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Rabia Aktaş1 · Iván Area2 · Teresa E. Pérez3

Received: 28 October 2021 / Revised: 2 September 2022 / Accepted: 7 September 2022 /
Published online: 29 September 2022
© The Author(s) 2022

Abstract
Three term relations for orthogonal polynomials in several variables associated to a moment
linear functional obtained by aUvarovmodification of a givenmoment functional are studied.
Existence of Uvarov orthogonal polynomials is analyzed, stating conditions to ensure it. The
matrices of the three term relations of the Uvarov orthogonal polynomials are explicitly
given in terms of the matrices of the three term relations satisfied by the original family. Two
examples are presented in order to show that the results are valid for positive definite linear
functionals and also for some quasi definite linear functionals which are not positive definite.
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1 Introduction

Let {Pn}n≥0 be a sequence of orthogonal polynomials with respect to a moment linear func-
tional u. One of the more interesting problems in the theory of orthogonal polynomials in one
and in several variables is the modification of the moment linear functional u and the study
of the new family of orthogonal polynomials {Qn}n≥0 with respect to the modified moment
linear functional v. Among the orthogonality properties, the problem of how to compute the
new family of orthogonal polynomials {Qn}n≥0 in terms of the original family of orthogo-
nal polynomials {Pn}n≥0 has been the subject of several papers both in the univariate and
multivariate cases. Modifications of moment functionals are related with quasi orthogonal-
ity, connection formulas between different families of orthogonal polynomials or adjacent
families of classical orthogonal polynomials, quadrature formulas, orthogonal polynomials
as solutions of higher order differential equations, among others.

In the univariate case, perturbations of positiveBorelmeasures supported on the real line by
the addition of mass points have been considered in the literature in the framework of spectral
problems for differential operators of higher order. More precisely, for fourth order ordinary
linear differential operators the analysis of their polynomial eigenfunctions has been done in
Krall (1940), where three new families of orthogonal polynomials, different of the classical
ones (Hermite, Laguerre, Jacobi andBessel) as trivial solutions, appear. They are the so called
Legendre type (the Lebesgue measure in the interval [−1, 1] plus two equal positive masses
located at ±1), the Laguerre type (the absolutely continuous measure exp(−x)dx supported
at (0,+∞) plus a positive mass located at x = 0) and the Jacobi-type (the absolutely
continuous measure (1 − x)αdx, α > −1, supported at (0, 1) plus a positive mass located
at x = 0). Notice that in Krall (1981) a updated approach is presented. Later on, in Chihara
(1985) the author focuses his attention on the study of algebraic properties of orthogonal
polynomials with respect to positive measures with masses located at the end points of the
convex hull of the support of themeasure. Some interesting examples are shown. InMarcellán
and Maroni (1992) properties of orthogonal polynomials associated with a perturbation of a
quasi definite linear functional by the addition of a mass in any point of the real line have been
deeply analyzed. Notice that in this case, the authors deal with a general framework (without
restrictions about the location of themass points and the linear functional in the linear space of
polynomials with real coefficients). The main problem is to analyze necessary and sufficient
conditions in order that the quasi definiteness of the linear functional is preserved. Such a
type of transformations are known in the literature as Uvarov transformations (see Uvarov
1969). They have considered in the framework of linear spectral transformations which are
generated by Christoffel and Geronimus transformations (see Zhedanov 1997). The first
ones are discrete Darboux transformations of the Jacobi matrix associated to the sequence of
orthogonal polynomials with respect to the first linear functional (by using a LU factorization
of the above matrix) while the second ones are related to UL factorizations of the Jacobi
matrix that are also known as discrete Darboux transformations with parameter (see Bueno
and Marcellán 2004 and García-Ardila et al. 2021). The modifications of moment linear
functionals are usually classified in three types, namely: Uvarov or Krall-type modifications,
defined by adding Dirac’s delta(s) in one or several fixed points; Christoffel modifications,
constructed by multiplying the moment functional times a fixed low degree polynomial,
and Geronimus modifications, obtained by dividing the moment functional by a polynomial.
The main difference between Uvarov and Krall-type modifications is based in the fact that
the Krall-type modifications are made on classical moment functionals such as Jacobi and
Laguerre, and the perturbed polynomials satisfy higher order linear differential equations
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(Krall 1981). Several papers have been devoted to study the modifications of univariate
moment functionals. Among others, and referring the references therein, we can cite Álvarez-
Nodarse et al. (2004), Bueno and Marcellán (2004), Maroni (1991).

In several variables, the study of theUvarov andKrallmodifications ofmoment functionals
was started in Delgado et al. (2010), where the modification was considered for a bilinear
form obtained by adding a Dirac mass to a positive definite moment functional. Explicit
formulas of the perturbed orthogonal polynomials were derived in terms of the orthogonal
polynomials associated with the original moment functional. In Fernández et al. (2010), the
case when the new measure is obtained from adding a set of mass points to another measure
is analysed. Also in this case, orthogonal polynomials in several variables associated with the
modified measure can be explicitly expressed in terms of orthogonal polynomials associated
with the first measure, so are the reproducing kernels associated with these polynomials. A
Uvarov modification of the bivariate classical measure on the unit disk by adding a finite
set of equally spaced mass points on the border was studied in Delgado et al. (2012). In
this situation, both orthogonal polynomials and reproducing kernels associated with the new
measure were explicitly expressed in terms of those corresponding with the classical one,
and asymptotics of kernel functions were studied.

Besides Uvarov modifications by adding Dirac masses at a finite and discrete set of points,
in the context of several variables it is possible to modify the moment functional with other
moment functionals defined on lower-dimensional manifolds such as curves, surfaces, etc.
A family of orthogonal polynomials with respect to such type of Uvarov modification of
the classical ball measure by means of a mass uniformly distributed over the sphere was
introduced in Martínez and Piñar (2016), and the authors proved that, at least in the Legen-
dre case, these multivariate orthogonal polynomials satisfy a fourth order partial differential
equation, which constitutes a natural extension of Krall orthogonal polynomials to the mul-
tivariate case. Moreover, in Delgado et al. (2018), an inner product on the triangle defined by
adding Krall terms over the border and the vertexes of the triangle is studied. For particular
values of the parameters, orthogonal polynomials associated with these inner product satisfy
fourth order partial differential equations with polynomial coefficients, as an extension of
the classical theory introduced (Krall 1940) and developed later in Krall (1981).

The aim of this paper is to study the three term relations for orthogonal polynomials in
several variables associated with a moment linear functional obtained by a Uvarov modi-
fication of a given moment functional. In this way, we define a general frame for Uvarov
perturbations of a multivariate moment functional, we establish conditions for the existence
of perturbed polynomials, and analyse the impact of the perturbation on the coefficients of
the three term relations. Moreover, we analyse two interesting examples. First, we compute
explicitly the matrix coefficients of the three term relations for the monic polynomials in the
case of Jacobi measure on the simplex with mass points added on the vertices, completing the
study of this case started in Delgado et al. (2010). In addition, we show the explicit expres-
sions of the perturbed and non perturbed polynomials of low degrees for a special election
of the parameters as well as we draw both families of polynomials and its zeros, where we
can see the influence of the mass points. Finally, a non positive definite bivariate moment
functional based on Bessel and Laguerre polynomials perturbed by a mass point at the origin
is analysed. In this case we also compute the explicit expressions for thematrix coefficients of
both families of bivariate orthogonal polynomials. The question about the spectral problem
associated with the orthogonal polynomials corresponding to the Uvarov perturbation of the
measure supported on the simplex presented in the first example remains open. Reading the
results given in Delgado et al. (2018) and Martínez and Piñar (2016), we can not expect that
these polynomials can be eigenfunctions of a fourth order partial differential equation since
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the Uvarov term is taken as discrete points. Moreover, if that kind of Uvarov polynomials
satisfy higher order partial linear differential equations is a topic that remains open.

The structure of the paper is as follows. In Sect. 2 we recall the basic background about
orthogonal polynomials in several variables, including necessary definitions and notations. In
Sect. 3Uvarovmodifications of given linear functionals are studied in detail, providing results
for the existence of orthogonal polynomialswith respect to the new linear functional. In Sect. 4
we obtain the expressions of the three term relations for Uvarov orthogonal polynomials from
the recurrence relations of the starting family. Finally, in Sect. 5 two examples are analyzed in
detail, in order to show that the results are valid for positive definite linear functionals and also
for non positive definite linear functionals. The first one deals with the Uvarov orthogonal
polynomials on the simplex, obtained by adding mass points to the positive definite linear
functional of very classical bivariate Jacobi polynomials on the simplex. Explicit expressions
for the matrices of the three term relations satisfied by the Uvarovmodification are presented,
and for specific values of the parameters we compare the zeros of the classical bivariate
Jacobi polynomials and those of the Uvarov family. We must point out that the zeros of
multivariate polynomials constitute a theory that remains open, only a few analytic results
concerning zeros are known (see Dunkl and Xu 2014; Area et al. 2015). In general, a zero
of a multivariate polynomial is an algebraic curve, and different basis have different zeros.
Finally, the second example is devoted to the Bessel-Laguerre case, which is non positive
definite moment functional. For this case we show that the presented approach is also valid,
giving rise to the matrices of the three term relations for the Uvarov modification.

2 Orthogonal polynomials in several variables

Let N0 be the set of nonnegative integers and d ∈ N0. For m = (m1, . . . ,md) ∈ N
d
0 and

x = (x1, . . . , xd) ∈ R
d , we write a monomial as

xm = xm1
1 · · · xmd

d .

The number |m| = m1 + · · · + md is called the total degree of xm .
Along this paper, we denote by � the linear space of polynomials in d variables with real

coefficients, by�n the linear space of real polynomials of total degree not greater than n, and
we will denote byPn the space of homogeneous polynomials of total degree n in d variables.
It is well known that (Dunkl and Xu 2014)

dim�n =
(
n + d

n

)
, and dimPn =

(
n + d − 1

n

)
= rn .

