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A B S T R A C T

Probabilistic phylogenetic tree reconstruction is traditionally performed under a best-fitting substitution model 
of molecular evolution previously selected according to diverse statistical criteria. Interestingly, some recent 
studies proposed that this procedure is unnecessary for phylogenetic tree reconstruction leading to a debate in 
the field. In contrast to DNA sequences, phylogenetic tree reconstruction from protein sequences is traditionally 
based on empirical exchangeability matrices that can differ among taxonomic groups and protein families. 
Considering this aspect, here we investigated the influence of selecting a substitution model of protein evolution 
on phylogenetic tree reconstruction by the analyses of real and simulated data. We found that phylogenetic tree 
reconstructions based on a selected best-fitting substitution model of protein evolution are the most accurate, in 
terms of topology and branch lengths, compared with those derived from substitution models with amino acid 
replacement matrices far from the selected best-fitting model, especially when the data has large genetic di-
versity. Indeed, we found that substitution models with similar amino acid replacement matrices produce similar 
reconstructed phylogenetic trees, suggesting the use of substitution models as similar as possible to a selected 
best-fitting model when the latter cannot be used. Therefore, we recommend the use of the traditional protocol of 
selection among substitution models of evolution for protein phylogenetic tree reconstruction.   

1. Introduction

Phylogenetic reconstructions are common analyses for understand-
ing multiple biological processes such as the evolution of genes and 
proteins (Lijavetzky et al. 2003), the emergence of protein function 
change (Pellegrini et al. 1999; Pascual-García et al., 2010), the molec-
ular clock and its violations (Pascual-García et al. 2019), the strength of 
selection (Dutheil et al. 2012; Del Amparo et al. 2021) and the stability 
and function of ancestral sequences (Liberles 2007), among others. 
Although some of the first phylogenetic reconstruction methods based 
on the maximum parsimony approach ignored patterns of substitution 

among character states (Fitch 1971), subsequent [and more accurate 
(Zhang and Nei 1997)] methods based on probabilistic approaches [i.e., 
maximum likelihood (ML) or Bayesian inference (Felsenstein 1988; 
Nascimento et al. 2017; Posada and Crandall 2021)] considered these 
patterns by implementing substitution models of molecular evolution 
(Arenas 2015) into the likelihood function (Yang 2006). For more than 
20 years, a variety of works found that phylogenetic tree reconstructions 
based on probabilistic approaches should consider a substitution model 
of evolution that best fit with the study data to obtain accurate in-
ferences in terms of likelihood (Yang et al. 1994; Zhang and Nei 1997; 
Zhang 1999; Minin et al. 2003; Lemmon and Moriarty 2004). Because of 
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that, the selection of the best-fitting substitution model [among a set of 
substitution models implemented in well-established likelihood-based 
frameworks such as ModelTest (Posada and Crandall 1998) and ProtTest 
(Abascal et al. 2005), among others (Kalyaanamoorthy et al. 2017; 
Lefort et al. 2017)] is traditionally included in the protocol of probabi-
listic phylogenetic tree reconstruction (Anisimova et al. 2013). Never-
theless, a few recent studies suggested that the selection of a substitution 
model of evolution is unnecessary due to observing similar phylogenetic 
trees reconstructed under different substitution models. Most of those 
studies focused on DNA models (Abadi et al. 2019; Tao et al. 2020). At 
the DNA level, the probability of correctly assigning by chance a 
particular nucleotide is high (1/4) compared to that at the protein level 
(1/20). As a consequence, at the nucleotide level one could use an un-
informative substitution model but still obtain the correct nucleotide 
state by chance (probability of 1/4) while that would be much less likely 
at the amino acid level (probability of 1/20). This suggests that the 
consequences of substitution model selection could be detected easier at 
the amino acid level, since at this level obtaining the correct state is less 
likely by chance and requires the information provided by the model. At 
the protein level, the study (Spielman 2020) is, to our knowledge, the 
only one suggesting that the selection of a substitution model of protein 
evolution is not required for proper phylogenetic tree reconstruction. 
However, we noted that the methodology applied in that study could be 
biased (see Discussion). On the other hand, some studies indicated that 
the development and application of new substitution models is crucial to 
obtain more realistic ancestral protein reconstructions (Arenas et al., 
2015; Arenas and Bastolla, 2020; Duchêne et al., 2016; Sumner et al., 
2012). 

