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Business process (BP) models are usually defined manually by business analysts through 
imperative languages considering activity properties, constraints imposed on the rela-tions 
between the activities as well as different performance objectives. Furthermore, allocating 
resources is an additional challenge since scheduling may significantly impact BP 
performance. Therefore, the manual specification of BP models can be very com-plex and 
time-consuming, potentially leading to non-optimized models or even errors. To 
overcome these problems, this work proposes the automatic generation of imperative 
optimized BP models from declarative specifications. The static part of these declara-tive 
specifications (i.e. control-flow and resource constraints) is expected to be useful on a long-
term basis. This static part is complemented with information that is less stable and 
which is potentially unknown until starting the BP execution, i.e. estimates related to (1) 
number of process instances which are being executed within a particular timeframe, (2) 
activity durations, and (3) resource availabilities. Unlike conventional proposals, an 
imperative BP model optimizing a set of instances is created and deployed on a short-term 
basis. To provide for run-time flexibility the proposed approach addition-ally allows 
decisions to be deferred to run-time by using complex late-planning activities, and the 
imperative BP model to be dynamically adapted during run-time using replan-ning. To 
validate the proposed approach, different performance measures for a set of
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test models of varying complexity are analyzed. The results indicate that, despite the
NP-hard complexity of the problems, a satisfactory number of suitable solutions can be
produced.

Keywords: Business process management; constraint programming; planning;
scheduling.

1. Introduction

A business process (BP) consists of a set of activities which are performed in coordi-
nation in an organizational and technical environment,1 and which jointly realize a 
business goal. Nowadays, there exists a growing interest in aligning information sys-
tems in a process-oriented way1,2 as well as in the effective management of BPs. BP 
improvement has been ranked as the number one priority for top management by 
the 2010 Gartner survey.3 BP management (BPM) can be seen as supporting BPs 
using methods, techniques, and software in order to design, enact, control, and ana-
lyze operational processes involving humans, organizations, applications, and other 
sources of information.4 Typically, the traditional BPM life cycle1 includes several 
phases: Process Design & Analysis, system configuration, process enactment and 
evaluation. The BP Design & Analysis phase has the goal to generate a BP model, 
i.e. to define the set of activities and the execution constraints between them,1 by 
formalizing the informal BP description using a particular BP modeling notation. 
The Process Design & Analysis phase plays an important role in the BPM life cycle 
for any improvement initiative, since it greatly influences the remaining phases of 
this cycle. In addition, also run-time aspects are important for BP improvement, 
e.g. resource allocations and scheduling may significantly impact BP performance.

1.1. Problem statement

Traditionally, two steps are considered in the BP Design & Analysis phase to create 
a BP model.5 The first step consists of analyzing the BP, e.g. by interviewing 
stakeholders (people involved in the process), in order to draw an initial BP model 
(as-is model). Second, in order to improve this initial model, different techniques 
can be employed like simulation6 or BP redesign,7 resulting in the generation of a 
to-be model. Typically, different quality dimensions like time, cost, flexibility and 
quality can be differentiated7 between which trade-off decisions have to be made 
when creating a BP design. Once a certain process design has been chosen and 
implemented, BPs are executed according to this design.a During process execution, 
scheduling decisions are then typically made by the BPM systems (BPMSs), by 
automatically assigning activities to resources.8

aIn this work, we make the assumption that there is a BPM system executing the BPs.
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In most cases, the overall process of creating a BP model is carried out manu-
ally by business analysts, who specify the BP information through an imperative 
language by choosing between several different alternative designs the one which 
best meets the performance goals of the organization. Therefore, analysts must 
deal with several aspects in order to generate a suitable BP model, such as: (1) 
the activity properties, e.g. activity duration, resource or role which is required 
for activity execution (i.e. the role-based allocation pattern is considered8), (2) the 
relations between the activities, i.e. control-flow of the BP, and (3) the optimization 
of several objectives, e.g. minimization of completion time. The manual specifica-
tion of imperative BP models can therefore form a very complex problem, i.e. it can 
consume a great quantity of time and human resources, may cause certain failures, 
and may lead to non-optimized models since the tacit nature of human knowledge 
is often an obstacle to eliciting accurate process models.9

Not only the process design, but also the allocation of resources during process 
execution has a great influence on process performance. However, scheduling is 
only considered to a limited degree in existing BPMSs, and is typically done during 
run-time by assigning work to resources.

The situation is further complicated by the fact that typically multiple instances 
of a process get concurrently executed within a particular timeframe. In order to 
ensure that the execution of a process is not only locally optimized for a single 
instance, the whole set of instances which are executed within a  particular time-
frame has to be considered.

1.2. Contribution

To support process analysts in the definition of optimized BP models we sug-
gest a method for automatically generating imperative BP models using artificial 
intelligence (AI) planning techniques from constraint-based specifications. Unlike 
imperative models, the specification of process properties in a declarative way, e.g. 
using a constraint-based specification, only requires process designers to state what 
has to be done instead of having to specify how it has to be done.b In the pro-
posed approach, the static part of the input declarative model (i.e. control-flow 
and resource constraints) is expected to be useful on a long-term basis since it 
embraces information which is not supposed to change often. The base declarative 
model (i.e. only including the static part) is complemented with information that 
is less stable and which is potentially unknown until starting the BP execution, 
i.e. estimates related to (1) number of process instances which are being executed 
within a particular timeframe, (2) activity durations, and (3) resource availabilities. 
From this extended model, the proposed approach is in charge of determining how

bThe advantages of using declarative languages for BP modeling instead of imperative languages,
e.g. facilitating the human work involved in the BP modeling, are discussed in several studies, e.g. 
Refs. 10–15.
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to satisfy the constraints imposed by the declarative specification and at the same 
time to attain an optimization of certain objective functions (e.g. minimization of 
completion time). For this optimization, scheduling is done on a short-term basis 
by considering the optimization of a set of instances.

Unlike conventional proposals, in our approach each generated model is cre-
ated and deployed for a specific planning period, considering changing information 
such as the number of process instances which are being executed within a specific 
timeframe. For the next executions of the declarative model, new models will be 
generated considering the specific values which are given for the changing informa-
tion. Since planning is done on a short-term basis, the generated models are less 
prone to change.

Figure 1 provides an overview of our approach. Taking the constraint-based 
specifications as a starting point (cf. Fig. 1(1)), enactment plans can automati-
cally be generated (cf. Fig. 1(2)). For this, activities to be executed have to be 
selected and ordered (planning problem16) considering the control-flow imposed by 
the constraint-based specification. Moreover, to automatically propose execution 
plans which meet the performance goals best (e.g. minimizing the overall comple-
tion time (OCT), i.e. time needed to complete all process instances which were 
planned for a certain period), the constraint-based model is complemented with 
information related to estimates regarding the number of instances, activity dura-
tions, and resource availabilities (scheduling problem17). For planning and schedul-
ing (P&S) the activities such that the process objective function is optimized, a 
constraint-based approach is proposed since constraint programming18 supplies a 
suitable framework for modeling and solving problems involving P&S aspects.19 

The generated enactment plans are then automatically translated into a Business 
Process Model and Notation (BPMN) model20 (cf. Fig. 1(3)), which can be then 
further improved by a business analyst, where necessary. In most cases, BPMN 
models can be translated into an execution language,21 such as BPEL,22 which 
enables BP designs to be deployed into BPMS and let their instances be executed 
by a BPM engine. To provide for an increased flexibility the BPMN model can be 
dynamically adapted during run-time by using replanning (cf. Fig. 1(4)).

Note that the BPMN model is generated with the goal of making the declara-
tive model automatically executable by a BPMS by considering the specific values 
of the changing information which are given just before starting the execution the

Fig. 1. AI P&S techniques for the generation of optimized BP models.
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process. In this way, application of decision deferral patterns is automated,23 i.e.
the role of the BPMS is rather focused on enabling control and ensuring compli-
ance (decisions are automatically made by the BPMS). Regarding decision deferral
patterns, our approach belongs to the late modeling and composition pattern, i.e.
allowing for modeling and automatic composition of a process model just before
starting the execution of a branch of process instances. Therefore, our approach can
be framed within dynamic process-based composition (i.e. completely creating the
executable process model dynamically at run-time), which constitutes an example
of the automated variant of the late modeling and composition pattern.

The main contributions of this paper can be summarized as follows:

(i) The definition of a language for the constraint-based specification of BPs which
extends ConDec,11,24 named ConDec-R (cf. Sec. 3, Step 1 in Fig. 1), to enable
the reasoning about resources.

(ii) Automatic planning and scheduling of the BP activities for the generation of
optimized BP enactment plans from the ConDec-R specifications, through a
constraint-based approach (cf. Sec. 4, Step 2 in Fig. 1).

(iii) Automatic generation of optimized BP models in BPMN from optimized BP
enactment plans (cf. Sec. 5, Step 3 in Fig. 1).

(iv) Providing for run-time flexibility by allowing decisions to be deferred at run-
time and the BPMN model to be dynamically adapted during run-time (cf.
Sec. 6, Step 4 in Fig. 1).

(v) Validation of the proposed approach through the analysis of different perfor-
mance measures related to a range of test models of varying complexity (cf.
Sec. 8).

In this way, the automatic generation of BP models simplifies the BP design 
phase by facilitating the human work in most cases, preventing failures in the devel-
oped BP models, and enabling better optimization to be attained in the enactment 
phase. Furthermore, imperative BP models can dynamically be generated from 
static constraint-based specifications just before starting the BP enactment, once 
some values for the enactment parameters, e.g. resource availabilities, are known. 
Moreover, the automatic generation of BP models can deal with complex problems 
of great size in a simple way (as will be demonstrated in Sec. 8). Therefore, a wide 
study of several aspects can be carried out, such as those related to the require-
ment of resources of different roles, or the estimated completion time for the BP 
enactment, by generating several kinds of alternative specifications. In addition, 
in order to address run-time flexibility the proposed approach allows decisions to 
be deferred at run-time by using complex late-planning activities, and the BPMN 
model to be dynamically adapted during run-time using replanning.

The remainder of this paper is organized as follows: Sec. 2 introduces back-
grounds needed for the further understanding of the paper, Secs. 3–6 detail the 
proposals of this work, Sec. 7 explains an example, Sec. 8 deals with the evaluation
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of the proposed approach, Sec. 9 summarizes related work, Sec. 10 presents a criti-
cal discussion of the advantages and limitations of our proposal, and finally, Sec. 11 
includes some conclusions and future work.

2. Background

Our work combines aspects of scheduling, planning, and constraint programming 
in order to automatically generate optimized BP enactment plans from constraint-
based specifications. The optimized enactment plans are then translated into BPMN 
models. Section 2.1 provides backgrounds regarding constraint-based processes. Sec-
tion 2.2 gives an overview of planning, scheduling, and constraint programming. 
Section 2.3 summarizes the BPMN standard.

2.1. Constraint-based BP models

Different paradigms for process modeling exist, e.g. imperative and declarative. Irre-
spective of the chosen approach, desired behavior must be supported by the process 
model, while forbidden behavior must be prohibited.11,25,26 While imperative pro-
cess models specify exactly how things have to be done, declarative process models 
focus on what should be done. In literature, several rule-based and constraint-based 
languages for declarative BP modeling are proposed (e.g. Refs. 11, 24, 27–29). In 
our proposal we use ConDec11,24 for the BP control-flow specification. We consider 
ConDec to be a suitable language, since it allows the specification of BP activities 
together with the constraints which must be satisfied for correct BP enactment 
and for the goal to be achieved. Moreover, ConDec allows to specify a wide set of 
BP models in a simple and flexible way. ConDec is based on constraint-based BP 
models (cf. Definition 2.1), i.e. including information about (1) activities that can 
be performed as well as (2) constraints prohibiting undesired process behavior.

Definition 2.1. A constraint-based process model S = (A, CBP) consists of a set of 
activities A, and a set of constraints CBP prohibiting undesired execution behavior. 
For each activity a ∈ A resource constraints can be specified by associating a 
role with that activity. The activities of a constraint-based process model can be 
executed arbitrarily often if not restricted by any constraints.

Constraints can be added to a ConDec model to specify forbidden behavior, 
restricting the desired behavior. For this, ConDec proposes an open set of templates,
i.e. parametrized graphical representations of constraints over the BP activities,
which can be divided into three groups (for a description of the complete set of
templates, cf. Ref. 30):

(i) Existence templates: Unary relationships concerning the number of times one
activity is executed. As an example, Exactly(N, A) specifies that A must be
executed exactly N times.
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(ii) Relation templates: Positive binary relationships used to establish what should
be executed. As an example, Precedence(A, B) specifies that to execute activity
B, activity A needs to be executed before.

(iii) Negation templates: Negative binary relationships used to forbid the execu-
tion of activities in specific situations. As an example, NotCoexistence(A, B)
specifies that if B is executed, then A cannot be executed, and vice versa.

While unary relationships describe constraints related to one activity (e.g. exis-
tence constraints), binary constraints describe relationships between activities (e.g.
precedence constraints). Binary templates are composed by a source activity (cf.
Definition 2.2) and a sink activity (cf. Definition 2.3).

Definition 2.2. A source activity of a binary template is an activity which appears
in the first parameter of the template. For templates which state precedence rela-
tions between activities, a source activity is a predecessor activity.

Definition 2.3. A sink activity of a binary template is an activity which appears
in the second parameter of the template. For templates which state precedence
relations between activities, a sink activity is a successor activity.

Figure 2 shows a simple constraint-based model which is composed by activi-
ties A, B, and C, and constraints C1 (Exactly(2, A)), C2 (Precedence(A, B)), C3
(Precedence(A, C)), and C4 (NotCoexistence(B, C)).

Furthermore, binary templates can be extended by defining branched templates,
as described in Ref. 26. The branched templates for the binary templates can be
established between several BP activities in the following way:

• The branched template is established between several source activities and one
sink activity, so that the relation is given between at least one of the sources
and the sink.

Fig. 2. Simple constraint-based model.
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• The branched template is established between one source activity and several
sink activities, so that the relation is given between the source and at least one
of the sinks.

As the execution of a constraint-based model proceeds, information regarding
the executed activities is recorded in an execution trace (cf. Definition 2.4).

Definition 2.4. Let S = (A, CBP) be a constraint-based process model with activ-
ity set A and constraint set CBP. Then: A trace σ is composed by a sequence
of starting and completing events 〈e1, e2, . . . , en〉 regarding activity executions ai,
a ∈ A, i.e. events can be:

(i) start(ai, rjk, t), i.e. the i-th execution of activity a using k-th resource with role
j is started at time t.

(ii) comp(ai, t), i.e. the i-th execution of activity a is completed at time t.

Due to their flexible nature, frequently several ways to execute constraint-based
process models exist, i.e. everything which is enabled can be executed. The decisions
related to which of the enabled activities to execute and in what order can be made
using several mechanisms23:

• Goal-based: Decisions between alternatives (selection of a particular process frag-
ment, actor, or activity implementation) are made considering the overall goals
(cf. Definition 2.5) of the process.

Definition 2.5. The goal of a BP is specified through the constraints which must
be satisfied in the BP enactment.

