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Abstract: It is of great interest to develop and introduce new techniques to automatically and
efficiently analyze the enormous amount of data generated in today’s hospitals, using state-of-the-art
artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher
risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to
predict ICU readmission could improve the patients’ care. The objective of this work is to explore and
evaluate the potential improvement of existing models for predicting early ICU patient readmission
by using optimized artificial intelligence algorithms and explainability techniques. In this work,
XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The
results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art
consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal
functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to
understand the model internal performance and to obtain useful information, as patient-specific
information, the thresholds from which a feature begins to be critical for a certain group of patients,
and the feature importance ranking.

Keywords: artificial intelligence; automated machine learning; Bayesian optimization; explainable
machine learning; readmission; intensive care unit; machine learning; MIMIC; SHAP; XGBoost

1. Introduction

Readmission to the Intensive Care Unit (ICU) during the same-hospital admission is an
uncommon adverse event and could cause a high burden to healthcare systems, with very
important socioeconomic effects on patients, relatives and health practitioners [1]. Early
and unplanned ICU readmissions, with readmission rates ranging from 1.3% to 13.7% [2],
are associated with an increased risk of mortality, morbidity, longer stays in the hospital
and ICU, and an increased cost. Consequently, there has been a high interest in the ICU
readmission rate as a quality indicator of critical care [2]. Nevertheless, current studies
have shown that ICU readmission rates are influenced by factors other than quality of
care, such as patient characteristics and length of stay [1], and in general all possible data
sources. This opens the problem for the use of new artificial intelligence techniques in order
to exploit all the information available.

In recent years, the use of machine learning techniques in the health field has increased
in order to improve the patients care quality and to facilitate the health personnel work [3].
Due to the enormous amount of data generated in today’s hospitals, it is of great interest to
develop techniques to analyze this data automatically and efficiently, facilitating correct
decision-making by healthcare personnel. A manual analysis of all this data would require
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time that is not available in the day-to-day framework of a hospital [4], leading to only
a small portion of it being analyzed, missing the opportunity of analyzing the available
data globally. The continuous and exhaustive patients monitoring during their ICU stay
produces a wide variety of biomedical data with great potential for applications. The
Intensive Care Unit is one of the areas with substantial interest in the application of these
techniques [5,6]. Several state-of-the-art articles focus on predicting ICU readmission and
quantifying performance through a series of metrics [2]. For example, Barbieri et al. [7]
and Rojas et al. [8] obtained an AUROC of 0.74 and 0.76, respectively, both using the
MIMIC-III database. Thoral et al. [9] obtained an AUROC of 0.78 using the Amsterda-
mUMCdb database. Other state-of-the-art consulted works obtained similar results [10–12].
In this work, differently than all those above-mentioned papers, we focus on the model’s
optimization and its explanation in order to improve the predictions.

The application of artificial intelligence to healthcare involves several ethical concerns,
such as unfair algorithmic bias [13–16]. This is strongly related with the explainability of AI
models. In the vast majority of works, predictor models are treated as “black boxes”, with-
out understanding the internal performance and being unable to explain how it reached
a certain prediction. This is a problem, especially in critical areas such as healthcare,
where ethical aspects are so important. Currently, the field of explainable machine learn-
ing is increasing in interest [17], allowing models to be analyzed and to easily perceive,
detect, and understand its decision process, i.e., turning them into “white boxes”. Con-
cerning model explainability, Shapley Additive Explanations [18] based on game theory
are frequently used. Here are other explanatory techniques in the current state of the art,
e.g., based on natural language [19,20]. However, Shapley additive explanation is the
only one that satisfies the properties of efficiency, symmetry, dummy and additivity, which
together can be considered a definition of a fair payout [21]. Through the use of explicability
techniques, information about the model’s internal performance is given: patient-specific
information, identifying which features had more weight in the decision; the thresholds
from which a feature begins to be critical for a certain group of patients, making it possible
to configure alarms that alert healthcare personnel; and the feature importance ranking.
This allows us to understand how the model obtains the predictions and to make decisions.

The objective of our work is to explore and evaluate the potential improvement of
existing models for predicting ICU patient readmission by using optimized artificial in-
telligence algorithms and explainability techniques. Specifically, this article analyzes the
readmission of patients to the ICU during the same hospital stay. A new methodology
based on XGBoost as a predictor model, combined with Bayesian techniques to optimize
it, is presented and compared with existing models. Moreover, we explain the internal
functioning of the model by using Shapley Additive Explanation-based techniques. As ex-
plained above, this prediction is extremely important due to an increased risk of mortality,
morbidity, longer stays in hospital and ICU, and an increased cost.