In order to shed light on this topic, here we evaluated the conse-
quences of selecting among well-established empirical substitution 
models of protein evolution, which are traditionally used in protein 
phylogenetics, on phylogenetic tree reconstruction. We applied the 
traditional pipeline used for validation in phylogenetics and that 
included the analysis of molecular data simulated upon previously 
simulated evolutionary histories (Hoban et al. 2012; Arenas, 2012) and 
the analysis of a variety of real protein families. We also explored how 
the genetic diversity of the study data could affect the consequences of 
substitution model selection on protein phylogenetic tree reconstruc-
tion. Overall, we found that the accuracy of the reconstructed phylo-
genetic trees increases when using a best-fitting substitution model and 
models similar to that best-fitting model, particularly for data with large 
genetic diversity. 

2. Materials and methods 

In this section we present the methodologies to evaluate the influ-
ence of substitution model selection on protein phylogenetic tree 

reconstruction by the analyses of real and simulated protein data. 

2.1. Analysis of the influence of substitution model selection on 
phylogenetic tree reconstruction using real protein families 

Following a previous study (Arenas et al. 2015), we downloaded 12 
protein families from the PFAM database (Finn et al. 2014) with curated 
sequences (seed) that present variable sequence length, sample size and 
sequence identity (Table 1). Protein families from PFAM present ho-
mology and thus, in contrast to other databases, are convenient to 
perform phylogenetic tree reconstructions. As a prudent procedure, we 
realigned the sequences with MAFFT (Katoh and Standley 2013). For 
every multiple sequence alignment, we identified the best and worst- 
fitting substitution models of protein evolution implemented in the 
framework ProtTest3 (Darriba et al. 2011) (Table 1). Next, we inferred 
ML phylogenetic trees with RAxML-NG (Kozlov et al. 2019) under the 
selected best-fitting, worst-fitting, JTT (Jones et al. 1992) (which is one 
of the most frequently used substitution model), HIVw (Nickle et al. 
2007) and MtMam (Yang et al. 1998) substitution models, which include 
a variety of close and distant substitution models in terms of relative 
substitution rates of their amino acid exchangeability matrices (see 
Figs. 1 and S1; Supplementary Material). Finally, we calculated the 
distance between phylogenetic trees inferred under the best and worst- 
fitting substitution models, the best-fitting and JTT substitution models 
and, HIVw and MtMam substitution models. For this we applied the 
well-established metrics Robinson-Foulds (Robinson and Foulds 1981), 
Branch score (Kuhner and Felsenstein 1994) and K tree score (Soria- 
Carrasco et al. 2007) that assess the distance between two phylogenetic 
trees. Notice that these metrics quantify discordances between phylo-
genetic trees in terms of topology (Robinson-Foulds; i.e., comparing two 
trees, if every tree has 1 clade that is not present in the other tree then RF = 1 
+ 1 = 2) or both topology and branch lengths (Branch score and K tree 
score) (Robinson and Foulds 1981; Kuhner and Felsenstein 1994; Soria- 
Carrasco et al. 2007). Indeed, they are based on different algorithms and 
thus their results can quantitatively differ. In addition to the 12 cited 
protein families, we applied the same procedure to analyze 200 real 
protein families from (Spielman 2020) by comparing phylogenetic trees 
inferred under the best-fitting, the worst-fitting and JTT substitution 
models. 

In a subsequent analysis based on the 12 protein families (Table 1), 
we evaluated the particular influence of considering the empirical 
amino acid frequencies (+F) and models of sequence evolution by the 
proportion of invariable sites (+I) and/or the variation of the substitu-
tion rate among sites according to a gamma distribution (+G) (Yang 
1994) on the phylogenetic tree reconstruction. In particular, we calcu-
lated the distance between phylogenetic trees inferred under only the 
exchangeability matrix of the best-fitting substitution model and under 

Table 1 
Real protein families analyzed in this study. For each studied protein family the table shows the PFAM code, number of sequences, sequence length (number of 
amino acids), sequence identity (average of sequence identities from all the pairs of sequences of the corresponding multiple sequence alignment, ranging from 0 to 1) 
and, best-fitting and worst-fitting substitution models selected with ProtTest3. We also analyzed 200 real protein families presented in (Spielman 2020).  

