
Casimir Contribution to the Interfacial Hamiltonian for 3D Wetting

Alessio Squarcini
Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany;

IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany;
and Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria
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Previous treatments of three-dimensional (3D) short-ranged wetting transitions have missed an entropic
or low-temperature Casimir contribution to the binding potential describing the interaction between the
unbinding interface and wall. This we determine by exactly deriving the interfacial model for 3D wetting
from a more microscopic Landau-Ginzburg-Wilson Hamiltonian. The Casimir term changes the
interpretation of fluctuation effects occurring at wetting transitions so that, for example, mean-field
predictions are no longer obtained when interfacial fluctuations are ignored. While the Casimir contribution
does not alter the surface phase diagram, it significantly increases the adsorption near a first-order wetting
transition and changes completely the predicted critical singularities of tricritical wetting, including the
nonuniversality occurring in 3D arising from interfacial fluctuations. Using the numerical renormalization
group, we show that, for critical wetting, the asymptotic regime is extremely narrow with the growth of the
parallel correlation length characterized by an effective exponent in quantitative agreement with Ising
model simulations, resolving a long-standing controversy.
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Interfaces between solids and fluids exhibit a wealth of
physics which can often be studied using effective models
motivated by mesoscopic principles, e.g., the capillary-
wave model of interfacial wandering [1] and models of
surface growth [2]. However, for critical wetting in 3D
systems with short-ranged forces, the details of the inter-
facial model, and understanding how it emerges from a
microscopic framework, are of crucial importance. Critical
wetting refers to the continuous growth of a liquid phase
(for example) at a solid-gas interface (wall) as the temper-
ature is increased toward a wetting temperature and is
associated with the divergence of a parallel correlation
length ξk, characterized by an exponent νk. For compre-
hensive reviews, see Refs. [3–6]. In general, this can be
described accurately using a simple interfacial model
incorporating the surface tension (or stiffness) and a bind

potential determined by integrating the intermolecular
forces over the volume of liquid. Greater care is required
in 3D with short-ranged forces where the binding potential
itself arises from density fluctuations and decays on the
scale of the bulk correlation length. 3D is the upper critical
dimension, and the original renormalization group (RG)
studies predicted strong nonuniversal critical singularities
[7–9], implying that νk ≈ 3.7 for Ising-like systems, very
different from the mean-field prediction νk ¼ 1. However,
these have never been seen in experiments [10,11] nor very
careful Ising model simulations [12–17], which observe
instead an effective exponent νeffk ¼ 1.8� 0.1. Allowing

for a position dependence to the stiffness exacerbated the
problem, since the transition is driven first order [18–20]—
a prediction not seen in the simulations and which also
contradicts the expected Nakanishi-Fisher global surface
phase diagrams which connect consistently wetting to
surface criticality [21]. A likely factor in the resolution
of this controversy is that the binding potential is, in
general, nonlocal arising from correlations within the
wetting layer [22–25]. This can be expressed using a
compact diagrammatic formulation which can be used
for walls of arbitrary shape. In this way, the possibility
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that the wetting transition is driven first order is removed
completely so that the global phase diagram is restored.
While this progress is encouraging, there is a problem.

Since wetting occurs below the critical temperature Tc, it has
been assumed that bulklike fluctuations areunimportant and it
is only the (thermal) wandering of the interface that leads to
nonclassical exponents. This is explicit in derivations of
interfacial Hamiltonians from more microscopic Landau-
Ginzburg-Wilson (LGW)models in which they are identified
via a constrained minimization, equivalent to a mean-field
(MF) approximation of the trace over microscopic degrees of
freedom. This means that binding potentials have been
missing an entropic contribution arising from the multiplicity
of microscopic configurations that correspond to a given
interfacial one—a feature which is known to be important in
molecular descriptions of free interfaces [26–29]. The
entropic contribution to the binding potential is akin to a
thermal Casimir effect—the force between two walls due to
the restriction of bulk fluctuations in a confined fluid [30–33].
At Tc, this force is long-ranged but it is always present, even
away from the critical point where it decays on the scale of the
bulk correlation length [34,35]. For short-ranged wetting,
there is, therefore, an additional entropic or low-temperature
Casimir term in the binding potential, which is a similar range
to theMF contribution. In this Letter, we determine this using
the nonlocal, diagrammatic, formalism by performing prop-
erly the constrained trace for the LGWmodel, which exactly
determines the interfacial Hamiltonian for 3D wetting. We
show that the Casimir term plays an important role at wetting
transitions of all orders, forcing a reappraisal of the accuracy
ofMF and subsequent RG theory and altering even the values
of critical exponents.
Our starting point is the LGW Hamiltonian based on a

magnetizationlike order parameter (see Ref. [21])

