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Abstract
In this work, the responses of Arabidopsis thaliana (L.) Heynh to trans-aconitic acid (TAA) were investigated. A. thaliana 
was grown in the presence of TAA in a concentration range of 400–1200 µM for 7 or 15 days. Changes in the morpho-
anatomy, cellular ultrastructure, and micromorphology of the roots were evaluated by light and transmission electron (TEM) 
microscopy. At concentrations below 1000 µM, TAA reduced the length of the primary roots, but induced an early appear-
ance of lateral roots and root hairs. At a concentration of 1200 µM, TAA suppressed the growth of seedlings. The images of 
longitudinal sections of root tips of seedlings treated with  IC50 of TAA (684 µM) revealed a reduced elongation zone with 
an increased differentiation zone. TEM images showed an increase in the number and volume of vacuoles, an increase in 
vesicles containing electron-dense material derived from plasmalemma, and electron-dense granules attached to the cell wall. 
Trans-aconitic acid induced an early differentiation of A. thaliana seedlings suggesting an interference in the auxin action. 
Changes in the cellular ultrastructure may represent vacuolar and extracellular accumulation of TAA, to remove excess TAA 
in the cytosol and mitochondria. An inhibition of aconitase and the chelation of intracellular cations may have contributed 
to cytotoxicity of TAA at 1200 µM concentration.

Keywords Organic acid · Auxin · Weed · Root system · Seedling · Crop protection

Introduction

Trans-aconitic acid (TAA) [(E)-1-propene-1,2,3-tricar-
boxylic acid], a natural isomer of the tricarboxylic acid 
cycle (TCA) intermediate cis-aconitate, occurs in nature 
in sugar-containing plants, such as sugar cane (Saccharum 
officinarum L.), wheat (Triticum aestivum L.) (Thompson 
et al. 1997), maize (Zea mays L.) (Brauer and Teel 1982), 
and sweet sorghum (Sorghum bicolor L.) (Klasson 2017). 

Trans-aconitic acid is also present in the forage species 
Urochloa sp. (Voll et al. 2004; Brum et al. 2009) and in 
medicinal plants, such as Asarum europaeum (Krogh 1971). 
It is also produced by bacteria of the genus Pseudomonas 
(Yuhara et al. 2015).

Trans-aconitic acid is synthesized by the interconver-
sion between cis-aconitate and TAA, mediated by aconitate 
isomerase in both microbes and plants (Klinman and Rose 
1971; Thompson et al. 1990), and by the dehydration of 
citric acid in plants catalyzed by citrate dehydratase (Brauer 
and Teel 1981, 1982). Although closely related to the TCA 
cycle, TAA is an effective inhibitor of mitochondrial and 
cytosolic aconitase and thus it is compartmentalized in vacu-
oles (Saffran and Prado 1949; Eprintsev et al. 2015).

The role of TAA in plants is not clear, but there is evi-
dence that it acts as an antifeedant, (Katsuhara et al. 1993), 
in resistance against diseases (Kidd et al. 2001; Rémus-Borel 
et al. 2006) and in aluminum resistance (Kidd et al. 2001; 
Wenzl et al. 2002; Mariano and Keltjen 2003). The role 
of TAA and its methylated derivative as a phytoalexin has 
also been suggested based on its antifungal activity against 
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Cladosporium cucumerinum (Rémus-Borel et al. 2006), in 
Si amendment, and in pathogen resistance in wheat plants 
(Rémus-Borel et al. 2009). A nematicidal effect of TAA syn-
thesized by Bacillus thuringiensis has been suggested by Du 
et al. (2017). These bioactivities suggest a great potential of 
TAA and its methylated derivative in crop protection.

Because TAA can be extracted with high yields and 
purity from sugar cane molasses, which contains 0.5–3.0% 
of TAA (Dorman et al. 2015), its use for industrial purposes 
has been proposed, such as in the production of biodegrad-
able polyesters (Dorman et al. 2015). However, studies on 
the effects of exogenous TAA on plants are scarce.

