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a b s t r a c t

This paper is devoted to the study of relationships between solutions of Stampacchia
and Minty vector variational-like inequalities, weak and strong Pareto solutions of vector
optimization problems and vector critical points in Banach spaces under pseudo-invexity
and pseudo-monotonicity hypotheses. We have extended the results given by Gang and
Liu (2008) [22] to Banach spaces and the relationships obtained for weak efficient points
in Santos et al. (2008) [21] are completed and enabled to relate vector critical points,
weak efficient points, solutions of the Minty and Stampacchia weak vector variational-
like inequalities problems and solutions of perturbed vector variational-like inequalities
problems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Historically, the variational inequality problem was introduced by Hartman and Stampacchia in their seminal paper [1].
The early studies were set in the context of calculus of variation/optimal control theory and in connection with the
solutions of boundary value problems posed in the form of differential equations. Economist and management scientists
are particularly interested in the infinite dimensional version.

It is well known that variational inequalities appear naturally in problems from Physics, Economics, Optimization
and Control, Elasticity and the Applied Sciences (see for instance, [2–4]). One of the most closely related problems with
a variational inequality is the well known Wardrop’s principle for traffic equilibrium problems [5]. This is based on
determining whether a path should have a positive flow. Under mild conditions Wardrop’s principle is formulated as a
variational inequality.

Variational inequalities are knowneither in the formpresented by Stampacchia [6] or in the form introduced byMinty [7].
The Minty variational inequalities have been proved to characterize a kind of equilibrium more qualified than

Stampacchia variational inequalities [8]. Vector extensions of Stampacchia and Minty variational inequalities have been
introduced in Giannessi [9,10].
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In 1980, Giannessi [9] extended the classical Stampacchia variational inequality for vector-valued functions, called a
vector Stampacchia variational inequality, with further applications to alternative theorems. Since then, Stampacchia vector
variational inequalities and their generalizations have been used as tools to solve vector optimization problems.

Let K be a nonempty subset of Rn and F be a vector-valued mapping from K into Rn. The Minty Vector Variational
Inequality (MVVI) [11] associated with F and K is to find y ∈ K such that

F(x)(y − x) ≤ 0, ∀x ∈ K

y is then called a solution to (MVVI) or a Minty solution with respect to F and K . In some recent contributions [12], this
problem has been termed a ‘‘dual’’ variational inequality problem in order to indicate its close relationship to the classical
‘‘primal’’ Stampacchia Vector Inequality (SVVI) associated with F and K which consists in finding y ∈ K such that

F(y)(x − y) ≥ 0, ∀x ∈ K .

The terminology utilized here is due to Giannessi [10].
Minty variational inequalities are considered as related to the scalar minimization problem in which the objective

function is a primitive of the operator involved in the inequality itself.
In 1998, Giannessi [10] first gave a direct application ofMinty Vector Variational Inequality to establish that the necessary

and sufficient conditions for a point to be a solution of the Vector Optimization Problem for differentiable and convex
functions are that the point should be a solution of Minty Vector Variational Inequality.

The vector variational inequality problems have been studied intensively because they can be efficient tools for
investigating vector optimization problems and also because they provide a mathematical model for the problem
equilibrium in a mechanical structure when there are several conflicting criteria under consideration, such as weight, cost,
resistance, etc. Also, the vector variational inequality was studied in infinite dimensional spaces, see, for example [13,14].
Chen and Yang [14] discussed equivalence relations among a vector complementarity problem, a vector variational
inequality problem and a weak minimal element problem in Banach spaces.

In the scalar case, Mancino and Stampacchia [15] obtained the following result: if F : S ⊂ Rn
→ Rn is the gradient of a

convex function f : S → R and S is an open and convex set, then the Variational Inequality problem (VIP) is equivalent to
the optimization problem (MP):

(MP) : min f (x)
subject to x ∈ S


.

Both (MP) and (VIP) aswell as several other classical problems canbe viewed as special realizations of an abstract equilibrium
problem. Given a set K ⊂ Rn, consider a bifunction G : K × K → R, and the equilibrium problem is defined as follows: find
x̄ ∈ K such that G(x̄, y) ≥ 0, ∀y ∈ K .