H½m� ¼
Z

dr

�
1

2
ð∇mÞ2 þ ϕðmÞ

�
þ
Z
Sψ

dsϕ1½mðsÞ�; ð1Þ

where ϕðmÞ is a double well potential which we assume has
an Ising symmetry and denote m0 the spontaneous mag-
netization and κ the inverse bulk correlation length. Here,
ϕ1 ¼ −gðm −msÞ2=2 is the surface potential with g the
enhancement parameter andms the favored order parameter
at the wall Sψ with Monge parametrization ðx;ψÞ.
Equivalently, h1 ¼ −gms is the surface field. Minimizing
H½m� determines the MF phase diagram, which for a planar
wall shows critical wetting (when −g > κ) and first-order
wetting transitions (for −g < κ). We can also use it to
derive an interfacial model HI½l� with the interfacial
coordinate determined by a crossing criterion so that
m½x;lðxÞ� ¼ 0 on the interface Sl. Formally, this is
identified via expð−βHI½l�Þ ¼

R
D0m expð−βH½m�Þ,

where β ¼ 1=kBT and the prime denotes a constrained
trace over microscopic degrees of freedom respecting the
crossing criterion [36]. This yields

HI½l� ¼ γAl þW½l;ψ �; ð2Þ

where the first term is the surface tension times the
interfacial area describing the free interface (ignoring
curvature terms) and W½l;ψ � is the binding potential
functional describing the interaction with the wall.
To evaluate the constrained trace, it is now customary to

ignore bulk fluctuations and make a MF approximation
which identifies HI½l� ¼ H½mΞ�, where mΞ is the unique
profile that minimizes the LGW Hamiltonian subject to the
crossing criterion. Within the reliable double parabola (DP)
approximation ϕðmÞ ¼ κ2ðjmj −m0Þ2=2, this can be done
analytically. For example, if the interface is a uniform
thickness l from a planar wall (ψ ¼ 0), of lateral area L2

k,
then the binding potential functional reduces to the binding
potential function wMF ¼ WMF=L2

k, which has the well-

known exponential expansion [36]

wMFðlÞ
γ

≈ −
2tg
g − κ

e−κl þ gþ κ

g − κ
e−2κl; ð3Þ

where γ ¼ κm2
0 is the surface tension and t ¼ ðm0 −

msÞ=m0 is the temperaturelike scaling field for critical
wetting. The minimum of wMF determines the MF wetting
layer thickness, while its curvature at this point determines
ξk. Both these length scales diverge continuously as t → 0

when −g > κ. Note that for tricritical wetting (g ¼ −κ) and
first-order wetting (−g < κ) it is necessary to include the
next-order decaying exponential term. For nonplanar inter-
faces (and walls), the nonlocal MF functional WMF½l;ψ �
can also be determined exactly using boundary integral
methods based on the Green function in the wetting layer
[24,25]. However, within the DP approximation, the con-
strained trace can be performed determining the exact
binding potential functional

W½l;ψ � ¼ WMF½l;ψ � þWC½l;ψ �; ð4Þ

which contains a Casimir correction. The proof of this is
rather technical but is outlined in Supplemental Material
[37]. Full details will be published elsewhere [38]. Here, we
limit ourselves to the final result for WC½l;ψ � and the
implications for wetting transitions of all orders. The
Casimir contribution can be represented diagrammatically
similar to the terms in the mean-field contribution but has a
distinct topology. To this end, we introduce two kernels
which connect positions, with respective transverse coor-
dinates s, s0 (denoted by the open circles) on the interface
(upper wavy line) and wall (lower wavy line). We have