For example, tracesc 〈AAB〉 and 〈AAC〉 are two valid ways of executing the
constraint-based model of Fig. 2, while trace 〈AABC〉 is invalid due to C4. The
different valid execution alternatives, however, can vary greatly in respect to their
quality, i.e. how well different performance objective functions (cf. Definition 2.6)
like minimizing cycle time can be achieved. Optimization decisions can be framed
as goal-based decisions (i.e. there alternatives to reach a specific goal and the opti-
mization of given objective functions should be considered to select one of these
alternatives).

Definition 2.6. The objective function of a BP is the function to be optimized
during the BP enactment, e.g. minimization of OCT.

• Rule-based: Decisions between different alternatives are made based on a set of
rules.

cFor the sake of clarity, traces represent sequences of activities so that no parallelism is considered 
in the examples. Moreover, only completed events for activity executions are included in the trace 
representation.
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• Experienced-based: Decisions between different alternatives are made by relying
on past experiences made in similar context.
• User-based: Decisions between different alternatives are made by leaving decision

making to the human expert.

In our base proposal, we consider all the choice-like constructs of ConDec as
optimization or goal decisions, i.e. decision making is goal-based. Assuming that 
all decisions are goal-based, the base approach might be valid for some environ-
ments like for example certain web service settings. If more flexibility is required, 
in Sec. 6.1 we propose an approach that allows decisions which are not goal-based 
to be deferred to run-time and enables the optimization within decision fragments 
which frame non-goal-based decisions. Moreover, to provide for an increased run-
time flexibility, there is the possibility to use replanning (cf. Sec. 6.2).

2.2. Planning, scheduling and constraint programming

For generating optimized BP enactment plans optimizing the performance objective 
functions (cf. Definition 2.6) of constraint-based process models, activities to be 
executed have to be planned16 and scheduled17 by considering the constraint-based 
specification. To do this, a constraint-based approach is proposed.19

The area of scheduling17 includes problems in which it is necessary to determine 
an enactment plan for a set of activities related by temporal constraints (in our con-
text the control-flow constraints together with the resource constraints, i.e. required 
resources, introduced in Sec. 2.1). Moreover, since the execution of activities may 
require the same resources, they may compete for limited resources. In general, the 
objective in scheduling is to find a feasible plan which satisfies both temporal and 
resource constraints. Several objective functions are usually considered to be opti-
mized, in most cases related to temporal measures (e.g. minimization of completion 
time), or considering the optimal use of resources.

In a wider perspective, in AI planning,16 the activities to be executed are not 
established a priori, hence it is necessary to select them from a set of alternatives 
and to establish an ordering. In most cases, the specification of planning problems 
includes the initial state of the world, the goal (a predicate representing a set of 
possible final states) that must be reached, and a set of operators (actions) which 
can be applied to one state in order to reach another state. Furthermore, in planning 
problems, usually the optimization of certain objective functions is considered.

Constraint programming (CP)18 (cf. Fig. 3) can be used, among others, for 
planning and scheduling purposes.19 In order to solve a problem through constraint 
programming, it needs to be modeled as a constraint satisfaction problem (CSP)
(cf. Definition 2.7).

Definition 2.7. A CSP P = (V, D, CCSP) is composed by a set of variables V , 
a set  of  domains  D, which is composed of the domain of values domi for each 
variable vari ∈ V , and a set of constraints CCSP between variables, so that each
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Fig. 3. Constraint programming.

constraint represents a relation between a subset of variables and specifies the 
allowed combinations of values for these variables.

A solution to a CSP (cf. Definition 2.8) consists of assigning values to CSP 
variables.

Definition 2.8. A solution  S = 〈(var1, val1), (var2, val2), . . . , (varn, valn)〉 for a 
CSP P = (V, D, CCSP) is an assignment of a value vali ∈ domi to each variable 
vari ∈ V . A solution is partial if one or more CSP variables exist which are not 
instantiated. A solution is feasible when the assignments variable-value satisfy all 
the constraints, i.e. if a goal state is reached.

In a similar way, a CSP is feasible if at least one feasible solution for this CSP 
exists. From now on, Svar refers to the value assigned to variable var in the (partial) 
solution S.

Similar to CSPs, constraint optimization problems (COPs, cf. Definition 2.9) 
require solutions that optimize objective functions.

Definition 2.9. A COP Po = (V, D, CCSP, o) is a CSP which also includes an 
objective function o to be optimized.

A feasible solution S for a COP  is optimal when no other feasible solution exists 
with a better value for the objective function o.

Constraint programming allows to separate the models from the algorithms, so 
that once a problem is modeled in a declarative way as a CSP, a generic or special-
ized constraint-based solver can be used to obtain the required solution. Further-
more, constraint-based models can be extended in a natural way, maintaining the 
solving methods. Several mechanisms are available for solving CSPs and COPs,18 

which can be classified as search algorithms (i.e. for exploring the solution space to
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find a solution or to prove that none exists) or consistency algorithms (i.e. filtering
rules for removing inconsistent values from the domain of the variables). In turn,
search algorithms can be classified as complete search algorithms (i.e. performing a
complete exploration of a search space which is based on all possible combinations
of assignments of values to the CSP variables), and incomplete search algorithms
(i.e. performing an incomplete exploration of the search space so that, in general,
to get a feasible or an optimal solution is not guaranteed).

2.3. Business process model and notation

The optimized enactment plans generated using constraint programming are then
translated to optimized imperative models (cf. Sec. 5), i.e. BPMN models which
can be translated into an execution language,21 such as BPEL,22 which enables BP
designs to be deployed into BPM systems and let their instances be executed by a
BPM engine. The BP model and notation (BPMN)20 is a standard for modeling
BP flows and web services, and provides a graphical notation for the specification of
BP models. A BPMN model is composed of events, gateways, activities and swim
lanes, among other elements. An event represents something that happens during
the enactment of a BP and affects its execution flow, specifically the start event
initiates the flow of the process, while the end event finishes this flow. Gateways
are in charge of controlling how sequence flows interact as they converge or diverge
within a process. Specifically, the exclusive data-based gateway can either be used
as a decision point where several outgoing sequence flows are possible, but only one
sequence will be selected for the execution, or as a way to merge several sequence
flows into one; the parallel gateway, in turn, provides a mechanism to both fork and
synchronize the flows. Swim lanes are graphical ways of organizing and categorizing
the BP activities, whereby pools represent the participants in a BP, and lanes are
used to organize the activities within a pool according to roles and resources.

3. ConDec-R: Constraint-Based Specification of Business
Processes

In order to plan and schedule the BP activities (cf. Sec. 2.2), ConDec is used as a 
basis. To make ConDec usable for our concrete application an extension of ConDec 
(named ConDec-R) is defined in this work, as detailed in Secs. 3.1 and 3.2. ConDec-
R supports all templates described in Ref. 30 and additionally provides extended 
support for branched templates, as described in Ref. 26. The ConDec-R templates, 
extending the ConDec templates,30 are listed in Ref. 67.

3.1. Extending ConDec with estimates and resource availabilities

To support the direct reasoning of resources (which is not possible in ConDec) 
we extended ConDec with estimates of activity durations and the specification of
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(1) ConDec
(control-flow and resource perspectives)

(2) Estimates (3) Resource Availabilities

ConDec-R Specification

Fig. 4. ConDec-R process model specification.

resource availabilities. In short, a ConDec-R process model specification (cf. Defini-
tion 3.1, Fig. 4) extends a ConDec model (cf. Fig. 4(1)) as specified in Definition 2.1
by including:

• The estimated duration of each activity (cf. Fig. 4(2)). Estimates can be obtained
by interviewing business experts or by analyzing past process executions (e.g. by
calculating the average values of the parameters to be estimated from event logs).
Moreover, both approaches can be combined to get more reliable estimates.
• The available resources of each role (cf. Fig. 4(3)). This information is indepen-

dent of the ConDec-R activities, and hence it can be changed without affecting
the specification of the activities, and vice versa.

Notice that the resource availabilities can be unknown until starting BP enact-
ment. This is not a problem for our proposal since the most static information, 
i.e. the control-flow and resource constraints (cf. Fig. 4(1)), is complemented with 
more changing information, i.e. the estimates (cf. Fig. 4(2)), and finally the most 
dynamic data, i.e. information on resource availabilities (cf. Fig. 4(3)), is included. 
In this way, the imperative BP model can be generated just before starting the BP 
enactment by considering the actual values of the resource availabilities (Secs. 4 
and 5).

Definition 3.1. A ConDec-R process model CR  = (Acts, CBP, Res) related to a 
constraint-based process model S = (A, CBP) is composed by a set of BP activities 
Acts, which contains tuples (a, role, dur) which includes for each BP activity a ∈ A 
the role of the required resource (i.e. role) and the estimated duration (i.e. dur), 
i.e. Acts ⊆ A × Roles × N, being Roles the set of names of all the considered roles; 
a set of ConDec constraints CBP; and a set of available resources Res, composed by  
tuples (role, #role) which includes for each role (i.e. role) #role available resources.

An example of a ConDec-R process model is depicted in Fig. 5(1), where Acts = 
{(A, R1, 5), (B, R2, 3), (C, R1, 4)}, CBP = {Exactly(2, A), P recedence(A, B), P rece  
dence(A, C), NotCoexistence(B, C)}, and Res = {(R1, 2), (R2, 1)}.

3.2. Extending ConDec with parallel execution of activities

In ConDec no parallelism is considered in the execution of activities which are 
related by ordering constraints since ConDec activities are atomic. In this work, 
non-atomic activities, i.e. durative activities, are considered, and hence the ConDec
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templates are extended so that the relations which are stated in Allen’s interval
algebra33 are allowed in order to deal with temporal reasoning. In ConDec-R, the
relation activity b must be executed after a can imply four different meanings:

• st(b) ≥ et(a) (default option)
• st(b) ≥ st(a)
• et(b) ≥ et(a)
• et(b) ≥ st(a)

In this way, in ConDec-R some of the ConDec templates11,24 are adapted and
extended by considering the possible parallelism in the execution of those activ-
ities that are related by ordering constraints. This leads to four variants for the
same temporal relation between two activities a and b, which is represented by an
additional label at the end of the template name. This label represents: first, the
time related to a which is constrained (start, S, or end, E), and the time related
to b which is constrained (start, S, or end, E) through the inclusion of the tem-
plate.d Therefore, the four variants for the same template are: SS, ES, SE, EE.
Some examples of this kind of extension can be seen in Sec. 7.

4. From ConDec-R to Optimized Enactment Plans

In this section, the complete process which is proposed to generate BP enactment
plans from a ConDec-R specification through CP is detailed (cf. Fig. 5). As stated,
BP activities and constraints are specified in a ConDec-R model (cf. Step 1 in

Fig. 5. From ConDec-R specification to BP enactment plan.

dIn a similar way, ConDec++26 also considers constraints imposed on the start and the completion 
times of non-atomic activities.
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Fig. 5, Sec. 3) so that frequently several feasible ways to execute this model exist. 
Each specific feasible execution of a ConDec-R model leads to a specific value for 
the function to optimize. In general, even multiple optimal executions, i.e. feasible 
solutions leading to a minimal completion time,e may exist. In order to generate 
optimal (or optimized) execution plans for a specific ConDec-R model, we propose 
a constraint-based approach for P&S the BP activities (cf. Step 2 in Fig. 5). The 
obtained plans, i.e. solutions to the COP (cf. Step 3 in Fig. 5), optimize the specified 
objective function (cf. Definition 2.6) and satisfy all the constraints which are stated 
in the specification of the problem, i.e. reaches the specified goal (cf. Definition 2.5). 
Lastly, the generated plans are visualized as Gantt chart (cf. Step 4 in Fig. 5) which  
illustrates the start and the end times of the activities together with the assigned 
resource.

4.1. Representing the ConDec-R model as CSP model

As first step of the constraint-based approach the Condec-R model needs to be
represented as a CSP. Regarding the CSP model of the proposed constraint-based
approach, BP activities (repeated activities, cf. Definition 4.1), which can be exe-
cuted arbitrarily often if not restricted by any constraints, are modeled as a sequence
of optional scheduling activities (cf. Definition 4.2). This is required since each
execution of a BP activity is considered as one single activity which needs to be
allocated to a specific resource and temporarily placed in the enactment plan, i.e.
stating values for its start and end times.

Definition 4.1. A repeated activity ra = (a, role, dur, nt) represents a ConDec-R
activity (a, role, dur) ∈ Acts of a ConDec-R process model CR  = (Acts, CBP, Res)
(cf. Definition 3.1) which can be executed several times.f The properties of a 
repeated activity are: the role of the required resource for the execution of activity
a,g role, the estimated duration,h dur, and a CSP variable nt which represents the 
number of times activity a can be executed (cf. Fig. 5(1)).

Lower and upper bounds are related to the domain of each integer CSP variable
var, representing minimum and maximum values which can be given to var in a 
feasible solution, respectively. Thereby, LB(var) and  UB(var) refer to the lower
and upper bounds of the domain of var.

eIn this paper, we consider the OCT as objective function. However, note that the proposal can 
be easily extended to support further objective functions like cost.
f From now on, role(a), dur(a), and nt(a) refer to the properties of the repeated activity related 
to the ConDec-R activity (a, role, dur).
gFor sake of simplicity, the same required resource is considered for all the executions of a BP 
activity. Note that the proposed constraint-based approach can also deal with BP activities which 
require several resources of various kinds of roles, since ConDec-R problems are modeled as schedul-
ing problems with optional activities, where the resources have a discrete capacity (cumulative 
scheduling). Therefore, optimized BP enactment plans with activities which require more than 
one role can be generated by using the proposed constraint-based approach.
hThe same estimated duration is considered for all the executions of a BP activity.
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Given a ConDec-R process model CR  = (Acts, CBP, Res) (cf. Definition 3.1), 
the set of related repeated activities is composed by {(role, dur, nt), (a, role, dur) ∈ 
Acts}. Note that all the activities which are included in the ConDec-R model are 
modeled as repeated activities (cf. Definition 4.1) in the proposed constraint-based 
approach regardless of the number of times that the BP activities are going to be 
executed in valid enactment plans, i.e. regardless of the ConDec-R constraints. The 
repetitiveness of a repeated activity is determined by considering all the ConDec-
R constraints of the model and the optimization of the objective function when 
generating the optimized BP enactment plans. For example, activities A, B and C 
of the constraint-based model of Fig. 5(1) are repeated activities (cf. Definition 4.1). 
Activity A, for example, requires resource of role R1 and has an estimated duration 
of 5. Moreover, the number of activity executions nt for A is equal to 2.

For each repeated activity, nt scheduling activities exist, which are added to the 
CSP problem specification, apart from including a variable nt (cf. Fig. 5(2)). For 
example, for repeated activity A in Fig. 5 two scheduling activities exist (referred 
to as A1 and A2).