The following classical problems can be cast into this format:

• (MP): G(x, y) = f (y) − f (x).
• (VIP): G(x, y) = F(x)(y − x).
• Saddle point problem: G(x, y) = h(y1, x2) − h(x1, y2) where x = (x1, x2) and y = (y1, y2).
• Nash equilibrium problem in a non-cooperative game:

G(x, y) =

−
i∈I

fi(xi, x−i)

where fi(xi, x−i) is the loss function of player i. This function depends both on his own strategy xi and on the strategies
x−i = (xj)j∈I\i of other players where x = (xi) and y = (x−i).

• Fixed point problem: G(x, y) = ⟨x − H(x), y − x⟩ where H is the operator of the fixed point problem.

Each of these classical problems has numerous applications, including but not limited to equilibriumproblems in economics,
game theory, traffic analysis andmechanics. Many applications of (VIP) are found in the natural sciences, often in an infinite-
dimensional setting.

Yang et al. in [16] proved some relations between a solution of a Minty vector variational inequality problem and an
efficient solution of a vector optimization problem as well as some relations between the solution of a Minty weak vector
variational inequality problem and a weakly efficient solution of a vector optimization problem, in a finite-dimensional
context.

An extension of the variational inequality problem is the variational-like inequality problem (VLIP)where y−x is replaced
by the vector η(y, x) with η : S × S → Rn.

Ruiz-Garzón et al. in [17] proved that the solution of (VLIP) is coincident with the solution of a certain mathematical
programming problem under certain hypotheses of the generalized invexity and monotonicity. In Ruiz-Garzón et al. [18], it
is proved that these results can be generalized to the vectorial problem between Euclidean spaces.

Mishra and Noor [19] have extended the earlier work of Ruiz-Garzón et al. [18] to α-invex functions. Also, Mishra and
Wang [20] have been able to establish relations between vector variational-like inequality problems and non-smooth vector
optimization problems under non-smooth invexity.
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Recently, Santos et al. [21] have extended the results of [18] in another direction, proposed by [20], extending these
results to the vectorial optimization problems in Banach spaces, when the domination structure is defined by convex cones
and with Stampacchia Vector Variational-Like Inequality Problems.

The aim of this paper is to extend the relationships between weak efficient points, vector critical points and solutions
of Stampacchia Vector Variational-Like Inequality Problems proved by [21] to Minty Vector Variational-Like Inequality
Problems.Wewill extend the results for finite dimensional spaces given by Gang and Liu [22] to infinite dimensional Banach
spaces.

Since applications of vector variational problems sometimes involve an infinite-dimensional space, the results in this
paper are derived in Banach spaces. Throughout the paper unless otherwise stated, let E1, E2 be two Banach spaces,L(E1, E2)
denote the space of all continuous linear operators from E1 to E2, and let f : S → E2 be a given functionwhere S is a nonempty
subset of E1. Let Q ⊂ E2, be a pointed closed, convex cone with nonempty interior and different of E2.

Finally, we recall the following concept:

Definition 1.1. A function f : S → E2, is called Fréchet differentiable (or, differentiable) at x ∈ int S if and only if there is a
bounded operator Λ ∈ L(E1, E2) such that

f (x + h) − f (x) = Λh + ‖h‖ϵ(h)

for all h ∈ E1 in an open neighborhood of h = 0, where ϵ(h) → 0 as h → 0. We denote Λ := Df (x) (see [23]).

The following concepts are used in the following:

Definition 1.2. Let E1, E2 be two Banach spaces, let f : S → E2 be a given function where S is a nonempty subset of E1 and
let Q ⊂ E2, be a pointed closed, convex cone with nonempty interior and different from E2.

(a) We say that x ∈ S is efficient of f if there does not exist another y ∈ S such that

f (y) − f (x) ∈ −Q \ {0}.