ð5Þ
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which was introduced in Ref. [25] in the derivation of
WMF½l;ψ �. Here, nðsÞ is the normal at the wall. We also
define

ð6Þ

where ρ and l are, respectively, the transverse and normal
coordinates of s − s0, J0ðzÞ is the Bessel function of the first
kind and zero order, and κq ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ q2

p
. In terms of these,

the Casimir term for a wetting film at a wall of arbitrary
shape can be written

ð7Þ

which is our central result. Here, the black dots simply
imply integration over the points on the wall and interface
with the appropriate measure for the local area. For thick
wetting films, only the first term, which we refer to as
ðΩCÞ11 (see Supplemental Material [37]), is required.
We now focus on wetting at planar walls. Before

considering the role of interfacial fluctuations, we must
first check if the MF predictions are altered by determining
the Casimir binding potential function wCðlÞ ¼ WC=L2

k for
a uniform wetting layer, which adds to Eq. (3). This can be
determined exactly as [38]

βwCðlÞ ¼
1

4π

Z
dqq ln

�
1 −

gþ κq
g − κq

e−2κql
�
: ð8Þ

This is similar in form to wMFðlÞ but controlled by g rather
than t. For κl ≪ 1, wCðlÞ ∝ 1=l2, which is the familiar
long-ranged Casimir limit [30]. More generally, for −g > κ
the potential is repulsive at short distances, is attractive at
large distances, and possesses a minimum which diverges
continuously as −g approaches κ. For −g < κ, the potential
is purely repulsive (see Fig. 1). In the vicinity of the MF
tricritical point −g ≈ κ, where this qualitative change
occurs, the Casimir potential behaves as

βwCðlÞ ≈
e−2κl

32πl2
½1þ 2ðκ þ gÞl�; ð9Þ

which is of a similar range to wMFðlÞ. While some aspects
of wetting are unchanged, others are altered completely,
even before we consider the role of interfacial fluctuations.
The Nakanishi-Fisher surface phase diagram is unaffected
qualitatively so that, for example, critical wetting still
occurs for −g > κ as t → 0 with ξk ∼ t−1, as before.
However, there are two significant implications. First,
the tricritical wetting transition is very different, since
it is the Casimir term that determines the repulsion.

In dimension d > 1, this decays as e−2κl=lðdþ1Þ=2 which,
at finite T, always dominates over the higher-order MF
contribution. Thus, in dimension d > 3, where interfacial
fluctuations are irrelevant, it follows that the parallel
correlation length diverges as ξk ∼ 1=ðtj ln tjðd−1Þ=2Þ in
contrast to the strict MF prediction ξk ∼ 1=t3=4, which
misses the Casimir term. MF is recovered only on setting
T ¼ 0 or d ¼ ∞. There are also consequences for first-
order wetting and, in particular, the value of the film
thickness leq at the transition which, recall, smoothly
increases as we follow the line of wetting transitions
toward the tricritical point. MF theory predicts
κleq ≈ − lnð1þ g=κÞ, while, in 3D, the Casimir contribu-
tion alters this to

leq ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πβγð1þ g
κÞ

p : ð10Þ

The Casimir repulsion, therefore, dramatically increases the
adsorption for weakly first-order transitions and similarly
enhances the parallel correlation length.
Finally, we consider the nonuniversality occurring in 3D

arising from interfacial fluctuations, controlled by the
wetting parameter ω ¼ kBTκ2=4πΣ, where Σ is the stiff-
ness. Critical exponents for critical wetting are unchanged,
since WC is higher order than WMF. Thus, we anticipate
that, in the asymptotic critical regime, ξk ∼ t−νk , where νk ¼
1=ð1 − ωÞ for 0 < ω < 1=2, νk ¼ 1=ð ffiffiffi

2
p

−
ffiffiffiffi
ω

p Þ2 for
1=2 < ω < 2, and νk ¼ ∞ for ω > 2 [8,9]. For tricritical
wetting, however, the nonuniversality is different from
previous predictions [13,39] and is very similar to critical
wetting containing logarithmic corrections. For 0 < ω <
1=2, the equilibrium film thickness and parallel correlation
length diverge as