Definition 4.2. A scheduling activity sa = (a, st, et, res, sel) represents a specific 
execution of a repeated activity ra = (a,  role, dur, nt) (cf. Definition 4.1) related 
to a ConDec-R process model CR  = (Acts, CBP, Res) (cf. Definition 3.1), where st 
is a CSP variable indicating the start time of the activity execution, et is a CSP 
variable indicating the end time of the activity execution (et − st = dur) in a way  
that each execution of a BP activity is temporarily placed in the enactment plan, 
res is a CSP variable representing the resource used for the execution (identified 
by a number between 1 and #role, (role, #role) ∈ Res), and sel is a CSP variable 
indicating whether or not the scheduling activity is selected to be executed (cf. 
Fig. 5(2)).

Moreover, an additional CSP variable representing the objective function 
to be optimized (in the context of our proposal the overall completion time), 
named OCT, is also included in the CSP model: OCT = max(a,role,dur)∈Acts 
(et(ant(a))).i

In addition, in order to ensure the consistency between the CSP variables 
several constraints have to be added to the CSP (cf. Fig. 5(2)): (1) ∀ i : 1  ≤ 
i <  UB(nt(a)) : et(ai) ≤ st(ai+1), i.e. a specific execution of a repeated activ-
ity precedes the next execution of the same activity, and (2) ∀ i : 1 ≤ i ≤ 
UB(nt(a)) : sel(ai) == nt(a) >= i, i.e. the nt variable of the repeated activ-
ity is directly related to the sel variables of the associated scheduling activ-
ities, e.g. if nt(a) = 2, then sel(a1) = 1, sel(a2) = 1 and ∀ i : nt(a) < 
i ≤ UB(nt(a)), sel(ai) = 0. Moreover, for each ConDec template a global

iai refers to the scheduling activity related to the i-th execution of the repeated activity associated 
to the ConDec-R activity (a, role, dur), while st(ai ), et(ai ), res(ai) and  sel(ai) refer to its related 
properties.
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constraint is added to the CSP model, i.e. Existence(2, A), P recedence(A, B), 
P recedence(A, C), and NotCoexistence(B, C) for the constraint-based model 
depicted in Fig. 5.

Definition 4.3. A CSP-ConDec problem related to a ConDec-R process model 
CR  = (Acts, CBP, Res) (cf. Definition 3.1) is a COP Po = (V, D, CCSP, o) (cf.  
Definition 2.9) where:

(i) The set of variables V is composed by all the CSP variables included in the
presented CSP model plus the CSP variable related to the OCT, i.e. V =
{nt(a), (a, role, dur) ∈ Acts} ∪ {st(ai), et(ai), res(ai), sel(ai), (a, role, dur) ∈
Acts, i ∈ [1 . . .UB(nt(a))]} ∪ {OCT }.

(ii) The set of domains D is composed by the domains of each CSP variable v,
Dom(v), i.e. D = {Dom(nt(a)) = {0 . . .MC}, (a, role, dur) ∈ Acts} ∪
{Dom (st(ai)) = Dom(et(ai)) = {0 . . .MC × ∑

(a,role,dur)∈Acts dur(a)},
(a, role, dur) ∈ Acts, i ∈ [1 . . .UB(nt(a))]} ∪ {Dom(res(ai)) = {1 . . .#role,

(role, #role) ∈ Res}, (a, role, dur) ∈ Acts, i ∈ [1 . . .UB(nt(a))]} ∪ {Dom

(sel(ai)) = {0 . . . 1}, (a, role, dur) ∈ Acts, i ∈ [1 . . .UB (nt(a))]}, where MC

is the maximum cardinality for the BP activities, i.e. nt (established by exis-
tence relations in the constraint-based model). In this way, MC is used for
establishing initial upper bounds (i.e. UB) for the domain of several variables
(including nt variables).

(iii) The set of constraints CCSP is composed by the global constraints (imple-
mented by the filtering rules, cf. Sec. 4.2) related to the ConDec-R constraints
included in CBP together with the constraints from the proposed CSP model,
i.e. ∀ i : 1 ≤ i < nt(a) : et(ai) ≤ st(ai+1), ∀ i : 1 ≤ i ≤ UB(nt(a)) : sel(ai) ==
nt(a) >= i for each repeated activity (a, role, dur) ∈ Acts.

(iv) The objective function o is minimizing the OCT variable.

In the proposed constraint-based approach resources are implicitly constrained
since COMET provides a high-level constraint modeling specific to scheduling which 
includes an efficient management of shared resources. Note that, besides the role-
based allocation pattern, the CSP variables which are included in the model can 
be also used for specifying further resource constraints.8 As an example, separation 
of duties (i.e. the ability to specify that two activities a and b must be allocated to 
different resources in a given workflow case) can be specified by including the next 
constraint in the proposed CSP model: ∀ i : 1  ≤ i ≤ nt(a), ∀ j : 1 ≤ j ≤ nt(b) :  
ai · res 	= bj · res.

Figure 5 includes the translation from a ConDec-R specification into a CSP so 
that the CSP variables and constraints are stated as explained in Definition 4.3 
(cf. Step 2). In general, for each repeated activity a, a  CSP  variable  nt is added 
to the CSP model. Thereby, the value for LB(nt(a)) is initially set to 0 (it will 
be automatically updated during the solving process if an existence constraint is 
added through the corresponding filtering rule, cf. Sec. 4.2), and for UB(nt(a))
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a rough initial estimate is made by considering the maximum obligatory car-
dinality MC  of all repeated activities which is stated by existence constraints. 
For the constraint-based model depicted in Fig. 5, for example, the upper bound 
for all repeated activities is initially set to 2 (due to the existence constraint 
related to activity A). This value is high enough to ensure a feasible solution 
(the optimal solution, however, in general includes lower values of nt for several 
activities).

Moreover, LB(OCT) is initially set to 0, and UB(OCT) is estimated as the 
maximum cardinality times the sum of the duration of all the BP activities, i.e. 
2 × (5 + 3 + 4) in the example of Fig. 5. This is since the worst solution which can 
be obtained results in a plan which includes the execution of each BP activity the 
maximum number of times when all activities are sequentially executed.

For similar reasons, for each scheduling activity ai, lower and upper bounds 
for st and et are set to lower and upper bounds of OCT. Furthermore, in gen-
eral, Dom(res(ai)) = {1 . . .#role(role(a))}, i.e. Dom(res(Ai)) = {1 . . . 2} and 
Dom(res(Ci)) = {1 . . . 2} for any i since #R1 = 2, and Dom(res(Bi)) = {1} 
for any i since #R2 = 1 for the constraint-based model depicted in Fig. 5. In  
addition, for each scheduling activity ai, Dom(sel(ai)) = {0 . . .1}, since  sel is a 
binary variable indicating whether or not the scheduling activity is selected to be 
executed.

4.2. Filtering rules

To improve the modeling of the problems and to efficiently handle the constraints 
in the search for solutions, our constraint-based proposal includes for each ConDec 
template a related global constraint implemented through a filtering rule (respon-
sible for removing values which do not belong to any solution) for the definition 
of the high-level relations between the BP activities. In this way, the constraints 
stated in the ConDec-R specification (cf. Definition 3.1) are included in the CSP 
model through the related global constraints. These global constraints facilitate the 
specification of the problem. At the same time, the related filtering rules enable the 
efficiency in the search for solutions to increase. This is since during the search 
process these filtering rules remove inconsistent values from the domains of the 
variables. In the CSP model specification, initial estimates are made for upper and 
lower bounds of variable domains (cf. Sec. 4.1), and these values are refined during 
the search process. The developed filtering rules (cf. Ref. 34) are considered in the 
search algorithms.

4.3. Solving the COP

Once the problem is modeled, several constraint-based mechanisms can be used to 
obtain the solution for the COP, i.e. optimized enactment plans (cf. Definition 4.4). 
Since the generation of optimized plans presents NP-complexity,35 it is not possible 
to ensure the optimality of the generated plans for all the cases. The developed
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constraint-based approach, however, allows solving the considered problems in an 
efficient way.

Definition 4.4. A BP enactment plan is composed by: (i) the number of times each 
BP activity is executed, (ii) the start and the completion times for each activity 
execution, and (iii) the resource which is used for each activity execution.

By taking into account the NP-complexity of the considered problems, we 
adapted the existing solver COMET42 by applying an incomplete search for solving 
the specific considered problems. We also evaluate its suitability for the generation 
of BPMN models from constraint-based specifications (cf. Sec. 8). This incomplete 
search includes randomized components in order to diversify the search. By means 
of this approach, a first feasible solution is quickly found by a randomized greedy 
algorithm. The same greedy algorithm is used for iteratively improving the best 
solution found until a time limit is reached. Through this incomplete search, all the 
solutions can be reached and the search procedure efficiently explores a wide range 
of solutions from diversified areas of the search space.

In general, when optimizing a CSP variable, if a feasible solution which is known 
exists, the value of the variable to optimize in the known solution can be used for 
discarding large subsets of fruitless candidates by using upper and lower estimated 
bounds of the quantity being optimized during the search process. Thus, if a known 
feasible solution S for the problem to solve exists, the objective value for this 
solution (SOCT) is a valuable information which can be added to the constraint 
model through the constraint OCT < SOCT. Thus, some non-optimal candidates, 
i.e. candidates whose OCT value cannot be less than SOCT in any case, are discarded 
during the search, increasing the efficiency in the search for solutions.

Moreover, in our proposal, during the search process, some of the values which 
only lead to non-feasible solutions, i.e. inconsistent values, are removed from the 
domains of the CSP variables through the developed filtering rules (cf. Sec. 4.2) in  
order to reduce the search space by maintaining arc consistency (cf. Definition 4.5).

Definition 4.5. A CSP = (V, D, CCSP) presents arc consistency iff for all pairs of 
CSP variables (var1, var2) | var1, var2 ∈ V , for each value of var1 in the domain 
of var1 there is some value in the domain of var2 that satisfy all the constraints 
stated in CCSP between var1 and var2, and vice versa.

In the proposed approach, the developed filtering rules and CSP modeling (cf. 
Sec. 4.1) are implemented such that they maintain the arc consistency for all pairs 
of CSP variables during all the search process.

5. From Optimized Enactment Plans to Optimized Business
Process Models

Section 4 has described how optimized BP enactment plans can be generated from 
ConDec-R specifications. This section describes how a BPMN model which includes
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the same activities to be executed in the same ordering and also using the same
resources can be generated from the optimized enactment plan.

For each role in the BP enactment plan, a BPMN pool (cf. Definition 5.1)
is created, which contains as many lanes as number of available resources for
that role.

Definition 5.1. A BPMN pool BPMNPool = (role, #role) is a pool of a BPMN
model, which is composed of #role lanes.

Moreover, for each scheduling activity in the BP enactment plan a BPMN activ-
ity (cf. Definition 5.2) is created. Additionally, one start activity and one end activ-
ity are included in the BPMN model.

Definition 5.2. A BPMN activity BPMNAct = (pool, lane, dur, st) is an activity
of a BPMN model placed in the lane named lane of the pool named pool, with
duration dur and start time st.

One of the most important aspects to be considered for the generation of opti-
mized BPMN models are the precedence relations between the BPMN activities
(scheduling activities). For establishing these precedence relations the values for the
start and the end times of the scheduling activities in the enactment plan are con-
sidered. These precedence relations are then used as a basis for generating BPMN
models (cf. Definition 5.6) from BP enactment plans. Some related definitions are
given below:

Definition 5.3. In a BP enactment plan regarding a CSP solution S, a scheduling
activity ai is a predecessor of another scheduling activity bj , ai ∈ predecessors(bj),
if the relation Set(ai) ≤ Sst(bj) holds due to resource or template relations.

Definition 5.4. In a BP enactment plan, a scheduling activity ai is a direct pre-
decessor of another scheduling activity bj , ai ∈ DP(bj), if ai ∈ predecessors(bj) ∧
	 ∃ck ∈ predecessors(bj) | ai ∈ predecessors(ck).

Definition 5.5. In a BP enactment plan, a scheduling activity ai is an indirect
predecessor of another scheduling activity bj , ai ∈ IP (bj), if ai ∈ predecessors(bj)∧
∃ ck ∈ predecessors(bj) | ai ∈ predecessors(ck).

Definition 5.6. A BPMN model BPMN = (Pools, Activities, SequenceF lows,

ParallelM) related to a ConDec-R process model CR = (Acts, CBP, Res) (cf. Def-
inition 3.1) and to a solution S (cf. Definition 2.8) of the related CSP-ConDec
problem (cf. Definition 4.3) is a BP model specified through the BPMN language,
where:

(1) Pools = {BPMNPool (role, #role), (role, #role) ∈ Res}.
(2) Activities = {BPMNAct(role(a), Sres(ai), dur(a), Sst(ai)), (a, role, dur) ∈

Acts, i ∈ [1 . . . Snt(a)]}∪{start = BPMNAct(P0, L0, 0, 0)}∪{end = BPMNAct
(P0, L0, 0, max(a,role,dur)∈Acts,i∈[1...Snt(a)] S

et(ai))}.
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(3) Let the set Predecessors be:

(i) {(start, ai) | (a, role, dur) ∈ Acts, i ∈ [1 . . . Snt(a)], Sst(ai) = 0}∪
(ii) {(aSnt(a) , end) | (a, role, dur)∈Acts, 	 ∃bi, i ∈ [1 . . . Snt(b)], (b, roleb, durb) ∈

Acts, aSnt(a) ∈ predecessors(bi)}∪
(iii) {(bi, cj) | i ∈ [1 . . . Snt(b)], (b, roleb, durb) ∈ Acts, j ∈ [1 . . . Snt(c)], (c, rolec,

durc) ∈ Acts, bi ∈ DP (cj)},
Then:

(a) SequenceF lows = {(bi, cj) | (((b, roleb, durb) ∈ Acts ∧ i ∈ [1 . . . Snt(b)]) ∨
bi = start) ∧ (((c, rolec, durc) ∈ Acts ∧ j ∈ [1 . . . Snt(c)]) ∨ cj = end) ∧
(bi, cj) ∈ Predecessors∧ |{dk, (((d, roled, durd) ∈ Acts∧k ∈ [1 . . . Snt(d)])∨
dk = start), (dk, cj) ∈ Predecessors}| = 1)}.

(b) ParallelM = {(Sources, cj) | (((c, rolec, durc) ∈ Acts ∧ j ∈ [1 . . . Snt(c)]) ∨
cj = end)∧Sources = {bi, (((b, roleb, durb) ∈ Acts∧ i ∈ [1 . . . nt(b)])∨ bi =
start) ∧ (bi, cj) ∈ Predecessors} ∧ |Sources| > 1}.

In this way, through the set P redecessors, the precedence relations between 
activities are stated so that (i) the start activity is predecessor of all scheduling 
activities whose st value is equal to 0, (ii) the activities which are not predecessors 
of any other activity, are predecessor of the end activity, and (iii) in general, one 
activity bi is predecessor of another activity cj iff bi is direct predecessor of cj (cf.
(3) in Definition 5.6). The set P redecessors is represented in the BPMN model by 
BPMN sequence flows between a source activity bi and a sink activity cj , in the  case  
that bi is the only predecessor of cj (cf. (3)(a) in Definition 5.6), or by a parallel 
merging gateway between a set of source activities Sources and a sink activity cj in 
the case that cj has more than one predecessor (cf. (3)(b) in Definition 5.6). Note 
that parallel merging gateways (i.e. parallel gateways which have several sources and 
only one sink) need to be explicitly included in the resulting BPMN model, since 
they do not have the same meaning as several binary sequence flows from several 
sources and one sink. However, parallel splitting gateways (i.e. parallel gateways 
which have several sinks and only one source) do not need to be explicitly included 
in the resulting BPMN model since several binary sequence flows between one 
source activity and several sink activities have the same meaning as a parallel 
splitting gateway in the BPMN language.