(b) We say that x ∈ S is weakly efficient of f if there does not exist another y ∈ S such that

f (y) − f (x) ∈ −int Q ,

where int Q denotes the interior set of Q .

We denote by E(f ; S) the set of all efficient points of f and WE(f ; S) the set of all weakly efficient points of f .
Obviously, E(f ; S) ⊂ WE(f ; S).
Now we consider the following Vectorial Optimization Problem:

(VOP) : V-min f (x)
subject to x ∈ S


whose resolution consists of the determination of the set E(f ; S) and the Weak Vectorial Optimization Problem:

(WVOP) : W-min f (x)
subject to x ∈ S


whose resolution consists of the determination of the setWE(f ; S).

Next, η : S×S → E1 and F : S → L(E1, E2) be two given functions andwe consider the following Stampacchia Vectorial
Variational-Like Inequality Problem:
(SVVLIP): Find a point y ∈ S such that

F(y)η(x, y) ∉ −Q \ {0}, ∀x ∈ S, (1)

wherewe denote by F(y)η(x, y) the value of the operator F(y) applied on vector η(x, y), theMinty Vectorial Variational-Like
Inequality Problem:
(MVVLIP): Find a point y ∈ S such that

F(x)η(y, x) ∉ Q \ {0}, ∀x ∈ S, (2)

the Stampacchia Weak Vectorial Variational-Like Inequality Problem:
(SWVVLIP): Find a point y ∈ S such that

F(y)η(x, y) ∉ −int Q , ∀x ∈ S, (3)

the Minty Weak Vectorial Variational-Like Inequality Problem:
(MWVVLIP): Find a point y ∈ S such that

F(x)η(y, x) ∉ int Q , ∀x ∈ S, (4)
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the Perturbed Stampacchia Vector Vectorial Variational-Like Inequality Problem:
(PSVVLIP): Find a point y ∈ S for which ∃ε̄ ∈ (0, 1) such that

F(y + εη(x, y))η(x, y) ∉ −Q \ {0}, ∀x ∈ S, ∀ε ∈ (0, ε̄) (5)

and the Perturbed Stampacchia Weak Vector Vectorial Variational-Like Inequality Problem:
(PSWVVLIP): Find a point y ∈ S for which ∃ε̄ ∈ (0, 1) such that

F(y + εη(x, y))η(x, y) ∉ −int Q , ∀x ∈ S, ∀ε ∈ (0, ε̄). (6)

We remark that in finite-dimensional case, i.e., E1 = Rn, E2 = Rm and Q = Rm
+
, the above problems were studied by Ruiz-

Garzón et al. [18] and Gang and Liu [22].
In this paper, we shall prove that the solutions of vectorial problems (VOP) and (WVOP) can be characterized through

the solutions of Minty Vectorial Variational-Like Inequality Problems (MVVLIP) and (MWVVLIP), respectively, under some
pseudo-invexity. Our results generalize the results due to [22,21].

2. Preliminaries

In this section, we study the new concepts of generalized pseudo-invexity and pseudo-monotonicity in Banach spaces.
Recall the aim of this paper is to extend the relationships between weak efficient points, vector critical points and solutions
of Stampacchia Vector Variational-Like Inequality Problems proved by Santos et al. [21] to Minty Vector Variational-Like
Inequality Problems. For this purpose, we need the following definitions.

The concept of invexity plays the same role for variational-like inequalities as classical convexity plays for variational
inequalities, see [24].

Definition 2.1 ([25]). A subset S of E1 is said to be invex with respect to η : S × S → E1, if ∀x, y ∈ S, t ∈ [0, 1], x+ tη(y, x)
∈ S.

Remark 2.2. The definition of an invex set has a clear geometric interpretation. Thus, the definition essentially says that
there is a path starting from xwhich is contained in S. We do not require that y should be one of the end points of the path.
However, if we demand that y should be an end point of the path for every pair of points x, y ∈ S then η(y, x) = y − x, and
invexity reducing to convexity. Thus, it is true that every convex set is also invex with respect to η(y, x) = y − x, but the
converse is not necessarily true.

