Weak solutions for the Oseen system in 2D and when the given velocity is not sufficiently regular

Chérif Amrouche ${ }^{\text {a,* }}$, María Ángeles Rodríguez-Bellido ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Mathématiques et de Leurs Applications, CNRS UMR 5142, Université de Pau et des Pays de l'Adour, IPRA, Avenue de l'Université, 64000 Pau, France
${ }^{\text {b }}$ Dpto. Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla, Facultad de Matemáticas, C/ Tarfia, S/N, 41012 Sevilla, Spain

A R T I C L E I N F O

Article history:

Received 3 October 2018
Received in revised form 18 December 2018
Accepted 18 December 2018
Available online 29 December 2018

Keywords:

Oseen equations
Stationary solutions
Irregular data
Hardy spaces

Abstract

The aim of this work is twofold: proving the existence of solution $(\boldsymbol{u}, \pi) \in \mathbf{H}^{1}(\Omega) \times$ $\mathbf{L}^{2}(\Omega)$ in bounded domains of \mathbb{R}^{2} and the whole plane for the Oseen problem (O) for solenoidal vector fields \boldsymbol{v} in $\mathbf{L}^{2}(\Omega)$, and analyzing the same problem in bounded domains of \mathbb{R}^{n} for $n=2,3$ when $h=0, \boldsymbol{g}=\mathbf{0}$ and the solenoidal field \boldsymbol{v} belongs to $\mathbf{L}^{s}(\Omega)$ for $s<n$.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This work is dedicated to the study of some existence aspect related to the Oseen problem in bounded domain $\Omega \subset \mathbb{R}^{n}, n=2,3$:

$$
(\mathrm{O})-\Delta \boldsymbol{u}+\boldsymbol{v} \cdot \nabla \boldsymbol{u}+\nabla \pi=\boldsymbol{f}, \quad \nabla \cdot \boldsymbol{u}=h \quad \text { in } \Omega, \quad \boldsymbol{u}=\boldsymbol{g} \quad \text { on } \Gamma .
$$

In the 3 -dimensional case, the existence of weak solutions $(\boldsymbol{u}, \pi) \in \mathbf{H}^{1}(\Omega) \times L^{2}(\Omega)$, regular solution in $\mathbf{H}^{2}(\Omega) \times H^{1}(\Omega)$ and $\mathbf{W}^{1, p}(\Omega) \times L^{p}(\Omega)$ (and intermediate Sobolev spaces) together with the analysis of the existence of very weak solutions in $\mathbf{L}^{p}(\Omega) \times W^{-1, p}(\Omega)$ have been analyzed by the authors in [1] assuming \boldsymbol{v} a solenoidal field belonging to $\mathbf{L}^{s}(\Omega)$ for $s \geq 3$ (from now on, we will denote this solenoidal space by $\mathbf{L}_{\sigma}^{s}(\Omega)$). However, the existence of solution for the 2-dimensional Oseen system has not been attacked in [1] because the "logical" assumption of considering the solenoidal field $\boldsymbol{v} \in \mathbf{L}^{2}(\Omega)$ (in order to obtain weak solutions for (O)) poses some difficulties in the treatment of the convective term $(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}$: On the one hand, it is not

[^0]clear if the bilinear form associated is coercive and continuous. Some related results can be found in [2] for the scalar case (instead of considering a vector field solution \boldsymbol{u}, one considers a scalar unknown θ) and for $\boldsymbol{g}=\mathbf{0}$. On the other hand, when $\Omega=\mathbb{R}^{2}$ an additional awkwardness appears because even if we can prove $\nabla \boldsymbol{u} \in \mathbf{L}^{2}\left(\mathbb{R}^{2}\right)$, it is not evident that $\boldsymbol{u} \in \mathbf{L}^{p}\left(\mathbb{R}^{2}\right)$ (for any p). Giving a successful answer to both previous problems is our first aim.