Protein family PFAM 
code 

Number of 
sequences 

Sequence 
length 

Sequence 
identity 

Best-fitting substitution 
model 

Worst-fitting substitution 
model 

Ferredoxin PF05996 26 278  0.27 LG + I + G MtMam 
Cytochrome P450 PF00067 50 597  0.31 LG + I + G MtMam 
Triosephosphate isomerase PF00121 41 275  0.34 LG + I + G MtMam 
Retroviral aspartil protease PF00077 8 123  0.35 rtREV + G MtMam 
Glucokinase PF02685 36 393  0.45 LG + I + G MtArt 
Pancreatic ribonuclease PF00074 149 154  0.46 JTT + I + G MtArt 
Rubredoxin PF00301 24 52  0.53 WAG + I + G MtMam 
Heat shock protein PF00012 27 691  0.55 LG + G MtMam 
Oxysterol-binding protein PF01237 363 1144  0.64 LG + I + G MtMam 
Homogentisate 1,2- 

dioxygenase 
PF04209 11 443  0.64 LG + G MtMam 

Kinesin PF00225 71 688  0.66 LG + I + G MtMam 
DNA ligase PF13298 159 194  0.67 LG + I + G MtArt  

R. Del Amparo and M. Arenas                                                                                                                                                                                                               



Gene 865 (2023) 147336

3

the exchangeability matrix with + F, +I, +G, +I + G and + F + I + G. 

2.2. Analysis of the influence of substitution model selection on 
phylogenetic tree reconstruction using simulated protein data 

We used simulated data to evaluate the distance between phyloge-
netic trees inferred under the true (simulated) substitution model and 
phylogenetic trees inferred under other (close or far from the true 
comparing their exchangeability matrices; Figs. 1 and S1) substitution 
models. First we simulated phylogenetic trees with random topologies 
using the function rtree implemented in the library ape of R (Paradis 
et al. 2004). Next, for each simulated tree, we simulated protein 
sequence evolution (we assumed a sequence length of 250 amino acids, 
which is a length commonly observed in nature, as shown in Table 1, 
and presented sufficient molecular signatures of evolutionary patterns to 
distinguish between substitution models) under a particular substitution 
model with the function simSeq implemented in the phangorn library of R 
(Schliep 2011). We arbitrarily applied the HIVw substitution model 
(Nickle et al. 2007) (true model) in the simulations (but see later sim-
ulations under other models). We evaluated the influence of substitution 
model selection on phylogenetic tree reconstruction in 6 evolutionary 
scenarios that included simulated data with different number of protein 
sequences (50 and 100) and variable sequence identity (pairwise 
sequence comparisons, 0.2, 0.5 and 0.8). For each evolutionary scenario, 
we simulated a total of 100 multiple sequence alignments. As a control 
check of our simulations of protein evolution, we applied ProtTest3 to 
verify that the true substitution model was selected as the best-fitting 
substitution model (among all the substitution models implemented in 
the framework) in all the simulated data. Next, for each simulated 
dataset, we reconstructed ML phylogenetic trees with RAxML-NG under 
the HIVw (true model), HIVb, JTT, Dayhoff, MtMam and MtArt 

substitution models. These substitution models were selected due to 
their common use in phylogenetics (i.e., JTT) and, close (i.e., HIVw), 
intermediate (i.e., Dayhoff) or far (i.e., MtMam) distance of their 
exchangeability matrices (Figs. 1 and S1) with that of the true substi-
tution model. Finally, we obtained the distance between the simulated 
(true) phylogenetic tree and the phylogenetic trees reconstructed under 
each substitution model with the metrics Robinson-Foulds, Branch score 
and K tree score. We applied the Wilcoxon signed-rank test to evaluate 
statistical significance among estimates from different substitution 
models. 

Using the same methodology, we additionally explored the partic-
ular influence of considering and ignoring the variation of the substi-
tution rate among sites according to a gamma distribution (+G) on the 
phylogenetic tree reconstruction. In particular, we simulated protein 
sequences under the JTT substitution model with and without + G. Next, 
we inferred phylogenetic trees under the true substitution model, the 
true substitution model with or without + G and, under other substi-
tution models (also with and without + G) such as Dayhoff (which is a 
model similar to JTT; Fig. 1) and, HIVw and MtMam (both models are 
distant from JTT; Figs. 1 and S1). 