The remainder of the article is structured as follows. In Section 2, the proposed
methodology is explained. In Section 3, the results are provided and analyzed. This
includes the validation of the ICU readmission prediction model using different statistical
metrics as well as explainability outcomes. Finally, the discussion and conclusions of the
work are presented.

2. Materials and Methods

In order to evaluate the benefit of including optimization and explanation stages on
the artificial intelligence schema to predict early ICU readmission, a new methodology
was developed, which is divided into several stages. The first stage is the cohort selection.
The second stage is devoted to extract the features to fit the model. Next, we proceed with
the model configuration, both its optimization and validation. Finally, the explainability is
performed, extracting the ranking of the most important features, thresholds, and other
information of interest. Figure 1 shows the methodology pipeline including all these stages.
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Figure 1. Pipeline of the proposed methodology.

2.1. Cohort Selection

In this work, the open access database MIMIC-III (Medical Information Mart for Inten-
sive Care III) [22,23] developed by MIT (Massachusetts Institute of Technology) is used to
validate the models. It includes information from 61,532 ICU stays at Beth Israel Deaconess
Medical Center between 2001 and 2012, such as demographics, vital sign measurements
made at the bedside (∼1 data point per hour), laboratory test results, procedures, medica-
tions, caregiver notes, or imaging reports, between others. It is available on the Physionet
repository [24].

Regarding the cohort selection, a series of criteria are considered: first, under 18-years-
old patients are not included (n = 7964). Those who die during the first ICU stay (n = 3280)
are not included in the study either. Moreover, those who were readmitted to the ICU
after being discharged from the hospital (n = 6181) are not included. These criteria were
followed in other consulted works [2,8–12,25] and will be discussed in detail in Section 4.
Finally, patients who do not have measurements of at least 2/3 of the clinical variables
that are part of the study are not included (n = 494). A total of 28,557 study patients were
obtained, with 2313 patients being readmitted and 26,244 patients not being readmitted.
Figure 2 shows the cohort selection schema, and Table 1 shows the patient characteristics
for the selected dataset and for the original dataset.

Table 1. Patient characteristics for the selected dataset and for the original dataset.

MIMIC-III Cohort

Patients 46,476 28,557
Age (SD 1) 55.8 (27.3) 63.3 (18.1)

Gender
M: 26,087
F: 20,380

M: 16,390
F: 12,167

Readmission rate 18.84% 8.10%
1 SD: Standard deviation.
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Figure 2. Cohort selection schema.

2.2. Feature Extraction

The next stage is to extract the features used to feed the predictor model. It is necessary
to establish a criterion to determine which clinical variables are used. Following the criteria
of other state-of-the-art works [26,27], it was decided to build the models using variables
that are present in at least 80% of the patients. A series of statistics (average, standard
deviation, minimum and maximum) are extracted from all values collected during the
entire first ICU stay. It was also considered to use only the values extracted during the last
24 h of the first ICU stay, but the results obtained were worse, as indicated in Section 4.

Decision trees and ensemble methods, as XGBoost, are not impacted by the outliers
in the data, as the data is split by scores that are calculated using the homogeneity of
the resultant data points. Consequently, data normalization for feature scaling is not
required, as the results are not sensitive to the the variance in the data [28]. Concerning the
explicability, data normalization does not affect the results, as the analysis performed is
based on the Shapley Additive Techniques, using game theory to iteratively analyze the
impact of adding or not adding a feature to the predictor model [21,29].

Table 2 shows the variables used, the features extracted, the mean and standard
deviation of each variable, and the measurement units. Except in the case of gender, all
features are numeric.

2.3. Early-Readmission Predictor Model

There are several approaches in the literature to solve this problem [30]; in this work,
it was decided to use the XGBoost model [28], from the family of gradient boosting models.
It stands out for being one of the models that obtains the best results in the current state
of the art in problems with tabular data [31], in addition to its high efficiency from the
computational point of view, supporting the execution in Graphics Processing Units (GPU).
In this work, a GPU-based high-performance computing system is used, so the fact that
the model can be executed on GPUs is essential to reduce the execution times needed for
model optimization.