For h, k ≥ 1, let Mh×k(R), and Mh×k(�) be the linear spaces of (h × k) matrices with
real and polynomial entries, respectively, and Ih will represent the identity matrix of size
h × h. In general, if h = k, we will omit one of the subscript.

We define the degree of a polynomial matrix A = (
ai, j (x)

)h,k
i, j=1 ∈ Mh×k(�) as the

maximum of the degrees of the entries in such a matrix, i. e.,

deg A = max{deg ai, j (x), 1 ≤ i ≤ h, 1 ≤ j ≤ k}.

As usual, given a matrix M , we will denote by M� its transpose, and, if M is a square matrix,
then we will say that it is non-singular if det M �= 0.

123



Three term relations for multivariate. . . Page 5 of 30 330

Following (Dunkl and Xu 2014, p. 71), if M1, M2, . . ., Md are matrices of the same size
p × q , then their joint matrix M is defined as

M =

⎛
⎜⎜⎜⎝
M1

M2
...

Md

⎞
⎟⎟⎟⎠ = (

M�
1 M�

2 . . . M�
d

)�

of size d p × q .
Given a sequence of polynomials of total degree n, {Pn

m}|m|=n , we will use the vector
notation (see Dunkl and Xu 2014) to define Pn as the column vector polynomial

Pn = (Pn
m)|m|=n = (Pn

m1
, Pn

m2
, . . . , Pn

mrn
)� ∈ Mrn×1(Pn),

where m1,m2, . . . ,mrn are the elements in {m ∈ N
d
0 : |m| = n} arranged according to the

reverse lexicographical order. Observe that P0 is a constant (r0 = 1), and P1 is a column
vector of independent multivariate polynomials of degree 1 of dimension r1 = d .

Definition 1 A polynomial system (PS) is a vector polynomial sequence {Pn}n≥0 such that
the set of the entries of {Pm}nm=0 is a basis of �n for each n ≥ 0, and by extension we will
say that {Pm}nm=0 is a basis of �n .

The simplest case of polynomial system is the so–called canonical polynomial system,
defined as

{Xn}n≥0 = {(xm1 , xm2 , . . . , xmrn )� : |mk | = n, 1 ≤ k ≤ rn}n≥0.

Using the vector notation, for a given polynomial system {Pn}n≥0, the vector polynomial Pn

can be written as

Pn(x) = Gn,n Xn + Gn,n−1 Xn−1 + · · · + Gn,0 X0,

where Gn = Gn,n is called the leading coefficient of Pn , which is a square matrix of size rn .
Moreover, since {Pm}nm=0 is a basis of �n , then Gn is non-singular.

Wewill say that twoPS {Pn}n≥0 and {Qn}n≥0 have the same leading coefficient ifP0 = Q0,
and Pn and Qn have the same leading coefficient matrix for n ≥ 1, that is, the entries of the
vector Pn − Qn are polynomials in �n−1.

In addition, a polynomial system is called monic if every polynomial contains only one
monic term of highest degree, that is, for n ≥ 0,

Pn
mk

(x) = xmk + R(x), 1 ≤ k ≤ rn,

where |mk | = n, and R(x) ∈ �n−1. Equivalently, amonic polynomial system is a polynomial
system such that its leading coefficient is the identity matrix, i. e., Gn = Irn , for n ≥ 0.

Usually, a moment linear functional u defined on � is introduced from its moments. In
fact (Dunkl and Xu 2014), let {μm}m∈Nd

0
be a multi–sequence of real numbers and let u be a

real valued functional defined on � by means of

〈u, xm〉 = u(xm) = μm,

and extended by linearity. Then, u is called themoment functional determined by {μm}m∈Nd
0
,

and the number μm is called the moment of order m.
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The action of a moment linear functional u is extended over polynomial matrices in the
following way (see, for instance, Dunkl and Xu 2014). Let A = (

ai, j (x)
)h,k
i, j=1 ∈ Mh×k(�)

be a polynomial matrix. Then

〈u, A〉 = (〈u, ai, j (x)〉
)h,k
i, j=1 ∈ Mh×k(R).

Given a moment functional u in �, two polynomials p and q are said to be orthogonal
with respect to u if 〈u, p q〉 = 0. For each n ≥ 0, let Vn ⊂ �n be the set of polynomials of
total degree n that are orthogonal with respect to the linear functional u to all polynomials
in �n−1 together with zero. Then, Vn is a linear space of dimension less than or equal to rn
( Dunkl and Xu 2014).

Definition 2 Anorthogonal polynomial system (OPS)with respect to a given linear functional
u is a PS {Pn}n≥0 such that

〈u,PnP
�
m〉 = Hn �n,m, (1)

where �n,m is the (n + 1) × (m + 1) zero matrix for n �= m, and the identity matrix for
n = m, and Hn ∈ Mrn (R) is a symmetric and non-singular matrix.

Moreover, if Hn is a diagonal matrix, we will say that {Pn}n≥0 is a mutually orthogonal
polynomial system (OPS) with respect to the linear functional u.

A moment functional u is called quasi definite if there exists an OPS with respect to
u. Given a quasi definite moment linear functional u, orthogonal polynomial systems with
respect to u are not unique. In fact, {Pn}n≥0 and {̂Pn}n≥0 are OPS associated with u if and
only if there exist non-singular matrices Fn such that

P̂n = Fn Pn, n ≥ 0.

In this case, for n,m ≥ 0 we get

〈u, P̂nP̂
�
m〉 = Fn 〈u,PnP

�
m〉F�

m = Ĥn �n,m,

where Ĥn = Fn Hn F�
n is a non-singular and symmetric matrix. Therefore, there exists a

unique monic orthogonal polynomial system that can be obtained by

P̂n = G−1
n Pn, n ≥ 0,

where Gn are the respective leading coefficients of Pn .
Observe that u is quasi definite if and only if

dim Vn = rn, ∀n ≥ 0.

In this case, a PS {Pn}n≥0 is an OPS if and only if the set of entries of the vector Pn is a basis
of Vn , n ≥ 0.

A moment functional u is called positive definite if 〈u, p2(x)〉 > 0, for all p(x) ∈ �,
p(x) �≡ 0. A positive definite moment functional is quasi definite, and it is possible to
construct an orthonormal polynomial system, that is, an orthogonal polynomial system such
that Hn is positive definite. If Hn is the identity matrix, then {Pn

m}|m|=n is an orthonormal
basis for Vn and the OPS is called an orthonormal polynomial system.

Orthogonal polynomials in several variables are characterized by d vector–matrix three
term relations (see Dunkl and Xu 2014, Theorem 3.3.7, p. 74). More precisely,

Theorem 3 (Dunkl and Xu 2014) Let {Pn}n≥0 = {Pn
m(x) : |m| = n, n ∈ N0},P0 = 1, be an

arbitrary sequence in �. Then the following statements are equivalent.
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1. There exists a linear functional u which defines a quasi definite moment functional on �

and which makes {Pn}n≥0 an orthogonal basis in �.
2. For n ≥ 0, 1 ≤ i ≤ d, there exist matrices An,i , Bn,i and Cn,i of respective sizes

rn × rn+1, rn × rn and rn × rn−1, such that

(a) the polynomials Pn satisfy the three term relations

xiPn = An,iPn+1 + Bn,iPn + Cn,iPn−1, 1 ≤ i ≤ d, (2)

with P−1 = 0, C−1,i = 0, and x = (x1, x2, . . . , xd),
(b) for n ≥ 0 and 1 ≤ i ≤ d, the matrices An,i and Cn+1,i satisfy the rank conditions

rank An,i = rank Cn+1,i = rn, (3)

and, for the joint matrices An of An,1, An,2, . . . , An,d , of size d rn × rn+1 and C�
n+1

of C�
n+1,1,C

�
n+1,2, . . . ,C

�
n+1,d , of size d rn × rn+1, we get

rank An = rank Cn+1 = rn+1. (4)

In that case, we get ⎧⎪⎨
⎪⎩
An,i Hn+1 = 〈u, xi PnP

�
n+1〉,

Bn,i Hn = 〈u, xi PnP
�
n 〉,

Cn,i Hn−1 = 〈u, xi PnP
�
n−1〉,

(5)

where Hn = 〈u,PnP
�
n 〉, and An,i Hn+1 = Hn C�

n+1,i .

Relations (2) can be written in a block matrix way (Kowalski 1982a, b; Dunkl and Xu
2014). In fact, for 1 ≤ i ≤ d , we define the block Jacobi matrices

Ji =

⎛
⎜⎜⎜⎜⎝

B0,i A0,i ©
C1,i B1,i A1,i

C2,i B2,i
. . .

© . . .
. . .

⎞
⎟⎟⎟⎟⎠ . (6)

Observe that the entries of the block Jacobi matrices are the coefficients of the i th three term
relation, whose sizes increase to infinity. If we denote

P = (P�
0 ,P�

1 ,P�
2 , . . .)�,

the column of all polynomials, then, three term relations (2) become to

xi P = Ji P, 1 ≤ i ≤ d. (7)

The version of above theorem for orthonormal polynomial systems {Pn}n≥0 is obtained
by changing Cn,i by A�

n−1,i , 1 ≤ i ≤ d , since Hn = Irn , n ≥ 0.

If {̂Pn}n≥0 is another OPS associated with u, then there exist non-singular matrices Fn
such that P̂n = Fn Pn, n ≥ 0. Multiplying (2) times Fn , we deduce that

xi P̂n = Fn An,i F
−1
n+1P̂n+1 + Fn Bn,i F

−1
n P̂n + Fn Cn,i F

−1
n−1P̂n−1, 1 ≤ i ≤ d.

This means that {̂Pn}n≥0 satisfy the three term relations

xi P̂n = Ân,i P̂n+1 + B̂n,i P̂n + Ĉn,i P̂n−1, 1 ≤ i ≤ d,
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where Ân,i = Fn An,i F
−1
n+1, B̂n,i = FnBn,i F−1

n , and Ĉn,i = FnCn,i F
−1
n−1. Obviously, the

rank conditions (3) and (4) are preserved since the rank is unchanged upon left or right
multiplication by a non-singular matrix (Horn and Johnson 2013, p. 13).

