On Synthetic AER Generation

Alejandro Linares-Barrancol, Gabriel Jimenez-Morenol, Anton Civit-Ballcelsl, and
Bernabé Linares-Barranco

lArquitectura y Tecnologia de Computadores. ETSI Informatica, Av. Reina Mercedes s/n,
41012 Sevilla, SPAIN. Phone: 95-455-6145, Fax: 95-455-6449, E-mail: alinares@atc.us.es
2Instituto de Microelectronica de Sevilla, Sevilla, SPAIN.

Abstract

In this paper several software methods for
generating synthetic AER streams from images stored
in a computer's memory are proposed and evaluated.
Evaluation criteria cover execution time, distribution
error and how they perform with two receiver cell
models. A hardware PCI to AER interface is presented.

1. Introduction

Address-Event-Representation (AER) was proposed in
1991 by Sivilotti [1] to transfer the state of an array of
neurons from one chip to another. It uses mixed analog
and digital principles and exploits pulse density
modulation to code information. The state of the neurons
is a continuous time varying analog signal.

Fig. 1 explains the principle behind the AER basics.
The Emitter chip contains an array of cells (like, for
example, a camera or artificial retina chip) where each
pixel shows a continuously varying time dependent state
that changes with a slow time constant (in the order of
milliseconds). Each cell or pixel includes a local oscillator
that generates digital pulses of minimum width (a few
nanoseconds). The density of pulses is proportional to the
state or intensity of the pixel. Each time a pixel generates a
pulse (which is called "event"), it communicates with the
array periphery and a digital word representing its code or
address is placed on the external inter-chip digital bus (the
AER bus). Additional handshaking lines (Acknowledge
and Request) are also used to complete the asynchronous
communication.

In the receiver chip, the pulses are directed to the pixels
or cells whose code or address was on the bus. This way,
pixels with the same code or address in the emitter and
receiver chips will "see" the same pulse stream. The
receiver cell integrates the pulses and reconstructs the
original low frequency continuous-time waveform. Pixels
that are more active are accessing the bus more frequently
than those less active.

Transmitting the pixel addresses allows performing
extra operations on the images while they travel from one
chip to another. For example, inserting properly coded
memories (ie. EEPROM) allows transformation (ie.
shifting and rotation) of images. Also, the image
transmitted by one chip can be received by many re- ceiver

L1l @

Fig. 1: AER inter-chip communication scheme

FAST
DIGITAL
BUS

AHAOONHHIHLIFIV
JHAODIA

chips in parallel, by properly handling the asyn- chronous
communication protocol. The peculiar nature of the AER
protocol also allows for very efficient convolution
operations within a receiver chip [2].

There is a growing community of AER protocol users
for bio-inspired applications in vision and audition
systems, as demonstrated by the success in the last years
of the AER group at the Neuromorphic Engineering
Workshop series [3]. The goal of this community is to
build large multi-chip and multi-layer hierarchically
structured systems capable of performing complicated
array data processing in real time. The success of such
systems will strongly depend on the availability of robust
and efficient development and debugging AER-tools
[4][5]- One such tool is a computer interface that allows
not only reading an AER stream into a computer and
displaying it on screen in real-time, but also the opposite:
from images available in the computer's memory, generate
a synthetic AER stream in a similar manner as would do a
dedicated VLSI AER emitter chip [1][6][7].

In Section 2 we review some synthetic AER generation
methods and present some improvements over earlier
presented ones [4][5]. In Section 3 different methods are
evaluated attending to three criteria: execution time, error
of distribution and distance between ideal distribution in
two kind of receptors, the Boahen integrator [8] and the
Mortara integrator [9]. Finally, section 4 presents a
hardware interface.

2. Synthetic AER Generation

One can think of many software algorithms to
transform a bitmap image (stored in a computer’s
memory) into an AER stream of pixel addresses [4][5]. In
all of them the frequency of appearance of the address of a
given pixel must be proportional to the intensity of that
pixel. If pixel signal time constant is much slower than
inter-event timing, the precise location of the address
pulses is not critical. The pulses can be slightly shifted
from their nominal positions; the AER receivers will
integrate them to recover the original pixel waveform.