The pseudocode and complexity analysis of the algorithms which were devel-
oped for generating BPMN models from optimized BP enactment plans are included 
in Appendix A. As a brief summary of this appendix, there is a main algorithm, 
Algorithm A.1, which constructs a BPMN model from a ConDec-R model and from 
a related optimized BP enactment plan (cf. Definition 5.6). As stated before, one of 
the most important aspects to be considered for this model generation are the prece-
dence relations between the scheduling activities of the plan, which are managed 
by Algorithm A.2. These precedence relations are due to (1) resource constraints, 
i.e. the activities are allocated in the resources in a specific order in the gener-
ated enactment plan, and (2) ConDec-R constraints related to precedence between
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activities. Typically, unlike resource precedence relations, precedence relations due 
to ConDec-R constraints cannot be easily obtained. To this end, each ConDec-
R template presents a method which is in charge of determining the precedence 
relations which are given between the scheduling activities related to the repeated 
activities which are involved in that ConDec-R template. The mentioned method 
for some representative ConDec-R templates is detailed in Algorithms A.3–A.5.

6. Allowing for Run-Time Flexibility

The execution plans generated in Sec. 4 provide an optimal way for executing 
the source ConDec model assuming certain estimated values and all decision to 
be goal-based. Even though these assumptions are valid for certain environments 
(e.g. certain web service settings) estimates might not always be accurate or some 
decisions might depend on run-time information. For this, the approach described 
in Secs. 3–5 is extended in this section to allow decisions to be deferred at run-time 
(cf. Sec. 6.1), and to allow the BPMN model to be dynamically adapted during 
run-time (cf. Sec. 6.2).

6.1. Late-planning activities

Executing a ConDec model usually entails dealing with decisions related to (1) how 
many times one activity is being executed, and (2) the order of execution of the 
activities. We assume that at least the decisions related to the order of execution of 
the activities are goal-based. However, we consider non-goal-based decisions (e.g. 
user-based decisions), if needed, regarding the number of executions of a particular 
activity. Related to these decisions, in turn, in ConDec one activity can be executed 
arbitrarily often if not restricted by any constraint. However, there are some ConDec 
templates which constrain the number of executions of the activities, resulting either 
in a specific value (e.g. A must be executed exactly twice), or in a range (e.g. A 
must be executed either once or twice). The number of times one activity should 
be executed can be stated by one specific constraint (e.g. Exactly(A, 2)), or by the 
combination of several constraints (e.g. the combination of Exactly(A, 2) together 
with ChainSuccession(A, B) implies that B should be executed exactly twice). To 
be able to deal with decisions related to the number of times certain activities are 
being executed which are not goal-based, we propose to encapsulate these activities 
(together with the relations in which they are involved) in a complex declarative 
late-planning activity when specifying the ConDec-R model, i.e. we propose the use 
of hierarchical models. In declarative models the activities included in a complex 
activity should be such that they can be executed in isolation from the top-level 
process.37

Encapsulating decisions which are not goal-based in a fragment allows deal-
ing with each sub-process (i.e. complex activity) as if it were a black box, and 
therefore, our approach can be directly applied (even enabling multiple instance
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optimization). Therefore, when creating the optimized enactment plans from the 
ConDec-R specification (cf. Sec. 4), each late-planning activity is treated as an 
atomic activity, and it is managed as a repeated activity (cf. Definition 4.1). In 
this way, when generating the BPMN model (cf. Sec. 5) the complex activities are 
then integrated into the BPMN model by substituting the BPMN activity related 
to the complex activity by the associated imperative fragment. The following sec-
tiosn describes the generation process. For sake of clarity we describe in different 
subsections how constraints (cf. Sec. 6.1.1), resources (cf. Sec. 6.1.2), and durations 
(cf. Sec. 6.1.3) are managed.

6.1.1. Constraints

The BPMN fragment associated to a specific complex activity is generated as 
follows:

(1) Generating all possible combinations of declarative models in such a way that all
different possibilities for nt (i.e. number of times) for each activity are covered.
This is done by stating Exactly constraints for all the possible values for the
number of executions for all the activities which belong to the complex activity.
Specifically, for each activity A whose number of executions should be in a
range [Min . . . Max], the generated models should cover all the possibilities (i.e.
Exactly(A, nt), ∀nt ∈ [Min . . .Max]) in combination with all the possibilities
for the other activities. Note that the maximum number of execution times for
each activity belonging to a complex activity needs to be established, otherwise,
the possibilities are not finite.

(2) For each declarative model which is generated, related optimized enactment
plans are created (i.e. local optimization for each possible feasible declara-
tive model is addressed) through the proposed constraint-based approach (cf.
Sec. 4).

(3) These optimized plans are then translated to BPMN fragments (cf. Sec. 5).
(4) These fragments are then linked by using existing merging algorithms (e.g.

Ref. 38). Note that the resulting fragment will include XOR gateways when
necessary.

When generating the different combinations of declarative models (i.e. step (1))
it is possible that some unfeasible combinations exist. In these cases, no related 
optimized enactment plan is generated, and therefore, the related BPMN fragment 
is not considered when merging.

Figure 6 shows an example of the complete process over a fragment which 
includes five BP activities (A, B, C, D and E) and five existence relations (i.e. all 
activities should be executed at most once) together with five binary relations (i.e.
(1) ExChoice(A, C), implying that either A or C (but not both) must be exe-
cuted, (2) ExChoice(B, D), implying that either B or D (but not both) must be 
executed, (3) Response(A, B), implying that after the execution of A, B should
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be eventually executed, (4) P recedence(C, D), implying that before the execution 
of D, C should be executed, and (5) Succession(D, E), implying that after the 
execution of D, E should be executed and before the execution of E, D should be 
executed). Given that declarative specification, there are three feasible scenarios, 
i.e. three possible ways to execute the specification ensuring that all constraints are 
satisfied:

(a) A is executed once; C is not executed due to ExChoice(A, C); B is exe-
cuted once after A due to the Response(A, B) constraint; D is not exe-
cuted due to ExChoice(B, D), therefore also E cannot be executed due to
Succession(D, E).

(b) C is executed once; A is not executed due to ExChoice(A, C); B is executed
once; D is not executed due to ExChoice(B, D), therefore also E cannot be exe-
cuted due to Succession(D, E). In the related optimized enactment plan, both
options (B succeeding C or C succeeding B) are feasible. For this example, we
consider that the option B succeeding C is more optimized than C succeeding
B (note that for each feasible scenario only the most optimized plan is selected
for the merging, as explained in the step (2) of the process).

(c) C is executed once; A is not executed due to ExChoice(A, C)); D is executed
once; B is not executed due to ExChoice(B, D). Since D is executed, E should
be also executed due to Succession(D, E). In the related optimized enactment
plan, C should precede D due to Precedence(C, D), and D should precede E

due to Succession(D, E).

In this example, some unfeasible combinations for nt exist. For example, the
scenario in which A is executed once and D is executed once is unfeasible since two 
relations (i.e. Response(A, B) and  P recedence(C, D)) are violated.

In Fig. 6, the different BPMN fragments (related to the optimized enactment 
plans) which are obtained from the three feasible scenarios have been merged using 
the tool presented in Ref. 38. For the sake of clarity, in Fig. 6 information related 
to resources and durations of activities has been omitted.

Note that optimization is locally applied within each complex activity since 
for each declarative model which is generated (i.e. for each possibility) optimized 
enactment plans are generated.

6.1.2. Resources

For each complex activity, required resources need to be stated when including this 
activity in the ConDec-R model. When all the activities which belong to the same 
complex activity require resources related to the same role, the complex activity 
will also require that role, and the proposed approach can be directly applied (cf. 
Fig. 7(a), where all the activities require a resource of role R0). However, when 
the activities which belong to the same complex activity require resources related 
to different roles, some adjustments are required, e.g. encapsulating the declarative
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(a)

(b)

Fig. 7. Complex activities: Dealing with resources. (a) Activities requiring resources related to 
the same role, (b) activities requiring resources related to different roles.

sub-process in a complex activity which requires as many resources as different roles 
are included in the sub-process (cf. Fig. 7(b)), i.e. the constraint-based approach 
needs to be adapted to allow for activities which require multiple resources, resulting 
in a cumulative scheduling problem.39 This extension can be easily achieved since 
most constraint-based systems provide a high-level constraint modeling specific 
to scheduling which includes an efficient management of shared resources for well-
known scheduling problems, which is the case of the cumulative scheduling problem. 
When generating the BPMN model, each activity of the sub-process needs to be 
associated to the suitable lane (cf. Fig. 7). Note that, in the proposed approach,
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the required resource is considered to be used throughout the duration of the 
activity.

6.1.3. Durations

Moreover, for each complex activity, estimated durations need to be stated when 
including this activity in the ConDec-R model. The estimated durations of the 
complex activities can be calculated in different ways, e.g. as (1) the average dura-
tion of these complex activities in past process executions (i.e. by analyzing event 
logs), and hence, trying to optimize the resulting plan as much as possible although 
usually more replanning will be required, or (2) the maximum duration of these 
complex activities in past process executions, and hence, the plan is probably less 
optimized but less replanning will be required.

6.2. Replanning

Since estimates might not always be accurate and resource availabilities might unex-
pectedly change, the generated BPMN model is dynamically adapted during run-
time by using replanning, and hence allowing for an increased flexibility (cf. Fig. 8). 
As can be seen, as execution proceeds, the BP enactment and the resource availabil-
ities are monitored (a in Fig. 8). All new events, i.e. activities get started/completed 
or resources become available/unavailable, are stored in an Event Log (b in Fig. 8). 
Whenever events are updated the Replanning Module (c in Fig. 8) analyzes the 
optimized plan (d in Fig. 8) as well as the events. In particular, it checks if the 
current execution matches with the optimized enactment plan or whether updates 
of both the enactment plan (f in Fig. 8) and  the  BPMN model  (g in Fig. 8) 
are required. In general, updates can become necessary due to (1) deviations, i.e.

Fig. 8. Flexible execution of BPMN models.
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estimates are incorrect (e.g. when activity executions take longer/shorter than esti-
mated), or (2) resource availabilities change (e.g. resources become unavailable). 
Note that not every deviation requires replanning due to the slack of some activ-
ities in the enactment plan. If plan updates are required, the Replanning Module 
needs to access the ConDec-R specification of the process (h in Fig. 8) to generate 
a new optimized plan which considers the actual partial execution of the process 
by using the proposed constraint-based approach (cf. Sec. 4). The generated opti-
mized plan is, in turn, translated to an optimized BPMN model which is used for 
updating the current BPMN model in a way that the part which has been already 
executed remains unchanged, and the part which remains to be executed is replaced. 
Despite the NP-complexity of the considered problems, in general, replanning is less 
time consuming than initial planning, since most of the information about previous 
generated plans can usually be reused, and CSP variable values become known as 
execution proceeds.

Note that changing a deployed BPMN model and migrating running instances 
to a new schema can be quite challenging since respective changes must not vio-
late process model correctness and proper instance execution.23 However, in our 
approach, the proposed model adaptation and instance migration can be handled 
properly as detailed in the following.

On the one hand, in process model evolution it is necessary to check that the 
new model is (1) correct, i.e. it meets the structural properties required by the 
process modeling language used and (2) sound, i.e. it obeys proper completion 
and absence of dead activities.23 In our approach, the generated BPMN model is 
correct since the automated generation guarantees that the new model meets the 
structural properties required by BPMN. Moreover, it is sound since the model 
is automatically generated from a feasible enactment plan which meets all the 
constraints imposed by the declarative specification and reaches the specified goal. 
Since the generation of the new models is not manual but completely automated, 
no errors can be unintentionally introduced.

On the other hand, once a new correct and sound model is deployed, the BPMS 
must properly deal with corresponding process instances, i.e. process instances 
which were started and partially executed on the previous model, but have not 
yet been completed.23 In this way, in addition to structural properties, the BPMS 
needs to consider the state of a process instance when adapting its process model,23 

i.e. depending on the current state of a process instance, certain changes should be 
allowed while others must be prohibited (e.g. it must not be possible to change 
the past of a process instance). Specifically, the running process instance should 
be state compliant with the new process model. A process instance is state com-
pliant with an updated process model (i.e. can therefore be migrated to it) if 
the execution trace of the instance is producible on the new model as well. In 
our case, there is only one running instance (which comprises the execution of 
all instances which were planned within a specific timeframe) which has to be 
migrated to the new model version. This is not problematic in our approach
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since the new model is generated through replanning from the partial execution 
trace of this instance. Therefore, this trace will be always producible on the new 
model, i.e. everything which has been done before can be done in the new model. 
However, for migrating this instance to the new process model version, activity 
states might have to be adapted to enable proper continuation of instance exe-
cution afterwards. As an example of instance state adaptation, it might become 
necessary to immediately enable or disable certain activities before continuing 
with the execution of the process instance.23 Using selected commercially available 
state-of-the art BPMSs (e.g. AristaFlow BPM Suite40) respective changes can be 
accomplished.

7. An Example

In this section, an example, the travel agency problem, is developed in order to 
clarify the overall proposed approach. First, the proposed problem is detailed (cf. 
Sec. 7.1), together with its ConDec-R specification (cf. Sec. 7.2). The generated 
optimized enactment plan and the corresponding BP model representation are then 
shown and explained (cf. Sec. 7.3). The example deals with a set of representative 
templates in order to illustrate various kinds of relations which can be given between 
activities of BPs.

7.1. The travel agency problem

The analyzed example represents an agency which manages holiday bookings by 
offering clients the following three services: transport, accommodation, and guided 
excursions. For some of the services the travel agency can ask a travel company to 
help in managing some client requests. After all the client requests are carried out, 
the agency must write a report which contains the information in answer to the 
requests, which will then be sent to the clients. For efficiency reasons, the agency 
creates only one report a day, hence it must be written after all the requests are 
carried out.

The activities which can be executed in order to deal with the client requests 
are detailed in Table 1.

Assume that the travel agency wants to minimize the response time for the 
clients (end time of the client-report activity). For this the agency not only considers 
the number of client requests (#P ), which is known at the beginning of each working 
day, but also the number of resources available in the agency (role A, #A) and  the  
number of available resources in the company (role B, #B).

7.2. ConDec-R specification for the travel agency problem

In order to solve this problem through the proposed approach, the first step is 
the creation of the related ConDec-R specification (cf. Fig. 9). Since a ConDec-R
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Table 1. Activities of the travel agency problem.

Id Description Constraints Role Dur.