When the orthogonal polynomial system {Pn}n≥0 is monic, comparing the highest coef-
ficient matrices at both sides of (2), it follows that An,i = Ln,i , for n ≥ 0, and 1 ≤ i ≤ d
(Dunkl and Xu 2014), where Ln,i are matrices of size rn × rn+1 defined by

xi Xn = Ln,i Xn+1, 1 ≤ i ≤ d .

These matrices verify Ln,i L�
n,i = Irn , and rank Ln,i = rn . Moreover, the rank of the joint

matrix Ln of Ln,i is rn+1 (Dunkl and Xu 2014, p. 71).
For the particular case d = 2, we have that Ln,i , i = 1, 2, are the (n + 1) × (n + 2)

matrices defined as

Ln,1 =
⎛
⎜⎝

1 © 0
. . .

...

© 1 0

⎞
⎟⎠ and Ln,2 =

⎛
⎜⎝
0 1 ©
...

. . .

0 © 1

⎞
⎟⎠ . (8)

In the general case, comparing the leading coefficient matrices at both sides of (2), we get
Gn Ln,i = An,i Gn+1, that is,

An,i = Gn Ln,i G
−1
n+1. (9)

where Gn is the leading coefficient matrix of Pn .
Let u be a quasi definite moment linear functional, and let {Pn}n≥0 be an OPSwith respect

to u. In terms of {Pn}n≥0, the kernel of Vm , denoted by Pm(u; x, y) (Dunkl and Xu 2014, p.
97), is defined by

Pm(u; x, y) = P
�
m(x) H−1

m Pm(y), m ≥ 0.

Similarly, the kernel of �n , takes the form

Kn(u; x, y) =
n∑

m=0

P
�
m(x) H−1

m Pm(y) =
n∑

m=0

Pm(u; x, y), n ≥ 0.

The definition of both kernels does not depend on a particular basis.
For orthogonal polynomials in one variable, the kernel function is called reproducing

kernel function. In several variables, we have an analogous property (Dunkl and Xu 2014),
that is,

〈u,Pm(x, ·) p(·)〉 = p(x), p ∈ Vm, m ≥ 0,

〈u,Kn(x, ·) p(·)〉 = p(x), p ∈ �n, n ≥ 0.

3 Uvarov orthogonal polynomials in several variables

From now on, we consider u a quasi definite moment functional defined on �. Then orthog-
onal polynomials of several variables with respect to u exist, and let us denote by {Pn}n≥0

an OPS associated with it.
Let N ≥ 1 be a positive integer and let ξ (1), ξ (2), . . . , ξ (N ) be distinct points in R

d .
Obviously, every point has d entries, then we will write

ξ ( j) = (ξ
( j)
1 , ξ

( j)
2 , . . . , ξ

( j)
d ), 1 ≤ j ≤ N ,

and ξ
( j)
i ∈ R, for 1 ≤ i ≤ d .
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Let � be a symmetric matrix of size N × N . We define the new moment functional v as
a Uvarov modification of the original moment functional given by

〈v, p q〉 = 〈u, p q〉 + p(ξ)�q(ξ)�, (10)

for p, q ∈ �, where

p(ξ) = (
p(ξ (1)), p(ξ (2)), . . . , p(ξ (N ))

)
,

denotes the vector of evaluations of the polynomial p(x) at the points ξ (1), ξ (2), . . . , ξ (N ).
We want to know how the new inner product (10) acts over polynomial systems. Given a

PS {Pn}n≥0, if we denote by Pn(ξ) the matrix that has Pn(ξ
( j)) as columns,

Pn(ξ) :=
(
Pn(ξ

(1))|Pn(ξ
(2))| . . . |Pn(ξ

(N ))
)

∈ Mrn×N , (11)

then, the action of (10) is as follows:

〈v,Pn P
�
m〉 = 〈u,Pn P

�
m〉 + Pn(ξ)� P�

m(ξ) ∈ Mrn×rm (R).

If (10) is quasi definite, we denote by {Qn}n≥0 an orthogonal polynomial system associated
with it, such that Pn and Qn have the same leading coefficient, for all n ≥ 0.

Following Delgado et al. (2010), if u is given by means of a measure dμ(x) on R
d with

all finite moments and we assume that dμ is positive definite in the sense that

〈u, p2〉 =
∫
Rd

p2(x)dμ(x) > 0, p ∈ �, p �≡ 0,

and the matrix � is positive definite, then v is positive definite and an OPS with respect to v

exist.
Our first goal is to study the existence of orthogonal polynomials with respect to the

moment functional v defined in (10).
We need to introduce several extra notations. If {Pn}n≥0 is an OPS with respect to u, then

we denote by Kn−1 the square matrix of constants whose entries are Kn−1(u; ξ ( j), ξ (k)),

Kn−1 := (
Kn−1(u; ξ ( j), ξ (k))

)N
j,k=1 ∈ MN×N , (12)

and, denote by Kn−1(ξ, x) the N × 1 vector of polynomials

Kn−1(ξ, x) = (
Kn−1(u; ξ (1), x),Kn−1(u; ξ (2), x), . . . ,Kn−1(u; ξ (N ), x)

)�
. (13)

In (12) and (13) for n = 0 we assume K−1(u; x, y) = 0.
From the fact that Kn(u; x, y) − Kn−1(u; x, y) = Pn(u; x, y), we have immediately the

following relations,

P�
n (ξ) H−1

n Pn(x) = Kn(ξ, x) − Kn−1(ξ, x),

P�
n (ξ) H−1

n Pn(ξ) = Kn − Kn−1, (14)

which will be used below.
In Fernández et al. (2010), a necessary and sufficient condition in order to be v quasi

definite when N = 1 is given. In addition, orthogonal polynomials with respect to v can be
expressed in terms of those with respect to the linear functional u. That result can be extended
for N ≥ 1 by using a similar technique as in Delgado et al. (2010), but in this case, we focus
the attention on the analysis of the quasi definite character of the perturbed linear functional.
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Theorem 4 The moment linear functional v is quasi definite if and only if the N × N matrix

�n = IN + � Kn,

is non-singular for n ≥ 0. In this case, if {Pn}n≥0 denotes an OPS with respect to the linear
functional u, the system of polynomials {Qn}n≥0 defined by

Qn(x) = Pn(x) − Pn(ξ)�n−1 Kn−1(ξ, x), n ≥ 0, (15)

is an OPS with respect to the linear functional v taking K−1(·, ·) = 0, where

�n = (IN + � Kn)
−1 �. (16)

Moreover,

Qn(ξ) = Pn(ξ)(IN + �Kn−1)
−1.

In the rest of the section, wewill suppose that v is quasi definite, andwe denote by {Qn}n≥0

an OPS with respect to v defined by (15). Also we denote

H̃n := 〈v,Qn Q
�
n 〉.

Then H̃n is a rn × rn symmetric non-singular matrix. It turns out that both H̃n and H̃−1
n can

be expressed in terms of matrices that only involve {Pm}m≥0. In Delgado et al. (2010) was
consider the simplest case when u is positive definite and {Pn}n≥0 is orthonormal, that is,
Hn = Irn .

Proposition 5 For n ≥ 0,

H̃n = Hn + Pn(ξ)�n−1P
�
n (ξ),

H̃−1
n = H−1

n − H−1
n Pn(ξ)�nP

�
n (ξ) H−1

n .

where �n is defined in (16).

Proof We compute directly,

H̃n = 〈v,Qn Q
�
n 〉 = 〈v,Qn P

�
n 〉 = 〈u,Qn P

�
n 〉 + Qn(ξ)� P�

n (ξ) = Hn + Pn(ξ)�n−1 P
�
n (ξ).

In order to study the inverse, we calculate

H̃n[H−1
n − H−1

n Pn(ξ)�n P�
n (ξ) H−1

n ]
= [Hn + Pn(ξ)�n−1 P�

n (ξ)][H−1
n − H−1

n Pn(ξ)�n P�
n (ξ) H−1

n ]
= Irn + Pn(ξ)�n−1 P�

n (ξ)H−1
n − HnH

−1
n Pn(ξ)�n P�

n (ξ) H−1
n

− Pn(ξ)�n−1 P�
n (ξ)H−1

n Pn(ξ)�n P�
n (ξ) H−1

n .

We study this last term. Observe that, from (14), we get

�P�
n (ξ)H−1

n Pn(ξ) = �(Kn − Kn−1) = (IN + � Kn) − (IN + � Kn−1),

and then,

Pn(ξ)�n−1 P�
n (ξ)H−1

n Pn(ξ)�n P�
n (ξ) H−1

n

= Pn(ξ)(IN + � Kn−1)
−1[(IN + � Kn) − (IN + � Kn−1)]�n P�

n (ξ) H−1
n

= Pn(ξ)�n−1 P�
n (ξ) H−1

n − Pn(ξ)�n P�
n (ξ) H−1

n .
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Substituting above, we get

H̃n[H−1
n − H−1

n Pn(ξ)�n P�
n (ξ) H−1

n ] = Irn ,

and the result holds. ��
Next result gives explicit formulas for the reproducing kernels associated with v, which

we denote by

Pm(v; x, y) := Q
�
m(x) H̃−1

m Qm(y) and Kn(v; x, y) :=
n∑

m=0

Pm(v; x, y).

Theorem 6 For m ≥ 0, �m defined in (16) is a symmetric matrix, and

Pm(v; x, y) = Pm(u; x, y) − K
�
m(ξ, x)�m Km(ξ, y) + K

�
m−1(ξ, x)�m−1 Km−1(ξ, y),

where we assume K−1(x, y) ≡ 0. Furthermore, for n ≥ 0,

Kn(v; x, y) = Kn(u; x, y) − K
�
n (ξ, x)�n Kn(ξ, y).

4 Three term relations for Uvarov orthogonal polynomials

In this section, let {Pn}n≥0 be an OPS with respect to u, and let {Qn}n≥0 be an OPS with
respect to v such that they have the same leading coefficient.