Herbicidal action has been suggested based on the sup-
pressive action on the emergence of some weeds including 
Ipomoea grandifolia (Dammer) O'Donell, Bidens pilosa L., 
Euphorbia heterophylla L., and Sida rhombifolia L. (Voll 
et al. 2010; Foletto et al. 2012). Phytotoxicity of exogenous 
TAA in the soybean has been reported by Coelho-Bortolo 
et al. (2018) but at higher doses of TAA than those reported 
in weeds. Although TAA is an efficient inhibitor of mito-
chondrial aconitase, inhibition of I. grandifolia is not related 
to inhibition of enzyme activity, since root apex respiration 
and respiration driven by citrate oxidation in mitochondria 
isolated from the roots of I. grandifolia are not altered by 
TAA (Foletto et al. 2012).

Alterations in seedling growth by phytotoxicants added 
to the soil are generally associated with changes in the root 
system, which can be observed in the cellular ultrastructure. 
Arabidopsis thaliana (L.) Heynh, an herbaceous plant of 
the Brassicaceae family, has been widely used as a model 
plant for studies on the regulation of root development, the 
responses to nutritional changes, and the effects of natural 
and synthetic compounds (Pang and Meyerowitz 1987; Wil-
liamson et al. 2001; Rahman et al. 2002; Müller and Schmidt 
2004; Petersson et al. 2009; Pelagio-Flores et al. 2012; Kel-
lermeier et al. 2014; Sánchez-Moreiras et al. 2018).

In the context of the potential utilization of TAA for agri-
cultural purposes, in this work we investigated the mode of 
action of exogenous TAA by examining changes in morpho-
anatomy, cellular ultrastructure, and micromorphology in 
roots of A. thaliana seedlings.

Materials and methods

Plant material and growth conditions

Seeds of A. thaliana (L.) Heynh., ecotype Columbia (Col-
0), were surface-sterilized with 50% ethanol (3 min) and 
0.5% sodium hypochlorite (3 min), both in 0.01% Triton, and 
washed three times with distilled water. Subsequently, the 
seeds were vernalized in 0.1% agar (w/v) at a temperature of 
4° C, for 48 h, and then transferred to the top of square Petri 

dishes (100 × 15 mm) containing 0.8% agar (w/v) supple-
mented with macro- and micronutrients (Murashige–Skoog 
basal medium, M5519  Sigma-Aldrich) and 1% sucrose 
(w/v); the pH was adjusted to 6.0.

The stock solutions of trans-aconitic acid were dissolved 
in distilled water, adjusted to pH 7.0 with KOH, then added 
to the agar at the proportion of 0.1% (v/v) to obtain the final 
concentrations of 400, 600, 800, 1000 and 1200 µM. For 
each concentration, 24 seeds were sown per square dish 
under a laminar flow hood, the dishes were sealed with 
"Leukopor" (BSN Medical) and placed upright in a growth 
chamber for promoting geotropism, at a temperature of 
22 °C, a photoperiod of 8 h light (120 µmol/m2s), and a rela-
tive humidity of 55%. After 15 days, the primary root length 
was measured and the dose–response curve was used to cal-
culate the  IC50 for root growth inhibition. Seedlings treated 
with  IC50 TAA for 7 and 15 days were randomly selected to 
photograph the whole root structure in an Olympus SZX9 
stereoscopic microscope.