Our second aim is to give a first answer to the question of the existence of solution for the Oseen problem (O) when \boldsymbol{v} only belongs to $\mathbf{L}_{\sigma}^{s}(\Omega)$, with $s<n$ and $n=2,3$.

2. Solutions for the Oseen problem in the 2-dimensional case

The existence of weak solutions in $\mathbf{H}^{1}(\Omega)$ for Problem (O) in 2-dimensional domains is not known when a solenoidal field \boldsymbol{v} that only belongs to $\mathbf{L}^{2}(\Omega)$ is considered. In this case, the term $(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}$ belongs only to $\mathbf{L}^{1}(\Omega)$. It is then not clear neither if the bilinear form associated to the Problem (O), with $h=0$ and $\boldsymbol{g}=\mathbf{0}$:

$$
a(\boldsymbol{u}, \boldsymbol{w})=\int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{w} d \boldsymbol{x}+\int_{\Omega}(\boldsymbol{v} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{w} d \boldsymbol{x}
$$

is coercive on the space $\mathbf{V}(\Omega)=\left\{\boldsymbol{w} \in \mathbf{H}_{0}^{1}(\Omega)\right.$; $\operatorname{div} \boldsymbol{w}=0$ in $\left.\Omega\right\}$ nor if it is continuous on $\mathbf{V}(\Omega) \times \mathbf{V}(\Omega)$. In order to overcome this difficulty, we use the Hardy space $\mathcal{H}^{1}\left(\mathbb{R}^{2}\right)$. One equivalent definition of such a space (in the n-dimensional case) is [3]:

$$
\mathcal{H}^{1}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{1}\left(\mathbb{R}^{n}\right), R_{j} f \in L^{1}\left(\mathbb{R}^{n}\right), 1 \leq j \leq n\right\} \quad \text { where } R_{j}=\frac{\partial}{\partial x_{j}}(-\Delta)^{-1 / 2}
$$

A partial study of the $B M O$ spaces (Bounded Mean Oscillation) will be also necessary taking into account the duality between \mathcal{H}^{1} and the $B M O$ (see [4]). Moreover, the $V M O$-space (Vanishing Mean Oscillator) is a subspace of the $B M O$: a function f in $B M O\left(\boldsymbol{R}^{n}\right)$ is said to be in $\operatorname{VMO}\left(\boldsymbol{R}^{n}\right)$ if

$$
\lim _{r \rightarrow 0} \sup _{x_{0} \in \mathbb{R}^{n}} \frac{1}{r^{n}} \int_{B\left(x_{0}, r\right)}|f-\bar{f}| \mathrm{d} \boldsymbol{x}=0, \quad \text { where } \bar{f}=\frac{1}{\left|B\left(\boldsymbol{x}_{0}, r\right)\right|} \int_{B\left(\boldsymbol{x}_{0}, r\right)} f
$$

It is also crucial the fact that $H^{1}\left(\mathbb{R}^{2}\right) \hookrightarrow \operatorname{VMO}\left(\mathbb{R}^{2}\right)$ (see [5]).
With these ingredients, we will prove one of the two main results of this work, namely Theorem 2.2 in bounded domains and Theorem 2.5 if $\Omega=\mathbb{R}^{2}$. In order to prove them, we use the following result:

Lemma 2.1. Assume $\boldsymbol{v} \in \mathbf{L}_{\sigma}^{2}(\Omega)$ and $y \in H_{0}^{1}(\Omega)$. Then $(\boldsymbol{v} \cdot \nabla) y \in H^{-1}(\Omega)$ and

$$
\begin{equation*}
\|(\boldsymbol{v} \cdot \nabla) y\|_{H^{-1}(\Omega)} \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\|\nabla y\|_{\mathbf{L}^{2}(\Omega)} \tag{1}
\end{equation*}
$$

Moreover, we have that

$$
\begin{equation*}
\langle\boldsymbol{v} \cdot \nabla \boldsymbol{z}, \boldsymbol{z}\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}=0 \quad \text { for all } \boldsymbol{z} \in \mathbf{H}_{0}^{1}(\Omega) . \tag{2}
\end{equation*}
$$