Both OPS satisfy three term relations, denoted by

xi Pn = An,iPn+1 + Bn,iPn + Cn,iPn−1, 1 ≤ i ≤ d, (17)

where P−1 = 0 and P0 = G0 �= 0, and by

xi Qn = Ãn,iQn+1 + B̃n,iQn + C̃n,iQn−1, 1 ≤ i ≤ d, (18)

with Q−1 = 0 and Q0 = G0 �= 0. The coefficients Bn,i and B̃n,i , for n ≥ 0, are rn ×
rn matrices, and, An,i , Ãn,i , Cn,i , and C̃n,i are, respectively, rn × rn+1, and rn × rn−1

coefficient matrices given by (5) satisfying the respective rank conditions (3) and (4). Here,
x = (x1, x2, . . . , xd).

Theorem 7 The matrices Ãn,i , B̃n,i and C̃n,i of the three term relations (18) for the vector
polynomials {Qn}n≥0 orthogonal with respect to the linear functional v defined in (10) are
given by

Ãn,i = An,i , n ≥ 0,

B̃n,i = Bn,i + An,iPn+1(ξ)�nP
�
n (ξ)H−1

n − Pn(ξ)�n−1P
�
n−1(ξ)H−1

n−1An−1,i , n ≥ 0,

C̃n,i = [Irn + Pn(ξ)�n−1P
�
n (ξ)H−1

n ]Cn,i [Irn−1 − Pn−1(ξ)�n−1P
�
n−1(ξ)H−1

n−1], n ≥ 1,

(19)

where thematrices An,i , Bn,i andCn,i are those of the three term relations for the polynomials
{Pn}n≥0 orthogonal with respect to the linear functional u, Pn(ξ) is defined in (11), the
matrices Hn are defined in (1), and �n is defined in (16).

Proof Since both OPS have the same leading coefficient, by (9) we get An,i = Ãn,i , for
1 ≤ i ≤ d , and n ≥ 0.
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We will compute B̃n,i from the explicit expressions of the vector polynomials in terms
of the canonical basis. In this way, we know that P0(x) = Q0(x), and, for n ≥ 1, we can
express

Pn(x) = Gn Xn + Gn
n−1 Xn−1 +

n−2∑
m=0

Gn
m Xm , Qn(x) = G̃n Xn + G̃n

n−1 Xn−1 +
n−2∑
m=0

G̃n
m Xm ,

whereGn = G̃n are non-singularmatrices of size rn , andGn
m and G̃n

m , form = 0, 1, . . . , n−1,
are matrices of constants of dimension rn × rm . Relating the coefficient of the term Xn in
(18), we get

G̃n
n−1 Ln−1,i = Ãn,i G̃

n+1
n + B̃n,i G̃n, n ≥ 0, (20)

and, analogously, for the first family, using (17)

Gn
n−1 Ln−1,i = An,i G

n+1
n + Bn,i Gn, n ≥ 0, (21)

by defining L−1,i = 0.
Next, we want to deduce the matrix coefficient of Xn in expression (15) written for n+ 1.

First, we observe that, for 1 ≤ j ≤ d and n ≥ 0, we have

Kn(u; ξ ( j), x) = P
�
n (ξ ( j)) H−1

n Pn(x) +
n−1∑
m=0

P
�
m(ξ ( j)) H−1

m Pm(x),

and then, the coefficient of Xn in Kn(u; ξ ( j), x) is given by P�
n (ξ ( j)) H−1

n .
Therefore, the vector of kernels can be written as

Kn(ξ, x) =

⎛
⎜⎜⎜⎜⎜⎝

Kn(u; ξ (1), x)

Kn(u; ξ (2), x)

...

Kn(u; ξ (N ), x)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

P
�
n (ξ (1))

P
�
n (ξ (2))

...

P
�
n (ξ (N ))

⎞
⎟⎟⎟⎟⎟⎠

H−1
n Pn(x) +

n−1∑
m=0

⎛
⎜⎜⎜⎜⎜⎝

P
�
m(ξ (1))

P
�
m(ξ (2))

...

P
�
m(ξ (N ))

⎞
⎟⎟⎟⎟⎟⎠

H−1
m Pm(x)

= P�
n (ξ) H−1

n Pn(x) +
n−1∑
m=0

P�
m(ξ) H−1

m Pm(x).

Thus, the coefficient of Xn in (15) for n + 1 is

G̃n+1
n = Gn+1

n − Pn+1(ξ) �n P�
n (ξ) H−1

n Gn .

Substituting in (20), and using (21), we get

B̃n,i G̃n = Bn,i Gn + An,iPn+1(ξ)�nP�
n (ξ)H−1

n Gn − Pn(ξ)�n−1 P�
n−1(ξ)H−1

n−1An−1,i Gn, n ≥ 0.

Since Gn = G̃n is a non-singular matrix, we get the announced expression.
Now, we compute C̃n+1,i , n ≥ 0. From (5), we know that

C̃n+1,i = H̃n+1 Ã
�
n,i H̃

−1
n = H̃n+1 A

�
n,i H̃

−1
n .

Using Proposition 5, we get

C̃n+1,i = [Hn+1 + Pn+1(ξ) �n P�
n+1(ξ)] A�

n,i [H−1
n − H−1

n Pn(ξ) �n P�
n (ξ) H−1

n ]
= Hn+1 A

�
n,i H

−1
n + Pn+1(ξ) �n P�

n+1(ξ) A�
n,i H

−1
n − Hn+1 A

�
n,i H

−1
n Pn(ξ) �n P�

n (ξ) H−1
n
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− Pn+1(ξ) �n P�
n+1(ξ) A�

n,i H
−1
n Pn(ξ) �n P�

n (ξ) H−1
n

= Cn+1,i + Pn+1(ξ) �n P�
n+1(ξ)H−1

n+1 Cn+1,i − Cn+1,iPn(ξ) �n P�
n (ξ) H−1

n

− Pn+1(ξ) �n P�
n+1(ξ)H−1

n+1Cn+1,iPn(ξ) �n P�
n (ξ) H−1

n ,

which completes the proof. ��

We would like to notice that, in the monic case, the result simplifies by substituting An,i =
Ãn,i = Ln,i .

Remark 1 We can give a block matrix perspective of expressions (19). Let

J̃i =

⎛
⎜⎜⎜⎜⎝

B̃0,i Ã0,i ©
C̃1,i B̃1,i Ã1,i

C̃2,i B̃2,i
. . .

© . . .
. . .

⎞
⎟⎟⎟⎟⎠ . (22)

be the block Jacobi matrices associated with the three term relations for the Uvarov polyno-
mials. We also define the block matrices

Ai =

⎛
⎜⎜⎜⎜⎝

© A0,i

© A1,i

© . . .

. . .

⎞
⎟⎟⎟⎟⎠ , Ci =

⎛
⎜⎜⎜⎝

©
C1,i ©

C2,i ©
. . .

. . .

⎞
⎟⎟⎟⎠ , H =

⎛
⎜⎜⎜⎝
H0

H1

H2
. . .

⎞
⎟⎟⎟⎠ ,

P =

⎛
⎜⎜⎜⎝
P0(ξ)

P1(ξ)

P2(ξ)

. . .

⎞
⎟⎟⎟⎠ , P̂ =

⎛
⎜⎜⎜⎝

©
P1(ξ) ©

P2(ξ) ©
. . .

. . .

⎞
⎟⎟⎟⎠ , O =

⎛
⎜⎜⎜⎝

�0

�1

�2
. . .

⎞
⎟⎟⎟⎠,

where © means a zero matrix of adequate size, and the omitted elements are considered as
zeros. Then, the block Jacobi matrix associated with the Uvarov orthogonal polynomials is
a perturbation of the original block Jacobi matrix in the form

J̃i = Ji + Ai P̂ OP�H−1 − P̂ OP�H−1Ai − Ci + (I + POP�H−1)Ci (I − POP�H−1).

5 Examples

In this section we analyse two examples in the bivariate case to apply our results. In the
first example we study Uvarov polynomials on the bivariate simplex with mass points at the
vertexes. We transform the standard basis of the polynomials on the simplex to the monomial
basis, and compute explicitly all matrices that we need. We compare the some low total
degree polynomials, by showing their explicit expressions both for the classical case and
for the Uvarov modification, by choosing some specific values of the parameters. Second
example is devoted to a non positive definite case based on Bessel and Laguerre polynomials.

In both cases, we compute explicitly the involved coefficients. For simplicity in this
bivariate case, we will denote x = x1, y = x2.
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5.1 Bivariate Uvarov orthogonal polynomials on the simplex

For 0 ≤ m ≤ n, and α, β, γ > −1, let us consider the family of classical bivariate polyno-
mials on the simplex

P(α,β,γ )
n,m (x, y) = P̄(β+γ+2m+1,α)

n−m (x) (1 − x)m P̄(γ,β)
m

(
y

1 − x

)
, (23)

where

P̄(α,β)
n (x) =

n∑
i=0

(−1)i+n(β + i + 1)n−i (α + β + n + 1)i
i !(n − i)! xi

stands for classical univariate Jacobi orthogonal polynomials in [0, 1], i.e.
∫ 1

0
P̄(α,β)
n (x)P̄(α,β)

m (x)(1 − x)αxβdx = 
(α + n + 1)
(β + n + 1)

n!(α + β + 2n + 1)
(α + β + n + 1)
δn,m,

where δn,m denotes the Kronecker delta.
The orthogonality relation for the bivariate polynomials (23) can be written as

∫ 1

0

∫ 1−x

0
P(α,β,γ )
n,m (x, y)P(α,β,γ )

r ,s (x, y)xα yβ(1 − x − y)γ dydx = 
(β + m + 1)
(γ + m + 1)

m!(n − m)!(β + γ + 2m + 1)

× 
(α + n − m + 1)
(β + γ + n + m + 2)

(α + β + γ + 2n + 2)
(β + γ + m + 1)
(α + β + γ + n + m + 2)
δn,r δm,s .