Light and transmission electron microscopy (TEM) 
of longitudinal sections of Arabidopsis roots

In total, 40 roots of A. thaliana grown in the absence (con-
trol) or presence of the  IC50 of TAA for 7 and 15 days 
were used for microscopic studies. The apical meristems, 
approximately 0.5 cm, were cut, immersed in 0.1 M caco-
dylate buffer (pH 7.2) with 5% glutaraldehyde fixative, and 
incubated for 4 h. Subsequently, three washes of 4 h each 
were performed with 0.1 M cacodylate buffer (pH 7.2). After 
washing, the samples were immersed in 0.1 M cacodylate 
buffer with 2% osmium tetroxide for 3 h and in 10% acetone 
with 2% uranyl for 1 h. For dehydration, the samples were 
immersed in increasing dilutions of acetone: 50% acetone 
(2 × 30 min), 75% acetone (2 × 1 h), 80% acetone (2 × 1 h), 
95% acetone (2 × 1 h), and 100% acetone (2 × 2 h). After this, 
impregnation was started in the rotor with Spurr resin: 1:3 
Spurr in acetone (3 × 2 h), 2:2 Spurr in acetone (3 × 2 h), and 
3:1 Spurr in acetone (2 × 2 h + 3 × 1 h); all dehydration and 
impregnation steps were carried out at 4 °C.

Inclusion in Spurr resin was performed in the rotor at 
room temperature. Subsequently, the samples were placed in 
resin molds and heated in an oven at 60 °C for 2 days. Semi-
fine cuts of 0.7 µm and ultrathin cuts of 50–70 nm were done 
for light and electron microscopy, respectively.

The semi-fine sections were stained with toluidine blue 
and observed under a Nikon Eclipse 800 light microscope 
attached to a Nikon DS-U2 digital camera with the NIS-
Elements D 2.30 SP1 software.

The ultrathin sections were collected on copper grids of 
100 and 200 "mesh" and contrasted with uranyl acetate (2%) 
for 30 min and with lead citrate (Reynolds 1963) for 12 min 
(2-min washes with ultrapure water were done after each 
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step). Ultrathin sections were observed with a TEM JEOL 
JEM-1010 (100 kV) (Peabody, MA, USA) equipped with 
an Orius-CCD digital montage plug-in camera (Gatan Inc., 
Gatan, CA, USA) and a Gatan Digital micrograph software 
(Gatan, Inc.).

Statistical analysis

All the experiments were carried out in a completely ran-
domized design with five replications for dose–response 
curve. The data were expressed as mean ± standard error 
(S.E.) and analyzed using analysis of variance (ANOVA). 
Significant differences between means were identified by 
Duncan's multiple range test, and P ≤ 0.05 was adopted as 
the minimum criterion of significance. The  IC50 values were 
calculated by numerical interpolation through a cubic spline 
function of GraphPad Prism 5 software. Statistical analyses 
were performed using the Statistic™ software package.

Results

Root morphology

Representative images of A. thaliana seedlings grown in 
the absence (control) or presence of TAA at a concentra-
tion range of 400–1200 µM for 15 days are shown in Fig. 1. 
Trans-aconitic acid significantly altered root morphology, 
inducing a reduction of primary root length along with 
an increase in the number of lateral roots. At the highest 
concentration of 1200 µM, the development of both aerial 
parts and roots was extremely reduced compared with the 

untreated seedlings. Figure 2 shows the dose-dependent 
reduction in the length of primary roots with an  IC50 of 
684.31 µM. 

Stereoscopic microscope images of root tips from 7- and 
15-day-old untreated seedlings (Fig. 3a, c, e, g) show well-
characterized differentiation and elongation zones, with a 
progressive development of root hairs in the differentiation 

Fig. 1  A. thaliana seedlings grown for 15 days in the absence (control, a) and presence of 400 µM (b), 600 µM (c), 800 µM (d), 1000 µM (e) and 
1200 µM (f) trans-aconitic acid