Proof. Indeed, considering $\boldsymbol{w} \in \mathbf{L}^{2}\left(\mathbb{R}^{2}\right)$ the extension of \boldsymbol{v} to \mathbb{R}^{2} given by: $\boldsymbol{w}=\boldsymbol{v}$ in Ω, and $\boldsymbol{w}=\nabla \theta$ in $\Omega^{\prime}=\mathbb{R}^{2} \backslash \bar{\Omega}$ where θ is the solution of the following problem:

$$
\Delta \theta=0 \text { in } \Omega^{\prime}, \quad \frac{\partial \theta}{\partial \boldsymbol{n}}=-\boldsymbol{v} \cdot \boldsymbol{n} \text { on } \Gamma
$$

with $\nabla \theta \in \mathbf{L}^{2}\left(\Omega^{\prime}\right)$ that satisfies

$$
\|\nabla \theta\|_{\mathbf{L}^{2}\left(\Omega^{\prime}\right)} \leq C\|\boldsymbol{v} \cdot \boldsymbol{n}\|_{H^{-1 / 2}(\Gamma)} \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}
$$

because $\nabla \cdot \boldsymbol{v}=0$ in Ω. Moreover, $\nabla \cdot \boldsymbol{v}=0$ in Ω implies $\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Gamma}=0$ and the existence of θ is ensured by Theorem 3.1 [6]. Observe that $\nabla \cdot \boldsymbol{w}=0$ in \mathbb{R}^{2} because for $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$:

$$
\langle\nabla \cdot \boldsymbol{w}, \varphi\rangle=-\int_{\Omega} \boldsymbol{v} \cdot \nabla \varphi d \boldsymbol{x}-\int_{\Omega^{\prime}} \nabla \theta \cdot \nabla \varphi d \boldsymbol{x}=\langle\boldsymbol{v} \cdot \boldsymbol{n}, \varphi\rangle_{\Gamma}-\langle\boldsymbol{v} \cdot \boldsymbol{n}, \varphi\rangle_{\Gamma}=0
$$

and $\|\boldsymbol{w}\|_{\mathbf{L}^{2}\left(\mathbb{R}^{2}\right)} \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}$. On the other hand, we consider \widetilde{y} the extension by zero of y that satisfies $\widetilde{y} \in H^{1}\left(\mathbb{R}^{2}\right)$. Using Theorem II. 2 point (2) or Theorem II. 1 point (2) in [3], we can deduce that $\boldsymbol{w} \cdot \nabla \widetilde{y} \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)$ and the bound

$$
\|\boldsymbol{w} \cdot \nabla \widetilde{y}\|_{\mathcal{H}^{1}\left(\mathbb{R}^{2}\right)} \leq C\|\boldsymbol{w}\|_{\mathbf{L}^{2}\left(\mathbb{R}^{2}\right)}\|\nabla \widetilde{y}\|_{\mathbf{L}^{2}\left(\mathbb{R}^{2}\right)} \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\|\nabla y\|_{\mathbf{L}^{2}(\Omega)} .
$$

Now, we have to prove that $\boldsymbol{v} \cdot \nabla y \in H^{-1}(\Omega)$ and $\langle\boldsymbol{v} \cdot \nabla y, y\rangle_{H^{-1}(\Omega) \times H_{0}^{1}(\Omega)}=0$. Indeed, for $\varphi \in \mathcal{D}(\Omega)$

