ti is the domain 
value. Every record can be associated with class labels l1, l2, etc. belonging to a set L.3 

                                     L = {l1, l2, lk}                                     (3) 
Each record r is formed by the Cartesian product of attribute values A|V and a label 

l, such that: 

           r = { v1, v2, ..., vn, l  }     vi ∈ Ti, l ∈ L.                              (4) 
From these definitions, we can define the following basic functions: 
                                    vali(r) = vi,  the value associated to attribute i from record r  

            label(r) = l,  the label associate with  record  r.                                 (5) 

3 Pattern Definition 
Data attributes can have different data types: qualitative or non-numerical (symbolic, 
linguistic); quantitative or numerical (continuous, discrete). We would like to treat them 
equally, in order to create patterns where all attribute values are represented by integers. 
For non-numerical or categorical data, we do an arbitrary enumeration, if not already 
ordered by the domain expert. In addition, we apply discretization to all continuous-
valued record’s attributes. Discretization is the process of transforming the domain of a 
continuous attribute or feature into a finite number of intervals.  For all Ai, user-defined 
intervals with lower and upper value-limits are established in Ti. Thus, for each attribute 
Ai corresponds a partition of the domain Ti. Intervals are represented by integers with 

                                                
3 In this article we use indistinctively the words class label, class or just label. 



Supervised Learning Using Instance-based Patterns  

CAEPIA 2001 

values from 1 to si.  Thus, we convert every attribute Ai into a pattern value. Function 
ord() does this conversion: 

             pi =  ordi (vi), v i∈ Ti,  pi ∈ 1,.. si .                                         (6) 
This function returns pi, an integer value representing one interval value for attribute 

Ai.  We can define a pattern p as the sequence formed by n values. 
                      p = <p1, p2,.., pi,..,pn>  pi = {1..si}                                                    (7) 

To each record r =  <v1,v2,..,,vn, l> corresponds a pattern obtained by applying func-
tion ordi(). Hence, for every record r we obtain the corresponding pattern p associated 
with a given label as follows: 

    pat(r)  = p = < p1, p2,..,pn> = 〈ord1(v1), ord2(v2),..,ordn(vn)〉                    (8)    
For every pattern p we can define n sub-patterns qi, which are the prefix portion of a 

pattern.   
           qi  = <p1, p2,.., pi >,   qi  subsequence of p,  i = {1..i}.               (9) 

Function freq(p) returns the number of records in RT with  pattern p.  

                          freq(p) = { r ∈ RT pat(r) = p }                                     (10) 
In addition from above we can define 

                       λi = freq(qi), the frequency of sub-patterns qi.                          (11) 
Labels are attached to patterns. Function labels(p)  returns the set of labels associate 

to the subset of records with pattern p.  

         labels(p) = { l ∈ L  ∃ r ∈ RT  • label(r) = l ∧ pat(r) = p }           (12) 

From this, we define function  nlabels(p) =  labels(p) , nlabels(p) = {1..L } 
We can extend this concept to sub-patterns. Hence, 

        (nlq)i = nlabels(qi)                                                   (12a) 
In any dataset RT we find that generally function nlabels (pn) = 1, meaning that a 

given full pattern p ∈ RT is associated with one label, making data consistent. As for 
sub-patterns, we often find that nlqi > 1, meaning that more than one label shares the 
same qi. This is the overlapped area of patterns. In general this is the case for initial val-
ues of i; As the value of i approaches n, factor nlqi tend to be associated with one label 
and nlabels (p) = 1. From an intuitively viewpoint each pattern p represent a hypercube 
in a space of n dimensions. Function freq (p) measures the number of records from RT in 
that hypercube. Function labels (p) represents the set of labels present in that hypercube. 
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4 Other Definitions 

4.1 Distance Between Patterns 

Several supervised learning methods use a metric distance to compare attribute values. 
[7]. We calculate the minimum distance between two patterns applying the minimum 
square method: 

     
1

2'

1

/)||()',( λi

n

i
i ppppd −= ∑

=

                                    (13) 

The overall frequency of pattern p represented by λ1, is used to add weight to the 
measure of distance. 