Fig. 2  Dose–response curves of the effect of trans-aconitic acid on 
the length of primary roots of A. thaliana at the 15th days of treat-
ment. Values are means ± standard error of 5 series of independent 
experiments. The significant differences between the mean values of 
the treatments and the controls are indicated by asterisks and identi-
fied by analysis of variance with a Duncan's test (P < 0.05)
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zones. Seedlings treated with  IC50 TAA (684 µM) for 7 days 
exhibited a precocious initiation of lateral roots and a reduc-
tion in the number and length of root hairs (Fig. 3b, d). Dif-
ferent from the root tip of control seedlings, TAA-treated 
seedlings exhibited bulges of root hairs near the root tip 
(Fig. 3d). After 15 days of treatment a highly branched root 
system with an abundance of long hairs in the lateral roots 
was observed (Fig. 3f, h). The root tip exhibited asymmetric 
rows of cells and ectopic root hairs, which were longer com-
pared with those found at the 7th day of treatment (Fig. 3b, 
d).

The longitudinal sections of roots observed by light 
microscopy (Fig. 4) showed that treatment with TAA did 
not cause significant changes in the tissue organization in 
the root cap, elongation, and differentiation zones when 
compared with the control (Fig. 4a, c) with symmetric rows 
of cells. There was, however, a clear change in the division 

pattern of root zones, with a relative reduction in the elon-
gation zone and a consequent increase in the differentiation 
zone. These findings were observed on the 7th day (Fig. 4b) 
and on the 15th day of treatment with TAA (Fig. 4d).

Root cell ultrastructure

Comparison of the ultrastructural analysis of root tip 
cell structure and organization in seedlings of A. thali-
ana grown for 7 or 15 days in the absence (Figs. 5, 6) 
or presence of TAA (Figs. 7, 8) revealed modifications 
in different cell organelles, particularly in vacuoles and 

Fig. 3  Stereoscopic images of root tips of A. thaliana grown in the 
absence or presence of  IC50 trans-aconitic acid (684  µM). Plants 
grown for 7 days: control (a, c) and trans-aconitic acid (b, d). Plants 
grown for 15 days: control (e, g), trans-aconitic acid (f, h)

Fig. 4  Median longitudinal section of root tips from A. thaliana 
grown in the absence or presence of the  IC50 trans-aconitic acid 
(684  µM). Plants grown for 7  days: control (a), trans-aconitic acid 
(b). Plants grown for 15 days: control (c), and trans-aconitic acid (d). 
MR meristematic zone, EZ elongation zone, DZ differentiation zone
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mitochondria, and the appearance of electron dense mate-
rials in intracellular vesicles or in the cell corners. In both 
7- and 15-day-old seedlings, an increased number of vacu-
oles containing dense granular material were observed in 
the cytosolic space. In the interspace between cell wall and 
plasma membrane, it was found a high number of vesicles, 

indicating increased secretory activity. In addition, cell 
corners appeared swollen compared to the control and rich 
in electron-dense deposits.

Increased numbers of mitochondria with variable shapes 
were observed in 7-day-old TAA-treated cells, including 
large and extended mitochondria, characteristic of dividing 

Fig. 5  TEM micrographs of root tip cells from a 7-day-old A. thali-
ana seedling (Control), showing a complete cell with centrally 
located nucleus (a, c), nucleus with one or two nucleoli (a, b), a num-
ber of small vacuoles (a, c), mitochondria of various shapes (a–c), 
vesicles (d) amyloplasts (b), endoplasmic reticulum (d, e), Golgi 

apparatus (d, e), cell wall with plasmodesmata (e). AP Amyloplasts, 
CC cell corners, CW cell wall, ER endoplasmic reticulum, G Golgi 
apparatus, M mitochondria, Nue nucleoli, N nucleus, V vacuoles, Ve 
vesicles, P plasmodesmata
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mitochondria. In 15-day-old TAA-treated cells, it was also 
found enlarged mitochondria with irregular shapes, but no 
evidence of broken mitochondria or significant changes in 
their cristae stromal translucency. In both 7- and 15-day-old 
TAA-treated seedlings no significant change was observed 
in the cell format, their nuclei, and in the endoplasmic 

reticulum and the Golgi apparatus when compared with 
untreated ones.