Whatever algorithm is used, it will generate a vector of
addresses that will be sent to an AER receiver chip via an
AER bus. Let us call this vector the “frame vector”. The
frame vector has a fixed number of time slots to be filled
with event addresses. The number of time slots depends on
the time assigned to a frame (for example
T fgme = 40ms) and the time required to transmit a
single event (for example 7' , = 10ns). If we have an
image of NxM pixels and each pixel can have a grey level
value from 0 to K, one possibility is to place each pixel
address in the frame vector as many times as the value of
its intensity, and distribute it with equidistant positions. In
the worst case (all pixels with maximum value K), the

frame vector would be filled with NxMxK addresses. Note
that this number should be less than the total number of
time slots in Fhe frqme vector_T vame! T pulse” Depending
on the total intensity of the image there will be more or
less empty slots in the frame vector. Each algorithm would
implement a particular way of distributing these address
events, and will require a certain time.

A. The Scan method

In this method a frame is scanned many times. For each
scan, every time a non-zero pixel is reached its address is
put on the frame vector in the first available slot, and the
pixel value is decremented by one. If a pixel value is zero,
a blank slot is left in the frame vector. This method is very
fast. However, the resulting event distribution is very
different from the one an AER retina, for example, would
produce. Particularly, the events of pixels with low
intensity will appear only at the beginning of the frame
vector.

B. The Uniform method

In this method, the objective is to distribute
equidistantly the events of one pixel along the frame
vector. The image is scanned pixel by pixel only once. For
each pixel, the generated pulses must be distributed at
equal distances. As the frame vector is getting filled, the
algorithm may want to place addresses in slots that are
already occupied. This situation is called a ‘collision’. In
this case, we propose three solutions:

The Back-Forward (Uniform-BF method) solution will
put the event in the nearest empty slot of the frame vector.

The Forward (Uniform-F method) solution will put the
event in the following empty slot in the frame vector.

And the Winner-Takes-All (Uniform-WTA method)
solution will put in the collision position of the vector the
event that produces a lower error and will ignore the
others. The winning event is the one of the pixel with the
lowest intensity.

Uniform-BF, Uniform-F and Uniform-WTA methods,
apparently, will make more mistakes at the end of the
process than at the beginning. The execution time grows
considerably because the collisions consume an important
amount of time to be resolved.

C. The Random method

This method places the address events in the slots
obtained by a pseudo-random number generator based on
Linear Feedback Shift Registers (LFSR) [10]. Due to the
properties of the LFSR wused, each slot position is
generated only once, except position zero, and no
collisions appear. If a pixel in the image has intensity p,
then the method will take p values from the
pseudo-random number generator and places the pixel
address in the corresponding p slots of the frame vector.
They will not be equidistant but will appear along the
complete address sequence randomly. This method is
faster than any of the Uniform methods.

Note that by using an LFSR it would be possible to
obtain two very close addresses in a few calls. This can be
avoided using a b-bit counter for the most significant bits
of the address. For each value of the LFSR, four addresses
are generated by incrementing the counter. This ensures
absence of collisions. Fig. 2 shows the LFSR structure
with a 2-bit counter for a 128x128 frame with 256 grey
levels.

1 0 O IS A O
21| 20| 19| 18f 17| 1 15 14| 13} 12| 11] 10| 9 E 7 5 5 4 3 2] 1] 0f

(

Fig. 2: Random method structure: LFSR with a 2-bit counter.

s

MSB LESR-8 LFSR-14 LSB
| 21‘ zo| 19| 1s| 17| 15| 15| 14| | 13| 12| 11| 10| 9| 8| 7| s| 5| 4| 3| z‘ 1| —0|

—

Fig. 3: Random-Square structure: LFSR-8 and LFSR-14 .

