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Abstract: The performance of most widespread surface integral equation 
(SIE) formulations with the method of moments (MoM) are studied in the 
context of plasmonic materials. Although not yet widespread in optics, SIE-
MoM approaches bring important advantages for the rigorous analysis of 
penetrable plasmonic bodies. Criteria such as accuracy in near and far field 
calculations, iterative convergence and reliability are addressed to assess the 
suitability of these formulations in the field of plasmonics. 
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1. Introduction 

The proper characterization of the plasmonic optical response of metals constitutes an 
outstanding task in nanoscience and nanotechnology. The field confinement properties of 
collective electron excitations at metal interfaces, surpassing the diffraction limit, give rise to 
interesting applications in waveguiding or sensing, among others [1–3]. The most important 
metals for plasmonics in visible and near-infrared bands are silver and gold. The main 
attraction for silver is its low losses, while for gold is its chemical stability. Nevertheless, 
other metals such as copper or aluminum are also considered, the last with a good plasmon 
resonance in the ultraviolet. When dealing with metallic nanoparticles (sub-wavelength scale) 
the excitation of surface plasmons by light is denoted as localized surface plasmon resonance 
(LSPR). Light intensity enhancement is a very important characteristic of LSPRs and 
therefore, a key aspect in nanoantennas analysis and design at optical frequencies [4–6]. 

The interest of getting control over light propagation has also given a boost to the design 
and engineering of photonic crystals. Increasing the refractive index contrast by means of 
metallic features in photonic crystals looking for enhancing or modifying the performance of 
conventional optical components and nanostructures is an interesting and active research field 
[7–9]. 

The wide range of applications and exploitation possibilities of optical plasmonic 
properties of metals demand numerical techniques which provide accurate modeling and 
analysis of problems involving metal-dielectric interfaces in visible and near-infrared bands. 
Since optical response of metals can be well-described in the classical framework based on 
Maxwell’s equations [1], differential formulations as the finite difference time domain 
(FDTD) [10] or the finite integration technique [11] have been commonly used to solve this 
kind of problems due to their easy implementation from differential equations. Mainly due to 
the high computational requirements of the differential techniques, alternative tools 
demanding a lower number of unknowns for a given problem such as surface integral 
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equation (SIE) formulations solved by the well-known method of moments (MoM) [12] have 
increased their presence in the context of plasmonics [13–15]. 

A study of the performance of most widespread SIE formulations was carried out in [16] 
for metallic, dielectric, piecewise dielectric and composite objects and later on in [17] for 
dielectric objects in the framework of MoM acceleration techniques. A similar study 
involving SIE formulations applied to left-handed metamaterials (LHM’s) has been 
accomplished recently in [18] by the authors, and later on in [19] using acceleration 
algorithms. In this work, the comparison of these formulations properties is established in the 
interesting context of plasmonic materials. 

The paper is structured as follows: the SIE formulations under consideration are presented 
in Section 2. A complete set of near and far field results obtained with these formulations are 
contrasted with analytical references in Section3, in order to assess their accuracy and their 
iterative performance. Finally, the concluding remarks are gathered in Section 4. 

2. Surface integral equation formulations 

Let us consider the combination of normal and tangential equations derived from the 
boundary conditions imposed separately to the electric and magnetic fields in order to derive a 
set of stable and well-tested SIEs for (piecewise) homogeneous real conductors and/or 
dielectric objects. The following proposal of combination of the tangential electric field 
integral equation (T-EFIE), the tangential magnetic field integral equation (T-MFIE), the 
normal electric field integral equation (N-EFIE) and the normal magnetic field integral 
equation (N-MFIE) has proven to be stable [16]: 

 
2 2
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i ii
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where ηi is the intrinsic impedance in region Ri (R1 and R2 are the exterior and the interior 
regions of the material, respectively) and ai, bi, ci and di are the coefficients to handle the 
different formulations (see Table 1). Tangential-EFIE/MFIE and normal-EFIE/MFIE are 
derived from the equivalence theorem and the boundary conditions for the electric/magnetic 
fields tangential to the boundary surfaces. The tangential equations are formulated according 
to ˆ ˆ

tan
n n− × × ≡F F , where n̂  is the vector normal to the objects boundary surfaces and 

interfaces, F is the electric/magnetic field, and subindex tan denotes tangential component. 
Alternatively, in the normal equations the boundary conditions are imposed for the rotated 
tangential components of the fields according to n̂×F . The details of the general SIE-MoM 
formulation for the analysis of multiple plasmonic media can be looked up in [15]. 