3. Results 

3.1. Evaluation of selecting a substitution model of evolution for 
phylogenetic tree reconstruction based on real protein families 

The analysis of real protein families (Table 1) showed that phylo-
genetic trees reconstructed under substitution models of protein evolu-
tion with distant exchangeability matrices always differ to a greater or 
lesser extent (Fig. 2). For example, the distance between phylogenetic 
trees inferred under the selected best and worst-fitting substitution 

Fig. 1. Agglomerative clustering of common 
empirical substitution models of protein 
evolution. We normalized the exchangeability 
matrix and amino acid frequencies at the equi-
librium of commonly used empirical substitu-
tion models of protein evolution. Next, we 
calculated distances between the exchange-
ability matrices and amino acid frequencies 
among every pair of substitution models. 
Finally, we applied the bottom-up agglomera-
tive clustering method neighbor joining. Thus, 
the figure shows the clustering based on the 
distance between the normalized exchange-
ability matrices and the amino acid frequencies 
(with same weight) of the substitution models. 
Clusters only based on the exchangeability 
matrix or the amino acid frequencies of the 
substitution models are presented in Figures S1 
and S2 (Supplementary Material), respectively.   
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models, or between phylogenetic trees inferred under HIVw and MtMam 
substitution models, was above 0 for every metric. The differences be-
tween phylogenetic trees not only involved branch lengths, but also 
topology as shown with the Robinson-Foulds metric and in the illustrative 
examples presented in Figs. S3-S10 that visually highlight differences 
between phylogenetic trees reconstructed under the best and the worst 
fitting substitution models for the studied protein families presenting 50 
or less sequences (selected for simplicity; Supplementary Material). We 
only found similar phylogenetic trees inferred under different substitu-
tion models in 3 out of 12 protein families, in particular when the 
phylogenetic trees were reconstructed under substitution models with 
similar exchangeability matrices (i.e., JTT and a best-fitting model that 
is close to JTT; Fig. 2). Concerning the analyses of the 200 protein 

families from (Spielman 2020), we found that all of them showed that 
phylogenetic trees inferred under different substitution models differ 
using any phylogenetic tree discordance metric (Fig. S11; Supplemen-
tary Material), thus indicating differences in terms of both topology and 
branch lengths. Finally, we explored the particular influence of empir-
ical amino acid frequencies (+F) and models of sequence evolution by 
including the parameters proportion of invariable sites (+I) and varia-
tion of the substitution rate among sites according to a gamma distri-
bution (+G) in the phylogenetic tree reconstruction. In general, we 
found that + G affects reconstructed phylogenetic trees (especially 
branch lengths) to a greater extent than the other studied parameters 
(+F and + I) (Fig. S12; Supplementary Material), but this observation 
should be carefully interpreted because this influence varies among data 

Fig. 2. Influence of substitution model selection on phylogenetic tree reconstruction using real data. Distances between phylogenetic trees reconstructed 
under the selected best-fitting and worst-fitting substitution models (Table 1) (black bars), best-fitting and JTT substitution models (dark grey bars) and, HIVw and 
MtMam substitution models (clear grey bars). 
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(see Discussion). 

3.2. Evaluation of selecting a substitution model of evolution for 
phylogenetic tree reconstruction based on simulated protein data 

We evaluated the error of inferring a phylogenetic tree with a sub-
stitution model that is not the true model using computer simulations. In 
general, we found that phylogenetic trees inferred under the true 
(simulated) substitution model are more similar to the true phylogenetic 
trees than phylogenetic trees inferred under other substitution models 
(Figs. 3 and S13; Supplementary Material). However and importantly, 
the effects of substitution model selection on the reconstructed phylo-
genetic trees were affected by the molecular diversity of the study data. 
Specifically, for data simulated with large genetic diversity (i.e., average 
of pairwise sequence identity around 0.2), phylogenetic trees inferred 
with a substitution model that is close (in terms of relative substitution 
rates of the exchangeability matrix) to the true substitution model pre-
sent topologies significantly similar to those from the true phylogenetic 
tree, while branch lengths are significantly different (first column in 
Figs. 3 and S13). Indeed, phylogenetic trees inferred with a substitution 
model that is far from the true substitution model present both topology 
and branch lengths statistically different to those obtained using the true 
substitution model in the inference (first column in Figs. 3 and S13). For 
example, for proteins simulated with that low sequence identity, 
phylogenetic trees reconstructed under the HIVw substitution model 
(true model) are significantly different (Wilcoxon signed-rank test P < 
0.05) from phylogenetic trees reconstructed under the Dayhoff, MtMam 
and MtArt substitution models in terms of topology and under HIVb, 
JTT, Dayhoff, MtMam and MtArt substitution models in terms of branch 
length (first column in Figs. 3 and S13). When the average of sequence 
identity of the simulated data is around 0.5 (which is common in protein 
families, i.e. Table 1), only substitution models far from the true sub-
stitution model produced phylogenetic trees with topology and branch 
lengths significantly different to those of the phylogenetic trees 