D. The Random-Square method

For the Random method with a fixed size counter from
1 to the maximum grey level, the event distribution for
high activity pixels is acceptable, but poor for low level
values. Substituting the counter by another LFSR, the
distribution could be improved.

For a 128x128 frame with maximum grey level of 255,
an 8-bit LFSR (LFSR-8) is used for selecting 255 slices of
128x128 positions, and another /4-bit LFSR (LFSR-14)
selects the position inside the slice. The image is scanned
only once. For each pixel a /4-bit number is generated by
the LFSR-14, and the LFSR-8 is called as many times as
the intensity level of the pixel would indicate. Fig. 3 shows
the LFSRs used by this Random-Square method.

E. The Exhaustive method

This algorithm also divides the address event sequence
into K slices of NxM positions for a frame of NxM pixels
with a maximum grey level of K. For slice k, an event of
pixel (i) is sent on time ¢ if the following condition is
asserted:

(kxP; ymodK+P; ;2K (D)
and
NxMx(k=1)+(Gi-1)xM+j =t)
where P; 7 is the intensity value of the pixel (i,j) [4][5].
The Exhaustive method tries to improve the

Random-Square one by distributing the events of each
pixel into the K slices at equal distances. The algorithm
scans the frame K times. In iteration £, if the previous
condition is true, then the corresponding event is sent,
otherwise the algorithm will wait for the following event
(no event is sent at time ?).

3. Evaluation Results

In this Section we compare the methods proposed
above and estimate how the performance of the methods is
affected by the traffic or load of events in the AER bus. To
carry out this analysis a set of random images have been
generated, which represent a population of images.

This set of images has been obtained considering two
aspects: (a) its histogram must be close to a Gaussian
distribution and (b) the number of events required to
transmit them. This way, a 100% event load corresponds to
an image with all pixels at maximum value. Consequently,
an image with 10% of event load, represents an image that
uses 10% of the possible events. Let us generate a ‘Test
Image Set’ (TIS) composed of nine images with event load
of 10%, 20%, 30%, ... and 90%. This set will be used to

Comparision of execution time
T T T T T T

T
—— Scan

—&- Uniform-BF
0.9 = Uniform-F
—— Uniform-WTA
—— Random
0.8 & Random-Square -
—t+ Exhaustive

o ° norr.allzed e_gecul\orbllme o
N @ FS 2 3 S
T T T T T T

L h L L

Ll
T
L

40 % 70 % 80 % 90 %

10% 0 % 60 %
Charge of events in AER bus (%)

20 % 30 %

Fig. 4: Execution time comparision of sotware implementation

compare the algorithms according to the following
criteria:

A. Execution Time

Fig. 4 shows the execution time versus the event load of
the images. The Scan and Exhaustive methods follow an
almost constant relation because the event load does not
affect much the execution time for these algorithms.

B. Distribution Error

In an ideal AER distribution all events for one pixel are
equidistant in time: constant frequency of events. In this
section, the distribution of events obtained with each
method is evaluated. Let us call ‘Distribution Error’ how
much the event distribution generated by a method
deviates from the ideal distribution.

Let us suppose Dij is the ideal distance between events
of pixel (ij) of a NxM image with K grey level values.
Then

D, ;= (NXMxK)/P, 3)

where P; ; is the intensity value of pixel (i,).
Let us suppose dkf, j 1s the distance between the k-th
event and the (k+1)-th one.

k k+1 k

dij=p ij=Pij “4)
where p, is the position of event k in the frame
vector.Then we can measure the mean error for a pixel as
the average of the differences between the ideal and real
distance. The error expression is:

Pi,/‘ .
XDy =
_ k=1
;= P (5)

It is easy to see that the worst case for this error
measurement is when all the events are together in the
address sequence. Therefore, in order to compare the error
obtained for different methods and images, the error of
each pixel must be normalized with respect to the
maximum error associated to the pixel. The following

expression is the maximum error for pixel (i,/):
me, ;= 2-(D; ;=1)-(1-1/P,) with P, ;=1 (6)

For P, ; = 1, the distribution error is zero, because only
one event has to be sent.