Fig. 6  TEM micrographs of root tip cells from A. thaliana (Control) 
grown for 15  days, showing features similar to those of 7-day-old 
root tip cells regarding the format of complete cell, nuclei (a–c), the 
number and shapes of mitochondria and vacuoles (a–c), endoplasmic 

reticulum (d, e), Golgi apparatus (d, e), cell wall with plasmodesmata 
(c), and amyloplasts (a). AP Amyloplasts, CW cell wall, ER endoplas-
mic reticulum, G Golgi apparatus, M mitochondria, Nue nucleoli, N 
nucleus, V vacuoles, Ve vesicles, P plasmodesmata
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Discussion

This study revealed that the exogenous application of TAA 
at a concentration range of 400–1200 µM exerted significant 

changes in the development of A. thaliana seedlings, with 
a pronounced alteration of root architecture. Despite a sub-
stantial reduction in primary root length, the TEM images 
of root tips of seedlings grown in the presence of TAA at 

Fig. 7  TEM micrograph of root tip cells  of A. thaliana grown for 
7 days in the presence of  IC50 trans-aconitic acid, showing a complete 
cell with nucleus not significantly different from that of untreated 
ones (a), amyloplasts (a), increased number of mitochondria and 
vacuoles (a–d), presence of cell phragmoplast (b), mitochondria with 
various sizes (c), including a huge and extended mitochondria (d), 
swollen cell corners with accumulation of electron-dense deposits (e), 

numerous vesicles in the plasma membrane/cell wall interspace (d, 
e), vacuoles containing dense granulose material and some of them 
with irregular shapes (c, d). AP Amyloplasts, CC cell corners, CW 
cell wall, ER endoplasmic reticulum, M mitochondria, Nue nucleoli, 
N nucleus, V vacuoles, Ve vesicles, Ph phragmoplast, P plasmodes-
mata
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the  IC50 concentration (684 µM) did not reveal structural 
disorganization of the cell layers or the presence of hyper-
trophic or ruptured cells, alterations normally found under 
cell death conditions (Burgos et al. 2004; Ishii-Iwamoto 

et al. 2012; Diaz-Tielas et al. 2012). Apparently, there was 
no cellular energy deficit, since the growth of aerial parts of 
A. thaliana seedlings grown in the presence of 400–800 µM 
TAA was not significantly altered. However, a predominance 

Fig. 8  TEM micrograph of root tip cells of A. thaliana grown for 
15 days in the presence of  IC50 trans-aconitic acid, showing a com-
plete cell with an increased number of mitochondria (a, b), presence 
of amyloplasts (a), and no significant differences in the nuclei (b, c) 
compared with those from untreated cells, enlarged vacuoles contain-
ing electron-dense material (b, c), enlarged mitochondria with irregu-

lar shapes (c, d), membrane-bound structures containing granulose 
material (d, e), swollen cell corners with accumulation of electron-
dense deposits (be); vesicles in the plasma membrane/cellwall inter-
space containing granulose material (d, e). AP Amyloplasts, CC cell 
corners, CW cell wall, ER endoplasmic reticulum, G Golgi apparatus, 
M mitochondria, Nue nucleoli, N nucleus, V vacuoles, Ve vesicles
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of cytotoxic effects was observed at the highest dose of 
1200 µM TAA, with a substantial reduction in the develop-
ment of both roots and aerial parts of the seedlings.

The morphological and ultrastructural changes of A. 
thaliana seedlings at lower doses of TAA are, most prob-
ably, reflecting the direct effects of TAA and the adaptive 
responses of cells to higher TAA accumulation in the cells. 
TAA caused a reduction of the distance between the mer-
istematic zone and the zone of lateral roots formation, with 
precocious appearance of lateral roots and root hairs just 
above the root apex. These findings suggest a premature 
exit of cells from the meristematic zone, probably due to 
the loss of quiescent center identity, an action similar to 
that induced by farnese in A. thaliana (Araniti et al. 2017). 
These changes suggest an interference in the homeostasis of 
hormones that act in an integrated way in the development of 
the root system, including auxins, cytokinins, abscisic acid, 
ethylene and gibberellins (Clouse and Sasse 1998; Depuydt 
and Hardtke 2011; Ubeda-Tomás et al. 2012; Pacifici et al. 
2015; Araniti et al. 2017).