Hence, if

P
(α,β,γ )
n =

(
P(α,β,γ )
n,0 (x, y), P(α,β,γ )

n,1 (x, y), . . . , P(α,β,γ )
n,n (x, y)

)�
, (24)

then, the OPS {P(α,β,γ )
n }n≥0 is a mutually OPS, and∫ 1

0

∫ 1−x

0
P

(α,β,γ )
n

(
P

(α,β,γ )
m

)�
xα yβ(1 − x − y)γ dydx = H

(α,β,γ )
n �n,m,

where the diagonal and non-singular matrix H
(α,β,γ )
n has as i-th entry

h(α,β,γ )

i,n

= 
(β + i + 1)
(γ + i + 1)
(α + n − i + 1)
(β + γ + n + i + 2)

i !(n − i)!(β + γ + 2i + 1)(α + β + γ + 2n + 2)
(β + γ + i + 1)
(α + β + γ + n + i + 2)
,

(25)

for 0 ≤ i ≤ n.
Moreover, the bivariate polynomials (23) are solutions of the following potentially self-

adjoint second order partial differential equation of hypergeometric type (Area et al. 2012a, b)
which has been deeply analyzed in the literature (see e.g. Appell and Kampé de Fériet (1926),
p. 104, formula (28), Suetin (1999), Chapter III, Krall and Sheffer (1967), or Dunkl and Xu
(2014))

x(x − 1)
∂2

∂x2
P(α,β,γ )
n,m (x, y) + y(y − 1)

∂2

∂ y2
P(α,β,γ )
n,m (x, y) + 2xy

∂2

∂x∂ y
P(α,β,γ )
n,m (x, y)

+((3 + α + β + γ )x − 1 − α)
∂

∂x
P(α,β,γ )
n,m (x, y) + ((3 + α + β + γ )y − 1 − β)

∂

∂ y
P(α,β,γ )
n,m (x, y)

−n(n + α + β + γ + 2)P(α,β,γ )
n,m (x, y) = 0. (26)
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The family of bivariate monic polynomials

P̂(α,β,γ )
n,m (x, y) = (−1)n(α + 1)n−m(β + 1)m

(α + β + γ + n + 2)n

×
n−m∑
r=0

m∑
s=0

(−m)s(−n + m)r (α + β + γ + n + 2)r+s

r !s!(α + 1)r (β + 1)s
xr ys

= (−1)n(α + 1)n−m(β + 1)m
(α + β + γ + n + 2)n

F1:1;1
0:1;1

(
α + β + γ + n + 2 : −n + m; −m

− : α + 1; β + 1
x, y

)

(27)

is also solution of the partial differential equation (26). Let

P̂
(α,β,γ )
n =

(
P̂(α,β,γ )
n,0 (x, y), P̂(α,β,γ )

n,1 (x, y), . . . , P̂(α,β,γ )
n,n (x, y)

)�
.

In the monic case, the recurrence relations can be written as

xP̂(α,β,γ )
n = Ln,1P̂

(α,β,γ )
n+1 + B̂(α,β,γ )

n,1 P̂
(α,β,γ )
n + Ĉ (α,β,γ )

n,1 P̂
(α,β,γ )
n−1 ,

yP̂(α,β,γ )
n = Ln,2P̂

(α,β,γ )
n+1 + B̂(α,β,γ )

n,2 P̂
(α,β,γ )
n + Ĉ (α,β,γ )

n,2 P̂
(α,β,γ )
n−1 ,

(28)

with the initial conditions P̂(α,β,γ )
−1 = 0 and P̂

(α,β,γ )
0 = 1, where the matrices Ln, j of size

(n + 1) × (n + 2) are defined by (8), B̂(α,β,γ )

n, j are of size (n + 1) × (n + 1), and Ĉ (α,β,γ )

n, j are
matrices of size (n + 1) × n.

The square matrices B̂(α,β,γ )
n,1 and B̂(α,β,γ )

n,2 are, respectively, lower and upper bidiagonal

B̂(α,β,γ )
n,1 =

⎛
⎜⎜⎜⎜⎝

b̂10,0 ©
b̂11,0 b̂11,1

. . .
. . .

© b̂1n,n−1 b̂1n,n

⎞
⎟⎟⎟⎟⎠ , B̂(α,β,γ )

n,2 =

⎛
⎜⎜⎜⎜⎜⎝

b̂20,0 b̂20,1 ©
b̂21,1

. . .

. . . b̂2n−1,n

© b̂2n,n

⎞
⎟⎟⎟⎟⎟⎠

, (29)

where

b̂1i,i = (i − n)(α − i + n)

α + β + γ + 2n + 1
+ (−i + n + 1)(α − i + n + 1)

α + β + γ + 2n + 3
, 0 ≤ i ≤ n,

b̂1i+1,i = − 2(i + 1)(β + i + 1)

(α + β + γ + 2n + 1)(α + β + γ + 2n + 3)
, 0 ≤ i ≤ n − 1,

b̂2i,i = (i + 1)(β + i + 1)

α + β + γ + 2n + 3
− i(β + i)

α + β + γ + 2n + 1
, 0 ≤ i ≤ n,

b̂2i,i+1 = 2(i − n)(α − i + n)

(α + β + γ + 2n + 1)(α + β + γ + 2n + 3)
, 0 ≤ i ≤ n − 1.
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Moreover,

Ĉ (α,β,γ )
n,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ10,0 ©
ĉ11,0 ĉ11,1

ĉ12,0 ĉ12,1 ĉ12,2

ĉ13,2
. . .

. . .

. . .
. . . ĉ1n−1,n−1

© ĉ1n,n−2 ĉ1n,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where

ĉ1i,i = (n − i)(α − i + n)(β + γ + i + n + 1)(α + β + γ + i + n + 1)

(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)
, 0 ≤ i ≤ n − 1,

ĉ1i+1,i = − (i + 1)(β + i + 1)
(
α2 + α(β + γ + 2n + 1) − 2(i − n)(β + γ + i + n) − β − γ − 4i + 2n − 2

)
(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)

,

0 ≤ i ≤ n − 1,

ĉ1i+2,i = (i + 1)(i + 2)(β + i + 1)(β + i + 2)

(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)
, 0 ≤ i ≤ n − 2,

and

Ĉ (α,β,γ )
n,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ20,0 ĉ20,1 ©
ĉ21,0 ĉ21,1 ĉ21,2

ĉ22,1 ĉ22,2
. . .

. . .
. . . ĉ2n−2,n−1

ĉ2n−1,n−2 ĉ2n−1,n−1
© ĉ2n,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

with entries

ĉ2i,i = (i − n)(α − i + n)
(
α(β + 2i + 1) + β2 + βγ + 2n(β + 2i + 1) + β + 2γ i + γ − 2i2

)
(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)

,

ĉ2i+1,i = (i + 1)(β + i + 1)(α + γ − i + 2n)(α + β + γ − i + 2n)

(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)
,

for 0 ≤ i ≤ n − 1, and

ĉ2i,i+1 = (−i + n − 1)(n − i)(α − i + n − 1)(α − i + n)

(α + β + γ + 2n)(α + β + γ + 2n + 1)2(α + β + γ + 2n + 2)
,

for 0 ≤ i ≤ n − 2.
Both families of orthogonal polynomials (23) and (27) (with respect to the same weight

function on the same domain, and solution of the same partial differential equation) are
related as

P
(α,β,γ )
n = U

(α,β,γ )
n P̂

(α,β,γ )
n , where U

(α,β,γ )
n =

(
u(α,β,γ )

i, j,n

)n+1

i, j=1
, (32)
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with u(α,β,γ )

i, j,n = 0 if j > i and

u(α,β,γ )

i, j,n = (β + j)i− j (β + γ + i) j−1(α + β + γ + i + n + 1)n−i+1


( j)
(i − j + 1)
(n − i + 2)
(33)

if j ≤ i . Therefore, if we multiply (28) by U
(α,β,γ )
n we obtain the following recurrence

relations for the initial family (24)

xP(α,β,γ )
n = A(α,β,γ )

n,1 P
(α,β,γ )
n+1 + B(α,β,γ )

n,1 P
(α,β,γ )
n + C (α,β,γ )

n,1 P
(α,β,γ )
n−1 ,

yP(α,β,γ )
n = A(α,β,γ )

n,2 P
(α,β,γ )
n+1 + B(α,β,γ )

n,2 P
(α,β,γ )
n + C (α,β,γ )

n,2 P
(α,β,γ )
n−1 ,

where

A(α,β,γ )

n, j = U
(α,β,γ )
n Ln, j

(
U

(α,β,γ )
n+1

)−1
, B(α,β,γ )

n, j = U
(α,β,γ )
n B̂(α,β,γ )

n, j

(
U

(α,β,γ )
n

)−1
,

C (α,β,γ )

n, j = U
(α,β,γ )
n Ĉ (α,β,γ )

n, j

(
U

(α,β,γ )
n−1

)−1
.

By using (see e.g. Area et al. (2017), p. 776 or Suetin (1999), Eq. (15), p. 81)


(α + β + γ + 3)


(α + 1)
(β + 1)
(γ + 1)

∫ 1

0

∫ 1−x

0
xn ymxα yβ(1 − x − y)γ dydx = (α + 1)n (β + 1)m

(α + β + γ + 3)n+m

we get

∫ 1

0

∫ 1−x

0
P̂(α,β,γ )
n,m (x, y)P̂(α,β,γ )

n,k (x, y)xα yβ (1 − x − y)γ dydx

= (−1)n(α + 1)n−m(α + 1)n−k(β + 1)m(β + 1)k
(α + β + γ + n + 2)n


 (β + 1) 
 (γ + 1) 
 (α + 1)


 (α + β + γ + n + 3)

× F1:2;2
1:1;1

(
α + β + γ + n + 2 : −n + m, n − k + α + 1;−m, β + k + 1

α + β + γ + n + 3 : α + 1;β + 1
1, 1

)
.