The variable to predict is the readmission of the patient to the ICU without being
discharged from the hospital. As previously indicated, these are the patients who have a
higher risk of mortality and longer stays in the ICU. This will be discussed in more detail
in Section 4. The model configuration includes both its optimization and validation.
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Table 2. Variables used and features extracted to feed the predictor model.

Variable Units Features Extracted Average Standard Deviation

Age Years Value at 1st admission 63.3 18.1
Gender - - - -

LOS Days - 3.7 5.2
Urine output mL Total volume 138.6 3539.4

Glasgow Coma Scale (verbal) -

Average,
standard deviation,

maximum,
minimum

3.9 1.2
Glasgow Coma Scale (motor) - 5.6 0.6
Glasgow Coma Scale (eyes) - 3.6 0.5

Systolic Blood Pressure mmHg 121.6 15.4
Heart rate bpm 84.1 13.4

Body temperature ºC 36.8 0.75
PaO2 mmHg 165.7 79.7
FiO2 mmHg 51.2 11.43

Serum urea nitrogen level mg/dL 22.1 15.5
White blood cells count k/uL 10.8 5.7
Serum bicarbonate level mEq/L 25.5 3.2

Sodium level mEq/L 138.7 3.3
Potassium level mEq/L 4.1 0.4
Bilirubin level mg/dL 1.2 2.8

Breathing Rhythm bpm 19.3 102.8
Glucose mg/dL 132.9 42.3
Albumin g/dL 3.5 5.3

Anion gap mEq/L 13.2 2.3
Chrolide mEq/L 105.5 5.9

Creatinine mg/dL 1.2 1.1
Lactate mmol/L 2.0 1.1
Calcio mg/dL 8.5 0.6

Heamotocrit % 32.2 4.6
Hemoglobin g/dL 10.97 1.7

International Normalized Ratio (INR) - 1.4 0.6
Platelets - 215.8 101.5

Prothrombin Time s 14.7 3.7
Activated partial thromboplastin time (APTT) s 35.8 14.1

Base excess mEq/L 0.1 3.6
PaCO2 mmHg 41.84 9.8

PH - 6.9 0.7
Total CO2 mEq/L 25.74 4.3

2.3.1. Model Optimization

Regarding the predictor model optimization, this is done both from the computational
level and from the prediction quality level. To improve the results of the predictor model,
it is necessary to find the best parameters configuration. There are different possibilities
to carry out this task [32]. On the one hand, different combinations of parameters can be
manually tested, selecting the one that obtains the best results. However, there is usually
not a direct relationship between a certain parameter value and prediction quality, but what
is important is the combination of different parameter values [33–35]. For this reason,
the process must be performed automatically. This is part of the research field popularly
called Automated Machine Learning. The grid search technique and the random search
technique are the most used in the current state of the art. The first consists of testing all
parameter combinations without following a certain criterion, while the second is similar to
the first with the difference that it does not test all the combinations, using a random search
criterion. The first has the disadvantage of being very expensive from a computational
point of view, while the second has the disadvantage that it does not follow any criteria
searching for the best combination, which does not guarantee that the best combination
will be obtained. However, there is a third option, which is used in this work: Bayesian
optimization techniques [36]. These, despite being more complex from the conceptual
point of view, are characterized by being more efficient in the search. In this work, the Tree-
structured Parzen Estimator (TPE) of the open-source Hyperopt package [37] was used,
which is based on Bayesian optimization techniques.

The first step of this stage is the search space definition, i.e., the hyperparameters value
limits between which the TPE will determine the best combination iteratively. Table 3 shows
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the search space used. The next step is the definition of the optimization criterion used to
quantify the predictor model quality. In this work, two different criteria are used: Area
Under Receiver Operating Characteristic Curve (AUROC) and Area Under Precision Recall
Curve (AUPRC). Table 3 shows the best hyperparameters combination obtained with each
criterion. To feed the model, a split training and test is performed, using 70% of the data
as training and the remaining 30% as test, shuffling them randomly beforehand. In each
iteration, the XGBoost model is trained and tested with the corresponding combination of
hyperparameters. Finally, the criterion to consider as completing the optimization process
is defined. In this work, the optimization process is finished after 500 search iterations.
Figure 3 shows the optimization process pipeline.

Table 3. Hyperparameters search space and optimal values obtained.