4.2 The strength of a Pattern 

We differentiate between strong and weak patterns according to the number of single 
class labels associated to each one of its n sub-patterns. If (nlq) i = 1, sub-pattern qi is 
strong. The contrary means a weak sub-pattern. We define function strongp(p) as a 
measure of pattern strength as follows: 

    strongp(p) = {i : 1..n. nlabels(qi) = 1 } |                    (14) 
Function strongp() varies from 0 to n and represents the total number of sub-patterns 

qi of p associated with just one label. When strongp (p) = n, the pattern strength is 
maximum. If (nlabels (qi) > 1 then (nlq) i = 0, a weak sub-pattern. An important prop-
erty of sub-patterns is that once the ith sub-pattern becomes associated with one label, 
then all subsequent pi+1, pi+2, pi+n sub-patterns also relate to the same label.  When i = n, 
class overlapping should disappear; we expect that the label attached to the nth element 
is the label attached to pattern p as a whole. This is our basic assumption: no two identi-
cal full patterns are related to different classes. If such case exists probably due to 
noise data, we consider the pattern as completely weak. We could not make any predic-
tion about its label. This same criterion has been used before. See [11] and [31].   

4.3 Exclusive Values 

We define exclusive values as the unique maximum and minimum interval values 

shown by a given pi ∈ p always associated with the same label in RT. From the point of 
view of a label, this represents its association with a given pi and some value k for all 
patterns p in RT. This can be represented with the following functions: 

         sr(i, k) = { r ∈ RT |  pat(r) = <p1,..,pi,..,pn> and pi = k } ; sl(i, k) = label((sr(i, k))  
and function      
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nsl(i,k) =  sl(i,k)                              (15)   
Then, we define exclusive values as: 

              α = ex(p)  = Ni : 1..n  (nsl(i, pi) = 1))                      (16) 
The number of pi values in pattern p that appear always related to a given class.  

4.4 The Majority Class 

Training set RT includes one or more subsets of records associated with the same class l; 

that is: RT = Rl1 ∪ Rl2 ∪ Rli ∪ Rlj where Rlj is the set of records with label lj. We define 
majority class as the class with maximum number of records in RT, calculated as fol-
lows:  

lmaj(RT) = max(R11,Rl2,..,Rlj )                                   (17) 
In populations with say, two classes l1 and l2, where class l1 is strongly predominant, we 
will predict l2, only when strong evidence is found  that this is the case [14]. 

5 Algorithm 
The algorithm is executed in two phases. The first corresponds to a pre-processing. It is 
the learning phase. It consists in reading sequentially all records in RT and applying to 
each one of them the function in (7) converting them into p patterns and storing them 

into a trie structure. In this process the label indicator and a frequency λi for each sub-
pattern qi, are stored as well. Hence, for every pattern in RT, the structure holds:       

  p = <(q1, nlq1, λ1), (q2, nlq2, λ2),..,(qn, nlqn, λn)>                      (18) 
We define P as the set of patterns in RT with freq () > zero. This is to say, all exist-

ing patterns in RT. Each one of them is associated with a known class l.  

  P = {p  freq (p) > 0 }                                        (19) 
The second phase is the actual classification process. This is the predictive phase. A 

new test file RX is read in sequentially; for each record r in RX, the algorithm performs 
the conversion px  = pat(r) generating the target pattern px of unknown class label. For 
each px

i value in px
, the algorithm looks in the stored pattern structure for the closest pi 

values using its distance metric obtaining pattern p+. This is the closest existing pattern 
in RT with respect to px. We repeat this operation in a slightly different way to obtain a 
“second” best pattern p-. These two patterns represent our solution hypotheses. One of 
them will be chosen to predict the class for the unseen pattern px.  

Patterns p+ and p- can be defined as follows: For any sub-pattern qi, we define the set 
of k integers next(qi). An integer k is in next(qi) if  <qi, k> if is a sub-pattern of P. Given 
px, then p+ and p- are defined recursively: 

 Let q+
i, q

-
i, and q

x
i, be sub-patterns of p+

, p
- and p

x respectively. Further, let be  
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q+
i +1 = <q+

i, k
+>, q-

i +1= <q-
i, k

-> and qx
i +1 = <qx 

i, k
x>. Thus, k+ is the closest integer in 

next (q+
i) to kx

 and k- is the closest integer in next (q-
i,) to kx.  