$$
\begin{aligned}
\left|\int_{\Omega} \varphi \boldsymbol{v} \cdot \nabla y d \boldsymbol{x}\right|=\left|\int_{\mathbb{R}^{2}} \widetilde{\varphi} \boldsymbol{w} \cdot \nabla \widetilde{y} d \boldsymbol{x}\right| & \leq\|\boldsymbol{w} \cdot \nabla \widetilde{y}\|_{\mathcal{H}^{1}\left(\mathbb{R}^{2}\right)}\|\widetilde{\varphi}\|_{B M O\left(\mathbb{R}^{2}\right)} \\
& \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\|\nabla y\|_{\mathbf{L}^{2}(\Omega)}\|\widetilde{\varphi}\|_{H^{1}\left(\mathbb{R}^{2}\right)} \\
& \leq C\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\|\nabla y\|_{\mathbf{L}^{2}(\Omega)}\|\varphi\|_{H^{1}(\Omega)}
\end{aligned}
$$

because $H^{1}\left(\mathbb{R}^{2}\right) \hookrightarrow \operatorname{VMO}\left(\mathbb{R}^{2}\right) \hookrightarrow B M O\left(\mathbb{R}^{2}\right)$. In that way, as $\mathcal{D}(\Omega)$ is dense in $H_{0}^{1}(\Omega)$, we can deduce that $\boldsymbol{v} \cdot \nabla y \in H^{-1}(\Omega)$ and estimate (1).

For the proof of (2), let us consider $\boldsymbol{z}_{k} \in \mathcal{D}(\Omega)$ be such that $\boldsymbol{z}_{k} \rightarrow \boldsymbol{z}$ in $\mathbf{H}_{0}^{1}(\Omega)$. Then,

$$
\begin{aligned}
& \left|\langle\boldsymbol{v} \cdot \nabla \boldsymbol{z}, \boldsymbol{z}\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}-\left\langle\boldsymbol{v} \cdot \nabla \boldsymbol{z}_{k}, \boldsymbol{z}_{k}\right\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}\right| \\
& \quad \leq\left|\left\langle\boldsymbol{v} \cdot \nabla\left(\boldsymbol{z}-\boldsymbol{z}_{k}\right), \boldsymbol{z}\right\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}\right|+\left|\left\langle\boldsymbol{v} \cdot \nabla \boldsymbol{z}_{k},\left(\boldsymbol{z}_{k}-z\right)\right\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}\right|
\end{aligned}
$$

Using (1) and the convergence of \boldsymbol{z}_{k} to \boldsymbol{z} in $\mathbf{H}_{0}^{1}(\Omega)$, both duality terms on the right-hand-side of the previous inequality tend to 0 when $k \rightarrow+\infty$.

Finally, from $\left\langle\boldsymbol{v} \cdot \nabla \boldsymbol{z}_{k}, \boldsymbol{z}_{k}\right\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}=0$, we can deduce (2).
Theorem 2.2 (Existence of Weak Solution for (O)). Let Ω be a Lipschitz bounded domain in \mathbb{R}^{2}. Let

$$
\boldsymbol{f} \in \mathbf{H}^{-1}(\Omega), \quad \boldsymbol{v} \in \mathbf{L}_{\sigma}^{2}(\Omega), \quad h \in L^{2}(\Omega) \quad \text { and } \quad \boldsymbol{g} \in \mathbf{H}^{1 / 2}(\Gamma)
$$

satisfy the compatibility condition

$$
\begin{equation*}
\int_{\Omega} h(\boldsymbol{x}) d \boldsymbol{x}=\int_{\partial \Omega} \boldsymbol{g} \cdot \boldsymbol{n} d \sigma \tag{3}
\end{equation*}
$$