The comparative study presented here involves different known formulations that can be 
obtained by selecting the complex combination parameters ai, bi, ci and di according to Table 
1. The Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation [20], the 
combined tangential formulation (CTF) [16], the normal Müller formulation [21, 22], the 
combined normal formulation (CNF) [16], and the electric and magnetic current combined 
field integral equation (JMCFIE) [23] are considered. 

Table 1. Parameters for Combining Equations Corresponding to Each Formulation 
Considered in the Comparative Study 

Formulation ai bi ci di 
PMCHWT ηi 0 0 1/ηi 
CTF 1 0 0 1 

Müller 0 µri εri 0 
CNF 0 1 1 0 
JMCFIE 1 1 1 1 
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3. Assessment of numerical results 

The accuracy of the aforementioned MoM-based formulations when dealing with plasmonic 
media in near and far field computations is studied in this section. All the analyses have been 
focused on spheres in order to properly compare the obtained results with analytical solutions 
provided by the Mie’s series [24]. Gold, silver and aluminum spheres have been considered 
and they have been modeled employing the well-known Rao-Wilton-Glisson (RWG) basis 
functions [25]. The optical properties (relative dielectric permittivity, εr) of these metals at the 
selected operating wavelength, λ0 = 548.6 nm, have been extracted from [26, 27] (εr = 
−5.8−j2.1 for gold, εr = −12.8−j0.4 for silver, and εr = −35.2−j9.82 in the case of aluminum). 
The Galerkin’s testing method has been assumed in this work, meaning that the same RWG 
basis and testing functions are used. Singular integrals have been accurately evaluated by 
means of the analytical extraction procedures of [28–31] and Gaussian quadrature rules of 3 
points/triangle have been applied for the numerical integration of smooth varying integrands. 
The MoM solution has been obtained by LU matrix factorization in all cases except for the 
last subsection concerning the iterative behavior of the considered formulations. 

3.1 Near field accuracy validations 

The total electric near field has been computed using the five MoM-based integral 
formulations registered in Table 1 for gold, silver and aluminum spheres with radius λ0/2, 
λ0/4, λ0/8 and λ0/16. The spheres are centered at the origin and illuminated by an x̂ polarized 
plane wave impinging in the ẑ  direction (θ inc = 180°). The near fields have been calculated 
on centered square XY planes (z = 0) of side 4r with a 100× 100 points resolution, r being the 
radius of the spheres. The normalized root mean square (RMS) errors with respect to the 
Mie’s series results are shown in Fig. 1 and Fig. 2 versus the number of unknowns (mesh 
size). The error is calculated as follows: 

 
( )
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.
max( )

Mie f
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Mie

N
e

−
=
∑ E E

E
 (3) 

where EMie and Ef are the total near fields corresponding to Mie’s series and each formulation, 
respectively, and N is the number of near field samples. Looking at these figures, the first 
important result is that, in all cases, CTF provides poor results that do not improve with the 
refinement of the mesh (for small spheres it even get worse). This behavior of CTF in the 
context of plasmonic materials contrasts with the performance observed in [18, 19] when 
dealing with LHMs, where CTF showed good accuracy in general lossy cases. It also 
contrasts with its behavior in conventional dielectrics [16, 17], where it provides greater 
accuracy than the other tested formulations. Despite combining only tangential equations, just 
like CTF, PMCHWT works well for these problems. Given that the main difference between 
PMCHWT and CTF is the set of parameters used to combine the equations, the source of the 
CTF failure in plasmonics probably lies in the T-EFIE and T-MFIE weighting by coefficients 
1/η2 and η2 respectively, which have large imaginary parts in plasmonic media, instead of 
using 1 and 1 like in PMCHWT. The remaining formulations present in general a good 
response, being the accuracy of the JMCFIE formulation slightly worse especially for larger 
spheres with coarser mesh sizes, as can be observed in Fig. 1. 

It is worth mentioning that the larger errors observed for low number of unknowns in the 
smallest spheres are not only due to the formulation, but also to the loss of sphericity given 
the small number of flat triangular facets used to describe the geometry. 
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Fig. 1. Normalized RMS error (erms) of the total near field calculation at λ0 = 548.6 nm vs. the 
number of unknowns (mesh size) for spheres with radius (up) r = λ0/2 and (down) r = λ0/4 
made of (left) gold, (center) silver, and (right) aluminum. The spheres are illuminated by 

an x̂ polarized plane wave with θ inc = 180°. The fields are calculated on centered square XY 
planes of side 4r with 100× 100 points resolution. 

