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Abstract— Continuous monitoring of arterial blood pressure 

(ABP) of patients in hospital is currently carried out in an 

invasive way, which could represent a risk for them. In this 

paper, a noninvasive methodology to optimize ABP estimators 

using electrocardiogram and photoplethysmography signals is 

proposed. For this, the XGBoost machine learning model, 

optimized with Bayesian techniques, is executed in a Graphics 

Processing Unit, which drastically reduces execution time. The 

methodology is evaluated using the MIMIC-III Waveform 

Database. Systolic and diastolic pressures are estimated with 

mean absolute error values of 15.85 and 11.59 mmHg, 

respectively, similar to those of the state of the art. The main 

advantage of the proposed methodology with respect to others of 

the current state of the art is that it allows the optimization of 

the estimator model to be performed automatically and more 

efficiently at the computational level for the data available. 

Clinical Relevance— This approach has the advantage of 

using noninvasive methods to continuously monitor patient's 

arterial blood pressure, reducing the risk for patients. 

I. INTRODUCTION 

Cardiovascular problems are one of the leading causes of 
death worldwide. According to the World Health 
Organization, hypertension is estimated to cause 7.5 million 
deaths every year, that is, 12.8% of total deaths worldwide 
[1]. As population ages and adopts more sedentary lifestyles, 
cardiovascular problems are expected to grow from the 
current prevalence figures, already over 1 billion, to 1.5 
billion people by 2025 [1]. Because the symptoms of 
hypertension are usually unnoticed, blood pressure values 
must be controlled to prevent possible damage. In cases where 
only routine checks are needed, e.g., once a month in aged 
patients, there exist well-established noninvasive methods 
such as the use of sphygmomanometers. In contrast, some 
patients in hospital, e.g., in ICUs or cath labs, require 
continuous measurement of blood pressure, for what an 
arterial catheter is used [2]. Catheterization is carried out 
under local anesthesia, the catheter being inserted through a 
small incision in the skin of the groin (femoral access) or the 
arm (humeral access). This invasive method puts patient 
health at risk, so noninvasive blood pressure measurement is 
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of great interest [3]. 

There are currently numerous proposals for estimating 
blood pressure using machine learning techniques [4]. In 
these, Pulse Transit Time, Pulse Arrival Time, Pulse Wave 
Velocity, or photoplethysmography (PPG) signals, among 
others, are used as inputs. In this scenario, the need for 
optimizing estimator models to obtain more accurate results 
and to minimize execution times arises. 

In this article, an XGBoost-based methodology to 
optimize arterial blood pressure (ABP) estimators using 
Bayesian techniques with electrocardiogram (ECG) and PPG 
signals is proposed. It allows obtaining more accurate data 
and achieving lower execution times than other model 
hyperparameters optimization methods. In addition, the 
methodology is suitable for execution in an NVIDIA A100 
Graphics Processing Unit (GPU) [5], which drastically 
reduces the time required to estimate blood pressure. All these 
claimed contributions are supported by experimental results. 

The remainder of the article is structured as follows. In 
Section II, the materials used, namely ICU database 
(MIMIC), estimation model (XGBoost), Bayesian 
techniques, and wavelet transform are described. Section III 
introduces the proposed methodology, including data 
preprocessing, feature extraction, and estimator set up. In 
Section IV, experimental results are presented and discussed. 
Finally, conclusions are summarized in Section V. 

II. MATERIALS 

A. Data Source 

The well-known MIMIC-III Waveforms Database [6] has 
been used. It was created by MIT and it contains data from a 
total of 25,328 intensive care unit stays at Beth Israel 
Deaconess Medical Centre. In this work, only the patients in 
this dataset whose entries include all the data required for the 
experiments in this work (namely PPG, ECG, and continuous 
ABP signals) have been selected. The work in [7] has been 
used as reference. This leads to a total of 12,000 records. Each 
patient has a variable length of recorded data. The sampling 

(pablo.juan@iisgaliciasur.es) and C. Veiga (cesar.veiga@iisgaliciasur.es) are 

with the Cardiovascular Research Group of Galicia Sur Health Research 
Institute (IIS Galicia Sur), Vigo, 36213 Spain.  

J. Fariña (jfarina@uvigo.es) and J. J. Rodríguez-Andina 

(jjrdguez@uvigo.es) are with the Department of Electronic Technology, 

University of Vigo, 36310 Vigo, Spain.  