Hyperparameter Search Space Optimal Values

Min Max AUROC
Criterion

AUPRC
Criterion

Learning rate −8 0 0.024 0.009
Maximum delta step 0 10 3 4

Maximum depth 1 30 8 23
Maximum nº leaves 0 10 6 8

Minimum child weight 0 15 3 2
Nº of estimators 1 10,000 4319 9078

Alpha region 0.1 1 0.912 0.445
Lambda region 0.1 1.5 0.427 0.493

Scale weight 0.1 1 0.851 0.296
Subsample 0.1 1 0.479 0.595

Figure 3. Pipeline of the model hyperparameters optimization.

2.3.2. Model Validation

The next stage after the model optimization is its validation. The stratified cross-
validation method is used to avoid a lucky training–test split, distributing the data in
stratified k-folds. Each fold contains approximately the same sample percentage of each
target class as the complete set. The number of folds is set to 10. The following metrics are
used to validate the model: accuracy (1), specificity (2), F1 score (3), precision (4), recall (5),
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AUROC and AUPRC, obtained from the confusion matrix, which is shown in Table 4.
The metric values obtained are shown in Section 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

F1 = 2 × Precision × Recall
Precision + Recall

(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Table 4. Confusion matrix.

Truth
(Golden Standard)

True False
Predicted

value
True TP

(True Positive)
FP

(False Positive)
False FN

(False Negative)
TN

(True Negative)

3. Results

This section presents the results obtained after applying the methodology described
in the previous section, relative to the optimization, validation, and explanation stages of
the model.

3.1. Model Optimization

Using the proposed methodology, it is possible to identify the best set of hyperpa-
rameters that provide the best performance in terms of different criteria, as mentioned in
Section 2.3.1. Table 3 shows the best XGBoost hyperparameter combination obtained using
each of the optimization criteria (AUROC and AUPRC). The results obtained are discussed
in Section 4.

3.2. Model Validation

After completing the model optimization stage, we proceed to the model validation.
Table 5 shows the different metrics obtained with each hyperparameter combination,
compared with the results obtained using the default model configuration. In addition,
Figure 4 shows the ROC and Precision–Recall curves, both corresponding to each cross
validation step and the average, using the different optimization criteria (AUROC and
AUPRC). The values obtained improve the results obtained in the consulted state of the
art [7–12,25]. Table 6 shows a comparison with related works in terms of AUROC, which is
the common metric in most papers that address this problem in the literature. The positive
label (1) indicates that admission occurred, while the negative label (0) indicates the patient
did not readmit to the ICU. It must be taken into consideration that the values obtained on
the referred works have used a different experimental setup than the one proposed in this
paper. However, it allows us to define a common base line, as most works use the same
database (MIMIC) or the same model (XGBoost).
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Table 5. Model validation.

Optimization Criteria Default Criterion
AUROC AUPRC

AUROC 0.92 (±0.03) 0.92 (±0.02) 0.90 (±0.03)
Accuracy 0.94 (±0.01) 0.94 (±0.01) 0.94 (±0.01)
Specificity 0.99 (±0.01) 0.99 (±0.01) 0.99 (±0.01)

F1 0.53 (±0.12) 0.47 (±0.11) 0.49 (±0.11)
Precision 0.77 (±0.18) 0.85 (±0.17) 0.74 (±0.13)

Recall 0.40 (±0.09) 0.32 (±0.10) 0.37 (±0.10)
AUPRC 0.64 (±0.09) 0.65 (±0.09) 0.60 (±0.10)

Table 6. Comparison with related works in terms of AUROC.

Author Dataset Predictor AUROC

Badawi et al. [10] eICU Research Database Logistic regression 0.71
Fialho et al. [11] MIMIC-II Fuzzy Models 0.72
Frost et al. [12] Own data Logistic Regression 0.66
Rojas et al. [8] MIMIC-III Gradient Boosting Machine 0.76

Thoral et al. [9] AmsterdamUMCdb XGBoost 0.78
Barbieri et al. [7] MIMIC-III Neural Network (ODE) 0.71

Our work MIMIC-III XGBoost 0.92

(a)

(b)

Figure 4. ROC and Precision–Recall curves using the different optimization criteria: (a) Using
AUROC as optimization criterion. (b) Using AUPRC as optimization criterion.
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3.3. Explainability

The concept of explainability is related to one of the main problems attributed to the
use of artificial intelligence in the healthcare field: using models as “black boxes”, i.e., using
a predictive model without knowing how it works internally. The ability to understand the
model’s internal performance and be able to explain its behavior is essential, especially in
critical areas such as healthcare, where ethical aspects are so important. The explainability
of the model allows us to understand how the model obtains the predictions and to make
decisions, obtaining useful clinical information: patient-specific information, identifying
which features had more weight in the decision; the thresholds from which a feature begins
to be critical for a certain group of patients, making it possible to configure alarms that alert
healthcare personnel; and the feature importance ranking.