Pattern p+ is the closest to px in RT and is calculated first. If two identical patterns ex-
ist in RT and RX, then px = p+, and labels(px) = labels(p+.)  Pattern p- is searched next. 
The selected pattern must be different from p+, but as close as possible to px. If a k- 

value different from k+ is not available to add in next sub-pattern <q-
i, k

->, existing value 

k+ is used instead. When this is achieved, q-
i becomes distinct from q+

i,. Subsequent p-
i+1 

values are calculated as p+ was.  
Unseen px instances are predicted based on the closest distance from p+ and p- (13), 

plus three other parameters. The first is the strength of a pattern. From strength function 
in (14), we define the following two functions: 

         st+ = strongp(p+) and    st- = strongp(p-)                               (20) 
We consider a pattern strong, if the area were it belongs is clearly more disjunctive 

than others, with respect to a given class.  
Secondly, the algorithm sees whether patterns p+ and p- show the presence of exclu-

sive values. Applying the exclusive function ex() from (16) we can obtain parameters 

α+  and α- as follows: 

    α+ = ex(p+) and α- = ex(p-)                                              (21) 

Factor α represents a degree of confidence in the disjunctive quality of a pattern's set 
of attribute values. Its value increases from zero by one as more pi values present that 
feature. The algorithm will favor the pattern showing a larger ex (p) value. 

 If after applying these criteria the algorithm still cannot predict a label for px, then 
function lmaj() is used. 

 

 

 

 
             

                                          

 

 

 

                                                                                    

  p+ 

 p - 

  
       p x 

Region of the hyperspace ℜ n not 
covered by set P 

Exclusive 
value 

 

Figure 1. A new pattern px from RX. Patterns p+ and p- are obtained from RT. Pattern px is closer 
to p+ in the hyperspace. It shows an exclusive value corresponding to the same class as p+. 

6  Results    

We have performed experiments with our algorithm that we call Trie-Class on several 
datasets, and compared with published results in the literature. Datasets used for testing 
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comes from public domain in the web, mainly from the UCI[19]. Records with un-
known attribute values were removed or converted to its mean value. Using a random 
function each time on the complete file, the standard ten-fold cross validation procedure 
has been done for all results. Accuracy values are calculated for the test file. We have 
used around 60% of records for the training file RT; the remaining 40% for test file RX. 
Results obtained  with other tools were taken from several sources, namely [22], [20], 
[21], [24], [25] and [3]. 
  

Table I. Table I. Statlog Heart disease file. 
_____________________________________________ 
Method   Accuracy % Reference 
_____________________________________________ 

   Trie-CLASS  96.2  Ours 
Naï ve Bayes  83.6  WEKA, RA 
K*   76.7  WEKA, RA 
IB1   74.0  WEKA, RA 
1R   71.4  WEKA, RA 

T2   68.1  WEKA, RA 
MLP+BP  65.6  ToolDiag, RA 
FOIL   64.0  WEKA, RA 
RBF   60.0  ToolDiag, RA 
InductH   58.5  WEKA, RA 

 
Table II. Pima Indian Diabetes file. 

____________________________________________________________ 
Method   Accuracy %  Reference 
____________________________________________________________ 
Trie_CLASS  89.5   Ours 
LogDisc   77.7   Statlog 
Incnet   77.6   N.jankowski 
DIPOL92  77.6   Statlog 
Linear Discr. Analysis 77.2 -77.5  Statlog, Ster & Dobnikar 
SMART   76.8   Statlog 
GTO DT(5xCV)  76.8   Bennet and Blue 
ASI   76.6   Ster & Dobnikar 
kNN, k=22, Manhattan 75.5   Karol Grudzinski 
OC1(10 5-fold CV) 73.4 -75.4  Murthy et al. 
C4.5   73.0   Statlog             . 

 
Table III. Heart disease, Cleveland file. 