Definition 2.3. The function η : S × S → E1 is called skew, if for any x, y ∈ S, η(x, y) + η(y, x) = 0.

The following condition is useful in the following.

Condition C* ([22]). Let η : S × S → E1 is a function that, for any x, y ∈ S and for any λ ∈ [0, 1] satisfies

η(y, y + λη(x, y)) = −α(λ)η(x, y)
η(x, y + λη(x, y)) = β(λ)η(x, y)

where α(λ), β(λ) > 0 for all λ ∈ (0, 1).

Example 2.4. Let E1 = R and η : E1 × E1 → E1 be a mapping defined by

η(x, y) =



x − y, if x ≥ 0, y ≥ 0
1
2
(x − y), if x ≤ 0, y ≤ 0

1
3
(x − y), if x > 0, y < 0

1
4
(x − y), if x < 0, y > 0.

It is easy to check that η satisfies Condition C* and is skew.

Remark 2.5. Condition C* and the skew property of η function reflect the desirable properties of the y − x vector.

The notions of the generalized invexity introduced byOsuna-Gómez et al. [26] andArana et al. [27] in a finite-dimensional
context can be generalized as follows:

Definition 2.6. Let S be a nonempty subset of E1 and let f : S → E2 be a Fréchet differentiable (or differentiable) function
at x ∈ int S.
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(a) We say that f is invex (IX) at x ∈ S if and only if there is a vectorial function η : S × S → E1 such that

f (y) − f (x) − Df (x)η(y, x) ∈ Q , ∀y ∈ S.

(b) The function f is called strictly invex (SIX) at x ∈ S if and only if, there is a vectorial function η : S × S → E1 such that

f (y) − f (x) − Df (x)η(y, x) ∈ int Q , ∀y ∈ S, y ≠ x.

(c) The function f is called pseudo-invex-I (PIX-I) at x ∈ S if and only if there is a vectorial function η : S × S → E1 such
that

f (y) − f (x) ∈ −int Q ⇒ Df (x)η(y, x) ∈ −int Q , ∀y ∈ S.

(d) The function f is called pseudo-invex-II (PIX-II) at x ∈ S if and only if there is a vectorial function η : S × S → E1 such
that

f (y) − f (x) ∈ −Q \ {0} ⇒ Df (x)η(y, x) ∈ −int Q , ∀y ∈ S.

Remark 2.7. The concept of invex function in an infinite-dimensional context was introduced by Lin [28].

Remark 2.8. It is well known that in the case E2 = R and Q = R+, the class of invex functions is exactly equal to pseudo-
invex functions, but it is not a true vectorial case (see [18,27]).

The relationship between invex, pseudo-invex-I and pseudo-invex-II functions is as follows (see [27]):

The generalized invexity of a function is related to the generalized invex monotonicity of its gradient function. The
concept of pseudo-invex monotonicity introduced by Ruiz-Garzón et al. [17] in a finite context will enable us to relate the
Stampacchia inequalities with the Minty inequalities. This concept can be generalized as follows:

Definition 2.9. Let S ∈ E1 be an invex set with respect to η, f : S ⊂ E1 → E2 be a differentiable function.

(a) We say that F ≡ Df is said to be pseudo-invex monotone-I with respect to η in S if, for every pair of distinct points
x, y ∈ S,

F(x)η(y, x) ∈ Q \ {0} ⇒ F(y)η(y, x) ∈ Q \ {0}.

(b) We say that F ≡ Df is said to be pseudo-invex monotone-II with respect to η in S if, for every pair of distinct points
x, y ∈ S,

F(x)η(y, x) ∈ int Q ⇒ F(y)η(y, x) ∈ int Q .

Remark 2.10. First of all, we note that L(Rn, Rm) is isomorphic to Rn×l, and so we can identify a function Φ : Rn
→

L(Rn, Rl) with a function Φ : Rn
→ Rn×l. Recall that [22] Φ : S ⊂ Rn

→ Rn is η-pseudomonotone if for all x, y ∈ S, we
have

⟨Φ(x), η(y, x)⟩ ≥ 0 ⇒ ⟨Φ(y), η(y, x)⟩ ≥ 0

The following result is proved in [22]: If Φ = (Φ1, . . . , Φl) : S ⊂ Rn
→ Rn×l is such that Φi : S → Rn, i : 1, . . . , l are

η-pseudomonotonewith respect to the same η and η is skew, thenΦ is pseudo-invexmonotone-I if and only ifΦ is pseudo-
invex monotone-II.