reconstructed under the true substitution model (second column in 
Figs. 3 and S13). Under high levels of sequence identity (i.e., 0.8), only 
substitution models far from the true substitution model produced 
phylogenetic trees with branch lengths significantly different to those of 
the phylogenetic trees reconstructed under the true substitution model. 
Indeed, at this high level of sequence identity, phylogenetic trees 
reconstructed under different substitution models did not present 
significantly different topologies (last column in Figs. 3 and S13). 
Therefore, data with low sequence identity were statistically more 
sensitive to the selection of the substitution model than data with high 
sequence identity (Figs. 3 and S13). If the sequence identity is high, 
ignoring substitution model selection does not affect significantly the 
accuracy of the reconstructed topologies, although branch lengths could 
still significantly differ for distant substitution models (Figs. 3 and S13). 
Next, despite one could hypothesize that increasing the number of se-
quences (while maintaining genetic diversity) of the input data can lead 
to a more pronounced effect of substitution model selection on the ac-
curacy of the reconstructed phylogenetic trees (because of dealing with 
more nodes and branches), we found that data with different number of 
sequences qualitatively displayed similar consequences of substitution 
model selection on the reconstructed phylogenetic trees (compare 
Figs. 3 and S13). Finally, we evaluated the influence of considering and 
ignoring the substitution rate variation among sites according to a 
gamma distribution (+G) on phylogenetic tree reconstruction. We found 
that accounting for + G mainly affects branch lengths of the recon-
structed trees (the topology was only slightly affected), especially in 
data presenting low sequence identity (Figs. S14-S17; Supplementary 
Material). 

4. Discussion 

Selecting and applying the best-fitting substitution model of evolu-
tion to perform phylogenetic tree reconstruction is a well-established 
protocol in the field. It is based on the intuitive reasoning of the 

Fig. 3. Influence of substitution model selection on phylogenetic tree reconstruction using simulated data. Distances between true phylogenetic trees and 
phylogenetic trees reconstructed under HIVw (true model, shown in dark grey), HIVb, JTT, Dayhoff, MtMam and MtArt substitution models. The study is based on 
simulated datasets presenting 50 protein sequences. Error bars indicate 95% confidence interval of the mean over 100 simulations. Results for datasets simulated with 
100 sequences are presented in Figure S13. 
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evolutionary consequences of the type of substitution events [i.e., more 
than 50 years ago (Zuckerkandl and Pauling, 1965) indicated that ‘it is 
the type rather than number of amino acid substitutions that is decisive’] and 
it was supported by a number of likelihood-based studies published 
since more than 20 years ago (Yang et al. 1994; Zhang and Nei 1997; 
Zhang 1999; Minin et al. 2003; Lemmon and Moriarty 2004). However, 
the use of substitution model selection in phylogenetic tree recon-
struction was recently explored in a few works that evaluated DNA 
(Abadi et al. 2019; Tao et al. 2020) and protein (Spielman 2020) data to 
indicate that accounting for this protocol has little effect on the accuracy 
of the topology of reconstructed phylogenetic trees. We noted that those 
findings are particularly surprising for proteins due to the variety of 
selection processes caused by functional constraints (Fay and Wu 2003; 
Chi and Liberles 2016) and observed in the large diversity of currently 
available empirical substitution models (Thorne 2000; Arenas 2015). 
Thus, here we investigated the influence of substitution model mis-
specification on protein phylogenetic tree reconstruction. We focused on 
protein evolution for several reasons. First, some data can only be 
available as protein sequences because most of protein sequencing 
methodologies (i.e., based on NMR and X-ray diffraction) and protein 
databases (i.e., PFAM, PDB and CATH, among others) do not include 
DNA sequences. Second, a variety of empirical substitution models of 
protein evolution have been inferred from different taxonomic groups 
and protein families. These models include a 20 × 20 exchangeability 
matrix of relative rates of change among amino acids, and amino acids 
frequencies, that can differ among models at a greater or lesser extent 
(Fig. 1). Next, the number of states is higher at the protein level than at 
the DNA level and thus assignments of a correct state by chance could be 
more frequent when evaluating DNA sequences than protein sequences. 
Indeed, phylogenetic analyses based on protein sequence comparisons 
allow to extend well beyond the nucleotide saturation distances. Finally, 
the influence of substitution model selection on phylogenetic tree 
reconstruction was explored for DNA sequences in some studies (Abadi 
et al. 2019; Tao et al. 2020), while for protein sequences it was much less 
investigated (Spielman 2020). 