G The client request is received by
the agency

The following client request
cannot be received until the
current request has started to be
processed (both trip plan and
transport search have started)

A 1

TS The agency searches for a
suitable transportation

Can only be executed after G
has completed, and if the
agency and not the company
deals with the search of
transport for this request

A 8

AS The agency searches for suitable
accommodation

Must be executed after each TS A 6

TP The agency organizes a trip plan Can only be executed after G
has completed, if the agency
and not the company deals with
the creation of the trip plan for
this request

A 5

CT&AS The company searches for
transport and accommodation

Can only be executed after G
has completed, if the company
and not the agency deals with
the search of transport for this
request

B 12

CTP The company creates a trip plan Can only be executed after G
has completed, if the company
and not the agency deals with
the creation of the trip plan for
this request

B 6

SReport The company sends a report to
the agency which includes
information about all the trip
requests

Must be executed after all the
activities related to the client
request which are carried out by
the company have finished,
when there is at least one client
request

B 3

RReport The agency receives the report
with all the trip requests

Must be executed after each
SReport

A 1

CReports The agency writes a report which
includes information about all
handled requests

Must be executed after having
completed all activities. It is
executed only once

A 4

specification contains two parts which are independent, these parts can be specified
separately fostering their reuse:

• Information about the BP activities (required resources, durations, as well as
unary constraints) and the high-level relations which are given between the BP
activities (cf. Fig. 9(a); Table 2). For representing the BP activities as well as
unary constraints and high-level relations, ConDec graphical notation30 is used:
(1) each BP activity is represented by a box which contains the name of the
activity (e.g. Get Request), (2) an unary constraint over a BP activity is repre-
sented by a little box above that activity which contains information regarding
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Fig. 9. ConDec-R specification for the travel agency problem.

the number of times that activity needs to be executed (e.g. exactly P over Get
Request), and (3) high-level relations between BP activities are depicted by spe-
cial arrows whose shape depends on the specific relation which is represented
(e.g. Alternate Precedence SS-ES between Get Request and Transport Search).
Since ConDec activities have been extended to ConDec-R activities by including
the role of the required resource and the estimated duration, the graphical rep-
resentation of ConDec-R activities includes this new information in a box at the
left side of the activities (e.g. Get Request requires a resource with role A, and
has an estimated duration of 1).
• Information about the roles and available resources (cf. Fig. 9(b)). This informa-

tion is represented by a box which contains a tuple (role, #role) for each role
which is considered in the process definition, which represents that there are
#role available resources with role role.

7.3. Optimized enactment plan and optimized BP model for

the travel agency problem

Using the ConDec-R specification of Fig. 9, the related constraint problem is gener-
ated and solved through the constraint-based proposal which is described in Sec. 4, 
resulting in an optimized enactment plan for the travel agency problem. This plan 
is used for the generation of an optimized BP model.
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Table 2. Constraints of the travel agency problem.

Relation Description

Exactly(#P, G) G must be executed each time a client request is
received.

Exactly(1, CReports) CReports must be executed exactly once.
AltPrecSS − ES(G, TS) Before the first execution of TS, G must be

executed, and between two executions of TS
(TSi−1 and TSi), G must also be executed.

Formally:
st(Gj) ≥ st(TSi−1), i.e. the next client request
can be received at the same moment the previous
request starts to be processed.
st(TSi) ≥ et(Gj), i.e. a transport search cannot
start until the client request is completely
received (finishes).

AltPrecSS − ES(G, CT&AS) Exactly the same than AltPrecSS − ES(G, TS) by
replacing TS by CT&AS.

AltPrecSS − ES(G, TP ) Exactly the same than AltPrecSS − ES(G, TS) by
replacing TS by TP .

AltPrecSS − ES(G, CTP ) Exactly the same than AltPrecSS − ES(G, TS) by
replacing TS by CTP .

AltRespES − SS(G, {TS, CT&AS}) After the last execution of G, at least one of TS or
CT&AS must be executed, and between two
executions of G, at least one of TS or CT&AS
must also be executed.

AltRespES − SS(G, {TP, CTP}) Exactly the same than AltRespES − SS(G, {TS,
CT&AS}) by replacing {TS, CT&AS} by
{TP, CTP}.

AltSucES − SS(TS, AS) Before the first execution of AS, TS must be
executed, and between two executions of TS
(TSi−1 and TSi), AS must also be executed.
Furthermore, after the last execution of TS, AS
must be executed, and between two executions of
AS (ASi−1 and ASi), TS must be executed.

Formally:
st(TSj) ≥ st(ASi−1), i.e. the next transport
search can be received at the same moment the
previous one starts to be processed.
st(ASi) ≥ et(TSj), i.e. the accommodation search
cannot start until the transport search is
completed.

Resp(CT&AS,SReport) After the last execution of CT&AS, SReport must
be executed.

Resp(CTP, SReport) After the last execution of CTP , SReport must be
executed.

AltSucES − SS(SReport, RReport) Exactly the same than AltSucES − SS(TS,AS) by
replacing TS by SReport, and AS by RReport.

Resp(RReport, CReports) After the last execution of RReport, CReports
must be executed.

Resp(AS, CReports) After the last execution of AS, CReports must be
executed.

Resp(TS, CReports) After the last execution of TS, CReports must be
executed.
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Fig. 10. Optimized Gantt chart and BPMN for the travel agency problem for #P = 4,  #A = 1  
and #B = 1.

As commented, in order to define an instance (#P, #A, #B) for the travel  
agency problem, the following parameters must be stated: number of client requests 
(#P), number of resources available in the agency (#A), and number of resources 
available in the company (#B).

In this section, two instances are studied as illustrations, specifically Problem 1 
defined by (#P = 4, #A = 1, #B = 1), and Problem 2 defined by (#P = 4,  
#A = 2, #B = 2). For Problem 1, Fig. 10 shows both the optimized Gantt chart 
(OCT = 47) and the BP model which are obtained through our proposal. It can 
be seen that regarding the first client request, depicted by G1 in the Gantt dia-
gram), the trip plan is created by the agency (TP1 activity), while the transport 
and accommodation search are carried out by the company (CT&AS1). Once both 
activities TP1 and CT&AS1 start, the second client request can be received (G2). 
The fact that an activity  B can only start after another activity A has started is 
stated by considering the predecessors of A as predecessors of B. In  this case, the  
predecessor of TP1 and CT&AS1 (i.e. G1) must (directly o indirectly) precede G2. 
Regarding the second Get Request activity (G2), the trip plan is organized by the 
company (CTP2 activity), while the transport and accommodation search are car-
ried out by the agency (TS2 and AS2 activities). In this case, activity AS2, which 
is related to the second request, is postponed until after the end of the execution 
of other activities related to the third request (G3, TP3), for efficiency reasons 
(notice that there is no constraint between the repeated activities TP and AS). 
Once both activities CTP2 and TS2 start, the third client request can be received 
(G3). Regarding the third Get request (G3), the trip plan is created by the agency
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(TP3 activity), while the transport and accommodation search are carried out by
the company (CT&AS3 activity). Once both activities TP3 and CT&AS3 start, the
fourth Get request can be received (G4). Regarding the fourth request (G4), the trip
plan is created by the company (CTP4 activity), while the transport and accommo-
dation search are carried out by the agency (TS4 and AS4 activities). After all the
client requests which are carried out by the company are finished, the Send Report
(SR) activity can be executed. After this, the Receive Report (RR) activity can be
executed. Finally, after all activity executions, the Client Reports (CR) activity is
executed.

In a similar way, for Problem 2, Fig. 11 shows the optimized Gantt chart (OCT =
33) and the BP model which are obtained with our proposal.

7.4. Dynamic programming for the travel agency problem

A feasible solution to a model of a number of instances can be obtained by concate-
nating known solutions for the same model with a smaller number of instances. The

Fig. 11. Optimized Gantt chart and BPMN for the travel agency problem for #P = 4,  #A = 2  
and #B = 2.
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optimal way to perform this concatenation can be achieved by dynamic program-
ming (DP).41 For the travel agency problem, DP can be applied for obtaining good 
solutions by joining optimal solutions to smaller problems. Let OCTa,b(p) be  the  
best OCT which is known for an instance (p, a, b) of the travel agency problem. 
DP can be applied to the travel agency problem so that the best OCT for (p, a, b) 
obtained through DP, OCT DPa,b(p), can be defined by:

OCT DPa,b(p) = min
1≤i≤p/2

(OCTa,b(i) + OCTa,b(p− i)− dur(CReports))j

i.e. the best combination of two optimal/optimized solutions to smaller problems 
is chosen.

8. Empirical Evaluation

In order to evaluate the efficiency of the proposal, a controlled experiment is con-
ducted. Section 8.1 describes the design underlying the experiment, and Sec. 8.2 
shows the experimental results and the data analysis.

8.1. Experimental design

Purpose: The purpose of the empirical evaluation is to analyze our proposal in 
the generation of optimal enactment plans from ConDec-R specifications, specifi-
cally, the goals are: (1) the comparison of our constraint-based proposal with DP 
(cf. Sec. 8.2.1) and (2) the demonstration of its use for simulation purposes (cf. 
Sec. 8.2.2).

Objects: We used the travel agency problem as example for our evaluation, since 
it includes various and representative relations of several types and complexity from 
the set of all the ConDec-R templates.k

Independent Variables: For the empirical evaluation, the number of client 
requests, #P , the number of resources of roleA, #A, and the number of resources 
of role B, #B, are taken as independent variables.

Response Variables: Some performance measures (cf. Table 3) related to the 
best generated plan are reported for the generated problems (Figs. 12; Tables 4–6).

Experimental Design: Based on the travel agency problem we generated a wide 
set of problem instances by varying the different independent variables: #P , #A 
and #B. For variable #P , the  values 1 . . . 100 are considered, for #A, the  values  
1 . . . 5 are considered, and for #B, the  values  1 . . . 5 are considered.

Experimental Execution: For the experiments, the constraint-based search algo-
rithm is run until a 10-min CPU time limit is reached. The machine for all exper-
iments is an Intel Core2, 2.13 GHz, 1.97 GB memory, running on Windows XP.

jCReports activity must be executed only once, and must be allocated after the execution of all 
other activities.
kA tool for generating optimized BP models for the travel agency problem can be found at 
http://regula.lsi.us.es/AgenciesOptimizedModels/, where some tests can be carried out.
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Table 3. Response variables.

Id Description

CP/DP(s1 + s2) The way in which the best solution is found, which can be by means of
the proposed constraint-based approach, CP, or by DP through
combining s1 and s2, DP(s1 + s2).

OCT OCT for the generated optimized enactment plan.
%BusyA Average percentage of use of resources of role A, regarding the OCT.
%BusyB Average percentage of use of resources of role B, regarding the OCT.
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Fig. 12. OCT depending on #A, #B. (a) Resources are grouped by #A, (b) resources are 
grouped by #B.
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Table 4. %OCT of the best solution found and method (CP or DP) that reaches it.

P (#A, #B) OCT CP/DP(s1 + s2) P (#A, #B) OCT CP/DP(s1 + s2)

1 (1, 1) 20 CP 11 (1, 1) 119 DP(5 + 6)
1 (2, 2) 19 CP 11 (2, 2) 72 CP
1 (3, 3) 19 CP 11 (3, 3) 68 CP
1 (4, 4) 19 CP 11 (4, 4) 68 CP
1 (5, 5) 19 CP 11 (5, 5) 67 CP
2 (1, 1) 27 CP 12 (1, 1) 128 DP(6 + 6)
2 (2, 2) 21 CP 12 (2, 2) 80 DP(5 + 7)
2 (3, 3) 21 CP 12 (3, 3) 71 CP
2 (4, 4) 21 CP 12 (4, 4) 70 CP
2 (5, 5) 21 CP 12 (5, 5) 70 CP
3 (1, 1) 38 CP 13 (1, 1) 139 DP(6 + 7)
3 (2, 2) 28 CP 13 (2, 2) 85 CP
3 (3, 3) 28 CP 13 (3, 3) 78 CP
3 (4, 4) 28 CP 13 (4, 4) 75 CP
3 (5, 5) 28 CP 13 (5, 5) 75 CP
4 (1, 1) 47 CP 14 (1, 1) 149 DP(6 + 8)
4 (2, 2) 33 CP 14 (2, 2) 92 DP(7 + 7)
4 (3, 3) 33 CP 14 (3, 3) 84 CP
4 (4, 4) 33 CP 14 (4, 4) 84 CP
4 (5, 5) 33 CP 14 (5, 5) 84 CP
5 (1, 1) 57 CP 15 (1, 1) 160 DP(7 + 8)
5 (2, 2) 36 CP 15 (2, 2) 98 DP(7 + 8)
5 (3, 3) 35 CP 15 (3, 3) 91 DP(5 + 10)
5 (4, 4) 35 CP 15 (4, 4) 88 CP
5 (5, 5) 35 CP 15 (5, 5) 88 CP
6 (1, 1) 66 CP 16 (1, 1) 170 DP(8 + 8)
6 (2, 2) 44 CP 16 (2, 2) 103 CP
6 (3, 3) 43 CP 16 (3, 3) 97 CP
6 (4, 4) 43 CP 16 (4, 4) 93 CP
6 (5, 5) 43 CP 16 (5, 5) 93 CP
7 (1, 1) 77 CP 17 (1, 1) 181 DP(8 + 9)
7 (2, 2) 48 CP 17 (2, 2) 110 DP(8 + 9)
7 (3, 3) 45 CP 17 (3, 3) 101 DP(7 + 10)
7 (4, 4) 45 CP 17 (4, 4) 99 CP
7 (5, 5) 45 CP 17 (5, 5) 99 CP
8 (1, 1) 87 CP 18 (1, 1) 190 DP(6 + 12)
8 (2, 2) 54 CP 18 (2, 2) 116 DP(9 + 9)
8 (3, 3) 52 CP 18 (3, 3) 104 CP
8 (4, 4) 52 CP 18 (4, 4) 104 CP
8 (5, 5) 52 CP 18 (5, 5) 104 CP
9 (1, 1) 98 CP 19 (1, 1) 201 DP(7 + 12)
9 (2, 2) 60 CP 19 (2, 2) 122 DP(8 + 11)
9 (3, 3) 57 CP 19 (3, 3) 112 DP(7 + 12)
9 (4, 4) 57 CP 19 (4, 4) 111 DP(7 + 12)
9 (5, 5) 57 CP 19 (5, 5) 111 DP(7 + 12)

10 (1, 1) 109 DP(4+6) 20 (1, 1) 211 DP(8 + 12)
10 (2, 2) 67 CP 20 (2, 2) 128 DP(9 + 11)
10 (3, 3) 60 CP 20 (3, 3) 116 DP(10 + 10)
10 (4, 4) 60 CP 20 (4, 4) 116 DP(10 + 10)
10 (5, 5) 60 CP 20 (5, 5) 116 DP(10 + 10)
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Table 5. %Busy A versus #P .