It seems that TAA interfered with the development of 
A. thaliana as many natural and artificial substances that 
act in a similar mode to the exogenous auxins. In general, 
these auxinic compounds induce elongation of primary 
roots in low concentrations and/or inhibition in higher con-
centrations, promote the growth of stems, lateral/adventi-
tious roots, and root hair, and facilitate root gravitropism 
(Casimiro et al. 2003; Benková et al. 2003; Laskowski et al. 
2006; Pelagio-Flores et al. 2012; Pacurar et al. 2014; Wang 
et al. 2016). The regulatory actions of auxin on root devel-
opment depend on the reactions of the synthesis, conjuga-
tion, transport, signaling, and/or metabolization (Diekmann 
et al. 1995; Friml et al. 2003; Cheng et al. 2007), defining 
the effective concentrations of auxins in different zones of 
the primary roots along its longitudinal axis (Swarup et al. 
2005; Verbelen et al. 2006; Wang et al. 2016). The auxins 
can be protonated or deprotonated depending on the pH and 
these state of protonation alter their affinity to transporters 
or receptors and the diffusability across membranes (Swarup 
et al. 2005; Verbelen et al. 2006; Hachiya et al. 2014; Wang 
et al. 2016). It seems plausible that changes in the pH of dif-
ferent parts of root tissues play a role in the mode of action 
of TAA in A. thaliana. As a low molecular organic acid, 
the exogenous TAA may penetrate and accumulate in many 
parts of the root tissues, changing the local pH. By crossing 
the cell plasma membrane in the undissociated form, TAA 
can lead to a decrease in the internal cell pH when protons 
are internally released, which can also result in TAA accu-
mulation in the dissociated form (Piper et al. 2001; Klasson 
2017). Thus, the effects of TAA on root development may 
be, partly at least, mediated by changes in IAA distribution, 
an action secondary to TAA-induced changes in the pH in 
root tissues.

Access of TAA to various tissues and cell compartments 
was evidenced by TEM images, showing an increase in the 
vacuoles and membrane vesicles in TAA-treated seedlings. 
It is known that organic acids such as malate and citrate 
are accumulated in the vacuole, reaching concentrations 1 
to 10-fold higher than in the cytosol, a process favored by 
low vacuolar pH values (Osmond 1976; Chang and Roberts 
1991; Gout et al. 1993). The increase in the number and vol-
ume of vacuoles, along with the deposition of dense materi-
als observed in TEM images, may represent a mechanism 
to prevent excessive TAA in the cytosol and mitochondria, 
forcing it into a limited area. Besides accumulation in vacu-
oles, TEM images showed vesicles derived from the invagi-
nations of plasmalemma also containing dense materials and 
electron-dense granules attached to the cell wall. These find-
ings suggest active apoplastic and symplastic movements of 
TAA in the roots of A. thaliana, changing the pH of various 
tissue compartments.

The accumulation of large amounts of TAA in the vesi-
cles and/or in the cell wall was possibly favored because of 
its ability to chelate intracellular cations such as  Ca2+,  Mn2+, 
 Mg+2, or  Fe2+. This property is the basis of the exudation 
of many organic acids such as malate, malonate, citrate, and 
aconitate from the roots to the soil to favor nutrient acquisi-
tion and to protect plants against metal detoxification (Jones 
1998). The binding of TAA with magnesium is also the 
cause of the grass tetany syndrome in ruminants (Thompson 
et al. 1997). It seems that electron-dense particles, seen in 
vacuoles, vesicles and cell walls were derived from insoluble 
salts of TAA with cellular cations. This accumulation of sub-
stances outside cells usually represents a protective mecha-
nism of the cells to foreign or self-produced substances, a 
phenomenon that has been observed in the protection against 
poisoning ions such as cadmium (Khan et al. 1984) and lead 
(Phang et al. 2011).