 

Fig. 2. Normalized RMS error (erms) of the total near field calculation at λ0 = 548.6 nm vs. the 
number of unknowns (mesh size) for spheres with radius (up) r = λ0/8 and (down) r = λ0/16 
made of (left) gold, (center) silver, and (right) aluminum. The spheres are illuminated by 

an x̂ polarized plane wave with θ inc = 180°. The fields are calculated on centered square XY 
planes of side 4r with 100× 100 points resolution. 
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Fig. 3. Total near electric field distribution (V/m) inside and outside a λ0/2 radius gold sphere 
in vacuum computed by the PMCHWT-MoM approach for a mesh size of λ0/40 in the XZ and 
YZ planes vs. the Mie’s series analytical reference. The spheres are illuminated by 

an x̂ polarized plane wave with θ inc = 180°. Fields inside the spheres are scaled up by a factor 
of 4 for visualization purposes. 

 

Fig. 4. Total near electric field distribution (V/m) inside and outside a λ0/8 radius gold sphere 
in vacuum computed by the PMCHWT-MoM approach for a mesh size of λ0/160 in the XZ and 
YZ planes vs. the Mie’s series analytical reference. The spheres are illuminated by 

an x̂ polarized plane wave with θ inc = 180°. Fields inside the spheres are scaled up by a factor 
of 4 for visualization purposes. 

The total near field predicted by the PMCHWT formulation inside and outside the spheres 
of radius λ0/2 and λ0/8 is represented in Fig. 3 and Fig. 4, respectively, to illustrate the great 
agreement with the Mie’s series solution. It must be pointed out that the agreement is obtained 
even for a sphere with a strong field inside such as the λ0/8 radius sphere of Fig. 4, whose 
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dimensions are close to the resonant size as can be clearly derived from the representation of 
the absorption, scattering and extinction efficiencies of Fig. 7 (Section 3.2). The results 
provided by Müller, CNF and JMCFIE formulations (not shown) are very similar, especially 
those corresponding to Müller and CNF, since results from JMCFIE are somewhat noisy in 
the case of coarser discretizations. Otherwise, the near field predictions of CTF (not shown) 
are significantly inaccurate in all cases, with asymmetries and fictitious hot spots near the 
metallo-dielectric interface. 

3.2 Far field validations 

The extinction efficiency (normalized cross-section) [24, 32] has been computed using the 
five integral formulations under consideration for the same spheres used in the previous 
section. The RMS error of this parameter calculation taking Mie’s series result as the 
reference has been calculated according (3) and it is represented in Fig. 5 and Fig. 6. As 
occurred in the near field computations, it can be seen in both figures that the extinction 
efficiency calculated by CTF shows high error rates. In contrast, PMCHWT error levels seem 
to be the most stable values regardless of the material, the size of the sphere and the 
discretization, demonstrating that it is a very reliable formulation in all cases tested. 
Regarding CNF, an improvement of its results can be appreciated as the sphere size decreases 
(Fig. 6). For larger spheres (Fig. 5), however, CNF is less accurate than PMCHWT (except 
for the aluminum λ0/4 sphere). Otherwise, normal Müller and JMCFIE formulations generally 
have certain lack of regularity, giving small errors in some cases but significantly large in 
others. Nonetheless, the errors of these formulations are well below CTF errors. As in the near 
field case, the larger errors for low number of unknowns are also attributable to the loss of 
sphericity due to the small number of flat triangular facets used to describe the geometry. 

 

Fig. 5. Normalized RMS error (erms) of the extinction efficiency calculation at λ0 = 548.6 nm 
vs. the number of unknowns (mesh size) for λ0/2 and λ0/4 radius spheres made of gold, silver 
and aluminum. 
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Fig. 6. Normalized RMS error (erms) of the extinction efficiency calculation at λ0 = 548.6 nm 
vs. the number of unknowns (mesh size) for λ0/8 and λ0/16 radius spheres made of gold, silver 
and aluminum. 

 

Fig. 7. Absorption (Qa), scattering (Qs) and extinction (Qe) efficiencies vs. the product k0r for 
gold spheres at λ0 = 548.6 nm. 

The previous results have been obtained for a fixed frequency. Next, the absorption, 
scattering and extinction efficiencies [24, 32] corresponding to each formulation are shown 
for different gold spheres of increasing size versus the product of the free-space wavenumber 
k0 and the radius r. The wavelength (so the permittivity) has been fixed at λ0 = 548.6 nm and 
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the sphericity of the geometries has been guaranteed by selecting a mesh size of λ0/80 for the 
two smallest spheres, λ0/40 for the next four samples, and λ0/20 for the last four cases. The 
efficiencies are displayed together with the Mie’s series results in Fig. 7. CTF shows once 
again the worst accuracy, while the agreement with the reference of the rest of formulations is 
quite good, along the lines of the preceding results. 