3.3.1. Patient-Specific Information

A useful tool for healthcare personnel is understand the prediction obtained for a
specific patient. Figure 5 shows the local explainability of a specific patient, predicted as
non-readmission (base value = 0). The features with a higher impact on prediction are closer
to the dividing boundary between positive and negative values, and the feature impact is
represented by the bar size. Moreover, each feature value is shown next to a feature name.
The features in red influence the model to predict a readmission, while the features in blue
force the model to predict non-readmission. For example, in this case, the feature length
of stay (LOS), with a value of 0.93 days for this patient, impacts the model to predict that
patient will be readmitted. On the other hand, the maximum level of white blood cells
(WBmax), with a value of 9 × 10³ leukocytes, impacts the model to predict that the patient
will not be readmitted.

Figure 5. Local explainability of a specific patient outcome prediction.

3.3.2. Threshold Identification

Figure 6 shows the relation between feature values and their associated Shapley value.
Although only the three most important features are displayed, this analysis could be done
for all features. This information is useful to know the thresholds from which the value of
a variable begins to be critical for patient health, allowing the definition of alarms and to
extract useful clinical information. For example, in the case of PaO2, it can be observed that
values greater than 200 are related to a greater risk of readmission (SHAP value > 0), while
values less than 200 indicate a lower risk of readmission (SHAP value < 0).

(a) (b) (c)

Figure 6. Partial dependence plot of the three more important features: Length of stay (a), maximum
level of PaO2 (b), and maximum level of white blood cells (c).
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3.3.3. Feature Importance

Figure 7 shows the feature importance ranking, both using AUROC (Figure 7a) and
AUPRC (Figure 7b) as optimization criterion. The Figure x-axis is related to the feature
average impact on the model based on the mean Shapley value. The 20 most important
features are presented in this paper, the ranking being almost the same in both cases (the
top-5 features are exactly the same). The length of ICU stay is the most important feature of
the model. However, the ranking of the features does not have to be the same in all patients.

(a) (b)

Figure 7. Feature importance using the different optimization criteria: AUROC and AUPRC. (a) Using
AUROC as an optimization criterion. (b) Using AUPRC as an optimization criterion.

In addition to the feature importance ranking, another important element to explain
the model performance is to understand how different feature values influence model
prediction. Figure 8 shows the Shapley value (abscissas axis) associated with each of the
different feature values. The color scale refers to whether the value of the feature is high
(red) or low (blue). A feature value with a positive Shapley value associated indicates that
it has a positive impact on patient readmission, while a negative Shapley value indicates
that it has a positive impact on patient non-readmission. For example, it can be seen
that in the case of the length of the ICU stay, higher values influence the model more
positively (predicting that the patient has greater chances of readmission) than in the case
of lower values.
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(a) (b)

Figure 8. SHAP summary plot using the different optimization criteria: AUROC and AUPRC.
(a) Using AUROC as an optimization criterion. (b) Using AUPRC as an optimization criterion.

4. Discussion

The results show that a classifier for predicting ICU patient readmission using the
methodology described in this work ( AUROC = 0.92) outperforms the other state-of-the-art
works (measured by AUROC), ranging from 0.66 to 0.81 [2]. For example, Barbieri et al. [7]
and Rojas et al. [8] obtained an AUROC of 0.74 and 0.76, respectively, both using the
MIMIC-III database. Thoral et al. [9] obtained an AUROC of 0.78, using the Amsterda-
mUMCdb database. Our results also outperform other previous state-of-the-art consulted
works [10–12].

The cohort selection and the output variable (patient readmission) are two key el-
ements of the methodology. Regarding the cohort selection, several criteria were used,
as indicated in Section 2.1. Patients under 18-years-old were discarded, due to this study
being focused on adults ICU. Patients who die during the first ICU stay were also discarded.
If they were not discarded, the model will erroneously consider that they do not re-enter
the ICU because they were discharged correctly, confusing it. Moreover, this work focused
on ICU readmission in the same hospital stay, i.e., without leaving the hospital.

