Exact value of 3 color weak Rado number

M.P. Revuelta ${ }^{1,2}$
Departamento de Matemática Aplicada I
Universidad de Sevilla
Sevilla, Spain
L. Boza, J. M. Marín, M. I. Sanz ${ }^{3}$
Departamento de Matemática Aplicada I
Universidad de Sevilla
Sevilla, Spain

Abstract

For integers k, n, c with $k, n \geq 1$ and $c \geq 0$, the n color weak Rado number $W R_{k}(n, c)$ is defined as the least integer N, if it exists, such that for every n coloring of the set $\{1,2, \ldots, N\}$, there exists a monochromatic solution in that set to the equation $x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}$, such that $x_{i} \neq x_{j}$ when $i \neq j$. If no such N exists, then $W R_{k}(n, c)$ is defined as infinite.

In this work, we consider the main issue regarding the 3 color weak Rado number for the equation $x_{1}+x_{2}+c=x_{3}$ and the exact value of the $W R_{2}(3, c)=13 c+22$ is established.

Keywords:
Schur numbers, sum-free sets, weak Schur numbers, weakly sum-free sets, Rado numbers, weak Rado numbers.

1 Introduction

In terms of coloring, the Schur number $S_{2}(n)[14]$ is the least positive integer N such that for every n-coloring of $\{1,2, \ldots, N\}$,
$\Delta:\{1,2, \ldots, N\} \longrightarrow\{1,2, \ldots, n\}$, there exists a monochromatic solution to the equation $x_{1}+x_{2}=x_{3}$, such that $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\Delta\left(x_{3}\right)$ where x_{1} and x_{2} need not be distinct.

In 1933, Rado [9], [10] generalized the work of Schur to arbitrary systems of linear equations. Given a system of linear equations L and a natural number n, the least integer N (if it exists) such that for every coloring of the set $\{1,2, \ldots, N\}$ with n colors there is a monochromatic solution to L, which is called the n color Rado number for L. If no such integer N exists, then the n color Rado number for the system L is taken to be infinite.

Eighty-three years after the first Rado results, very little progress has been obtained for some systems of linear equations. Bur and Loo [2] were able to determine the 2 color Rado number for the equations $x_{1}+x_{2}+c=x_{3}$ and $x_{1}+x_{2}=k x_{3}$ for every integer c and for every positive integer $k[3]$.

In 1993, Schaal [12] determined the 2 color Rado number $R_{k}(2, c)$ for the equation $x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}$. He also obtained [13] the 3 color Rado number $R_{2}(3, c)$. There are several results due to Schaal and other authors concerning 2 color and 3 color Rado numbers for particular equations, see [7], [8], [11] and other authors [6]. In addition, recently we have studied when $R_{k}(n, c)$ is finite or infinite and we have obtained new exacts values [1]. In this work, we consider a generalization of the Rado numbers. For every integer $c \geq 0, n \geq 1$, let $W R_{2}(n, c)$ be the least integer N (if it exists) such that, for every coloring of the set $\{1,2, \ldots, N\}$ with n colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}+c=x_{3}$, where $x_{1} \neq x_{2}$. The numbers $W R_{2}(n, c)$ are called weak Rado numbers.
$W R_{2}(n, c)$ can be defined equivalently as the greatest N, such that the set $\{1,2, \ldots, N-1\}$ can be partitioned into n sets $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, such that for any $x_{1}, x_{2} \in A_{i}$ then $x_{1}+x_{2}+c \notin A_{i}, \forall i$ where $x_{1} \neq x_{2}$. The sets $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are weakly sum free for the equation $x_{1}+x_{2}+c=x_{3}$.

In 1952, Walker [15] claimed the value $W R_{2}(5,0)=196$, without proof. Sixty years later, we have shown $W R_{2}(5,0) \geq 196$ [4] and Schaal et al.[5] have obtained the number $W R_{2}(2, c)$ for every integer c.

[^0]
2 Main Result

Theorem 2.1 $W R_{2}(3, c)=13 c+22$ for any $c>0$.

2.1 Lower bound

Lemma 2.2 $W R_{3}(2, c) \geq 13 c+22$ for any $c>0$.

Proof.

Consider the following partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ of $\{1, \ldots, 13 c+21\}$:

$$
\left\{\begin{aligned}
A_{1}= & \{1,2, \ldots, c+2\} \cup\{3 c+7, \ldots, 4 c+7\} \cup\{9 c+17, \ldots, \\
& 10 c+17\} \cup\{12 c+21, \ldots, 13 c+21\} \\
A_{2}= & \{c+3, c+4, \ldots, 3 c+6\} \cup\{10 c+18, \ldots, 12 c+20\} \\
A_{3}= & \{4 c+8,4 c+9, \ldots, 9 c+16\}
\end{aligned}\right.
$$

$\left\{A_{1}, A_{2}, A_{3}\right\}$ is a partition of $\{1, \ldots, 13 c+21\}$.
We prove that this partition is weakly sum free, i.e. if $x_{1}, x_{2} \in A_{i}$, with $x_{1} \neq x_{2}$ then $x_{1}+x_{2}+c \notin A_{i}$.

We assume, without any loss of generality, that $x_{1}<x_{2}$.
Case 1: $x_{1}, x_{2} \in A_{1}$

- If $x_{2} \leq c+2$, then $c+3 \leq x_{1}+x_{2}+c \leq 3 c+3$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $3 c+7 \leq x_{2} \leq 4 c+7$ then $4 c+8 \leq x_{1}+x_{2}+c \leq 9 c+13$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $9 c+17 \leq x_{2} \leq 10 c+17$, we have:
- If $x_{1} \leq c+2$ then $10 c+18 \leq x_{1}+x_{2}+c \leq 12 c+19$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $3 c+7 \leq x_{1}$ then $13 c+24 \leq x_{1}+x_{2}+c$, therefore $x_{1}+x_{2}+c \notin A_{1}$.
- If $x_{2} \geq 12 c+21$ then $x_{1}+x_{2}+c \geq 13 c+22$, therefore $x_{1}+x_{2}+c \notin A_{1}$.