In Santos et al. [21] they proved the following three theorems:

Theorem 2.11 ([21]). Let f : S ⊂ E1 → E2 be a differentiable function and invex at x ∈ int S, with respect to η. If F ≡ Df and
x is a solution of (SVVLIP), then x is an efficient solution of (VOP).

Consequently, under the invexity hypothesis, the solutions of (SVVLIP) are efficient solutions of (VOP).
To show the converse of the preceding theorem, we set some more strong conditions. More precisely, we have:

Theorem 2.12 ([21]). Let f : S ⊂ E1 → E2 be a differentiable function at x ∈ int S. Assume that F ≡ Df and that −f is strictly
invex. If x is a solution of (WVOP), then x is also a solution of (SVVLIP).
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Let Q ⊂ E2 be a cone; we define the dual cone of Q as follows

Q ∗
:= {ξ ∈ E∗

2 : ⟨ξ, x⟩ ≥ 0, ∀x ∈ Q } (7)

where E∗

2 denotes the topological dual of E2 and ⟨·, ·⟩ is the canonical duality pairing between E∗

2 and E2.

Definition 2.13. We say that x ∈ S is a vectorial critical point (VCP) of f if there is a functional λ∗
∈ Q ∗

\ {0} such that
λ∗

◦ Df (x) = 0 where ◦ denotes the composite function.

Theorem 2.14 ([21]). Assume that S is an open subset and F ≡ Df . If f is pseudo-invex-I, then the vectorial critical points, the
weakly efficient points of (WVOP) and the solutions of (SWVVLIP) are coincident.

The results obtained in Santos et al. [21] can be described in the following diagram:

In this paper our aim is to extend the relationships between the problems of this diagram. Therefore we will add new
problems and relations with the help of the new pseudo-invexity II concept.

3. Relations between Minty variational-like inequality problems and vectorial optimization problems

Firstly in this section we group the results and, following, their proofs.

3.1. Main results

We begin in this subsection with the relationships between solutions of (VOP) and solutions of (MVVLIP).

Theorem 3.1. Let S be a nonempty invex set with respect to η and f : S ⊂ E1 → E2 be a differentiable function. Assume that
F ≡ Df and that f is invex. If y ∈ S is a solution of (VOP), then y is also a solution of (MVVLIP).

As a consequence of Theorems 2.11 and 3.1:

Corollary 3.2. Let S be a nonempty invex set with respect to η and f : S ⊂ E1 → E2 be a differentiable function. Assume that
F ≡ Df and that f is invex. If y ∈ S is a solution of (SVVLIP), then y is also a solution of (MVVLIP).

Next we establish some relations between solutions of the Perturbed Stampacchia Vector Variational-Like Inequality
Problem and solutions of the Minty Vector Variational-Like Inequality Problem:

Theorem 3.3. Let S be a nonempty invex set with respect to η and η be a skew function satisfying Condition C∗ and f : S ⊂

E1 → E2 be a differentiable function. Assume that F ≡ Df is a pseudo-invex monotone-I function. If y is a solution of (PSVVLIP)
if and only if it is a solution of (MVVLIP).

Again we establish the relationships between solutions of weak Stampacchia and Minty problems.

Theorem 3.4. Let S be a nonempty invex set with respect to η and η be a skew function satisfying Condition C∗ and f : S ⊂

E1 → E2 be a differentiable function. Assume that F ≡ Df is a pseudo-invex monotone-II function. If y is a solution of (SWVVLIP)
if and only if it is a solution of (MWVVLIP).