Another option could be to predict ICU readmission regardless of whether it was
without leaving the hospital or not. However, there are state-of-the-art works endorsing
that patients readmitted to the ICU in the same hospital stay have an increased risk of
mortality, morbidity, longer length of hospital and ICU stay, and an increased cost [38].
In addition, ICU patient readmission after leaving the hospital might not be related to the
first ICU admission, but rather due to an event that occurred outside the hospital (e.g.,
an accident). Therefore, patients readmitted to the ICU after leaving the hospital have been
also discarded. Finally, patients with more than 1/3 of the missing variables were also
discarded. As mentioned in Section 2.2, several statistics extracted from the full 1st ICU
stay variables are used as features to feed the model. The effect of extracting the features
of the values measured in the last 24 h of the first ICU stay was also analyzed, obtaining
worse results (AUROC = 0.69).

During the predictor model optimization process, two different criteria were paralelly
used: AUROC and AUPRC. AUROC was used because it is the criterion used in practically
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all works to compare the results obtained with those of the state-of-the-art. On the other
hand, AUPRC was used because it is one of the recommended evaluating criteria to address
class-imbalanced data [39]. The results obtained using the different criteria are almost the
same, both in relation to the validation of the model and its explainability. In addition,
it was proved that the results obtained by optimizing the hyperparameters of the model
improve those obtained with the default configuration of this model, as shown in Table 5.

As mentioned above, the application of artificial intelligence to healthcare involves
several ethical concerns, such as unfair algorithmic bias [13,14]. In the vast majority of
works, predictor models are treated as “black boxes”, without understanding the internal
performance and being unable to explain how it reached a certain prediction. In our work,
we delved into the internal performance of our model by the use of explainable machine
learning techniques, which are currently of broad and current interest. In Section 3.3,
some information about the model internal performance was given, including the feature
importance ranking and information about how values of each feature impact on prediction.
This allows the healthcare personnel and authorities to understand how the model obtains
the predictions and to make decisions.

The presented methodology has been validated using the open-access MIMIC-III
database. However, the methodology could be applied to another database, being equally
valid, or even to other hospital predictors. The differences will be in the intermediate
results (the variables that are present in at least 80% of the patients and the cohort number
of patients), as well as in the final results (validation metrics obtained).

5. Conclusions

This article presents a new methodology to predict early ICU readmission, with-
out being discharged from the hospital, by using artificial intelligence techniques and
data collected during the full ICU stay. The predictor model (XGBoost) is optimized to
improve the results obtained and validated. Moreover, the model’s internal performance is
explained using explainable machine learning techniques.

The results using 28,557 patients demonstrated the validity of the proposed method-
ology, obtaining an AUROC of 0.92, which improves the state-of-the-art consulted works.
The explainability of the model allows us to understand its internal performance and to
obtain useful information. This is essential, especially in critical areas such as healthcare,
where ethical aspects are so important. In view of the results, it can be concluded that ICU
monitoring systems should include optimized and explained artificial intelligence tools.
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PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries. Inform. Sci. 2022, 614, 374–399.
[CrossRef]

20. Casalino, G.; Castellano, G.; Kaymak, U.; Zaza, G. Balancing Accuracy and Interpretability through Neuro-Fuzzy Models for
Cardiovascular Risk Assessment. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
Orlando, FL, USA, 5–7 December 2021; pp. 1–8. [CrossRef]

21. Molnar, C. Interpretable Machine Learning. 2022. Available online: https://christophm.github.io/interpretable-ml-book
(accessed on 22 December 2021).