___________________________________________________________________ 
      Method      Accuracy %  Reference 
___________________________________________________________________        

 Trie_CLASS    98.2   Ours 
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 Incnet     90.0   N. Jankowski 
 28-NN,stand Euclidean, 7 features  85.1±       WD/KG 

LDA     84.5   Ster & Dobnikar 
Fisher discriminant analysis  84.2   Ster & Dobnikar 
16-NN, stand, Euclidean   84.0±0.6  NCU 

 25-NN, stand, Euclidean   83.6 ±0.5  NCU 
 FSM, 82.4-84% on test only  84.0   R. Adamczak 
 Naïve Bayes     82.5-83.4  Rafal, Ster, Dobnikar 
 C4.5(5xCV)    77.8   Bennet and Blue 

  
Table IV. Annealing file. (Sterling & Buntine). 

Attribute intervals used: width= 20, strength = 700, len = 50 and thick = 50. 
__________________________________________________ 
Method    Accuracy %          Reference 
 ________________________________________________ 

     Trie-CLASS   98.6  Ours 
   LB    96.4  Bing Liu 
   CBA    96.4  Bing Liu 
   RIPPER    95.4  Bing Liu 
   C4.5 (AdaBoost Ensemble) 95.1  Quinlan [24] 

    
Table V. Satellite image file (STATLOG version) 

We used only four attributes as suggested: 17, 18,19 and 20. 
________________________________________________ 
Method            Accuracy %  Time    
________________________________________________ 
Trie_CLASS  91.1            8 
k-NN   90.6    944 
LVQ    89.5      44 
Dipol92   88.9         111 
Radial   87.9       74 
Alloc80   86.8              28757 
IndCart   86.2                   9 
CART   86.2           14 
MLP+BP  86.1       53 
Bayesian Tree  85.3       10 
C4.5   85.0         1 
New ID   85.0       53 
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Table VI. Iris file. 
     _________________________________________ 

     Method   Accuracy %   Reference 
_______________________________________________________ 
   Trie-CLASS       97.9    Ours 
   C4.5        95.2   Quinlan 
   OC1        94.7 ± 3.1  Murthy 

   CART-AP       93.8 ± 3.7  Murthy 
   CART-LC       93.5 ± 2.9  Murthy 

   C1-AP        92.7 ± 2.4  Murthy        . 

 
Iris original data using intervals equals to 0.1 for all attributes produced 81.1% 

accuracy. If attributes are ordered as: < petal length, petal width, sepal length, sepal 
width, >, accuracy increased to 92.6%. If file was ordered and intervals were increased 
from 0.1 to 0.2 accuracy increased to the figure shown in this table.  

7   Implementation 

We have implemented Trie-CLASS, an instance-based learning algorithm [18] using a 
trie-like structure used to hold patterns from RT. Tries are essentially M-ary trees whose 
nodes are M-index vectors [14]. The key structure guides the branching. In our case, we 

index (or subscript) on patterns. Thus, pattern values of p = 〈p1, p2,..pi,..pn〉 are inserted 
one by one into the trie with branching on pi. To hold attribute domain intervals, each 
trie node is divided into an array without using any compression. See [1] and [2]. Array 
size is obtained applying the equal width discretization heuristic4. The number of inter-
vals is calculated as j = (upper - lower) / interval. The size of the interval determines the 

array size and is taken from a dictionary.  Each trie node’s cell holds the triple p = 〈qi, 

nlqi, λi〉. Value pi is indirectly represented by its array position. Value λ1 is a counter 
holding the frequency of sub-pattern qi. Class indicator nlqi shows the evolution between 
class overlapping situations. For two identical sub-patterns associated with more than 
one class, the indicator is undefined. Otherwise it represents sub-pattern(s) always re-
lated to the same class label. 

8 Conclusion 
A new classification algorithm using normalized instance-based patterns has been used. 
Tests on several datasets have shown very accurate results. In fact, results are better 
than all those compared in presented tables including the DNA dataset. See table in [3]. 

                                                
4 Ching [6] calculates for each attribute i Ai = m / (3 * C); m = number of training records. 
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We think this confirms that local hypotheses generated for each new record to be classi-
fied, produce more accurate results than one single hypothesis function.  Incorporating 
into the decision algorithm exclusive values, the strength of patterns and their weight 
has increase accuracy predictability up to 3-4% in some cases we have tested.    
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