The orthogonality relation for the monic polynomials reads

∫ 1

0

∫ 1−x

0
P̂

(α,β,γ )
n

(
P̂

(α,β,γ )
m

)�
xα yβ (1 − x − y)γ dydx = Ĥ

(α,β,γ )
n �n,m,

where for 0 ≤ i, j ≤ n the matrix Ĥ
(α,β,γ )
n of size (n + 1) × (n + 1) has as (i, j)-entry

(−1)n(α + 1)n−i (α + 1)n− j (β + 1)i (β + 1) j
(α + β + γ + n + 2)n


 (β + 1) 
 (γ + 1) 
 (α + 1)


 (α + β + γ + n + 3)

× F1:2;2
1:1;1

(
α + β + γ + n + 2 : −n + i, n − j + α + 1;−i, β + j + 1

α + β + γ + n + 3 : α + 1;β + 1
1, 1

)
.

Let us compute the inverse of Ĥ(α,β,γ )
n . For standard polynomials, we just need to compute

the inverse of the diagonal matrix H
(α,β,γ )
n of size (n + 1) × (n + 1) with entries given in

(25). By using (32) we have

Ĥ
(α,β,γ )
n = (U

(α,β,γ )
n )−1

H
(α,β,γ )
n

(
(U

(α,β,γ )
n )−1

)�
.
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Thus,

(
Ĥ

(α,β,γ )
n

)−1 =
(
w

(α,β,γ )

i, j,n

)n+1

i, j=1
where w

(α,β,γ )

i, j,n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n+1∑
k= j

u(α,β,γ )

k,i,n u(α,β,γ )

k, j,n

h(α,β,γ )

n,k−1

, j ≥ i,

n+1∑
k=i

u(α,β,γ )

k,i,n u(α,β,γ )

k, j,n

h(α,β,γ )

n,k−1

, j < i,

where h(α,β,γ )

n,k−1 and u(α,β,γ )

k,i,n are defined in (25) and (33), respectively.
Now, we introduce the Uvarov moment functional on the simplex. Let us denote by u the

linear functional associated with the bivariate orthogonal polynomials on the simplex

〈u, f 〉 =
∫ 1

0

∫ 1−x

0
f (x, y)xα yβ(1 − x − y)γ dydx

and let the matrix � in (10) be the diagonal matrix

� =
⎛
⎝M1 0 0

0 M2 0
0 0 M3

⎞
⎠ ,

whereM1, M2, M3 are positive real numbers. Hence, theUvarov linear functional v is defined
by

〈v, f 〉 = 〈u, f 〉 + M1 f (0, 0) + M2 f (1, 0) + M3 f (0, 1).

In this case, the matrices Kn defined in (12) are explicitly given by

Kn = 
(α + β + γ + n + 3)

n!
(α + 1)
(β + 1)
(γ + 1)

⎛
⎜⎜⎜⎜⎜⎝

(α + β + 3)n
(γ + 1)n

(−1)n (−1)n

(−1)n
(β + γ + 3)n

(α + 1)n
(−1)n

(−1)n (−1)n
(α + γ + 3)n

(β + 1)n

⎞
⎟⎟⎟⎟⎟⎠

= An − bn I3 + bnu u�,

where we denote u = (1, 1, 1)�, An = diag
{
an,1, an,2, an,3

}
, and

an,1 = 
(α + β + γ + n + 3)

n!
(α + 1)
(β + 1)
(γ + 1)

(α + β + 3)n
(γ + 1)n

,

an,2 = 
(α + β + γ + n + 3)

n!
(α + 1)
(β + 1)
(γ + 1)

(β + γ + 3)n
(α + 1)n

,

an,3 = 
(α + β + γ + n + 3)

n!
(α + 1)
(β + 1)
(γ + 1)

(α + γ + 3)n
(β + 1)n

,

bn = 
(α + β + γ + n + 3)

n!
(α + 1)
(β + 1)
(γ + 1)
(−1)n .

Since � is positive definite, the inverse of the matrix I3 + �Kn is computed as

�n = (I3 + �Kn)−1 � = (
�−1 + Kn

)−1 =
(
�−1 + An − bn I3 + bnu u�)−1

.

Let us denote

Zn := �−1 + An − bn I3 = diag
{
zn,i , i = 1, 2, 3

}
,
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where zn,i = M−1
i + an,i − bn . Using the Sherman–Morrison–Woodbury identity, it follows

(see Golub and Van Loan 1996)

�n = (I3 + �Kn)−1 � =
(
Zn + bnu u�)−1

= Z−1
n − bn

1 + bn
∑3

i=1z
−1
n,i

⎛
⎜⎜⎝
z−1
n,1

z−1
n,2

z−1
n,3

⎞
⎟⎟⎠

(
z−1
n,1 z−1

n,2 z−1
n,3

)
.

The matrix Pn(ξ) defined in (11) is explicitly given by

Pn(ξ) =
(
P

(α,β,γ )
n (0, 0)|P(α,β,γ )

n (1, 0)|P(α,β,γ )
n (0, 1)

)
,

where for m = 0, 1, . . . , n

P(α,β,γ )
n,m (0, 0) = (−1)n

(
n − m + α

n − m

) (
m + β

m

)
,

P(α,β,γ )
n,m (1, 0) =

(
n + β + γ + 1

n

)
δn,n−m,

P(α,β,γ )
n,m (0, 1) = (−1)n−m

(
n − m + α

n − m

) (
m + γ

m

)
,

from the properties

P̄(α,β)
n (0) = (−1)n

(
n + β

n

)
, P̄(α,β)

n (1) =
(
n + α

n

)
.

Then, we can express the monic Uvarov polynomials on the simplex by using the explicit
expression (15). Applying Theorem 7, the coefficients of the three term relations for Uvarov
polynomials are given by (19), where the involved matrices are already explicitly computed.

Finally, we analyse a particular example. Consider α = β = 1, γ = 1/2, and M1 =
M2 = M3 = 1/2. The Uvarov inner product is given by

( f , g)K =
∫ 1

0

∫ 1−x

0
f (x, y) g(x, y) x y (1 − x − y)1/2dydx

+ 1

2
f (0, 0) g(0, 0) + 1

2
f (1, 0) g(1, 0) + 1

2
f (0, 1) g(0, 1).

Table 1 shows the explicit expression of the first classical monic polynomials on the sim-
plex, and theUvarovmonic polynomials perturbed as above.We have plotted the polynomials
of degree 2 up to degree 5 of the zeros (as algebraic curves Area et al. (2015)) of both families
as well as the corresponding surfaces in Figs. 1, 2, 3, 4, 5. We must point out that the zeros
of multivariate polynomials constitute a theory that remains open, only a few analytic results
concerning zeros are known (see Dunkl and Xu 2014; Area et al. 2015). In general, a zero of a
multivariate polynomial is an algebraic curve, and different basis have different zeros. Here,
we wanted to show the impact of the Uvarov modification on the orthogonal polynomials as
well as its zeros.

123



330 Page 20 of 30 R. Aktaş, I. Area and T. E. Pérez

Table 1 Table of the first (total degree 0 ≤ n ≤ 2) monic classical polynomials on the simplex and the monic
Uvarov perturbation described in Example 5.1, for α = β = 1, γ = 1/2 and M1 = M2 = M3 = 1/2

Polynomial Monic simplex polynomial Monic Uvarov polynomial

P0,0(x, y) 1 1

P1,0(x, y) x − 4/11 x − 10459
31361

P1,1(x, y) y − 4/11 y − 10459
31361

P2,0(x, y) x2 − 4x/5 + 8/65 x2 − 320811709991693
321113175737485 x + 36006461568

64222635147497 y + 51957376
30832708855

P2,1(x, y) xy − 4x/15 − 4y/15 + 16/195 xy − 5355008
7115240505 x − 5355008

7115240505 y − 69058048
92498126565

P2,2(x, y) y2 − 4y/5 + 8/65 y2 + 36006461568
64222635147497 x − 320811709991693

321113175737485 y + 51957376
30832708855
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Fig. 1 Zeros of the classical polynomials P2,0, P2,1 and P2,2 on the simplex (left graphics) and of the Uvarov
polynomials (right graphics) of total degree n = 2, for x ∈ [0, 1] and y ∈ [0, x]
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Fig. 2 Zeros of the monic polynomials of degree 3, P3,0, P3,1, P3,2, and P3,3. In the first row, the classical
polynomials on the simplex, and in the second row, the Uvarov modification, for x ∈ [0, 1] and y ∈ [0, x]

5.2 Bivariate Uvarov Bessel–Laguerre orthogonal polynomials

Let us consider the classical Laguerre polynomials

L(α)
n (t) = (α + 1)n

n! 1F1

( −n
α + 1

∣∣∣ t
)

,
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Fig. 3 Zeros of the classical polynomials of total degree 4 P4,0, P4,1, P4,2, P4,3 and P4,4. In the first row,
the classical polynomials on the simplex, and in the second row, the Uvarov modification, for x ∈ [0, 1] and
y ∈ [0, x]
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Fig. 4 Zeros of the classical polynomials of total degree 5 P5,0, P5,1, P5,2, P5,3, P5,4 and P5,5. In the first
row, the classical polynomials on the simplex, and in the second row, the Uvarov modification, for x ∈ [0, 1]
and y ∈ [0, x]

Fig. 5 Surfaces of the classical polynomials on the simplex (first row) and of the Uvarov polynomials (second
rows) of total degree n = 5, for x ∈ [0, 1] and y ∈ [0, x], with the modification described in Sect. 5.1

orthogonal with respect to the positive definite univariate moment functional

〈v(α)
L , f 〉 =

∫ +∞

0
f (t)w(α)(t) dt,

with w(α)(t) = tα e−t , α > −1. Formula (5.1.1) in Szegő (1975) provides

∫ +∞

0

(
L(α)
n (t)

)2
w(α)(t) dt = 
(n + α + 1)

n! , n ≥ 0.
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Let

B(a,b)
n (z) = (−1)n n! z

n

bn
L(1−2n−a)
n

(
b

z

)
,

be the classical univariate Bessel polynomials orthogonal with respect to the quasi definite
but not positive definite moment functional ( Krall and Frink 1949)

〈u(a,b)
B , f 〉 =

∫
T
f (z)w(a,b)(z) dz,

where

w(a,b)(z) = 1

2π i
za−2 e−b/z,

for a �= 0,−1,−2, . . ., b �= 0, where i2 = −1, and T is the unit circle oriented in the
counter-clockwise direction ( Krall and Frink (1949), eq. (58)). Moreover, for a ≥ 2 integer
and b real we have∫

T
B(a,b)
n (z) B(a,b)

m (z)w(a,b)(z) dz = (−1)n+a+1 ba−1 n!
(2n + a − 1)
(n + a − 1)

δn,m,

which implies
∫
T

(
B(a,b)
n (z)

)2
w(a,b)(z) dz = (−1)n+a+1 ba−1 n!