First, we performed the phylogenetic tree reconstruction of 12 pro-
tein families under different substitution models and, for all of them, we 
found clear differences (in terms of topology and branch lengths) be-
tween phylogenetic trees inferred especially under distant empirical 
substitution models of evolution. Indeed, the analysis of the 200 protein 
families from (Spielman 2020) also showed differences between 
phylogenetic trees reconstructed under different models. These findings 
already show that substitution model misspecification can affect both 
topology and branch lengths of the reconstructed phylogenetic trees. 
This could not be the case for real datasets that are not analyzed in the 
present study, but still we show that the bias can occur and, therefore, 
selecting and applying a best-fitting substitution model is recommended. 
When comparing phylogenies reconstructed under close empirical sub-
stitution models, we found that a total of 209 out of 212 (98.6%) studied 
protein families produced different phylogenetic trees. Despite these 
findings could be expected, we believe that they should be demonstrated 
and especially considering the conclusions made in a previous study 
(discussed later). Our results suggest (also verified with computer sim-
ulations, which is discussed later) that using substitution models as 
similar as possible to a selected best-fitting model is recommended when 
that best-fitting substitution model cannot be used for any reason (i.e., it 
is not implemented in the evolutionary framework of the phylogenetic 
tree reconstruction). Finally, we found that the substitution rate varia-
tion among sites according to the traditional gamma distribution (+G) 
especially affects branch lengths of the phylogenetic tree. The variation 
of the substitution rates among protein sites is common in nature (Baele 
et al. 2011; Pentinsaari et al. 2016; Jimenez-Santos et al. 2018) and 
accounting for it provides more realistic phylogenetic inferences as we, 
and others (Yang 1996; Jia et al. 2014), found analyzing real and 
simulated data. In summary, for the studied real protein families we 
found that selecting a best-fitting substitution model can affect the 

reconstructed protein phylogenetic trees. 
Next, we simulated protein sequences to quantify the distance be-

tween phylogenetic trees inferred under different substitution models, 
including the true substitution model. In general, we found that phylo-
genetic tree reconstruction under the true substitution model produces 
the most accurate phylogenies compared to phylogenetic trees recon-
structed under substitution models with distant amino acid replacement 
matrices. Indeed, in general, we found again that applying a substitution 
model close to the true substitution model results in more accurate 
phylogenetic trees than applying a substitution model that is far from 
the true substitution model. Actually, we observed a high correlation 
between the distance among the exchangeability matrices of the studied 
substitution models and the distance between the phylogenetic trees 
reconstructed under the corresponding substitution models (Table S1; 
Supplementary Material). In practice, this means that if the selected 
best-fitting substitution model is not available to perform a phylogenetic 
tree reconstruction, applying a substitution model as close as possible to 
the best-fitting substitution model is recommended. Again, despite these 
findings could be expected in advance, we believe that they should be 
formally demonstrated. Importantly, we found that the influence of the 
substitution model on phylogenetic tree reconstruction is affected by the 
genetic diversity of the study data. In particular, data presenting large 
genetic diversity produced phylogenetic trees more dependent on the 
applied substitution model than data with low genetic diversity; the 
latter can even produce phylogenetic trees insensitive to the selection of 
a substitution model. We believe that this result can be explained by the 
following intuitive reasoning. Data presenting low genetic diversity 
have accumulated less substitution events during their evolutionary 
histories. If substitutions are rare (short branches) the weight of the 
substitution model on the calculated likelihood is lower due to the 
reduced number of evolutionary pathways (Yang 2006), finally affecting 
the resulting phylogenetic tree. Moreover, these short branches can 
favor topology fluctuations caused by the probabilistic method of 
phylogenetic reconstruction and that are more frequent when the ge-
netic diversity is small, reducing the signatures of the substitution model 
on the reconstructed phylogenetic tree. In long branches, where the 
number of substitutions increases, different models can lead to more 
different estimates because of the presence of more evolutionary 
information. 