#A #P

10 20 30 40 50 60 70 80 90 100

1 95.2 95.1 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
2 79.8 82.6 81.4 83.1 82.2 81.7 82.6 83.3 82.8 82.4
3 73.5 74.8 74.3 75.5 75.1 74.8 75.4 75.9 75.6 75.4
4 57.8 59.0 59.1 59.6 59.6 59.5 59.7 59.9 59.8 59.8
5 43.9 46.0 45.9 46.5 46.3 46.2 46.5 46.7 46.6 46.5

Table 6. %Busy B versus #P .

#B #P

10 20 30 40 50 60 70 80 90 100

1 78.6 80.8 80.3 82.0 81.4 81.0 81.9 82.6 82.2 81.9
2 72.7 71.1 75.3 72.2 74.6 76.2 74.3 72.8 74.1 75.1
3 46.7 48.1 49.1 48.9 49.3 49.6 49.4 49.3 49.5 49.7
4 30.5 30.7 31.3 31.2 31.4 31.6 31.5 31.4 31.5 31.6
5 26.4 27.2 27.5 27.7 27.7 27.8 27.8 27.9 27.9 27.9

In order to solve the constraint-based problems (cf. Sec. 4), the developed algo-
rithms have been integrated with the system COMET,42 which is able to generate 
high-quality solutions for highly constrained problems in an efficient way.

8.2. Experimental results and data analysis

As commented, the purpose of the empirical evaluation is two-fold, i.e. analyzing 
the suitability of our proposal through a comparison with DP (cf. Sec. 8.2.1), and 
through the use for simulation (cf. Sec. 8.2.2).

8.2.1. Comparison with DP

DP (cf. Sec. 4.3) is a widely used technique in solving optimization problems, leading 
to solutions of high quality in most cases. Specifically, for the travel agency problem, 
DP can be applied (cf. Sec. 7.4). We would like to evaluate whether our constraint-
based proposal usually improves the solution of good quality which can be obtained 
by DP, i.e. works efficiently.

Table 4 shows the OCT for the best solutions which are found for some repre-
sentative instances, together with the method (either DP or CP) which finds the 
best solution (column CP/DP(s1 + s2) in Table 4). Thereby DP(s1 + s2) means 
that the best solution is found by DP through combining s1 and  s2. For instances 
in which both techniques reach solutions which present the same values for OCT, 
DP(s1 + s2) is depicted. It can be observed that for 1 ≤ #P ≤ 14, the constraint-
based approach obtains better solutions than DP for almost all of the instances. 
Moreover, for 15 ≤ #P ≤ 18, in some cases DP obtains solutions that are better 
than or equal to those obtained through CP, and in other cases CP obtains the
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best solution. Furthermore, for 19 ≤ #P ≤ 20, DP obtains solutions that are bet-
ter than or equal to those obtained through CP for all the instances. Furthermore, 
it seems that the solutions for #P = {6, 7, 8, 9, 10 and 12} are largely optimized 
since they widely appear in the DP solutions. The results (cf. Table 4) show that 
our constraint-based approach, i.e. CP, is able to improve the solution obtained by 
DP in most of the cases. This shows that our constraint-based approach works effi-
ciently in the generation of optimized enactment plans, and hence, for the automatic 
generation of optimized BPMN models.

In short, our data indicates that for the generation of optimized BP models, CP 
enables complex problems to be solved in a more efficient way than they would be 
through other alternative methods, such as DP or the manual specification of BP 
models.

Additionally, when #P increases, the complexity of the problem rises sharply, 
and hence the manual treatment of the problem would become almost inextricable. 
In contrast, when using our approach an optimized solution for large problems, 
such as for #P = 100 can be obtained in only 10 min.

Threats to validity: There are several factors which may threaten the validity of 
our experiments for the attainment of generalizable conclusions:

• The specific characteristics of the considered example, i.e. the empirical evalua-
tion only considers a concrete problem with a specific number of BP activities
and specific relations between the BP activities.
• The way in which the optimal/optimized solutions for problems of a certain

size are combined in order to obtain solutions for larger problems is specific
for the considered example. In most cases, feasible solutions for larger problems
can be generated by concatenating solutions to smaller problems through DP.
However, the way in which solutions to problems of a given size can be com-
bined to provide a solution to a larger problem depends on the type of problem
considered.

8.2.2. Use for simulation

Our approach can be used for simulation purposes in the BP design and analysis 
phase in order to study the relevance of several parameters in the quality of the gen-
erated plans, e.g. resource availability. As an example, the relevance of the number 
of available resources for the travel agency problem is analyzed as follows.

Figure 12 shows the completion time of the best BP enactment plan (OCT) 
which is generated through our approach. In both graphics of Fig. 12, the  OCT is  
shown depending on the number of resources of roles A and B. First, the  consid-
ered resources are grouped according to #A (Fig. 12(a)). Secondly, the considered 
resources are grouped according to #B (Fig. 12(b)). It can be seen, in most cases, 
that the OCT greatly decreases as #A increases. Additionally, in most cases, the 
OCT remains almost the same when #B increases. Therefore, #A seems to be
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much more influential than #B for the OCT, i.e. A is a more critical resource for 
the considered travel agency problem.

In Tables 5 and 6, the average percentages of use of the resources of roles A and 
role B, respectively, regarding the OCT, are shown. In all cases, for the same value 
of #P , these percentages decrease as the number of resources of the associated role 
increases. Moreover, as expected, the average percentage of use of resources of role 
A is greater than the average percentage of use of resources of role B for the same 
value of #P .

9. Related Work

Our approach makes a proposal for integrating P&S with BPMSs. Most related 
work on such an integration focuses on the enactment phase in order to make 
dispatching decisions as to which activity should be executed using a resource when 
it becomes free (dynamic scheduling),43–48 while very few integrations are carried 
out during the modeling phase, as presented here.

Also related to our proposal is research on the generation of BP models, e.g. 
Refs. 9, 49–53. While the proposals of Refs. 49 and 50 provide the BP information 
through an execution/interchange language, XPDL, our approach, in turn, uses a 
declarative modeling language based on a formal logic (LTL). As stated, the usage 
of declarative specifications allows the user to specify what has to be done instead  
of how, thereby facilitating the human work involved and avoiding failures. In con-
trast to XPDL, where the user has to specify the model in an imperative way, 
in our proposal the generation of imperative BP models is automatically done by 
the system. In a related way, in Ref. 51, planning tools are used for the semiauto-
matic generation of BP models, by considering the knowledge introduced through 
BP Reengineering languages. In Ref. 51, they propose an object-oriented structure 
modeling tool that follows their own rule-based approach, while we propose the use 
of an extension of ConDec, a widely referenced language in the context of BPM 
(e.g. Refs. 26 and 55), which also allows a higher level of abstraction. Addition-
ally, Ref. 52 proposes a planning formalism for the modeling of BPs through an 
SAP specification (Status and Action Management, SAM), which is a variant of 
PDDL. Unlike our work, neither the resource perspective nor the optimization of 
several instances are considered since in Ref. 52 each non-deterministic action (i.e. 
activity) cannot be repeated in the generated solution. Moreover, Ref. 53 presents 
a service-oriented approach which transforms high-level BP models into web ser-
vices composition models. This approach uses UML to specify the BP models from 
an MDA point of view, which lacks an implementation view of BP models,56 in 
contrast to ConDec, which is a graphical and specific language for the modeling of 
BPs. Furthermore, Ref. 9 proposes to refine BP models by combining learning and 
planning techniques, starting from processes which are not fully described. Unlike 
our work, Ref. 9 needs past process executions and examples provided by the user 
to apply learning techniques. Moreover,9 does not consider the optimization of any
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objective function in the generation of the plans. Furthermore, in Ref. 9 executable 
plans are generated, while we propose the generation of BP models which are spec-
ified in a standard language, i.e. BPMN, which can also be improved by business 
analysts if necessary.

Related to the combined used of declarative and imperative models, Ref. 57 
proposes the use of declarative BP models for specifying processes independently 
of a particular environment in order to align optional process customizations. This 
information is complemented with imperative BP specifications which contain infor-
mation related to the control flow of the processes, often specific to a given environ-
ment. In Ref. 57 both declarative and imperative BP models need to be (manually) 
specified, while in our proposal the optimized imperative models are automatically 
generated. Lastly, Ref. 58 analyzes the need of transitions between different BP 
modeling paradigms, i.e. declarative, imperative and hybrid proposals, supporting 
our proposal.

Additionally, there exist some proposals which could be used to generate opti-
mized enactment plans for BPs from constraint-based process specifications. Specifi-
cally, Ref. 59 proposes the generation of a non-deterministic finite state automaton 
from constraint-based specifications based on linear temporal logic (LTL) which 
represents exactly all traces that satisfy the LTL formulas. When extending this 
approach by including estimates, the OCT of all the traces could then be cal-
culated (e.g. Ref. 60). However, the big disadvantage following such an approach 
would be that it can lead to performance problems when confronted with large 
constraint-based models since the automaton generated for the concatenated LTL 
formulas is exponential with respect to the size of the formula,61 and, unlike 
the proposed approach, no heuristic has been used. In a similar way, CLIMB26 

could be used to generate feasible traces, i.e. traces which meet all the constraints 
imposed by the declarative specification, and calculate its completion time. Then, 
the best traces could be selected. Unlike our approach, Ref. 26 does neither con-
sider optimality nor resource availabilities. Therefore, this would only cover the 
planning part of our proposal, but not the scheduling aspects addressed by our 
approach.

There is some related work (e.g. Refs. 62–65) which  is  focused on the  automated  
composition of web services using planning techniques, i.e. given a set of services 
which are published on the web and a goal, the aim is to generate a composi-
tion of the available services which satisfies the goal. Like our approach, dynamic 
process-based composition approaches also start from a declarative specification. 
However, while they only consider activities with preconditions and effects, we 
allow for an increased expressiveness through the ConDec language. Supporting 
the suitability of ConDec for specifying web services, the work66 proposes the lan-
guage DecSerFlow (which is a sister language of ConDec, i.e. both share the same 
concepts and tools) as a declarative service flow language. Moreover, unlike,62–65 

our approach considers multiple instances which are executed within a particular 
timeframe, which is fundamental for achieving global optimization.
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10. Discussion and Limitations

In BP most environments, the Process Design & Analysis phase is manually carried 
out by business analysts, who must deal with several aspects, such as resource 
allocation, the activity properties and the relations between them, and may even 
have to handle the optimization of several objectives. Therefore, in some cases, the 
manual specification of BP models can consume great quantity of resources, cause 
failures, and lead to non-optimized models, resulting in a very complex problem.9

Hence, it should be emphasized that the automatic generation of BP models 
facilitates the human work in most cases, prevents failures in the developed BP 
models, and enables better optimization to be attained in the enactment phase.

Additionally, the specification of process properties in a declarative way allows 
the user to specify what is to be done, and the proposed AI-based tool is in charge 
of determining how it is to be done in order to satisfy the problem specifications, 
and to attain the optimization of certain objective functions.

Unlike conventional BPMN models, in our approach each generated model com-
prises the execution of a set of instances. Therefore, our approach always addresses, 
at least, global inter-instance optimization (even when optimization within each 
instance is not completely addressed). In this way, optimization over a set of 
instances is always addressed (e.g. the resources which are shared by the different 
instances are allocated in an optimized way by considering all instances to be exe-
cuted). Additionally, in most cases, intra-instance optimization is also (completely 
or partially) addressed, as explained in Sec. 6.1.

Moreover, the automatic generation of BP models can deal with complex prob-
lems of great size in a simple way, as demonstrated in Sec. 8. Therefore, a wide 
study of several aspects can be carried out by simulation, such as those related to 
the requirement of resources of different roles, or the estimated completion time for 
the BP enactment, by generating several kinds of problems.

Furthermore, the proposed constraint-based approach can be used to efficiently 
solve further planning and scheduling problems which include similar relations 
between repeated activities, and which are unrelated to BP environments.

It should also be clarified that the BP models are generated for execution pur-
poses, and hence clarity of meaning for the users of the generated models is not 
considered relevant in the current proposal.

Note that the generation of optimized enactment plans from constraint-based 
specifications is, from our point of view, the most challenging task of the pro-
posed approach. Existing constraint-based BPMSs like Declare32 could be used 
(in combination with planning) to decide which activities have to be done in the 
current state. In a related way, optimized enactment plans can be used to help 
users to find good/optimal ways to execute a declarative process by suggesting 
recommendations, as explained in one of our previous works (cf. Ref. 67). However, 
in the current work, the motivation for generating BPMN models from these enact-
ment plans is two-fold: (1) visualize the generated enactment plan in a standard 
BP modeling language the users are familiar with, with the goal of allowing the
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business analysts further improve the BPMN model when necessary, and (2) enable 
BP designs to be deployed into BPM systems and let their instances be automat-
ically executed by existing (commercially available) state-of-the-art BPMSs (e.g. 
AristaFlow).

However, the proposed approach also presents a few limitations. First, the busi-
ness analysts must deal with a new language for the constraint-based specification 
of BPs, therefore a period of training is required in order to let the business analysts 
become familiar with ConDec-R specifications. Secondly, the optimized BP models 
are generated by considering estimated values for the activity duration and resource 
availability, hence our proposal is only appropriate for processes in which the dura-
tion of the activities and the resource availability can be estimated. Nevertheless, 
in our approach, the BPMN model can be dynamically adapted during run-time by 
using replanning, and hence allowing for an increased flexibility (cf. Sec. 6.2). More-
over, ConDec-R specifications deal with both control-flow and resource perspectives, 
and also temporal data. Incorporating the non-temporal data perspective is subject 
to future work. Notice that already without non-temporal data many problems can 
be solved.

There are several objectives which can be considered in BPMS. In this work, we 
have considered minimizing the OCT only. However, this proposal can be extended 
in order to consider further objectives, such as cost or other temporal measures.

11. Conclusions and Future Work

This work presents a proposal for the automatic generation of BP models from 
constraint-based specifications which consider both control-flow and resource per-
spectives. To this end, several steps are developed: first, the definition of a suitable 
language, ConDec-R, which allows the constraint-based specification of BPs to be 
defined in a suitable form (both control-flow and resource perspectives are consid-
ered); secondly, a constraint-based proposal for planning and scheduling the BP 
activities in an optimized way in order to obtain optimized BP enactment plans; 
and third, an algorithm for generating the optimized BP model in BPMN from the 
optimized BP enactment plan. An example, the travel agency problem, is given in 
order to clarify the proposed approach. To validate its quality compared to existing 
methods like DP, different performance measures related to a range of test models of 
varying complexity are analyzed. The results indicate that, although the optimiza-
tion of process execution is a highly constrained problem, the proposed approach 
produces a satisfactory number of suitable solutions.