(2n + a − 1)
(n + a − 1)
. (34)

This means that Bessel polynomials are associated with a quasi definite but not positive
definite moment functional.

For n ≥ 0, g, γ ∈ R, such that g + n �= 0, gγ + n �= 0, the bivariate Bessel-Laguerre
orthogonal polynomials are defined by

B(g,γ )
n,m (x, y) = B(g+2m,−g)

n−m (x) xm L(gγ−1)
m

(gy
x

)
, 0 ≤ m ≤ n. (35)

Following (Dunkl and Xu 2014, p. 39), Bessel-Laguerre polynomials (35) are mutually
orthogonal with respect to a non positive definite moment functionalw acting as follows. We
define

W (x, y) = w(g−1,−g)(x)w(gγ−1)
(gy
x

)
= 1

2π i
xg−3 eg/x

(gy
x

)gγ−1
e−gy/x ,

on the region R = {(x, y) : x ∈ T , 0 < gy/x < +∞}. The bivariate moment functional is
defined as

〈w, f 〉 =
∫
R
f (x, y)W (x, y) dxdy. (36)

Therefore, if g ≥ 2 is integer

〈w, B(g,γ )
n,m B(g,γ )

r ,s 〉 =
∫
R
B(g,γ )
n,m (z, y) B(g,γ )

r ,s (z, y)W (z, y) dz dy

= 1

2π i

∫
R
B(g+2m,−g)
n−m (z) zm L(gγ−1)

m

(
gy

z

)

× B(g+2s,−g)
r−s (z) zs L(gγ−1)

s

(
gy

z

)
zg−3 eg/z

(
gy

z

)gγ−1

e−gy/z dz dy
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= 1

2π i g

∫
T
B(g+2m,−g)
n−m (z) B(g+2s,−g)

r−s (z)zm+s+g−2eg/zdz

×
∫ +∞

0
L(gγ−1)
m (t) L(gγ−1)

s (t)t gγ−1e−tdt

= 
(m + gγ )

m! 2π i g

[∫
T
B(g+2m,−g)
n−m (z) B(g+2m,−g)

r−m (z) z2m+g−2eg/zdz

]
δm,s

= (−1)n+mgg+2m−2
(m + gγ ) (n − m)!
m!2π i (2n + g − 1)
(g + n + m − 1)

δn,r δm,s .

Bessel–Laguerre polynomials appear in Kwon et al. (2001) as solutions of the partial
differential equation

x2
∂2

∂x2
B(g,γ )
n,m (x, y) + 2xy

∂2

∂x∂ y
B(g,γ )
n,m (x, y) + (y2 − y)

∂2

∂ y2
B(g,γ )
n,m (x, y)

+g(x − 1)
∂

∂x
B(g,γ )
n,m (x, y) + g(y − γ )

∂

∂ y
B(g,γ )
n,m (x, y) − n(n + g − 1)B(g,γ )

n,m (x, y) = 0,

(37)

and were considered later in Area et al. (2012a) and Marriaga et al. (2017), among others.
The partial differential equation (37) has as monic solution

B̂(g,γ )

n,k (x, y) =
k∑

s=0

(
k

s

) n−k+s∑
r=s

(−1)s gr−s(1 − gγ − k)s
(2 − g − 2n)r

(
n − k

r − s

)
xn−k+s−r yk−s

=
k∑

s=0

(
k

s

)
(−1)s
(−g − 2n + 2)
(−gγ − k + s + 1)


(−gγ − k + 1)
(−g − 2n + s + 2)

×xn−k yk−s
1F1

(
k − n;−g − 2n + s + 2;−g

x

)
. (38)

Let us define the Bessel–Laguerre mutually orthogonal polynomial system {P(g,γ )
n }n≥0

given by

P
(g,γ )
n = (B(g,γ )

n,0 (x, y), B(g,γ )
n,1 (x, y), . . . , B(g,γ )

n,n (x, y))�. (39)

We get

〈w,P
(g,γ )
n (P

(g,γ )
m )�〉 = H

(g,γ )
n �n,m,

where H(g,γ )
n = diag{h(g,γ )

n,0 , h(g,γ )
n,1 , . . . , h(g,γ )

n,n } is a (n + 1) diagonal matrix with entries

h(g,γ )
n,m =

〈
w,

(
B(g,γ )
n,m

)2〉 = (−1)n+mgg+2m−2
(m + gγ ) (n − m)!
m!2π i (2n + g − 1)
(g + n + m − 1)

.

Let us also consider the monic Bessel-Laguerre system

P̂
(g,γ )
n =

(
B̂(g,γ )
n,0 (x, y), B̂(g,γ )

n,1 (x, y), . . . , B̂(g,γ )
n,n (x, y)

)�
. (40)

Both families of orthogonal polynomials (35) and (38) (with respect to the same weight
function on the same domain, and solution of the same partial differential equation) are
related as

P
(g,γ )
n = U

(g,γ )
n P̂

(g,γ )
n , where U

(g,γ )
n =

(
u(g,γ )

i, j,n

)n+1

i, j=1
(41)
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with u(g,γ )

i, j,n = 0 if j > i and

u(g,γ )

i, j,n = (−1)n−i− j gi+ j−n−2(g + i + n − 2)n−i+1(gγ + j − 1)i− j

( j − 1)!(i − j)! ,

if j ≤ i . The orthogonality relation for the monic polynomials reads

〈w, P̂
(g,γ )
n

(
P̂

(g,γ )
m

)�〉 = Ĥ
(g,γ )
n �n,m,

where Ĥ(g,γ )
n is a non-singular matrix of size (n + 1) × (n + 1). By using (41) we have

Ĥ
(g,γ )
n =

(
U

(g,γ )
n

)−1
H

(g,γ )
n

((
U

(g,γ )
n

)−1
)�

.

Thus

(
Ĥ

(g,γ )
n

)−1 =
(
w

(g,γ )

i, j,n

)n+1

i, j=1
, where w

(g,γ )

i, j,n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n+1∑
k= j

u(g,γ )

k,i,n u(g,γ )

k, j,n

h(g,γ )

n,k−1

, j ≥ i,

n+1∑
k=i

u(g,γ )

k,i,n u(g,γ )

k, j,n

h(g,γ )

n,k−1

, j < i .

The monic Bessel-Laguerre polynomials {̂P(g,γ )
n }n≥0 satisfy three term relations

x j P̂
(g,γ )
n = Ln, j P̂

(g,γ )
n+1 + B̂(g,γ )

n, j P̂
(g,γ )
n + Ĉ (g,γ )

n, j P̂
(g,γ )
n−1 , j = 1, 2, (42)

where now

b̂1i,i = g(g + 2i − 2)

(g + 2n)(g + 2n − 2)
, 0 ≤ i ≤ n,

b̂1i+1,i = − 2(gγ + i)(i + 1)

(g + 2n)(g + 2n − 2)
, 0 ≤ i ≤ n − 1,

b̂2i,i = (g + 2n − 2i − 2)(gγ + 2i) + 2i(i + 1)

(g + 2n)(g + 2n − 2)
, 0 ≤ i ≤ n,

b̂2i,i+1 = − 2(n − i)g

(g + 2n)(g + 2n − 2)
, 0 ≤ i ≤ n − 1.

Moreover, Ĉ (g,γ )
n,1 and Ĉ (g,γ )

n,2 have the same structure as (30) and (31), respectively, where
now

ĉ1i,i = − (n − i)g2(g + n + i − 2)

(g + 2n − 2)2(g + 2n − 3)(g + 2n − 1)
, 0 ≤ i ≤ n − 1,

ĉ1i+1,i = − (i + 1)g(gγ + i)(g + 2i − 1)

(g + 2n − 2)2(g + 2n − 3)(g + 2n − 1)
, 0 ≤ i ≤ n − 1,

ĉ1i+2,i = (i + 1)(i + 2)(gγ + i)(gγ + i + 1)

(g + 2n − 2)2(g + 2n − 3)(g + 2n − 1)
, 0 ≤ i ≤ n − 2,

and

ĉ2i,i = −g(n − i)((gγ + 2i)(g + 2n − 2i − 3) + 2i(i + 1))

(g + 2n − 3)(g + 2n − 1)(g + 2n − 2)2
, 0 ≤ i ≤ n − 1,

ĉ2i+1,i = (i + 1)(g + 2n − 3 − i)(gγ + i)(g − gγ + 2n − 2 − i)

(g + 2n − 3)(g + 2n − 1)(g + 2n − 2)2
0 ≤ i ≤ n − 1,
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ĉ2i,i+1 = (n − i)(n − i − 1)g2

(g + 2n − 3)(g + 2n − 1)(g + 2n − 2)2
, 0 ≤ i ≤ n − 2.

The mutually OPS of non monic Bessel-Laguerre polynomials {P(g,γ )
n }n≥0 also satisfy

the three term relations (see Marriaga et al. 2017)

x jP
(g,γ )
n = A(g,γ )

n, j P
(g,γ )
n+1 + B(g,γ )

n, j P
(g,γ )
n + C (g,γ )

n, j P
(g,γ )
n−1 , j = 1, 2. (43)

If we multiply (43) by U
(g,γ )
n we obtain

A(g,γ )

n, j = U
(g,γ )
n Ln, j

(
U

(g,γ )
n+1

)−1
,

B(g,γ )

n, j = U
(g,γ )
n B̂(g,γ )

n, j

(
U

(g,γ )
n

)−1
,

C (g,γ )

n, j = U
(g,γ )
n Ĉ (g,γ )

n, j

(
U

(g,γ )
n−1

)−1
.