FIG. 1. The Casimir contribution to the binding potential for a
wetting layer of uniform thickness, for increasing surface
enhancements, showing the qualitative change from attraction
to repulsion near the MF tricritical point. The dotted lines show
the comparisons between the full result, Eq. (8), and the leading
term arising from ðΩCÞ11, which is near exact.
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κhli ≈ ð1þ 2ωÞ ln ξk − ln ln ξk ð11Þ

and

ξk ∼ ðtj ln tjÞ−νk ; ð12Þ

respectively, with νk ¼ 1=ð1 − ωÞ. Note that on setting
ω ¼ 0, corresponding to infinite stiffness, these do not
recover MF theory, as has been always assumed previously,
but rather the corrected results based on minimizing the
total binding potential wðlÞ allowing for the Casimir
contribution. For ω > 1=2, where the tricritical phase
boundary is shifted away from −g ¼ κ, the exponents
are identical to those for critical wetting.
These features, together with the onset of asymptotic

criticality, can be illustrated most simply by setting −g ¼ κ
and using the full diagrammatic structure of the functionals
WMF and WC to construct HI½l�. When the interface is
nonplanar, the leading-order MF attraction and Casimir
repulsion remain local, while the nonlocal MF repulsion
vanishes. Consequently, the interfacial Hamiltonian is
local, HI½l� ¼

R
dxf½ΣðlÞ=2�ð∇lÞ2 þ wðlÞg, containing

a Casimir modified binding potential

wðlÞ ≈ −tγe−κl þ ωΣ
8

e−2κl

ðκlÞ2 : ð13Þ

Here, ΣðlÞ ¼ Σþ wðlÞ is a position-dependent stiffness
which may be fully accounted for in the RG analysis,
although it plays no significant role. Note that for 0 < ω <
1=2 this potential models tricriticality, while, strictly

speaking, it models critical wetting for ω > 1=2, since
the phase boundary is shifted (although the critical behavior
is identical to that for tricritical wetting). In Fig. 2, we show
the growth of the parallel correlation length, obtained using
the highly accurate numerical, nonlinear, RG [5,40] for two
values of ω, the larger value corresponding to that pertinent
to the 3D Ising model [41,42]. For ω ¼ 1=4, there is
excellent agreement with the predictions Eqs. (11) and (12)
over all length scales. However, for ω ¼ 0.8 the asymptotic
regime, where νk ≈ 3.7, is reached only when ξk is
mesoscopically large. For thinner wetting layers, for which
102 ≲ κξk ≲ 103, we find an effective exponent νeffk ≈ 2,

close to the value νeffk ¼ 1.8� 0.1 measured in the Ising
model simulations, which corresponded precisely to this
range of length scales [16].
In summary, in this Letter, we have pointed out that

previous theories of 3D short-ranged wetting have missed a
thermal Casimir, or entropic, contribution to the binding
potential, which we have determined exactly for the LGW
model within the DP approximation. This decays exponen-
tially, similar to the MF contribution, and is qualitatively
different for first-order and critical wetting. Its presence
changes the interpretation of thermal fluctuation effects at
wetting transitions which arise both from it and from
capillary-wave-like interfacial wandering. Both are missing
in MF descriptions. The Casimir term strongly affects first-
order, critical, and tricritical wetting, where it alters the
exponents in all dimensions, including the nonuniversality
in 3D when we allow for interfacial fluctuations. Our
central conclusions remain valid beyond the present DP
approximation, at least for thick wetting layers. An entropic
contribution will be present for other systems, and we
anticipate it will be similar when there are short-ranged
fluid-fluid but long-ranged wall-fluid forces. This is also
missing in MF treatments of wetting and may influence
surface phase behavior in the vicinity of the critical
point [43].

J. M. R.-E. acknowledges financial support from Junta
de Andalucía through Grants No. US-1380729 and
No. P20_00816, cofunded by EU FEDER. A. S. acknowl-
edges FWF Der Wissenschaftsfonds for funding through
the Lise-Meitner Fellowship (Grant No. M 3300-N.) and
LPTMC, Sorbonne Université for a research stay.
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