V. Jiménez (victor.alfonso.jimenez.diaz@sergas.es) and A. Íñiguez 
(andres.iniguez.romo@sergas.es) are with the Cardiology Department of 

Hospital Álvaro Cunqueiro (SERGAS), 36213 Vigo, Spain. 

Using Bayesian Optimization and Wavelet Decomposition in GPU 

for Arterial Blood Pressure Estimation* 

José A. González-Nóvoa, Graduate Student Member, IEEE, Laura Busto, Pablo Santana, José Fariña, 

Member, IEEE, Juan J. Rodríguez-Andina, Senior Member, IEEE, Pablo Juan-Salvadores, Víctor 

Jiménez, Andrés Íñiguez, and César Veiga. 

2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC)
Scottish Event Campus, Glasgow, UK, July 11-15, 2022

This work is licensed under a Creative Commons Attribution 3.0 License.
For more information, see http://creativecommons.org/licenses/by/3.0/

1012

20
22

 4
4t

h 
An

nu
al

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

BC
) |

 9
78

-1
-7

28
1-

27
82

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EM

BC
48

22
9.

20
22

.9
87

10
20



 

   

 

 

frequency of all signals is 125Hz. 

B. Estimation Model: XGBoost 

XGBoost [8] belongs to the category of Gradient Boosting 
techniques in Ensemble Learning, that is, a collection of 
predictors that combine multiple models in order to achieve 
better prediction accuracy. Boosting techniques attempt to 
correct the errors made by previous models in successive ones 
via additional weighting. Unlike other boosting algorithms 
where the respective weights of misclassified branches are 
increased, in Gradient Boosting algorithms a loss function is 
optimized instead. XGBoost optimizes the following 
objective function at each iteration t. 

𝐿(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦̃𝑖(𝑡 − 1) + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡)    (1) 

where l is a differentiable convex loss function that must be 
transformed into another one in an Euclidean domain by using 
Taylor’s Theorem, the pair (yi, xi) is the training set, ỹi is the 
final prediction, and Ω(ft) is the regularization term used to 
penalize more complex models through both Lasso and Ridge 
regularizations and to prevent overfitting. 

Once this optimization is performed the algorithm builds 
the next learner, which achieves the maximum possible loss 
reduction without exploring all tree structures, but rather by 
building a tree by applying the Exact Greedy Algorithm. This 
algorithm consists of three steps. It starts with a single root 
that contains all training samples. Then, it iterates over all 
features and values per feature, evaluating each possible split 
loss reduction. Finally, the stop condition is checked, stopping 
the branch from growing if the gain for the best split is not 
positive, otherwise execution continues. A more detailed 
explanation may be found in [8]. 

XGBoost stands out for its ability to obtain the best results 
in different benchmarks, and is one of the best-optimized 
algorithms for computing parallelization, which makes it one 
of the most used in recent biomedical works [9]–[11]. In 
addition, it has support for GPUs, which allows the capacity 
of the algorithm to be fully exploited. 

Fitting XGBoost requires setting three types of 
parameters, namely general, booster, and learning task 
parameters. General parameters specify the booster used, 
commonly a tree or linear model. Booster parameters depend 
on the selected booster and define its internal configuration 
parameters, such as learning ratio or number of estimators. 
Learning task parameters decide on the learning scenario, 
specifying the corresponding learning objective. 

C. Bayesian Optimization 

Bayesian optimization is a technique used to optimize the 
hyperparameters of a model [12]. Although there are other 
techniques to do this [13], such as random search or grid 
search, they have some drawbacks. The first one randomly 
tests only a certain number of different combinations. It has 
the disadvantage of not following any criterion for deciding 
which combination of hyperparameters to test. Grid search 
goes through all hyperparameter combinations, hence being 
very computationally expensive. 

The techniques based on Bayesian optimization are more 
efficient when performing the search. In these techniques, a 
probabilistic model is used that takes into account previous 

evaluation results, i.e., the surrogate model, which is a 
multivariate Gaussian stochastic model. The stages of the 
optimization process are: 

1. The surrogate model of the objective function is built; 
2. The hyperparameters that provide the best results in the 

surrogate model are sought; 
3. These hyperparameters are applied to the real objective 

function; 
4. The surrogate model is updated incorporating the new 

results; 
5. The process is repeated until the maximum number of 

iterations defined or the predefined conditions are 
reached. 

In this work the open-source package Hyperopt [14], which 

uses Bayesian optimization as search technique, has been 

used. 