As for future work, the proposed approach will be extended through the 
incorporation of further objective functions. Moreover, we will explore various 
constraint-based solving techniques and analyze their suitability for the generation 
of optimized BP plans. Furthermore, in the enactment phase, we intend to apply 
P&S techniques in order to replan the activities by considering the actual values of 
the parameters to validate the run-time flexibility of the approach. Moreover, the
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development of a tool for the automatic generation of optimized BP models from
ConDec-R specifications is currently under development. In addition, we intend to
address an actual process enactment experiment in an organization according to
the proposed method.
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Appendix A. Algorithms for Generating BPMN Models

In order to develop the algorithms to generate the BP models from the optimized
enactment plans (cf. Algorithms A.1–A.5), certain related types are stated, as shown
in Fig. A.1 (UML diagram). Note that at this point of the process the CSP variables
are instantiated, and hence all the information is known (nt variable for each BP
activity, st variable for each scheduling activity, resource in which each scheduling
activity is executed, etc.). The types which appear in the UML diagram are as
follows:

• OptimizedP lan(acts, r, t): This represents the generated optimized enactment
plan. Moreover, it contains the information related to the input problem. Specif-
ically, this type contains properties regarding a set of roles r, a set of repeated
activities (ConDec-R activities) acts, and a set of constraints which relate the
repeated activities t.
• RepeatedAct(role, dur, acts, nt): This represents the ConDec-R activities. Each

repeated activity contains information about the required role (i.e. role), the
estimated duration (i.e. dur), the set of scheduling activities which represent the
execution of each BP activity (i.e. acts), and the number of times this repeated
activity is executed (i.e. nt).

• Role(resources): This represents a role, and it is composed of the set of resources
available for this role.
• Resource(acts): This represents a resource. This type contains properties regard-

ing a list of scheduling activities which are executed in that resource, ordered by
the start time.
• Constraint(name): This represents the high-level relations which are given

between the repeated activities. In order to consider the branched constraints
(Sec. 3), two specializations are included to allow the relations between one
source and several sinks (ConstraintSinks), and between several sources and one
sink (ConstraintSources).l The method includePred of a template updates the

lNote that both ConstraintSinks and ConstraintSources can be used for specifying binary con-

straints.
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information of the BPMN model by including the precedence relations which
are implied by that template (more details are given later in this section during
the presentation of the algorithms). For the generation of the BPMN model, the
constraints are considered for the connection of the BPMN activities.

• P&SAct(st, et, res): This represents each execution of a repeated activity. This
type contains properties regarding the start and the end times of the activity,
together with the resource used by the scheduling activity (st, et and res respec-
tively). Since each P&SAct is related to a specific BPMNAct in the resulting
BPMN model, the P&SAct type provides the method toBPMNAct in order to
obtain the related BPMNAct from a P&SAct (cf. Fig. A.1). This method is
formalized as follows, where the symbol → is used to specify the output param-
eter: toBPMNAct(a : P&SAct)→ BPMNAct(a.res.lane.pool, a.res.lane, a.dur,
a.st).
• BPMNModel (pools, acts, seqF lows, gates): This represents the BPMN model

that is generated. This model is composed of a set of pools pools, a set of BPMN
activities acts, a set of sequence flows seqF lows, and a set of gates gates. It con-
tains the function createBPMN ( ) → BPMNModel (∅, ∅, ∅, ∅) (i.e. this method
returns an object of type BPMNModel in which all properties are empty sets).
• BPMNAct(pool, lane, dur, st): This represents a BPMN activity. This type con-

tains properties regarding the pool and the lane where the activity is allo-
cated (i.e. pool and lane respectively), together with the estimated duration
dur and start time st. It contains the following functions (cf. Fig. A.1): (1)
createBPMNAct(a : P&SAct)→ BPMNAct (a.res.lane.pool, a.res.lane, a.dur,
a.st), which creates a BPMNAct from a P&SAct, and (2) createBPMNAct(p :
Pool, l : Lane, dur : int, st : int)→ BPMNAct(p, l, dur, st).

• Pool(lanes, role): This represents a BPMN pool. Each pool is associated to a
specific object of type Role role, and is composed of a set of objects of type Lane
lanes. It contains the function createPool(role : Role) → Pool(lanes, role),
where lanes =

⋃
res∈role.resources createLane(res), i.e. for each resource of that

role, a related lane is created and included in the pool.
• Lane(res): This represents a BPMN lane. Each lane is associated to a specific

resource res. It contains the function createLane(res : Resource)→ Lane(res).
• Gate: This represents a BPMN gate. In order to consider parallel merging gate-

ways, a specialization, named ParallelM, is developed.
• ParallelM(sources, sink): This represents a parallel merging gateway, together

with the related input and output connections of the gateway. This type contains
properties regarding a set of inputs sources, and one output sink. It con-
tains the function createParallelM(l : Set < BPMNAct >, a : BPMNAct) →
ParallelM(l, a).
• SequenceF low(a, b): This represents a precedence sequence flow between two

BPMN activities, a and b. It contains the function createSequenceF low(a :
BPMNAct , b : BPMNAct) → SequenceF low(a, b). Note that the connections
between a BPMN activity and a gateway are stated in ParallelM objects.
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Fig. A.1. UML diagram of types for the optimized BPMN generation. 
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In Algorithms A.1–A.5, T〈P〉 represents the generic type T with the generic
parameter instantiated to P. These algorithms are explained below.

The main algorithm, Algorithm A.1, constructs a BPMN model from an opti-
mized BP enactment plan (cf. Definition 4.4) and a ConDec-R model (cf. Defini-
tion 3.1). From the enactment plan and the ConDec-R model, the input parameters
of Algorithm A.1 can be stated, i.e. a sorted set of scheduling activities ordered by
start time (i.e. acts); a set of the constraints which relate the repeated activities
(i.e. c); and a set of the considered roles (i.e. r). Algorithm A.1 starts by creating

Algorithm A.1: Construct an Optimized BP Model from an Optimized BP
Enactment Plan
input : SortedSet 〈P&SAct〉 acts, ordered by st

Set〈Constraint〉 c

Set〈Role〉 r

output: BPMNModel bp

bp← createBPMN();1

bp.pools← {createPool(role) | role ∈ r};2

bp.acts← {createBPMNAct(a) | a ∈ acts};3

BPMNAct start← createBPMNAct(P0, L0, 0, 0);4

BPMNAct end← createBPMNAct(P0, L0, 0, maxa∈actsa.et);5

bp.sequenceF lows← {createSequenceF low(start, ini) | ini ∈6

bp.acts, ini.st = 0};
Map〈P&SAct,Set〈P&SAct〉〉 pred← CreateDependencies(acts, c, r);7

foreach psact in acts do8

if pred(psact).size == 1 then9

P&SAct aPred← pred(psact).get(0);10

bp.sequenceF lows← bp.sequenceF lows∪11

createSequenceF low(toBPMNAct(aPred), toBPMNAct(psact));

else12

Set〈BPMNAct〉 inputs← {toBPMNAct(a) | a ∈ pred(psact)};13

bp.gates← bp.gates∪ createParallelM(inputs, toBPMNAct(psact));14

Set〈BPMNAct〉15

finals← {toBPMNAct(a) | a ∈ P&SAct,¬∃b ∈ P&SAct, a ∈ pred(b)};
if finals.size == 1 then16

BPMNAct final← finals.get(0);17

bp.sequenceF lows←18

bp.sequenceF lows∪ createSequenceF low(final, end);

else19

bp.gates← bp.gates ∪ createParallelM(finals, end);20

return bp;21
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an empty BPMN model (cf. line 1). Moreover, a pool associated to each role is 
created, together with the corresponding lanes (line 2). In a similar way, a BPMN 
activity associated to each scheduling activity is created (line 3). The start and 
end activities of the model can be associated to any pool, which is represented 
by P0 in Algorithm A.1, and to any lane, which is represented by L0 in Algo-
rithm A.1 (lines 4 and 5, respectively). In line 6, a sequence flow between the start 
BPMN activity and each BPMN activity whose estimated start time is equal to 0 is 
created through the createSequenceF low method (cf. Fig. A.1). As explained, the 
createSequenceF low method contains the parameters (1) a of type BPMNAct , and  
(2) b of type BPMNAct as input, and creates a SequenceF low object which states a 
BPMN binary precedence relation starting in a and ending in b. After  that,  the  map  
pred associates a set of direct predecessors (cf. Definition 5.2) to each scheduling 
activity by using the method CreateDependencies (cf. Algorithm A.2, explained 
later in this section) in order to generate the BPMN model (line 7).m

Lines 8–14 establish the sequence flows and gateways between the BPMN activ-
ities in the following way: if the BPMN activity has only one direct predeces-
sor, a sequence flow is included (lines 9–11); otherwise if the BPMN activity has 
several direct predecessors, a parallel merging gateway is included through the 
createP arallelM method (lines 12–14). As explained, the createP arallelM method 
contains the parameters (1) l of type List〈BPMNAct〉, and (2) a of type BPMNAct 
as input, and creates a P arallelM object which states a BPMN parallel merging 
gateway (also including all the related connections) with contains all the BPMN 
activities of l as input and the BPMN activity a as output. In line 15, all the final 
activities are selected to be direct predecessors of the end activity. These activities 
are related by either a sequence flow, in the case that there is only one ending 
activity (lines 16–18); or by a parallel merging gateway, in the case that there are 
several ending activities (lines 19 and 20). Note that, as mentioned, parallel merging 
gateways (i.e. parallel gateways which have several sources and only one sink) need 
to be explicitly included in the resulting BPMN model, since they do not have the 
same meaning as several binary sequence flows from several sources and one sink. 
However, parallel splitting gateways (i.e. parallel gateways which have several sinks 
and only one source) do not need to be explicitly included in the resulting BPMN 
model since several binary sequence flows between one source activity and several 
sink activities have the same meaning as a parallel splitting gateway in the BPMN 
language.

As stated before, one of the most important aspects to be considered for this 
model generation are the precedence relations between the scheduling activities of 
the plan, which are managed by Algorithm A.2. As mentioned, these precedence 
relations are due to (1) resource constraints, i.e. the activities are allocated in the 
resources in a specific order in the generated enactment plan, and (2) ConDec-R

mThe generic type Map〈T1,T2〉, which associates an object of type T2 to an object of type T1, 
is used.



2nd Reading

October 9, 2013 9:20 WSPC/S0218-8430 111-IJCIS 1350009

Algorithm A.2: CreateDependencies
input : SortedSet〈P&SAct〉 acts ordered by st

Set〈Constraint〉 constraints

Set〈Role〉 roles

output: Map〈P&SAct,Set〈P&SAct〉〉 directPredecessors

Map〈P&SAct,Set〈P&SAct〉〉 allPredecessors← ∅;1

foreach r in roles do2

foreach res in r.resources do3

List〈P&SAct〉 actsRes← res.acts;4

foreach i in i:1..actsRes.size-1 do5

allPredecessors(actsResi+1)← {actsResi};6

foreach c in constraints do7

c.includePredecessors(allPredecessors);8

Map〈P&SAct,Set〈P&SAct〉〉 indirectPredecessors← ∅;9

foreach act in acts do10

directPredecessors(act)← allPredecessors(act);11

foreach p in allPredecessors(act) do12

directPredecessors(act)←13

directPredecessors(act) \ allPredecessors(p);
indirectPredecessors(act)←14

indirectPredecessors(act) ∪ allPredecessors(p);

allPredecessors(act)←15

allPredecessors(act) ∪ indirectPredecessors(act);

return directPredecessors;16

constraints related to precedence between activities. Algorithm A.2 generates a map 
in which each scheduling activity is associated to a set of scheduling activities that 
are its direct predecessors (cf. Definition 5.2). For this, three maps are managed in 
this algorithm: (1) directP redecessors, which associates each scheduling activity to 
the set of its direct predecessors, (2) indirectP redecessors, which associates each 
scheduling activity to the set of its indirect predecessors (cf. Definition 5.3), and 
(3) allP redecessors, which associates each scheduling activity to the set of all its 
direct and indirect predecessors. In Algorithm A.2, first, the precedences required 
due to the use of the same resource are included (lines 2–6). Secondly, the prece-
dences required due to the high-level relations (i.e. ConDec-R constraints) between 
the repeated activities which are stated in the model are included through the 
method includePred of each constraint (lines 7 and 8). Typically, unlike resource 
precedence relations, precedence relations due to ConDec-R constraints cannot be 
easily obtained. To this end, each ConDec-R template presents a method which is in
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charge of determining the precedence relations which are given between the schedul-
ing activities related to the repeated activities which are involved in that ConDec-R
template. The mentioned method for some representative ConDec-R templates is
detailed in Algorithms A.3–A.5. Lastly, the indirect predecessors are removed from
the map directPredecessors in order to avoid redundant connections, by taking
into account that the sorted set acts is ordered by st, and hence, the scheduling
activities are managed from minor to major st in the external loop (lines 9–15).
The properties of the maps which are used in Algorithm A.2 are demonstrated by
Proposition A.1.

Proposition A.1. This proposition contains two related parts:

(a) After executing lines 1–9 of Algorithm A.2, (1) directPredecessors = ∅, (2)
indirectPredecessors = ∅, and (3) allPredecessors associates each scheduling
activity with all its direct predecessors (cf. Definition 5.4) and a subset of its
indirect predecessors (cf. Definition 5.5).

(b) At the end of Algorithm A.2, as a result of executing lines 10–15, ∀ act ∈ acts :
(1) the map directPredecessors associates act with exactly all its direct pre-
decessors (cf. Definition 5.4), (2) the map indirectPredecessors associates
act with exactly all its indirect predecessors (cf. Definition 5.5), and (3) the
map allPredecessors associates act with exactly all its direct and indirect
predecessors.

Proof.

(a) The statements directPredecessors = ∅ and indirectPredecessors = ∅
hold since these maps have been only initialized. On one hand, the map
allPredecessors contains all the direct predecessors since all resource and Con-
Dec relations are considered (lines 2–6 and 7–8, respectively). Moreover, some
indirect predecessors have probably been included since redundant connections
have not been avoided.

(b) (Mathematical Induction):

(i) The base case: Since acts is a sorted set ordered by st, acts1 does not
have any predecessor (i.e. allPredecessors(acts1) = ∅). Therefore, at
the end of Algorithm A.2, as a result of executing lines 10–15:
(1) directPredecessors(acts1) = ∅, (2) indirectPredecessors(acts1) = ∅,
and (3) allPredecessors(acts1) = ∅, i.e. the statement holds for the base
case.

(ii) The inductive step: If the statement holds ∀i∈1...n−1actsi, then the state-
ment also holds for actsn.

(1) directPredecessors(actsn): in line 11, this set is initialized with all
the precedence relations of actsn which were previously obtained in the
previous step until line 8, i.e. all its direct predecessors and a subset of its
indirect predecessor (cf. Proposition A.1(a)). After that, for each direct
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predecessor p of actsn (line 12), all the direct and indirect predecessors
of p, which are therefore indirect predecessors of actsn, are removed
from the set directPredecessors(actsn) (line 13). Due to the induction
hypothesis, the set allPredecessors(p) is assumed to contain all direct
and indirect predecessors of p since we are assuming that the statement
holds for ∀i∈1...n−1actsi (due to p is a predecessor of actsn and acts is
a sorted set, then ∃i∈1...n−1|actsi = p).

(2) indirectPredecessors(actsn): For each direct predecessor p of actsn

(line 12), all the direct and indirect predecessors of p, which are
therefore indirect predecessors of actsn, are included in the set
indirectPredecessors(actsn) (line 14).

