Exact value of 3 color weak Rado number

M.P. Revuelta 1,2

Departamento de Matemática Aplicada I Universidad de Sevilla Sevilla, Spain

L. Boza, J. M. Marín, M. I. Sanz³

Departamento de Matemática Aplicada I Universidad de Sevilla Sevilla, Spain

Abstract

For integers k, n, c with k, $n \ge 1$ and $c \ge 0$, the n color weak Rado number $WR_k(n,c)$ is defined as the least integer N, if it exists, such that for every n-coloring of the set $\{1, 2, ..., N\}$, there exists a monochromatic solution in that set to the equation $x_1 + x_2 + ... + x_k + c = x_{k+1}$, such that $x_i \ne x_j$ when $i \ne j$. If no such N exists, then $WR_k(n,c)$ is defined as infinite.

In this work, we consider the main issue regarding the 3 color weak Rado number for the equation $x_1 + x_2 + c = x_3$ and the exact value of the $WR_2(3, c) = 13c + 22$ is established.

Keywords:

Schur numbers, sum-free sets, weak Schur numbers, weakly sum-free sets, Rado numbers, weak Rado numbers.

1 Introduction

In terms of coloring, the Schur number $S_2(n)$ [14] is the least positive integer N such that for every *n*-coloring of $\{1, 2, ..., N\}$,

 $\Delta : \{1, 2, ..., N\} \longrightarrow \{1, 2, ..., n\}$, there exists a monochromatic solution to the equation $x_1 + x_2 = x_3$, such that $\Delta(x_1) = \Delta(x_2) = \Delta(x_3)$ where x_1 and x_2 need not be distinct.

In 1933, Rado [9], [10] generalized the work of Schur to arbitrary systems of linear equations. Given a system of linear equations L and a natural number n, the least integer N (if it exists) such that for every coloring of the set $\{1, 2, ..., N\}$ with n colors there is a monochromatic solution to L, which is called the n color Rado number for L. If no such integer N exists, then the n color Rado number for the system L is taken to be infinite.

Eighty-three years after the first Rado results, very little progress has been obtained for some systems of linear equations. Bur and Loo [2] were able to determine the 2 color Rado number for the equations $x_1 + x_2 + c = x_3$ and $x_1 + x_2 = kx_3$ for every integer c and for every positive integer k [3].

In 1993, Schaal [12] determined the 2 color Rado number $R_k(2, c)$ for the equation $x_1 + x_2 + \ldots + x_k + c = x_{k+1}$. He also obtained [13] the 3 color Rado number $R_2(3, c)$. There are several results due to Schaal and other authors concerning 2 color and 3 color Rado numbers for particular equations, see [7], [8], [11] and other authors [6]. In addition, recently we have studied when $R_k(n, c)$ is finite or infinite and we have obtained new exacts values [1]. In this work, we consider a generalization of the Rado numbers. For every integer $c \ge 0$, $n \ge 1$, let $WR_2(n, c)$ be the least integer N (if it exists) such that, for every coloring of the set $\{1, 2, ..., N\}$ with n colors, there exists a monochromatic solution to the equation $x_1 + x_2 + c = x_3$, where $x_1 \neq x_2$. The numbers $WR_2(n, c)$ are called *weak Rado numbers*.

 $WR_2(n,c)$ can be defined equivalently as the greatest N, such that the set $\{1, 2, ..., N-1\}$ can be partitioned into n sets $\{A_1, A_2, ..., A_n\}$, such that for any $x_1, x_2 \in A_i$ then $x_1 + x_2 + c \notin A_i$, $\forall i$ where $x_1 \neq x_2$. The sets $\{A_1, A_2, ..., A_n\}$ are weakly sum free for the equation $x_1 + x_2 + c = x_3$.

In 1952, Walker [15] claimed the value $WR_2(5,0) = 196$, without proof. Sixty years later, we have shown $WR_2(5,0) \ge 196$ [4] and Schaal et al.[5] have obtained the number $WR_2(2,c)$ for every integer c.

¹ Thanks to Departamento de Matemática Aplicada I

Universidad de Sevilla

² Email: pastora@us.es

 $^{^3}$ Email: boza@us.es, jmarin@us.es, isanz@us.es

2 Main Result

Theorem 2.1 $WR_2(3, c) = 13c + 22$ for any c > 0.

2.1 Lower bound

Lemma 2.2 $WR_3(2,c) \ge 13c + 22$ for any c > 0.

Proof.

Consider the following partition $\{A_1, A_2, A_3\}$ of $\{1, ..., 13c + 21\}$:

$$\begin{cases}
A_1 = \{1, 2, \dots, c+2\} \cup \{3c+7, \dots, 4c+7\} \cup \{9c+17, \dots, 10c+17\} \cup \{12c+21, \dots, 13c+21\} \\
A_2 = \{c+3, c+4, \dots, 3c+6\} \cup \{10c+18, \dots, 12c+20\} \\
A_3 = \{4c+8, 4c+9, \dots, 9c+16\}
\end{cases}$$

 $\{A_1, A_2, A_3\}$ is a partition of $\{1, \ldots, 13c + 21\}$.

We prove that this partition is weakly sum free, i.e. if $x_1, x_2 \in A_i$, with $x_1 \neq x_2$ then $x_1 + x_2 + c \notin A_i$.

We assume, without any loss of generality, that $x_1 < x_2$.

Case 1: $x_1, x_2 \in A_1$

- If $x_2 \le c+2$, then $c+3 \le x_1+x_2+c \le 3c+3$, therefore $x_1+x_2+c \notin A_1$.
- If $3c + 7 \le x_2 \le 4c + 7$ then $4c + 8 \le x_1 + x_2 + c \le 9c + 13$, therefore $x_1 + x_2 + c \notin A_1$.
- If $9c + 17 \le x_2 \le 10c + 17$, we have: • If $x_1 \le c+2$ then $10c+18 \le x_1+x_2+c \le 12c+19$, therefore $x_1+x_2+c \notin A_1$. • If $3c + 7 \le x_1$ then $13c + 24 \le x_1 + x_2 + c$, therefore $x_1 + x_2 + c \notin A_1$.
- If $x_2 \ge 12c + 21$ then $x_1 + x_2 + c \ge 13c + 22$, therefore $x_1 + x_2 + c \notin A_1$.

Case 2: $x_1, x_2 \in A_2$ and $x_1 \ge c+3$

- If $x_2 \leq 3c+6$, then $3c+7 \leq x_1+x_2+c \leq 7c+11$, therefore $x_1+x_2+c \notin A_2$.
- If $x_2 \ge 10c + 18$ then $12c + 21 \le x_1 + x_2 + c$, therefore $x_1 + x_2 + c \notin A_2$.

Case 3: $x_1, x_2 \in A_3$

Since $9c + 17 \le x_1 + x_2 + c$, then $x_1 + x_2 + c \notin A_3$.

2.2 Upper bound

Lemma 2.3 $WR_3(2,c) \le 13c + 22$ for any c > 0.

Proof.

The upper bound is obtained considering all 3-colorings of the positive integers 1, 2 and 3. To the elements of the sets A_1 , A_2 and A_3 , we assign the following colors $\Delta(\{A_1\}) = i_1$, $\Delta(\{A_2\}) = i_2$, $\Delta(\{A_3\}) = i_3$, where i_1, i_2, i_3 are three different colors.

Five main cases are considered:

Case 1 $A_1 \supseteq \{1, 2, 3\}$. Case 2 $A_1 \supseteq \{1, 2\}$ and $A_3 \supseteq \{3\}$. Case 3 $A_1 \supseteq \{1, 3\}$ and $A_2 \supseteq \{2\}$. Case 4 $A_1 \supseteq \{1\}$ and $A_2 \supseteq \{2, 3\}$. Case 5 $A_1 \supseteq \{1\}$, $A_2 \supseteq \{2\}$ and $A_3 \supseteq \{3\}$. We have to obtain weakly sum free subsets for the equation $x_1 + x_2 + c = x_3$.

Let $f(\{A_i\})$ be subsets containing the monochromatic solutions of the elements of the sets A_i , i = 1, 2, 3.

The key of the proof is the following:

- If $a \in f(\{A_i\}) \cap f(\{A_i\})$, with $i \neq j$ then $a \in A_k$ with $k \neq i, j$.
- If $a \in f(\{A_1\}) \cap f(\{A_2\}) \cap f(\{A_3\})$, then $a \notin A_i$, i = 1, 2, 3.

References

- [1] S.D. Adhikari, L. Boza, S. Eliahou, J.M. Marín, M.P. Revuelta and M.I. Sanz. On the n-color Rado number for the equation $x_1 + x_2 + ... + x_k + c = x_{k+1}$. *Mathematics of Computation*, 85:2047-2064, 2016.
- [2] S.A. Burr and S. Loo. On Rado number I. Preprint.
- [3] S.A. Burr and S. Loo. On Rado number II. Preprint.
- [4] S. Eliahou, J. M. Marín, M. P. Revuelta and M. I. Sanz. Weak Schur numbers and the search for G.W. Walker's lost partitions. *Computers and Mathematics* with Applications, 63:175-182, 2012.
- [5] D. Flint, B. Lowery and D. Schaal. Distinct Rado Number for $x_1 + x_2 + c = x_3$. Ars Combinatoria, 110:331–342, 2013.

- [6] S. Guo and Z-W Sun. Determination of the two-color Rado number for $a_1x_1 + a_2x_2 + \ldots + a_mx_m = x_0$. J. Combinatory Theory Ser. A, 115(2):345–353, 2008.
- [7] S. Jones and D. Schaal. Two-color Rado numbers for x + y + c = kz. Discrete Mathematics, 289:63–69, 2004.
- [8] W. Kosek and D. Schaal. Rado Numbers for the Equation $x_1 + ... + x_{m-1} + c = x_m$ for Negative Values of c. Advances in Applied Mathematics, 27:805–815, 2001.
- [9] R. Rado. Studien zur Kombinatorik. Math. Z., 36:424–480, 1933.
- [10] R. Rado. Some recent results in combinatorial analysis. Congres International des Mathematiciens, Oslo, 1936.
- [11] K.Rendall and D. Schaal Three-color Rado Number for $x_1 + x_2 + c = x_3$ for Negative Values of c. *Congressus Numerantium*, 183:5–10, 2006.
- [12] D. Schaal. On generalized Schur Numbers. Congressus Numeratium, 98:178– 187, 1993.
- [13] D. Schaal. A family of 3-color Rado Numbers. Congressus Numerantium, 111:150–160, 1995.
- [14] I. Schur. Uber die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. Jber. Deutsch. Math.-Verein., 25:114–117, 1916.
- [15] G.W. Walker. A problem in partitioning. The American Mathematical Monthly. 59: 253, 1952.