D. Wavelet Decomposition 

The wavelet transform is one of the most used in the 
biomedical field [15]. It is characterized by working in the 
time – frequency spectrum, unlike others such as the Fourier 
transform that only works in the frequency spectrum, which 
limits the information that can be extracted, especially from 
signals that consist of sharp peaks and discontinuities. 

The analysis is performed using a function called base 
wavelet, which decomposes the target signal into multiple 
components at different scales. The wavelet decomposition of 
a function f(t) at scale a, and position τ is given by: 

𝑊𝑓(𝜏, 𝑎) =
1

√𝑎
∫ 𝑓(𝑡)𝛹∗ (

𝑡−𝜏

𝑎
)𝑑𝑡

∞

−∞
   (2) 

where Ψ (t) is the wavelet base and 1 √𝑎⁄  is the energy 
normalization. 

E. Hardware 

In this work, two hardware platforms have been used, 
namely an Asus ESC4000A-E10 server with an AMD Epyc 
7002 CPU consisting of 24 cores and working at 2,800 MHz 
and an NVIDIA A100 GPU with 40 GB of internal memory, 
108 multiprocessors and a maximum number of 221,184 
threads. 

III. METHOD 

In order to obtain the best parameters for a XGBoost 
classifier that estimates both systolic (SBP) and diastolic 
(DBP) blood pressure from PPG and ECG signals four stages 
must be carried out. The first one is data preprocessing. It 
includes data filtering and the extraction of SBP and DBP 
values to train and test the estimator models. The second stage 
is the extraction of features from both ECG and PPG signals. 
Once feature extraction has been completed, the optimization 
of the estimator model hyperparameters is performed by using 
Bayesian techniques. Finally, SBP and DBP are estimated, 
comparing the accuracy obtained using Bayesian 
optimization techniques with that obtained with default values 
of XGBoost hyperparameters. There are actually two 
different models for estimating SBP and DBP, respectively. 

A. Data Preprocessing 

This stage includes data filtering, signal splitting, and 
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golden standard calculation. Signals are split in temporal 
episodes (epochs), for which a 20 s window analysis is 
proposed. In addition, the variables used both to fit the 
estimator and as golden standard in the testing are calculated. 
In this work, SBP and DBP values are estimated as the mean 
of maxima (systolic) and minima (diastolic) ABPs for each 
epoch. 

B. Feature Extraction 

Feature extraction of PPG signal is carried out using the 
wavelet transform. Specifically, all coefficients of the 
transform are used as features, and statistics are computed, 
both from the untransformed signal and from each wavelet 
level. These are: median, mean, standard deviation, variation, 
entropy, energy, contrast, inverse different moment, and 
homogeneity. After performing several tests, it was decided 
to use Haar as wavelet base. Moreover, this in one of the most 
used in other works consulted [16]–[18]. 

In the case of ECG signals, on one hand feature extraction 
is carried out in the same way as in the case of PPG signals 
and, on the other hand, the open-source Heartpy package [19] 
is used, which makes it possible to extract additional features 
from ECG signals, namely beats per minute, inter-beat 
interval, standard deviation, heart rate variability, Poincaré 
plot measurements, and breathing rate. 

C. Pressure Estimator Set Up Using XGBoost  

After the preprocessing stage, each XGBoost Regressor 
model is fitted to estimate SBP and DBP for each epoch. 
Bayesian optimization is used for hyperparameter tuning. 
This allows the set of parameters that provides the best 
performance to be identified. After that, the model is trained 
and tested using the MIMIC dataset. 

1) Hyperparameter Tuning 

In order to use Bayesian optimization, three elements have 
to be defined, namely search space, loss function, and limit 
number of evaluations the model performs until it stops 
looking for the optimal combination of hyperparameters. In 
this work, the space where the Bayesian optimizer searches 
for the best combination of hyperparameters includes the 
following XGBoost hyperparameters: learning rate, 
maximum depth, minimum child weight, maximum delta 
step, subsample ratio, lambda region, alpha region, scale 
weight, maximum number of leaves, and number of 
estimators. The loss function defines the metric to identify the 
best set of hyperparameters. The mean absolute error (MAE) 
obtained after a 5-fold cross validation is used as loss function 
in this case. Finally, the limit number of evaluations has been 
set to 500. 

2) ABP Estimation 

Once the best set of hyperparameters is obtained, the next 
step is to use it for SBP and DBP estimation using the 
XGBoost Regression model. To evaluate the performance of 
the model, the cross-validation method is used, with 5 folds 
to avoid a lucky train – test split. 