Distribution error vs event charge
07

—— Scan

—&- Uniform-BF
—% Uniform-F

—— Uniform-WTA
—¥— Random

-6~ Random-Square
—+ Exhaustive

06

o
o

Normglized meag error

o

0.1

& s o & o & & &

0
10 20 30

40 50 60
Charge of events in AER bus (%)

Fig. 5: Mean of NE matrix for methods along incremental charge
of events in AER bus.

Behavior of synthetic methods for Boahen integrator model

—— Scan
-©- Uniform-BF

—*— Uniform-F

—— Uniform-WTA

—*— Random

-8 Random-Square
—5~ Random-Hardware
—A— Exhaustive

>
T

e
T

normalizes mean distagee to ideal distribution o
b= o :
8 8
T T

o

1

R
T

70 80 90

0.02 I I I I I
10 20 30 40 50 60
Charge of events in AER bus (%)

Fig. 6: Normalized mean distance between methods and ideal
distribution for Boahen integrator.

Finally, we define a matrix (NVE) with the same size of
the test image, and where each element (i,j) represents the
error normalized for pixel (i,)).

NE, ; @)

Fig. 5 shows the measure of the NE matrix calculated for
the nine test images using the methods proposed. The
x-axis represents the image event load and the y-axis is the
mean normalized error.

= ¢ j/(me; ;)

C. Integrator Cells

Consider the receptor cells proposed by Boahen [8]
(diode-capacitor integrator) and by Mortara [9] (two
capacitors working in two phases). We have modelled the
ideal behavior of these cells in MATLAB. Then for each
synthetic AER generation method, different frame vectors
were obtained. These frame vectors were then used to feed
an array of integrators of either the Boahen type or the
Mortara type. Fig. 6 and Fig. 7 show the distance between
the ideal distribution of events and the real distribution due
to each method using our “Test Image Set” (TIS) and for
each receptor model.

4. Hardware Interface
All simulations presented have been performed in
software. However, the final goal is to build a dedicated

Behavior of synthetic methods for Mortara integrator model

—+— Scan

B -6~ Uniform-BF
—#= Uniform-F

—— Uniform-WTA
—— Random

—&- Random-Square

o
S >
/

—0— Random-Hardware
—A— Exhaustive

pormalizggl mean distance to ideal gistributiog
~ ® = & > :
T T T T T

o

0 L L L L L L L)
10 20 30 40 50 60 70 80 90
Charge of events in AER bus (%)

Fig. 7: Normalized mean distance between methods and ideal
distribution for Mortara integrator.

CRO[310]

[-BASE_HIT[70]-
+—ADDR(31:0}.
—S_CEE[30): 1

}\o[vn]‘ opol ‘) ‘Rof‘ww‘af H

JEIEER

CR1[310]

[
I3

o Not Usad 190]

ool ‘org [or | e ‘ e

— timer_iffo [31.0]

<E~Es Ey | Tﬁﬁ~

TIVER IFIFO INAER
FIFO State
—Rifaf 06181 e datai230]
—EIF» FE» H—ACK———»
| wr» it
|
I

50—
L inran

L poi_cp—s, S B i
CLKSD4-{ DLL H»CLK@D%

Fig. 8: Hardware Interface Architecture.

hardware that transforms a video frame sequence into an
AER stream in real time. Such hardware is presently under
development. At this moment a PC based system is
available where the frame-AER transformations are
performed in software but the resulting frame vector is
dumped through the computer PCI bus on to an AER bus.

Fig. 8 shows the architecture of the present hardware
interface. This is a PCI interface based on the LogiCORE
PCI of Xilinx that uses I/O space for configuration and
memory space for AER format reading and writing. It has
two AER buses, one for incoming AER data and another
for outgoing one. There are two FIFOs for both directions.
It has a programmable timestamp assignment for incoming
AER and programmable wait states for outgoing AER.
There is an interrupt generation for avoiding overflows at
the incoming FIFO.