Then, the problem (O) has a unique solution $(\boldsymbol{u}, \pi) \in \mathbf{H}^{1}(\Omega) \times L^{2}(\Omega) / \mathbb{R}$. Moreover, there exist some constants $C_{1}>0$ and $C_{2}>0$ such that:

$$
\begin{align*}
\|\boldsymbol{u}\|_{\mathbf{H}^{1}(\Omega)} & \leq C_{1}\left(\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)}+\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\right)\left(\|h\|_{L^{2}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{H}^{1 / 2}(\Gamma)}\right)\right) \tag{4}\\
\|\pi\|_{L^{2}(\Omega) / \mathbb{R}} & \leq C_{2}\left(\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)}+\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\right)\left(\|h\|_{L^{2}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{H}^{1 / 2}(\Gamma)}\right)\right) \tag{5}
\end{align*}
$$

where $C_{1}=C(\Omega)$ and $C_{2}=C_{1}\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\right)$.
Proof. Although some parts of this proof are identical to the proof made in [1], we include the whole argument here for completeness. In order to prove the existence of solution, first (using Lemma 3.3 in [7], for instance) we lift the boundary and the divergence data. Then, there exists $\boldsymbol{u}_{0} \in \mathbf{H}^{1}(\Omega)$ such that $\nabla \cdot \boldsymbol{u}_{0}=h$ in $\Omega, \boldsymbol{u}_{0}=\boldsymbol{g}$ on Γ and:

$$
\begin{equation*}
\left\|\boldsymbol{u}_{0}\right\|_{\mathbf{H}^{1}(\Omega)} \leq C\left(\|h\|_{L^{2}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{H}^{1 / 2}(\Gamma)}\right) . \tag{6}
\end{equation*}
$$

Therefore, it remains to find $(\boldsymbol{z}, \pi)=\left(\boldsymbol{u}-\boldsymbol{u}_{0}, \pi\right)$ in $\mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega)$ such that:

$$
\begin{equation*}
-\Delta \boldsymbol{z}+\boldsymbol{v} \cdot \nabla \boldsymbol{z}+\nabla \pi=\mathbf{F} \text { and } \nabla \cdot \boldsymbol{z}=0 \text { in } \Omega, \quad \boldsymbol{z}=\mathbf{0} \text { on } \Gamma . \tag{7}
\end{equation*}
$$

being $\boldsymbol{F}=\boldsymbol{f}+\Delta \boldsymbol{u}_{0}-(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}_{0}$. From Lemma 2.1, we deduce that $(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}_{0} \in \mathbf{H}^{-1}(\Omega)$, then $\boldsymbol{F} \in \mathbf{H}^{-1}(\Omega)$. Since the space $\mathcal{D}_{\sigma}(\Omega)=\{\boldsymbol{\varphi} \in \mathcal{D}(\Omega) ; \nabla \cdot \boldsymbol{\varphi}=0\}$ is dense in the space $\mathbf{V}(\Omega)$, the previous problem is equivalent to:

$$
\begin{aligned}
& \text { Find } \boldsymbol{z} \in \mathbf{V}(\Omega) \text { such that: } \quad \forall \boldsymbol{\varphi} \in \mathbf{V}(\Omega) \\
& \int_{\Omega} \nabla \boldsymbol{z} \cdot \nabla \boldsymbol{\varphi} d \boldsymbol{x}+\langle(\boldsymbol{v} \cdot \nabla) \boldsymbol{z}, \boldsymbol{\varphi}\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}=\langle\boldsymbol{F}, \boldsymbol{\varphi}\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)} .
\end{aligned}
$$

Now, using (2) by Lax-Milgram's Theorem, if we assume that $\mathbf{F} \in \mathbf{H}^{-1}(\Omega)$, then we can deduce the existence of a unique $\boldsymbol{z} \in \mathbf{H}_{0}^{1}(\Omega)$ solution of (7) verifying:

$$
\begin{align*}
\|\boldsymbol{z}\|_{\mathbf{H}^{1}(\Omega)} & \leq C\|\boldsymbol{F}\|_{\mathbf{H}^{-1}(\Omega)} \\
& \leq C\left(\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)}+\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{2}(\Omega)}\right)\left(\|h\|_{L^{2}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{H}^{1 / 2}(\Gamma)}\right)\right) \tag{8}
\end{align*}
$$

which added to estimate (6) makes (4). We can recover the pressure π thanks to the De Rham's Lemma (Lemma 6 in [1] and Corollary III.5.1 in [8]). Now, $-\Delta \boldsymbol{z}+\boldsymbol{v} \cdot \nabla \boldsymbol{z}-\boldsymbol{F} \in \mathbf{H}^{-1}(\Omega)$ and:

$$
\forall \boldsymbol{\varphi} \in \mathbf{V}(\Omega), \quad\langle-\Delta \boldsymbol{z}+\boldsymbol{v} \cdot \nabla \boldsymbol{z}-\boldsymbol{F}, \boldsymbol{\varphi}\rangle_{\mathbf{H}^{-1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)}=0 .
$$