IV. RESULTS AND DISCUSSION 

Results are provided in two ways, namely the best set of 
hyperparameters obtained, and the quality of the ABP 

estimation model for ICU patients. As mentioned above, the 
MIMIC dataset has been used and the selected features have 
been extracted from 20 s epochs. 

A. Hyperparameter Selection 

Using Bayesian optimization and MAE as loss function, 
the best set of hyperparameters has been determined. Table I 
shows the hyperparameter search space limits and the type 
and best set of hyperparameters. The uniform, log uniform 
and q uniform search spaces return real values uniformly 
distributed between defined limits. Log uniform is more 
suitable for geometric series, whereas uniform and q uniform 
are more suitable for arithmetic series, with the difference that 
q uniform returns round values, so the selection of the search 
space depends on the hyperparameter type. 

TABLE I.  HYPERPARAMETERS SEARCH SPACE 

Hyperparameter 
Search 

space type 

Limits Best values 

Min Max DBP SBP 

Learning rate loguniform -8 0 0.018 0.025 

Max depth quniform 1 15 14 6 

Min child weight quniform 0 10 1 6 

Max delta step quniform 0 10 10 3 

Subsample ratio uniform 0.1 1 0.691 0.865 

Lambda region uniform 0.1 1 0.104 0.744 

Alpha region uniform 0.1 1 0.490 0.189 

Scale weight uniform 0.1 1 0.459 0.359 

Max number of leaves quniform 0 10 2 1 

Number of estimators quniform 1 1000 745 951 

B. Estimation Model Quality 

Once the best set of hyperparameters is determined, the 
next step is the evaluation of the quality of the estimation 
model. A 5-fold cross-validation method has been used to 
evaluate estimator performance. Table II shows the results 
obtained as well as the corresponding GPU and CPU 
execution times. MAE is 15.85 mmHg for SBP and 11.59 
mmHg for DBP. These values are within the current state of 
the art range [7], [20]. As expected, the results obtained using 
Bayesian optimization techniques are more accurate than 
those obtained using the default values of the estimator model 
hyperparameters. The use of a GPU dramatically reduces 
execution times by 97%, as shown Table II. 

TABLE II.  ESTIMATION MODEL PERFORMANCE 

ABP 

MAE 
Execution time  

(Optimal hyperparameters) 

Default 

hyperparameters 

Optimal 

hyperparameters 
GPU CPU 

SBP 17.14 mmHg 15.85 mmHg 25.90 s 13.34 min 

DBP 13.01 mmHg 11.59 mmHg 22.57 s 12.05 min 

V. CONCLUSION 

This article presents a methodology to optimize ABP 
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estimators using Bayesian techniques with ECG and PPG 
signals. The stages of the methodology are data 
preprocessing, feature extraction, model optimization, and 
automatic pressure estimation. 

Unlike other works of the current state of the art, this 
methodology allows the optimization of the estimator model 
to be performed automatically and efficiently at the 
computational level for the data available, instead of using the 
model in a generic way. The optimization technique used, 
Bayesian optimization, stands out for its calculation 
efficiency with respect to others widely used, such as random 
search or grid search. Random search has the disadvantage 
that it does not follow any criteria when searching for 
hyperparameters since it does so randomly. In addition, it 
does not run through the entire search space, so it does not 
guarantee that the combination of hyperparameters obtained 
is optimal. Grid search, which runs through the entire search 
space, is very expensive at the computational level, needing 
high computing times, which is a serious limitation when it 
comes to use it in the day to day of a hospital. The adaptation 
of the methodology to its use in GPU is also very relevant, 
further improving its computational efficiency. 

Experimental results clearly confirm the validity and 
usefulness of the proposed method. It allows identifying the 
best set of parameters for a XGBoost estimator that predicts 
SBP and DBP with features extracted from PPG and ECG 
signals using wavelet decomposition in 20 s epochs. The 
estimator defined with those parameters and trained and 
tested with the MIMIC dataset provides very good MAE 
results, within the current state of the art range. In addition, 
GPU execution provides nearly 30x acceleration with regard 
to CPU execution. 

As future work the proposed methodology will be 
improved in several ways, aiming at enhancing the 
performance of the estimator model. The Bayesian 
optimization methodology will be adapted for execution in 
multiple GPUs. We will also delve into the extraction of the 
characteristics of the PPG and ECG signals, analyzing the 
wavelet transform in more detail, and adding features from 
other sources. In addition, model hyperparameter selection 
will be improved and the option of using models others than 
XGBoost, such as Deep Learning techniques, and datasets 
others than MIMIC will be considered. 
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