The explicit expressions of the matrices in (43) are as follows. The recursion coefficients
A(g,γ )

n, j are the (n + 1) × (n + 2) matrices

A(g,γ )
n,1 =

⎛
⎜⎜⎜⎜⎝

a10,0,n © 0

a11,1,n
...

. . .
...

© a1n,n,n 0

⎞
⎟⎟⎟⎟⎠ ,

where

a1i,i,n = (n + i + g − 1) (−g)

(2n + g − 1) (2n + g)
, 0 ≤ i ≤ n,

and

A(g,γ )
n,2 =

⎛
⎜⎜⎜⎜⎜⎝

a20,0,n a20,1,n © 0

a21,0,n a21,1,n
. . .

...

. . .
. . . a2n−1,n,n 0

© a2n,n−1,n a2n,n,n a2n,n+1,n

⎞
⎟⎟⎟⎟⎟⎠

,

with entries

a2i,i,n = − (gγ + 2i) (g + n − 1 + i)

(2n + g − 1) (2n + g)
, 0 ≤ i ≤ n,

a2i,i+1,n = − (i + 1) (g + n − 1 + i) (g + n + i)

g (2n + g − 1) (2n + g)
, 0 ≤ i ≤ n,

a2i+1,i,n = − (gγ + i) g

(2n + g − 1) (2n + g)
, 0 ≤ i ≤ n − 1.
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The coefficients B(g,γ )

n, j are

B(g,γ )
n,1 =

⎛
⎜⎜⎜⎝
b10,0,n ©

b11,1,n
. . .

© b1n,n,n

⎞
⎟⎟⎟⎠ , B(g,γ )

n,2 =

⎛
⎜⎜⎜⎜⎜⎝

b20,0,n b20,1,n ©
b21,0,n b21,1,n

. . .

. . .
. . . b2n−1,n,n

© b2n,n−1,n b2n,n,n

⎞
⎟⎟⎟⎟⎟⎠

,

where

b1i,i,n = g (2i + g − 2)

(2n + g − 2) (2n + g)
, 0 ≤ i ≤ n,

b2i,i,n = (gγ + 2i) (g − 2 + 2i)

(2n + g − 2) (2n + g)
, 0 ≤ i ≤ n,

b2i,i+1,n = −2 (i + 1) (g + n + i − 1) (n − i)

g (2n + g − 2) (2n + g)
, 0 ≤ i ≤ n − 1,

b2i+1,i,n = 2g (gγ + i)

(2n + g − 2) (2n + g)
, 0 ≤ i ≤ n − 1.

Moreover,

C (g,γ )
n,1 =

⎛
⎜⎜⎜⎜⎜⎝

c10,0,n ©
c11,1,n

. . .

© c1n−1,n−1,n
0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

where

c1i,i,n = g(n − i)

(2n + g − 2) (2n + g − 1)
, 0 ≤ i ≤ n − 1,

and

C (g,γ )
n,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c20,0,n c20,1,n ©
c21,0,n c21,1,n

. . .

. . .
. . . c2n−2,n−1,n

© c2n−1,n−2,n c2n−1,n−1,n
0 · · · 0 c2n,n−1,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with entries

c2i,i,n = (n − i)(gγ + 2i)

(2n + g − 2) (2n + g − 1)
, 0 ≤ i ≤ n − 1,

c2i+1,i,n = − g(gγ + i)

(2n + g − 2) (2n + g − 1)
, 0 ≤ i ≤ n − 1,

c2i,i+1,n = − (i + 1)(n − i)(n − i − 1)

g (2n + g − 2) (2n + g − 1)
, 0 ≤ i ≤ n − 2.
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Now, we define the Uvarov modification. We take ξ = (0, 0). Let us denote by w the non
positive definite moment functional associated with the bivariate Bessel-Laguerre polyno-
mials defined in (36) and let �=M be a real number such that

M �= (−1)n

(n + 1)
(gγ )

2π ig2−g
(g + n)
, n ≥ 0.

Hence, the Uvarov linear functional v is defined by

〈v, f 〉 = 〈w, f 〉 + M f (0, 0). (44)

By using (35) as well as B(g+2m,−g)
n−m (0) = 1, we get

B(g,γ )
n,m (0, y) = (−g)m

m! ym, 0 ≤ m ≤ n,

and then,

B(g,γ )
n,0 (0, 0) = 1, B(g,γ )

n,m (0, 0) = 0, 1 ≤ m ≤ n.

Observe that

P
(g,γ )
n (0, 0) =(1, 0, . . . , 0)�.

The matrix Pn(ξ) defined in (11) is explicitly given by using the above value in

Pn(ξ) =
(
P

(g,γ )
n (0, 0)

)
.

Now, we compute the matrix �n = 1 + � Kn .
In this case, Kn is explicitly given by

Kn = Kn(u; (0, 0), (0, 0)) =
n∑

m=0

(
P

(g,γ )
m (0, 0)

)� (
H

(g,γ )
m

)−1
P

(g,γ )
m (0, 0)

=
n∑

m=0

(−1)m2π i(2m + g − 1)
(g + m − 1)

gg−2
(gγ )m!

= 2π i


(gγ )gg−2

n∑
m=0

(−1)m(2m + g − 1)
(g + m − 1)

m! = (−1)n
2π ig2−g
(g + n)


(n + 1)
(gγ )

and

�n = (1 + �Kn)−1 � = (
�−1 + Kn

)−1 = M
(n + 1)
(gγ )


(n + 1)
(gγ ) + M(−1)n2π ig2−g
(g + n)
.

We can now give explicitly the matrices Ãn,i , B̃n,i and C̃n,i of the three term relations for
the vector polynomials {Qn}n≥0 orthogonal with respect to the linear functional v defined in
(44) according to Theorem (7). First of all,

Ãn,i = A(g,γ )

n,i , n ≥ 0.

Moreover,

B̃n,1 =

⎛
⎜⎜⎜⎝
b̃10,0,n ©

b̃11,1,n
. . .

© b̃1n,n,n

⎞
⎟⎟⎟⎠ ,
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Table 2 Table of Bessel-Laguerre polynomials (total degree 0 ≤ n ≤ 2) and theUvarov perturbation described
in Example 5.2, for g = 3, γ = M = 1/2

Polynomial Bessel-Laguerre polynomial Uvarov polynomial

P0,0(x, y) 1 1

P1,0(x, y) 1 − x −x + 1

1+ 4i
√

π
3

P1,1(x, y)
3
2 (x − 2y) 3

2 (x − 2y)

P2,0(x, y)
4
9 x(5x − 6) + 1 4i x(5x−6)+16

√
πx(5x−3)+9i

36
√

π+9i

P2,1(x, y) − 1
2 (5x − 3)(x − 2y) − 1

2 (5x − 3)(x − 2y)

P2,2(x, y)
3
8

(
5x2 − 20xy + 12y2

)
3
8

(
5x2 − 20xy + 12y2

)

where

b̃10,0,n = b10,0,n + �na10,0,n

h(g,γ )
n,0

− �n−1a10,0,n−1

h(g,γ )
n−1,0

, b̃1i,i,n = b1i,i,n, 1 ≤ i ≤ n,

and

B̃n,2 =

⎛
⎜⎜⎜⎜⎜⎝

b̃20,0,n b̃20,1,n ©
b̃21,0,n b̃21,1,n

. . .

. . .
. . . b̃2n−1,n,n

© b̃2n,n−1,n b̃2n,n,n

⎞
⎟⎟⎟⎟⎟⎠

,

with entries

b̃20,0,n = b20,0,n + �na20,0,n

h(g,γ )
n,0

− �n−1a20,0,n−1

h(g,γ )
n−1,0

, b̃2i,i,n = b2i,i,n , 1 ≤ i ≤ n,

b̃20,1,n = b20,1,n − �n−1a20,1,n−1

h(g,γ )
n−1,0

, b̃2i,i+1,n = b2i,i+1,n , 1 ≤ i ≤ n − 1,

b̃21,0,n = b21,0,n + �na21,0,n

h(g,γ )
n,0

, b̃2i+1,i,n = b2i+1,i,n , 1 ≤ i ≤ n − 1.

Finally,

C̃n,1 =

⎛
⎜⎜⎜⎜⎜⎝

c̃10,0,n ©
c̃11,1,n

. . .

© c̃1n−1,n−1,n
0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

where

c̃10,0,n = c10,0,n

(
1 + �n−1

h(g,γ )
n,0

) (
1 − �n−1

h(g,γ )
n−1,0

)
, c̃1i,i,n = c1i,i,n, 1 ≤ i ≤ n − 1,

123



Three term relations for multivariate. . . Page 29 of 30 330

and

C̃n,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c̃20,0,n c̃20,1,n ©
c̃21,0,n c̃21,1,n

. . .

. . .
. . . c̃2n−2,n−1,n

© c̃2n−1,n−2,n c̃2n−1,n−1,n
0 · · · 0 c̃2n,n−1,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with entries

c̃20,0,n = c20,0,n

(
1 + �n−1

h(g,γ )
n,0

) (
1 − �n−1

h(g,γ )
n−1,0

)
, c̃2i,i,n = c2i,i,n , 1 ≤ i ≤ n − 1,

c̃21,0,n = c21,0,n

(
1 − �n−1

h(g,γ )
n−1,0

)
, c̃2i+1,i,n = c2i+1,i,n , 1 ≤ i ≤ n − 1,

c̃20,1,n = c20,1,n

(
1 + �n−1

h(g,γ )
n,0

)
, c̃2i,i+1,n = c2i,i+1,n , 1 ≤ i ≤ n − 2.
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