Finally, in order to investigate the ability of the different formulations to accurately handle 
the plasmon resonance, Fig. 8 depicts the absorption, scattering and extinction efficiencies, as 
well as the near-field normalized RMS error, as a function of the excitation wavelength 
around its resonance for a gold sphere with radius 74.712 nm. This sphere corresponds to the 
case k0r = 0.8557 in Fig. 7, and it is resonant around 548.6 nm. A very fine wavelength sweep 
from 500 nm to 600 nm in steps of 0.5 nm has been considered. The dielectric permittivity of 
gold at these wavelengths has been modeled from [26, 27] using linear interpolation for the 
intermediate (unavailable) samples. Looking at Fig. 8, it can be observed that all the 
formulations are free of interior resonance corruption. In accordance with previous results, 
CTF is in general less accurate, but this cannot be attributed to the internal resonance 
problem. The observed resonance-free behavior of the formulations could be expected since 
all of them are combinations of electric and magnetic field integral equations. Otherwise, the 
analytical extraction procedures of [28–31] used for the accurate evaluation of singular 
integrals undoubtedly contribute to a large extent to the solid behavior shown by the 
implementation in all the cases tested. 

 

Fig. 8. Resonance study for a gold sphere with radius 74.712 nm: (up) Absorption (Qa), 
scattering (Qs) and extinction (Qe) efficiencies vs. wavelength; (down) Normalized RMS error 
(erms) of the total near field calculation vs. wavelength. 

3.3 Iterative performance 

The information obtained from the previous analyses, which have been obtained through 
matrix factorization and direct solution, is completed next with the observation of the iterative 
behavior of the five studied formulations. The λ0/2 radius sphere was analyzed using MoM 
solved iteratively by the generalized minimal residual method (GMRES) [33] with a restart 
parameter of 20 and a maximum number of external iterations of 500, stopped if the 
normalized residue of 10−6 is achieved. 

#161914 - $15.00 USD Received 20 Jan 2012; revised 15 Mar 2012; accepted 2 Apr 2012; published 5 Apr 2012
(C) 2012 OSA 9 April 2012 / Vol. 20,  No. 8 / OPTICS EXPRESS  9169



 

The iterative performance of the formulations is shown in Fig. 9, where the convergence is 
illustrated depicting the residue progress versus the number of external iterations required. 
Solution of CTF shows a bad iterative behavior. Again, this contrasts with its behavior in 
conventional dielectrics and LHMs [16–19], but it is coherent with the lack of precision 
shown by this formulation in the previous sections for this kind of problems. Regarding 
PMCHWT, the known numerical imbalance of the diagonal matrix blocks in this formulation 
leads to slow convergence and inaccurate results when solving iteratively. This behavior was 
expected since it was previously reported; see for example [16, 34–36]. A preconditioning 
technique would be required to rise to the direct solving accuracy. Investigation on proper 
preconditioning strategies for this and other formulations in the context of plasmonics is left 
for future work. The rest of formulations show quite good iterative convergence, the fastest 
one corresponding to the JMCFIE formulation, as happened when dealing with LHMs [18]. 

 

Fig. 9. MoM-GMRES iterative convergence of the formulations for the λ0/2 radius sphere 
made of gold, silver and aluminum with a mesh size of λ0/40. 

4. Summary 

Five extended MoM-SIE approaches have been applied in the analysis of spheres made of 
gold, silver and aluminum, which are materials with very different electrical properties that 
are widely used in diverse plasmonic applications. In view of the results obtained and 
contrasted with an analytical reference, the first important conclusion is that CTF fails for the 
analysis of plasmonic problems. This contrasts with the great accuracy provided by this 
formulation in the analysis of conventional dielectrics and left-handed metamaterials, 
especially when losses are involved. 

The next important observation is that PMCHWT has shown to be a very reliable 
formulation in plasmonics when using a direct solution. Its error levels seem to be the most 
stable values both in near and far field calculations, regardless of the material, the size of the 
sphere, and the geometry mesh refinement. Given that both CTF and PMCHWT formulations 
combine only tangential integral equations, the accuracy shown by PMCHWT highlights the 
great influence of the combination parameters on the level of accuracy of the formulations (in 
addition to its known strong influence on convergence). The main (and well-known) 
inconvenient of PMCHWT is its lack of convergence in the framework of iterative solutions. 
Investigation on proper preconditioners may overcome this lack in the future. Regarding the 
rest of formulations considered, they have shown good accuracy levels in general. The fast 
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iterative convergence of Müller and JMCFIE formulations observed yet in other contexts is 
also present in the results of this work. 

Finally, considering all the above comments we conclude that PMCHWT is preferable for 
plasmonic problems where factorization and direct solution is feasible. For larger problems, 
where iterative and/or fast solutions are mandatory, JMCFIE would be a more eligible 
formulation to use without preconditioning. 
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