Example 3.5. Let E1 = E2 = R and η : E1 × E1 → E1 be a mapping defined in Example 2.4 and we know that η satisfies
Condition C∗ and F ≡ Df = (F1, F2), where F1, F2 : E1 → E2 are defined by

F1(x) = ex, F2(x) =


x, if x ≥ 0
0, if x < 0.

It is easy to check that F ≡ Df is a pseudo-invexmonotone-II functionwith respect to η and f is pseudo-invex-I with respect
to η. We can check that y ≤ 0 is a solution of (SWVVLIP), a solution of (MWVVLIP), a weakly efficient point (WVOP) and a
vector critical point (VCP).
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Also we establish some relations between solutions of the Perturbed Stampacchia Weak Vector Variational-Like Inequality
Problem and solutions of the Minty Weak Vector Variational-Like Inequality Problem.

Theorem 3.6. Let S be a nonempty invex set with respect to η and η be a skew function satisfying Condition C∗ and f : S ⊂

E1 → E2 be a differentiable function. Assume that F ≡ Df is a pseudo-invexmonotone-II function. If y is a solution of (PSWVVLIP)
if and only if it is a solution of (MWVVLIP).

These previous theorems generalize results given by Gang and Liu [22] to infinite dimensional spaces.
Next,we identify vector critical points and efficient points throughout a new type of function, pseudo-invex-II, introduced

by [27]. It is known in [29–31] that:

Theorem 3.7. If y is an efficient of (VOP) and a constraint qualification is satisfied at y then y is a vectorial critical point.

The pseudo-invexity-II lets us give the following condition:

Theorem 3.8. Let f is pseudo invex-II. If y ∈ S is a vectorial critical point (VCP) of f then y is a efficient solution of (VOP).

The results obtained in this paper can be described in the following diagram:

3.2. The proofs

In this subsection we present the proofs of the previous theorems:
The proof of Theorem 3.1:

Proof. Let y be an efficient solution of (VOP). By contradiction, suppose that there is a point x̄ ∈ S, such that

F(x̄)η(y, x̄) ∈ Q \ {0}.

According to invexity of f , we have

f (y) − f (x̄) ∈ Q \ {0}

which contradicts the fact that y is an efficient solution of (VOP) �

The proof of Theorem 3.3:

Proof. (⇒) Let y be a solution of (PSVVLIP). If y is not a solution of (MVVLIP), then there is x̄ such that

F(x̄)η(y, x̄) ∈ Q \ {0}. (8)
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By Condition C∗ and skewness of η, we get

η(y + εη(x̄, y), x̄) = −η(x̄, y + εη(x̄, y)) = β(ε)η(y, x̄), ∀ε ∈ (0, ε̄). (9)

It follows from (8) that

F(x̄)η(y + εη(x̄, y), x̄) ∈ Q \ {0} ∀ε ∈ (0, ε̄).

By the pseudo-invex monotonicity-I of F and skewness of η we have

F(y + εη(x̄, y))η(x̄, y + εη(x̄, y)) ∈ −Q \ {0} ∀ε ∈ (0, ε̄).

It follows from (9) that

F(y + εη(x̄, y))η(x̄, y) ∈ −Q \ {0} ∀ε ∈ (0, ε̄)

which contradicts the fact that y is a solution of (PSVVLIP).
(⇐) By the invexity of S implies and since y ∈ S is a solution of (MVVLIP), we have

F(y + εη(x, y))η(y, y + εη(x, y)) ∉ Q \ {0} ∀x ∈ S, ∀ε ∈ (0, ε̄). (10)

By Condition C∗

η(y, y + εη(x, y)) = −α(ε)η(x, y). (11)

By (10) and (11), we have

F(y + εη(x, y))η(x, y) ∉ −Q \ {0} ∀x ∈ S, ∀ε ∈ (0, ε̄).