The vacuolar and cell wall accumulation of TAA may 
play a role in the tolerance of A. thaliana to TAA at concen-
trations lower than 1000 µM. By preventing the circulation 
of excessive free TAA in the cytosol and mitochondria, the 
inhibition of mitochondrial and cytosolic aconitase could be 
prevented (Saffran and Prado 1949; Eprintsev et al. 2015). 
This assumption is in accordance with the lack of signs of 
metabolic disturbances in TAA-treated seedlings. Under an 
energy deficit condition, numerous disturbances in the cel-
lular ultrastructure are expected, such as in chalcone-treated 
A. thaliana roots (Diaz-Tielas et al. 2012), in which the cells 
become irregular, swollen, and deformed, and the different 
zones cannot be longer distinguished in the apical meris-
tem. Besides not exhibiting such alterations, many signs of 
energy-dependent processes were observed in TAA-treated 
cells, including an active cell and mitochondria division seen 
in TEM images of root tips and the development of numer-
ous lateral roots.
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The mechanisms of intra- and extracellular accumulation 
of TAA must be kinetically controlled and dependent on 
exogenous concentrations of TAA. Possibly, at a higher con-
centration of 1200 µM, these mechanisms reached saturation 
as the development of A. thaliana was strongly inhibited. 
Under this condition, free TAA may reach concentrations 
inhibitory to aconitase. The inhibition of mitochondrial aco-
nitase by TAA is higher than that of cytosolic aconitase, and 
thus, the citrate may be directed to isocitrate formation in the 
cytosol, disturbing TCA functioning (Eprintsev et al. 2015). 
Magnesium is an essential cofactor for aconitase activity, 
and the binding of free magnesium by TAA also contrib-
utes to aconitase inhibition (Blair 1969). Other enzymes 
dependent on  Mg2+ or other cations, such as  Ca2+, may also 
be affected by TAA at a higher concentration. Therefore, 
besides mitochondrial energy metabolism, a systemic meta-
bolic dysfunction could be expected.

The equilibrium between cellular protection and cytotox-
icity against exogenous TAA likely depends on the species. 
In Glycine max L., Coelho-Bortolo et al. (2018) observed 
alterations in root growth at TAA concentrations higher than 
2000 µM and alteration of photosynthetic parameters only at 
concentrations higher than 7500 µM. In the weed species I. 
grandifolia, TAA inhibits seedling growth in a concentration 
range of 30–300 µM (Foletto et al. 2012), i.e., well above 
the cytotoxic concentrations in Glycine max. TAA seems 
to interfere with weeds at concentrations well below those 
toxic to crops.

Conclusions

The data presented here reveal that the roots of A. thaliana 
are highly sensitive to exogenous TAA. The alterations in 
the root morphology and ultrastructure were suggestive of 
adaptive responses to exclude free TAA from the cytosolic 
and mitochondrial space, thus preserving cell metabolism. 
The movements of TAA from the external medium into the 
cells probably changed the pH along the primary root, affect-
ing the actions of auxins, as suggested by the early appear-
ance of lateral roots and root hairs. At concentrations higher 
than 1000 µM, the adaptive responses seem not be longer 
effective leading to cytotoxic effects. Besides contributing 
to an understanding of the mode of exogenous TAA action 
on initial seedling growth, the results of the present work 
highlight the potential of TAA and also of cover plants rich 
in TAA, such as sweet sorghum and Urochloa, to reduce 
weed infestations. A decrease in weed competitiveness due 
to the actions of a natural compound can contribute to mini-
mize crop yield losses and to decrease the use of synthetic 
herbicides.
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