(3) allPredecessors(actsn): After line 9, the set allPredecessors(actsn)
contains all the direct predecessors and a subset of indirect predecessor
of actsn (cf. Proposition A.1(a)). In order to ensure that all indirect
predecessors are included, allPredecessors(actsn) is updated by con-
sidering all the indirect predecessors (line 15).

Algorithm A.3: includePred method for the branched Precedence tem-
plate with several source activities and one sink activity
input : Map〈P&SAct,Set〈P&SAct〉〉 pred

output: Map〈P&SAct,Set〈P&SAct〉〉 pred

Set〈P&SAct〉 meet← {a1 | a ∈ this.sources, a1.et ≤ this.sink1.st};1

P&SAct sel← argmina∈meet(a.et);2

pred(this.sink1)← pred(this.sink1) ∪ sel;3

return pred;4

With respect to the includePred method, some representative templates are 
selected for illustration purposes (other templates can be described in a similar 
way). In Algorithm A.3, the template regarding the branched Precedence tem-
plate with several source activities and one sink activity (i.e. it is modeled by 
a ConstraintSources object, cf. Fig. A.1) is shown. The location of a branched 
precedence template between several sources and one sink implies that the first 
execution of at least one of the sources must finished before the start of the first 
execution of the sink. In line 1, the set of scheduling activities which comply with 
the Precedence template (i.e. the first executions of the sources which end before 
the start of the first execution of the sink) are included in the set meet. At  least  
one scheduling activity will be included in this set since the Precedence template 
is satisfied, however it may be possible to find more than one. In order to gener-
ate a BPMN model which is compatible with both the optimized enactment plan 
and the ConDec-R specification, as is the purpose of our approach, any scheduling 
activity of the set meet can be selected to be the predecessor of the sink in the
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BPMN model. One scheduling activity of the set meet is then selected to be the
predecessor of the sink. Specifically, the scheduling activity which presents more
slack is selected (line 2) in order to construct a robust BPMN model. In line 3, the
selected predecessor is included in the map, and is associated to the predecessors of
the first execution of the sink. The fact that an activity B can start after another
activity A has finished (ES, default option), is stated by including A in the set pred

of B (line 3) of Algorithm A.4.

Algorithm A.4: includePred method for the branched Alternate

Precedence Template with several source activities and one sink activity
input : Map〈P&SAct,Set〈P&SAct〉〉 pred

output: Map〈P&SAct,Set〈P&SAct〉〉 pred

Set〈P&SAct〉 meet← {a1 | a ∈ this.sources, a1.et ≤ this.sink1.st};1

P&SAct sel← argmina∈meet(a.et);2

pred(this.sink1)← pred(this.sink1) ∪ sel;3

foreach i in 2..this.sink.nt do4

Set〈P&SAct〉 meet← {aj | a ∈ this.sources, j ∈5

1..a.nt, this.sinki−1.et ≤ aj .st ∧ aj.et ≤ this.sinki.st};
P&SAct6

sel← argmaxa∈meet((a.st− this.sinki−1.et) + (this.sinki.st− a.et));
pred(sel)← pred(sel) ∪ this.sinki−1;7

pred(this.sinki)← pred(this.sinki) ∪ sel;8

return pred;9

The branched AlternatePrecedence template between several sources and one 
sink implies that before the execution of the sink, at least one of the sources must be 
executed, and between each two executions of the sink, at least one of the sources 
must be executed. As discussed, there exist two variants for the same temporal 
relation, which are represented by adding SS or ES at the end of the name of 
the template. In the AlternatePrecedence template, two temporal relations must 
be indicated: first, what “sink before source” means, and secondly, what “source 
before sink” means. Therefore, the branched template AlternatePrecedenceES-ES 
(default option) specifies that “sink before source” means that the end time of 
the sink must be less than or equal to the start time of the source, and “source 
before sink” means that the end time of the source must be less than or equal to 
the start time of the sink. The includePred method for the branched template 
AlternatePrecedenceES-ES with several source activities and one sink activity 
(i.e. it is modeled by a ConstraintSources object, cf. Fig. A.1) is shown in Algo-
rithm A.4. For lines 1–3, the idea is the same as that in Algorithm A.3. Moreover,  
between each two successive executions of the sink, sinki−1 and sinki, one schedul-
ing activity must be executed. Several scheduling activities related to the sources
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can meet this condition (line 5). As before, the scheduling activity which presents 
more slack is selected (line 6) to be the predecessor of sinki (line 8), and at the 
same time sinki−1 is selected as the predecessor of the selected scheduling activity.

Algorithm A.5: includePred method for the branched Alternate 
PrecedenceSS-ES Template with several source activities and one sink activity

input : Map〈P&SAct,Set〈P&SAct〉〉 pred

output: Map〈P&SAct,Set〈P&SAct〉〉 pred

Set〈P&SAct〉 meet← {a1 | a ∈ this.sources, a1.et ≤ this.sink1.st};1

P&SAct sel← argmina∈meet(a.et);2

pred(this.sink1)← pred(this.sink1) ∪ sel;3

foreach i in 2..this.sink.nt do4

Set〈P&SAct〉 meet← {aj | a ∈ this.sources, j ∈5

1..a.nt, this.sinki−1.st ≤ aj .st ∧ aj .et ≤ this.sinki.st};
P&SAct6

sel← argmaxa∈meet((a.st− this.sinki−1.et) + (this.sinki.st− a.et));
pred(sel)← pred(sel) ∪ pred(this.sinki−1);7

pred(this.sinki)← pred(this.sinki) ∪ sel;8

return pred;9

In a similar way, the branched template AlternatePrecedenceSS-ES specifies 
that “sink before source” means that the start time of the sink must be less than 
or equal to the start time of the source, and “source before sink” means that the 
end time of the source must be less than or equal to the start time of the sink. 
The includePred method for the branched template AlternatePrecedenceSS-ES 
with several source activities and one sink activity (i.e. it is modelled by a 
ConstraintSources object, cf. Fig. A.1) is shown in Algorithm A.5. This algorithm 
is identical to Algorithm A.4, except for line 7. As mentioned earlier, the fact that 
an activity B can start after another activity A has finished (ES, default option), is 
stated by including A in the set pred of B. Additionally, the fact that an activity B 
can only start after another activity A has started, label SS, is stated by including 
the set pred(A) in the set pred of B, as can be seen in line 7 of Algorithm A.5.

The complexity analysis of all the algorithms previously described is included in 
A.1, and the equivalence between the definitions given in Sec. 5 and the algorithms 
included in this section is detailed in A.2.

A.1. Complexity analysis

This section presents the complexity analysis of the algorithms previously described.

Proposition A.2. If implemented properly, the worst-case time complexity of Algo-
rithm A.3 is O(n), where n is the number of Repeated Activities of the problem.
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Proof. The worst-case time complexity of line 1 is O(n), since #sources ≤ n. 
The worst-case time complexity of line 2 is also O(n), since #meet ≤ n. The  
time complexity of line 3 is constant. Therefore, the worst-case time complexity of 
Algorithm A.3 is O(n) + O(n) + Θ(1), equal to O(n).

Proposition A.3. If implemented properly, the worst-case time complexity of Algo-
rithms A.4 and A.5 is O(n × nt), where n is the number of Repeated Activities of 
the problem, and nt is the maximum number of times that a repeated activity is 
executed.

Proof. The worst-case time complexity of line 1 is O(n), since #sources ≤ n. 
The worst-case time complexity of line 2 is also O(n), since #meet ≤ n. The  time  
complexity of line 3 is constant. The worst-case time complexity of lines 4–8 is 
O(n × nt) since lines 5–7 (with complexity O(n) from the proof of Proposition A.1) 
are executed at most nt times. Therefore, the worst-case time complexity of Algo-
rithms A.4 and A.5 is O(n) + O(n) + Θ(1) +  O(n × nt) equal  to  O(n × nt).

Proposition A.4. If implemented properly, the worst-case time complexity of Algo-
rithm A.2 is O(c×n×nt+nps2), where n is the number of Repeated Activities of the 
problem, nt is the maximum number of times that a repeated activity is executed, c  
is the number of constraints that appear in the definition of the problem, and nps 
is the number of scheduling activities in the optimized plan.

Proof. The time complexity of lines 1–5 is Θ(nps), since each scheduling activity 
is considered exactly once (each activity uses a specific resource of a specific role). 
The worst-case time complexity of lines 6 and 7 is O(c×n×nt), since the worst-case 
time complexity of the method includeP red is O(n×nt) (Proposition A.2), and this 
method is invoked c times. The worst-case time complexity of lines 9–12 is O(nps2), 
since for each scheduling activity, its predecessors (at most, nps) are considered. 
Therefore, the worst-case time complexity of Algorithm A.2 is O(c ×n× nt + nps2).

Proposition A.5. If implemented properly, the worst-case time complexity of Algo-
rithm A.1 is O(c×n×nt+nps2), where n is the number of Repeated Activities of the 
problem, nt is the maximum number of times that a repeated activity is executed, c  
is the number of constraints that appear in the definition of the problem, and nps 
is the number of scheduling activities in the optimized plan.

Proof. The worst-case time complexity of line 1 is O(c ×n× nt + nps2), by Propo-
sition A.3. The worst-case time complexity of line 3 is O(n), since #role ≤ n. The  
time complexity of line 4 is Θ(nps). The worst-case time complexity of lines 6 and 
15 is O(nps). The time complexity of lines 7–13 is Θ(nps). Therefore, the worst-case 
time complexity of Algorithm A.1 is O(c × n × nt + nps2).
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A.2. Equivalence between definitions in Sec. 5 and

algorithms in Appendix A

The definitions which appear in Sec. 5 define the generation of BPMN models from
a formal point of view, while the algorithms in the appendix describe the same
generation from an implementation point of view (e.g. some information has been
duplicated and ordered in a different way to facilitate the implementation). There-
fore, the types used in the appendix are not exactly the same than the definitions
given throughout the paper. However, both Definition 5.6 and Algorithm A.1 gen-
erate the same BPMN model from the same input ConDec-R model and from the
same solution, as explained in the following.

Regarding the input parameters: (1) Definition 5.6 includes (i) a ConDec-R
process model CR = (Acts, CBP, Res) and (ii) a solution S to a CSP-ConDec
problem as input parameters, while (2) Algorithm A.1 includes (i) a sorted set of
objects of type P&SAct, acts, ordered by st; (ii) a set of objects of type Constraint,
c; (iii) and a set of objects of type Role, r. The input parameters of Algorithm A.1
can be obtained from the input parameters of Definition 5.6 as follows:

• the information for each P&SAct ai in acts (i.e. st, et and res, cf. UML diagram
of Fig. 12) is taken so that ai · st = Sst(ai), ai · et = Set(ai), ai · res = Sres(ai)

(i.e. from the CSP variables which are related to the scheduling activity ai in the
solution to the CSP-ConDec problem, cf. Definition 4.3).
• c = CBP, i.e. the set of objects of type Constraint, c, contains the same constraints

which are included in the ConDec-R model.
• r = {role, (role, #role) ∈ Res, role.resources = {resk, k ∈ [1 . . .#role], resk ·

acts = {ai ∈ acts, ai · res = resk}}}, i.e. there is one object of type Role in
r for each role in Res. Moreover, for each object of type Role role, there are
#role objects of type Resource in the list resources of role. Each object of type
Resource resk contains, in turn, an ordered list of objects of type P&SAct which
are related to the P&S activities which are allocated in that resource.

Furthermore, the equivalence between Definition 5.6 and Algorithm A.1 is
detailed as follows:

• (1) in Definition 5.6 is equivalent to line 2 in Algorithm A.1, i.e. both include a
pool for each role in the resulting BPMN model.
• (2) in Definition 5.6 is equivalent to lines 3–5 in Algorithm A.1, i.e. both include a

BPMN activity for each BP activity, plus one activity related to the start BPMN
activity, plus one activity related to the end BPMN activity.
• (3) in Definition 5.6 is equivalent to lines 6–20 in Algorithm A.1. The set

predecessors in Definition 5.6 (cf. (3)) states the direct precedences between
all the activities, including: the precedences between the P&S activities, and the
precedences in which the BPMN start and end activities are involved. However,
in Algorithm A.1, the precedences in which the BPMN start and end activities
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are involved are handled differently from the rest of activities due to implemen-
tation reasons. The equivalence between (3) in Definition 5.6 and lines 6–20 in
Algorithm A.1 is explained as follows:

— (3)(i) in combination with (3)(a) in Definition 5.6 is equivalent to line
6 in Algorithm A.1, i.e. both include sequence flows between the BPMN
start activity and all the activities whose start time is equal to 0 (i.e. are
direct successors of the start activity). Specifically, in (3)(i) all the prece-
dence relations in which the start activity is involved are included in the set
Predecessors, and in (3)(a) sequence flows between the start activity and all
its direct successors are included. However, in Algorithm A.1, these sequence
flows are directly included in line 6. Note that the start activity is never
involved in parallel merging gateways since this activity does not have any
predecessor.

— (3)(ii) in combination with (3)(a) and 3(b) in Definition 5.6 is equivalent to
lines 15–20 in Algorithm A.1, i.e. both include either a sequence flow or a
parallel merging gateway between the BPMN end activity and all its direct
predecessors. Specifically, in (3)(ii) all the precedence relations in which the
end activity is involved are included in the set Predecessors. In a similar way,
in line 15 of Algorithm A.1, all the direct predecessors of the end activity are
stored in the set finals. Then, if there is only one direct predecessor for the
end activity, a sequence flow between this predecessor and the end activity
is included (lines 16–18 in Algorithm A.1, (3)(a) in Definition 5.6). However,
if there are more than one direct predecessor for the end activity, a parallel
merging gateway between all predecessors and the end activity is included
(lines 19 and 20 in Algorithm A.1, (3)(b) in Definition 5.6). Note that the
end activity may be involved in parallel merging gateways since this activity
may have more than one predecessor.

— (3)(iii) in combination with (3)(a) and 3(b) in Definition 5.6 is equivalent
to lines 7–14 in Algorithm A.1, i.e. both include either a sequence flow or
a parallel merging gateway between each activity and all its direct prede-
cessors. Specifically, in (3)(iii) all the precedence relations in which each
activity is involved are included in the set Predecessors. In a similar way,
in line 7 of Algorithm A.1, all the direct predecessors of each activity are
stored in the map pred. For this, Algorithm A.2 (i.e. CreateDependencies)
is used. Algorithm A.2 is equivalent to (3)(iii) since, as demonstrated in
Proposition A.1, Algorithm A.2 returns a map which relates each activity
with its direct predecessors (cf. Definition 5.4). Then, for each activity (line
8 in Algorithm A.1) if there is only one direct predecessor for that activity, a
sequence flow between this predecessor and the activity is included (lines 9–11
in Algorithm A.1, (3)(a) in Definition 5.6). However, if there are more than
one direct predecessor for that activity, a parallel merging gateway between
all its predecessors and the activity is included (lines 12–14 in Algorithm A.1,



2nd Reading

October 9, 2013 9:20 WSPC/S0218-8430 111-IJCIS 1350009

(3)(b) in Definition 5.6). Note that each activity may be involved in parallel
merging gateways, since it may have more than one predecessor.
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