22. MIMIC-III Clinical Database v1.4. 2022. Available online : https://physionet.org/content/mimiciii/1.4/ (accessed on 4 February 2021).
23. Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.w.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.;

Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef]
24. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;

Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, 215–220. [CrossRef] [PubMed]

25. Jo, Y.S.; Lee, Y.J.; Park, J.S.; Yoon, H.I.; Lee, J.H.; Lee, C.T.; Cho, Y.J. Readmission to Medical Intensive Care Units: Risk Factors and
Prediction. Yonsei Med. J. 2015, 56, 543–549. [CrossRef] [PubMed]

26. Jiang, Z.; Bo, L.; Xu, Z.; Song, Y.; Wang, J.; Wen, P.; Wan, X.; Yang, T.; Deng, X.; Bian, J. An explainable machine learning algorithm
for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission. Comput. Methods Programs Biomed. 2021,
204, 106040. [CrossRef] [PubMed]

27. González-Nóvoa, J.A.; Busto, L.; Rodríguez-Andina, J.J.; Fariña, J.; Segura, M.; Gómez, V.; Vila, D.; Veiga, C. Using Explainable
Machine Learning to Improve Intensive Care Unit Alarm Systems. Sensors 2021, 21, 7125. [CrossRef]

28. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016. [CrossRef]
29. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing

Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774.

30. Kimani, L.; Howitt, S.; Tennyson, C.; Templeton, R.; McCollum, C.; Grant, S.W. Predicting Readmission to Intensive Care after
Cardiac Surgery Within Index Hospitalization: A Systematic Review. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2166–2179. [CrossRef]

31. Nielsen, D. Tree Boosting with XGBoost—Why Does XGBoost Win “Every” Machine Learning Competition? Ph.D. Thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2016.

32. Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019.
[CrossRef]

33. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning; Springer: Cham, Switzerland, 2019. [CrossRef]
34. González-Nóvoa, J.A.; Busto, L.; Campanioni, S.; Fariña, J.; Rodríguez-Andina, J.J.; Vila, D.; Veiga, C. Two-Step Approach for

Occupancy Estimation in Intensive Care Units Based on Bayesian Optimization Techniques. Sensors 2023, 23, 1162. [CrossRef]
35. González-Nóvoa, J.A.; Busto, L.; Santana, P.; Fariña, J.; Rodríguez-Andina, J.J.; Juan-Salvadores, P.; Jiménez, V.; Íñiguez, A.;

Veiga, C. Using Bayesian Optimization and Wavelet Decomposition in GPU for Arterial Blood Pressure Estimation. In Proceedings
of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK,
11–15 July 2022; pp. 1012–1015. [CrossRef]

36. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian
Optimization. Proc. IEEE 2015, 104, 148–175. [CrossRef]

37. Bergstra, J.; Yamins, D.; Cox, D.D. Making a Science of Model Search. arXiv 2012. [CrossRef]
38. Niven, D.J.; Bastos, J.F.; Stelfox, H.T. Critical Care Transition Programs and the Risk of Readmission or Death after Discharge from

an ICU: A Systematic Review and Meta-Analysis. Crit. Care Med. 2014, 42, 179–187. [CrossRef] [PubMed]
39. Fu, G.H.; Yi, L.Z.; Pan, J. Tuning model parameters in class-imbalanced learning with precision-recall curve. Biom. J. 2019,

61, 652–664. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e23010018
http://dx.doi.org/10.2307/2554979
http://dx.doi.org/10.1016/j.ins.2022.10.010
http://dx.doi.org/10.1109/SSCI50451.2021.9660104
https://christophm.github.io/interpretable-ml-book
https://physionet.org/content/mimiciii/1.4/
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.3349/ymj.2015.56.2.543
http://www.ncbi.nlm.nih.gov/pubmed/25684007
http://dx.doi.org/10.1016/j.cmpb.2021.106040
http://www.ncbi.nlm.nih.gov/pubmed/33780889
http://dx.doi.org/10.3390/s21217125
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1053/j.jvca.2021.02.056
http://dx.doi.org/10.48550/arXiv.1912.06059
http://dx.doi.org/10.1007/978-3-030-05318-5
http://dx.doi.org/10.3390/s23031162
http://dx.doi.org/10.1109/EMBC48229.2022.9871020
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.48550/arXiv.1209.5111
http://dx.doi.org/10.1097/CCM.0b013e3182a272c0
http://www.ncbi.nlm.nih.gov/pubmed/23989177
http://dx.doi.org/10.1002/bimj.201800148
http://www.ncbi.nlm.nih.gov/pubmed/30548291

	Introduction
	Materials and Methods 
	Cohort Selection 
	Feature Extraction 
	Early-Readmission Predictor Model 
	Model Optimization
	Model Validation


	Results 
	Model Optimization
	Model Validation
	Explainability 
	Patient-Specific Information
	Threshold Identification
	Feature Importance


	Discussion 
	Conclusions
	References