Our conclusions partially differ from those presented in (Spielman 
2020), where protein substitution model selection was suggested as 
generally unnecessary to obtain accurate phylogenetic tree topologies. 
Using real and simulated data we found that the topology of a recon-
structed phylogenetic tree can be affected by the substitution model 
used for the reconstruction. Of course and in agreement with (Spielman 
2020), we found that phylogenetic trees inferred under similar empirical 
substitution models, in datasets with low genetic diversity, may not 
differ [although one can also properly consider that minor differences in 
the topology of a phylogenetic tree could be dramatic for diverse 
evolutionary studies (e.g., Soltis and Soltis 2003; Davis et al. 2010; Pace 
et al. 2012; Moreira et al. 2021)]. However, in other scenarios (i.e., data 
with large genetic diversity) we found relevant influences of substitution 
model selection on protein phylogenetic tree reconstruction. We 
consider that some of our conclusions differ from those presented in 
(Spielman 2020) due to technical aspects and the interpretation of some 
results. First, that study simulated sequences upon phylogenetic trees 
reconstructed in previous studies from real data. That procedure can be 
problematic because those phylogenies were already reconstructed 
under particular substitution models [even after performing substitution 
model selection (Salichos and Rokas 2013; Ruhfel et al. 2014)] and thus 
could lead to phylogenies biased toward the originally applied substi-
tution models as we show in the simulation section of the present study. 
Another technical aspect that could affect results from that study is that 
the input phylogeny branch lengths were scaled up by a factor of three to 
attempt to better fit branch lengths based on DNA sequences with the 
number of observed amino acid substitutions, but ignoring unfixed, 
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synonymous and nonsynonymous changes. These artificially longer 
branch lengths placed upon a fixed topology can reduce the impact of 
the substitution model on the tree topology (Sullivan et al. 1996; Kück 
et al. 2012) because in that situation the number of real substitutions can 
be too small to allow topology changes. Here, we avoided those potential 
biases by simulating phylogenetic trees without assuming a substitution 
model, which is a traditional procedure in population genetics (Hoban 
et al. 2012; Arenas, 2012) and that can be performed by simulating 
random, coalescent and birth–death phylogenetic trees [among other 
approaches to simulate phylogenies (Hoban et al. 2012; Arenas, 2012)]. 
In any case, in our opinion from a biological perspective, just a single 
change in a tree topology could be biologically relevant (e.g., Soltis and 
Soltis 2003; Wiley 2010; Som 2015). 

Currently, around 100 empirical amino acid exchangeability 
matrices (several hundreds of substitution models in case of additionally 
considering + F, +I and + G) are available [and more continue being 
developed (e.g., Le et al. 2017; Chang et al. 2020; Le and Vinh 2020; Del 
Amparo and Arenas 2022)] due to the need of realistically mimic the 
evolution of the diverse protein families observed in nature. Indeed, real 
data often shows genetic signatures of complex substitution processes. 
For example, substitution patterns can vary among genomic regions 
(Arbiza et al. 2011) or the fitness of viruses can be intensely affected by 
particular amino acid substitution events that alter the protein stability 
and function (Lorenzo-Redondo et al. 2014; Arenas et al. 2016; Duchêne 
et al., 2016; Echave et al. 2016; Kirchner et al. 2017; Jimenez-Santos 
et al. 2018; Geoghegan and Holmes 2018). 

In practice, the researcher may not know in advance the influence of 
applying a particular substitution model of evolution on the phyloge-
netic tree reconstruction for a certain dataset. Considering our findings, 
we recommend applying the selected best-fitting substitution model by 
default (if it is not possible, we recommend applying a substitution 
model as similar as possible to the selected best-fitting substitution 
model), thus following the traditional phylogenetics protocol. Indeed, 
the researcher can infer phylogenetic trees under different substitution 
models and compare them (i.e., following the procedure presented here 
for the study of real data) and, in case of observing phylogenetic tree 
discordances, we recommend applying a selected best-fitting substitu-
tion model. 