Thanks to De Rham's Lemma, there exists a unique $\pi \in L^{2}(\Omega) / \mathbb{R}$ such that

$$
-\Delta \boldsymbol{z}+\boldsymbol{v} \cdot \nabla \boldsymbol{z}+\nabla \pi=\mathbf{F}
$$

with $\|\pi\|_{L^{2}(\Omega) / \mathbb{R}} \leq C\|\nabla \pi\|_{\mathbf{H}^{-1}(\Omega)}$. Finally, estimate (5) follows from the previous equation and estimate (8) for \boldsymbol{z}.

With the same procedure than in [1], we can prove strong and weak- $W^{1, p}(\Omega)$ regularity for (O) in the 2-dimensional bounded case. These results can be stated as follows:

Theorem 2.3 (Existence of Strong Solution For (O)). Let $p>1$,

$$
\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega), \quad h \in W^{1, p}(\Omega), \quad \boldsymbol{v} \in \mathbf{L}_{\sigma}^{s}(\Omega) \quad \text { and } \quad \boldsymbol{g} \in \mathbf{W}^{2-1 / p, p}(\Gamma)
$$

satisfying the compatibility condition (3) with $s=2$ if $p<2$, $s=p$ if $p>2$ and $s=2+\varepsilon(\varepsilon>0)$ if $p=2$. Then, the unique solution of (O) given by Theorem $2.2(\boldsymbol{u}, \pi)$ belongs to $\mathbf{W}^{2, p}(\Omega) \times W^{1, p}(\Omega)$, and there exists a constant $C>0$ such that:

$$
\begin{aligned}
\|\boldsymbol{u}\|_{\mathbf{W}^{2, p}(\Omega)} & +\|\pi\|_{W^{1, p}(\Omega) / \mathbb{R}} \leq C\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{s}(\Omega)}\right) \\
& \times\left(\|\boldsymbol{f}\|_{\mathbf{L}^{p}(\Omega)}+\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{s}(\Omega)}\right)\left(\|h\|_{W^{1, p}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{W}^{2-1 / p, p}(\Gamma)}\right)\right)
\end{aligned}
$$

Theorem 2.4. Let

$$
p>1, \quad \boldsymbol{f} \in \mathbf{W}^{-1, p}(\Omega), \quad h \in L^{p}(\Omega), \quad \boldsymbol{v} \in \mathbf{L}_{\sigma}^{3}(\Omega) \quad \text { and } \quad \boldsymbol{g} \in \mathbf{W}^{1-1 / p, p}(\Gamma)
$$

satisfying the compatibility condition (3). Then, the problem (O) has a unique solution $(\boldsymbol{u}, \pi) \in \mathbf{W}^{1, p}(\Omega) \times$ $L^{p}(\Omega) / \mathbb{R}$, and there exists a constant $C>0$ such that:

$$
\begin{aligned}
\|\boldsymbol{u}\|_{\mathbf{W}^{1, p}(\Omega)} & +\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{3}(\Omega)}\right)^{\gamma}\|\pi\|_{L^{p}(\Omega) / \mathbb{R}} \leq C\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{3}(\Omega)}\right) \\
& \times\left(\|\boldsymbol{f}\|_{\mathbf{W}^{-1, p}(\Omega)}+\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{3}(\Omega)}\right)\left(\|h\|_{L^{p}(\Omega)}+\|\boldsymbol{g}\|_{\mathbf{W}^{1-1 / p, p}(\Gamma)}\right)\right)
\end{aligned}
$$

with $\gamma=0$ if $p \geq 2$ and $\gamma=-1$ if $p<2$.