Case 2: $x_{1}, x_{2} \in A_{2}$ and $x_{1} \geq c+3$

- If $x_{2} \leq 3 c+6$, then $3 c+7 \leq x_{1}+x_{2}+c \leq 7 c+11$, therefore $x_{1}+x_{2}+c \notin A_{2}$.
- If $x_{2} \geq 10 c+18$ then $12 c+21 \leq x_{1}+x_{2}+c$, therefore $x_{1}+x_{2}+c \notin A_{2}$.

Case 3: $x_{1}, x_{2} \in A_{3}$
Since $9 c+17 \leq x_{1}+x_{2}+c$, then $x_{1}+x_{2}+c \notin A_{3}$.

2.2 Upper bound

Lemma 2.3 $W R_{3}(2, c) \leq 13 c+22$ for any $c>0$.

Proof.

The upper bound is obtained considering all 3-colorings of the positive integers 1,2 and 3 . To the elements of the sets A_{1}, A_{2} and A_{3}, we assign the following colors $\Delta\left(\left\{A_{1}\right\}\right)=i_{1}, \Delta\left(\left\{A_{2}\right\}\right)=i_{2}, \Delta\left(\left\{A_{3}\right\}\right)=i_{3}$, where i_{1}, i_{2}, i_{3} are three different colors.

Five main cases are considered:
Case $1 \quad A_{1} \supseteq\{1,2,3\}$.
Case $2 \quad A_{1} \supseteq\{1,2\}$ and $A_{3} \supseteq\{3\}$.
Case $3 \quad A_{1} \supseteq\{1,3\}$ and $A_{2} \supseteq\{2\}$.
Case $4 \quad A_{1} \supseteq\{1\}$ and $A_{2} \supseteq\{2,3\}$.
Case $5 \quad A_{1} \supseteq\{1\}, A_{2} \supseteq\{2\}$ and $A_{3} \supseteq\{3\}$.
We have to obtain weakly sum free subsets for the equation $x_{1}+x_{2}+c=x_{3}$.
Let $f\left(\left\{A_{i}\right\}\right)$ be subsets containing the monochromatic solutions of the elements of the sets $A_{i}, i=1,2,3$.

The key of the proof is the following:

- If $a \in f\left(\left\{A_{i}\right\}\right) \cap f\left(\left\{A_{j}\right\}\right)$, with $i \neq j$ then $a \in A_{k}$ with $k \neq i, j$.
- If $a \in f\left(\left\{A_{1}\right\}\right) \cap f\left(\left\{A_{2}\right\}\right) \cap f\left(\left\{A_{3}\right\}\right)$, then $a \notin A_{i}, i=1,2,3$.

References

[1] S.D. Adhikari, L. Boza, S. Eliahou, J.M. Marín, M.P. Revuelta and M.I. Sanz. On the n-color Rado number for the equation $x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}$. Mathematics of Computation, 85:2047-2064, 2016.
[2] S.A. Burr and S. Loo. On Rado number I. Preprint.
[3] S.A. Burr and S. Loo. On Rado number II. Preprint.
[4] S. Eliahou, J. M. Marín, M. P. Revuelta and M. I. Sanz. Weak Schur numbers and the search for G.W. Walker's lost partitions. Computers and Mathematics with Applications, 63:175-182, 2012.
[5] D. Flint, B. Lowery and D. Schaal. Distinct Rado Number for $x_{1}+x_{2}+c=x_{3}$. Ars Combinatoria, 110:331-342, 2013.
[6] S. Guo and Z-W Sun. Determination of the two-color Rado number for $a_{1} x_{1}+$ $a_{2} x_{2}+\ldots+a_{m} x_{m}=x_{0}$. J.Combinatory Theory Ser. A, 115(2):345-353, 2008.
[7] S. Jones and D. Schaal. Two-color Rado numbers for $x+y+c=k z$. Discrete Mathematics, 289:63-69, 2004.
[8] W. Kosek and D. Schaal. Rado Numbers for the Equation $x_{1}+\ldots+x_{m-1}+c=$ x_{m} for Negative Values of c. Advances in Applied Mathematics, 27:805-815, 2001.
[9] R. Rado. Studien zur Kombinatorik. Math. Z., 36:424-480, 1933.
[10] R. Rado. Some recent results in combinatorial analysis. Congres International des Mathematiciens, Oslo, 1936.
[11] K.Rendall and D. Schaal Three-color Rado Number for $x_{1}+x_{2}+c=x_{3}$ for Negative Values of c. Congressus Numerantium, 183:5-10, 2006.
[12] D. Schaal. On generalized Schur Numbers. Congressus Numeratium, 98:178187, 1993.
[13] D. Schaal. A family of 3-color Rado Numbers. Congressus Numerantium, 111:150-160, 1995.
[14] I. Schur. Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jber. Deutsch. Math.Verein., 25:114-117, 1916.
[15] G.W. Walker. A problem in partitioning. The American Mathematical Monthly. 59: 253, 1952.

[^0]: ${ }_{1}$ Thanks to Departamento de Matemática Aplicada I
 Universidad de Sevilla
 ${ }^{2}$ Email: pastora@us.es
 ${ }^{3}$ Email: boza@us.es, jmarin@us.es, isanz@us.es