The reconstruction of phylogenetic trees should be as realistic as 
possible if one aims to obtain reasonable biological conclusions and here 
we show that applying a proper substitution model of evolution can be 
crucial. We believe that future research on phylogenetic tree recon-
struction from protein data will involve structurally constrained sub-
stitution (SCS) models that are more complex, but also more realistic, 
than the empirical substitution models implemented in most of currently 
available phylogenetic reconstruction frameworks (Bordner and Mit-
telmann 2013; Arenas et al. 2015), but efforts are still needed in this 
direction. Considering the results of this study we also believe that the 
development of more realistic substitution models of protein evolution is 
required to improve the accuracy of protein phylogenetic tree 
reconstructions. 
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Duchêne, S., Di Giallonardo, F., Holmes, E.C., 2016. Substitution Model Adequacy and 
Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales. 
Mol. Biol. Evol. 33 (1), 255–267. 

Dutheil, J.Y., Galtier, N., Romiguier, J., Douzery, E.J.P., Ranwez, V., Boussau, B., 2012. 
Efficient selection of branch-specific models of sequence evolution. Mol. Biol. Evol. 
29, 1861–1874. 

R. Del Amparo and M. Arenas                                                                                                                                                                                                               

https://doi.org/10.5281/zenodo.6377152
https://doi.org/10.1016/j.gene.2023.147336
https://doi.org/10.1016/j.gene.2023.147336
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0010
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0010
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0015
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0015
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0015
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0020
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0020
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0025
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0025
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0030
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0030
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0030
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0040
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0040
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0035
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0035
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0035
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0050
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0050
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0050
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0055
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0055
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0060
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0060
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0060
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0065
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0065
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0070
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0070
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0075
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0075
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0075
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0080
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0080
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0080
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0085
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0085
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0085
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0090
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0090
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0090
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0095
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0095
http://refhub.elsevier.com/S0378-1119(23)00177-4/h0095


Gene 865 (2023) 147336

8

Echave, J., Spielman, S.J., Wilke, C.O., 2016. Causes of evolutionary rate variation 
among protein sites. Nat. Rev. Genet. 17 (2), 109–121. 

Fay, J.C., Wu, C.-I., 2003. Sequence Divergence, Functional Constraint, and Selection in 
Protein Evolution. Annu. Rev. Genomics Hum. Genet. 4 (1), 213–235. 

Felsenstein, J., 1988. Phylogenies from molecular sequences: inference and reliability. 
Annu. Rev. Genet. 22 (1), 521–565. 

Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., 
Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L.L., Tate, J., Punta, M., 2014. 
Pfam: the protein families database. Nucleic Acids Res. 42 (D1), D222–D230. 

Fitch, W., 1971. Toward defining the course of evolution: minimal change for a specific 
tree topology. Syst. Zool. 20, 406–416. 

Geoghegan, J.L., Holmes, E.C., 2018. The phylogenomics of evolving virus virulence. 
Nat. Rev. Genet. 19 (12), 756–769. 

Hoban, S., Bertorelle, G., Gaggiotti, O.E., 2012. Computer simulations: tools for 
population and evolutionary genetics. Nat. Rev. Genet. 13 (2), 110–122. 

Jia, F., Lo, N., Ho, S.Y.W., 2014. The Impact of Modelling Rate Heterogeneity among 
Sites on Phylogenetic Estimates of Intraspecific Evolutionary Rates and Timescales. 
Plos One 9, e95722. 

Jimenez-Santos, M.J., Arenas, M., Bastolla, U., 2018. Influence of mutation bias and 
hydrophobicity on the substitution rates and sequence entropies of protein 
evolution. PeerJ 6, e5549. 

Jones, D.T., Taylor, W.R., Thornton, J.M., 1992. The rapid generation of mutation data 
matrices from protein sequences. Comput. Appl. Biosci. 8 (3), 275–282. 

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S., 2017. 
ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 
14 (6), 587–589. 

Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: 
improvements in performance and usability. Mol. Biol. Evol. 30 (4), 772–780. 

Kirchner, S., Cai, Z., Rauscher, R., et al., 2017. Alteration of protein function by a silent 
polymorphism linked to tRNA abundance. PLoS Biol. 15, e2000779. 

Kozlov, A.M., Darriba, D., Flouri, T., et al., 2019. RAxML-NG: a fast, scalable and user- 
friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 
4453–4455. 
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