The system has been implemented using VHDL and
synthesized into a VirtexE 600 FPGA. It has been tested
on a Nallatech Ballyinx prototyping board under Linux
operating system. It can read or write an AER event every
Tpuise = 40ns . If T = 40ms, then this implies
NxMxK<T / = 10°.

rame

frame' " pulse

5. Conclusions
Algorithms for transforming synchronous frame based
video streams in asynchronous address event streams are
presented and evaluated. Three criteria (execution time,
error distribution and distance to ideal behavior with two
integrator models) have been evaluated for the seven
software methods. A hardware interface between a

computer (PCI) and a bioinspired system (AER) has also
been presented.

The results presented in Section 3 show that: (a)
Software based Unifom methods are not valid for
real-time due to the overhead introduced by collision
resolution. A hardware version is currently under
development to solve these problems. (b) Uniform
methods have lower distribution error than others for the
test set (TIS). (c) Reconstruction of images, using two
models of spike based integrators, show that any method
could be valid with small differences among them. The
Uniform-WTA has the worst results in this aspect due to
the reduction of events by collisions.

6. Acknowledgements
This work was partially supported by spanish grants
TIC1999-0446-C02-02, TIC2000-0406-P4-05 (Victor),
FIT-07000/2002/921 (Arquimedes), TIC2002-10878-E,
TIC-2003-08164-C03-01 (Samanta), and EU grant
IST-2001-34124 (Caviar).

7. References

[11 M. Sivilotti, Wiring Considerations in analog VLSI

Systems with Application to Field-Programmable
Networks, Ph.D. Dissertation, Caltech, Pasadena CA,
1991.

[21 T. Serrano-Gotarredona, A. G. Andreou, B.

Linares-Barranco, “AER Image Filtering Architecture for
Vision-Processing Systems,” IEEE Trans. Circ. and Syst.
Part-1, vol. 46, No. 9, September 1999.

A. Cohen, R. Etienne-Cummings, T. Horiuchi, G.
Indiveri, S. Shamma, R. Douglas, C.Koch and T.
Sejnowski, Report on the 2003 Workshop on
Neuromorphic Engineering, Telluride, CO, June 29 to
July 19, 2003. {www.ini.unizh.ch/telluride}

A. Linares-Barranco, Study and Evaluation of AER
Interfaces for Neuromorphic Systems, Ph.D. Dissertation,
University of Seville, Spain, 2003. (In spanish)

[5] A. Linares-Barranco, R. Senhadji-Navarro, 1.
Garcia-Vargas, F. Gomez-Rodriguez, G. Jimenez and A.
Civit, “Synthetic Generation of Address-Event for
Real-Time Image Processing,” Proc. ETFA 2003, Lisbon,
September, vol. 2, pp. 462-467.

K. Boahen, “Communicating Neuronal Ensembles
between Neuromorphic Chips,” Neuromorphic Systems,
Kluwer Academic Publishers, Boston 1998.

M. Mahowald, VLSI Analogs of Neuronal Visual
Processing: A Synthesis of Form and Function. Ph.D.
Dissertation. Caltech, Pasadena, California 1992.

K. Boahen, “Retinomorphic vision systems II:
Communication channel design,” Proc. of the IEEE
ISCAS, vol. supplement, pp. 14-17. May 1996.

A. Mortara, Eric A. Vittoz, Philippe Venier, “A
communication Scheme for Analog VLSI Perceptive
Systems,” IEEE Journal of Solid-State Circuits, vol. 30,

No. 6, pp. 660-669, June 1995.

[10] S.W. Golomb, Shift Register Sequences. Laguna Hills,
CA: Aegean Park Press, 1982.

(3]

(4]

(6]

(7]

(8]

(9]

	footer1:

