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Abstract

For integers k, n, ¢ with k&, n > 1 and ¢ > 0, the n color weak Rado number
W Ry(n,c) is defined as the least integer N, if it exists, such that for every n-
coloring of the set {1,2,..., N}, there exists a monochromatic solution in that set
to the equation x1 + x2 + ... + o + ¢ = @41, such that x; # x; when ¢ # j. If no
such N exists, then W Ry (n, c) is defined as infinite.

In this work, we consider the main issue regarding the 3 color weak Rado number
for the equation 1 + x2 + ¢ = x3 and the exact value of the WRy(3,¢) = 13c + 22
is established.
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1 Introduction

In terms of coloring, the Schur number Sy(n) [14] is the least positive integer
N such that for every n-coloring of {1,2,..., N},

A:{1,2,..,N} — {1,2,...,n}, there exists a monochromatic solution to
the equation z1 + xo = w3, such that A(x;) = A(zy) = A(x3) where z; and
9 need not be distinct.

In 1933, Rado [9], [10] generalized the work of Schur to arbitrary systems of
linear equations. Given a system of linear equations L and a natural number
n, the least integer N (if it exists) such that for every coloring of the set
{1,2, ..., N} with n colors there is a monochromatic solution to L, which is
called the n color Rado number for L. If no such integer N exists, then the n
color Rado number for the system L is taken to be infinite.

Eighty-three years after the first Rado results, very little progress has been
obtained for some systems of linear equations. Bur and Loo [2] were able to
determine the 2 color Rado number for the equations x; + x5 + ¢ = x3 and
x1 + xo = ka3 for every integer ¢ and for every positive integer k [3].

In 1993, Schaal [12] determined the 2 color Rado number R(2,c) for the
equation xy + x5+ ...+ x + ¢ = rx,1. He also obtained [13] the 3 color Rado
number Ry(3,c¢). There are several results due to Schaal and other authors
concerning 2 color and 3 color Rado numbers for particular equations, see
[7], [8], [11] and other authors [6]. In addition, recently we have studied
when Ry (n, ¢) is finite or infinite and we have obtained new exacts values [1].
In this work, we consider a generalization of the Rado numbers. For every
integer ¢ > 0, n > 1, let W Ry(n, c) be the least integer N (if it exists) such
that, for every coloring of the set {1,2,..., N} with n colors, there exists a
monochromatic solution to the equation xy + x9 + ¢ = x3, where x1 # 5. The
numbers W Ry (n, ¢) are called weak Rado numbers.

W Ry(n,c) can be defined equivalently as the greatest N, such that the
set {1,2,...,N — 1} can be partitioned into n sets {A;, As, ..., A, }, such that
for any x;,29 € A; then zy + x5 + ¢ ¢ A;, Vi where x; # z5. The sets
{Ay, Ag, ..., A, } are weakly sum free for the equation xi + x2 + ¢ = 3.

In 1952, Walker [15] claimed the value W Ry (5,0) = 196, without proof.
Sixty years later, we have shown W R5(5,0) > 196 [4] and Schaal et al.[5] have
obtained the number W R5(2, ¢) for every integer c.
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2 Main Result
Theorem 2.1 WRy(3,c) = 13c+ 22 for any ¢ > 0.

2.1 Lower bound
Lemma 2.2 WR3(2,¢) > 13¢+ 22 for any ¢ > 0.

Proof.
Consider the following partition {A;, As, A3} of {1,...,13¢ + 21}:

¢

A ={1,2,...,c+2}U{3c+7,...,4c+ T} U{9c+ 17, ...,
10c + 17} U {12c¢+21,...,13c + 21}

Ay ={c+3,c+4,... . 3c+6}U{10c+18,...,12c + 20}

\Agz{4c+8,4c+9,...,96+16}

{Ay, Ay, A3} is a partition of {1,...,13¢c+ 21}.
We prove that this partition is weakly sum free, i.e. if z1, 29 € A;, with
Ty # x9 then o1 + 29+ ¢ ¢ A,
We assume, without any loss of generality, that x; < x».
Case 1: z1,29 € A
o If x9 < c¢+2, then c+3 < 21+ 23+ ¢ < 3¢+ 3, therefore 1 + 29+ ¢ ¢ Aj.
e I[f 3¢+ 7 < x9g <4dc+ 7 then 4c+ 8 < x1 + 29 + ¢ < 9c¢ + 13, therefore
x1t+ T+ A
e If 9¢ + 17 < x5 < 10c¢ + 17, we have:
- If 21 < ¢+2then 10c+18 < x14x94c < 12¢+19, therefore z1+ax9+c ¢ A;.
- If 3¢+ 7 < xy then 13¢ + 24 < 1 + x5 + ¢, therefore z1 + o + ¢ & A;.

o If xz9 > 12¢+ 21 then 1 + x9 + ¢ > 13c + 22, therefore z1 + x5 + ¢ ¢ A;.
Case 2: z1,20 € Ay and 21 > c+ 3

o If 25 < 3c+6, then 3c+7 < z1+x9+c¢ < Te+ 11, therefore 1 + 9+ ¢ ¢ As.

o If x5 > 10c + 18 then 12¢ 4+ 21 < 2y + x9 + ¢, therefore z1 + x5 + ¢ ¢ As.

Case 3: z1,19 € Aj
Since 9¢ + 17 < x1 + x93 + ¢, then z1 + 29 + ¢ ¢ As.



2.2 Upper bound
Lemma 2.3 WR3(2,¢) < 13¢+ 22 for any ¢ > 0.

Proof.

The upper bound is obtained considering all 3-colorings of the positive
integers 1, 2 and 3. To the elements of the sets Ay, Ay and As, we assign the
following colors A({A1}) = i1, A({Asx}) = ia, A({As}) = i3, where iy, 19,13
are three different colors.

Five main cases are considered:

Case 1 A; D{1,2, 3}.

Case 2 A; D {1, 2} and A3 D {3}.

Case 3 A; D {1, 3} and A, D {2}.

Case 4 A; D {1} and A; D {2, 3}.

Case 5 A; D {1}, Ay, D {2} and A3 D {3}.

We have to obtain weakly sum free subsets for the equation 1 +z2+c = x3.

Let f({A;}) be subsets containing the monochromatic solutions of the
elements of the sets A;, i = 1,2, 3.

The key of the proof is the following:
o Ifae f{A}) N f({A;}), with i # j then a € Ay with k # 4, j.
e Ifae f({A1}) N f({A2}) N f({As}), thena & A;, i =1,2,3.
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