Therefore, y is a solution of (PSVVLIP). �

The proof of Theorem 3.4:

Proof. (⇒) Let y be a solution of (SWVVLIP). If y is not a solution of (MWVVLIP), then there is x̄ such that F(x̄)η(y, x̄) ∈ int Q .
By the pseudo-invex monotonicity-II of F and skewness of η we have F(y)η(x̄, y) ∈ −int Q , which contradicts the fact

that y is a solution of (SWVVLIP).
(⇐) By the invexity of S implies x(λ) = y + λη(x, y) ∈ S, ∀x ∈ S, ∀λ ∈ (0, 1).
Since y ∈ S is a solution of (MWVVLIP), we have

F(x(λ))η(y, x(λ)) ∉ int Q , ∀λ ∈ (0, 1).

By Condition C∗

η(y, x(λ)) = η(y, y + λη(x, y)) = −α(λ)η(x, y), ∀λ ∈ (0, 1).

It follows that

F(x(λ))η(x, y) ∉ −int Q , ∀λ ∈ (0, 1).

Passing the limit as λ tends to 0 we obtain

F(y)η(x, y) ∉ −int Q , ∀x ∈ S.

Therefore, y is a solution of (SWVVLIP). �

The proof of Theorem 3.6:

Proof. (⇒) Let y be a solution of (PSWVVLIP)

F(y + εη(x, y))η(x, y) ∉ −int Q ∀x ∈ S, ∀ε ∈ (0, ε̄). (12)

By Condition C∗ and skewness of η, we get

η(x, y + εη(x, y), x̄) = β(ε)η(x, y), ∀ε ∈ (0, ε̄). (13)

It follows from (12) that

F(y + εη(x, y))η(x, y + εη(x, y)) ∉ −int Q ∀x ∈ S, ∀ε ∈ (0, ε̄).

By the pseudo-invex monotonicity-II of F we have

F(x)η(x, y + εη(x, y)) ∉ −int Q ∀ε ∈ (0, ε̄).

It follows from (13) and skewness of η, we derive that

F(x)η(y, x) ∉ int Q

which implies y is a solution of (MWVVLIP).
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(⇐) By the invexity of S implies and since y ∈ S is a solution of (MWVVLIP), we have

F(y + εη(x, y))η(y, y + εη(x, y)) ∉ int Q ∀x ∈ S, ∀ε ∈ (0, ε̄) (14)

By Condition C∗

η(y, y + εη(x, y)) = −α(ε)η(x, y). (15)

By (14) we have

F(y + εη(x, y))η(x, y) ∉ −int Q ∀x ∈ S, ∀ε ∈ (0, ε̄).

Therefore, y is a solution of (PSWVVLIP). �

The proof of Theorem 3.8:

Proof. Let y ∈ S is a vectorial critical point (VCP) of f then there is a functional λ∗
∈ Q ∗

\ {0} such that

λ∗
◦ Df (y) = 0. (16)

Suppose to the contrary that y is not an efficient solution then

f (x̄) − f (y) ∈ −Q \ {0}.

By pseudo-invexity-II of f , we have F(y)η(x̄, y) ∈ −intQ .
Therefore we obtain λF(y)η(x̄, y) ∈ −intQ which contradicts (16). Hence y is an efficient solution of (VOP). �

4. Conclusions

In Ruiz-Garzón et al. [17], it is proved that the solutions of the variational-like inequality problem (VLIP) in the scalar
case are equivalent to the minimum of the mathematical programming problem in invex environments. In Ruiz-Garzón
et al. [18], it is proved that these results can be generalized to the vectorial problem between Euclidean spaces and in
Santos et al. [21] these results are extended to the vectorial optimization problems in Banach spaces, when the domination
structure is defined by convex cones. Under the condition of pseudo-invexity-I, the relationship between Stampacchia vector
variational-like problems and vector optimization problems is proved and will enable us to identify the weakly efficient
points, the solutions of the Stampacchia weak vector variational-like inequality problems (SWVVLIP) and the vector critical
points.

In this work, we have extended the results given by Gang and Liu [22] to Banach spaces and the relationships obtained for
weak efficient points in Santos et al. [21] are completed and we have been able to relate vector critical points, efficient and
weak efficient points, solutions of the Minty and Stampacchia vector variational-like inequalities problems and solutions of
perturbed vector variational-like inequalities problems.
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