If we treat the case of $\Omega=\mathbb{R}^{2}$, we have to introduce the Sobolev spaces:

$$
\begin{gathered}
W_{0}^{1,2}\left(\mathbb{R}^{2}\right)=\left\{\varphi \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) ; \frac{\varphi}{w_{1}} \in L^{2}\left(\mathbb{R}^{2}\right), \nabla \varphi \in L^{2}\left(\mathbb{R}^{2}\right)\right\}, \\
W_{0}^{2,2}\left(\mathbb{R}^{2}\right)=\left\{\varphi \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) ; \frac{\varphi}{w_{2}} \in L^{2}\left(\mathbb{R}^{2}\right), \frac{\nabla \varphi}{w_{1}} \in L^{2}\left(\mathbb{R}^{2}\right), \nabla^{2} \varphi \in L^{2}\left(\mathbb{R}^{2}\right)\right\},
\end{gathered}
$$

where $w_{1}=(1+|\boldsymbol{x}|) \ln (2+|\boldsymbol{x}|)$ and $w_{2}=(1+|\boldsymbol{x}|)^{2} \ln (2+|\boldsymbol{x}|)$ (see Definition (7.1), p. 593 in [9]). We denote by $W_{0}^{-1,2}\left(\mathbb{R}^{2}\right)$ the dual space of $W_{0}^{1,2}\left(\mathbb{R}^{2}\right)$. Recall [5] that the space $W_{0}^{1,2}\left(\mathbb{R}^{2}\right)$ is densely embedded in $\operatorname{VMO}\left(\mathbb{R}^{2}\right)$, and therefore $\mathcal{H}^{1}\left(\mathbb{R}^{2}\right)=\left[V M O\left(\mathbb{R}^{2}\right)\right]^{\prime} \hookrightarrow W_{0}^{-1,2}\left(\mathbb{R}^{2}\right)$.

Theorem 2.5 (Case $\Omega=\mathbb{R}^{2}$). (i) Let

$$
f=\operatorname{div} \mathbb{F} \quad \text { with } \quad \mathbb{F} \in \mathbf{L}^{2}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \mathrm{h} \in L^{2}\left(\mathbb{R}^{2}\right)
$$

Then, the problem (O) has a unique solution (\boldsymbol{u}, π) satisfying $\boldsymbol{u} \in \mathbf{W}_{0}^{1,2}\left(\mathbb{R}^{2}\right)$ and $\pi \in L^{2}\left(\mathbb{R}^{2}\right)$, where π is unique and \boldsymbol{u} is unique up to an additive constant vector field.
(ii) Moreover, if

$$
f \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \nabla h \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)
$$

then

$$
\begin{equation*}
\nabla^{2} \boldsymbol{u} \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right), \quad \nabla \pi \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right), \quad \nabla \boldsymbol{u} \in \boldsymbol{L}^{2,1}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \boldsymbol{u} \in L^{\infty}\left(\mathbb{R}^{2}\right) \tag{9}
\end{equation*}
$$

being $L^{2,1}\left(\mathbb{R}^{2}\right)$ is the Lorentz space of all measurable functions f satisfying

$$
\int_{0}^{\infty} t^{-1 / 2} f^{*}(t) d t<+\infty
$$

where the rearrangement function f^{*} is defined by $f^{*}(t)=\sup \left\{s \in(0, \infty) ; \mu\left(\left\{\boldsymbol{x} \in \mathbb{R}^{2} ;|f(\boldsymbol{x})|>s\right\}\right)>t\right\}$, for μ the Lebesgue measure on \mathbb{R}^{2}.

Proof. (i) Existence: Let $\chi \in W_{0}^{2,2}\left(\mathbb{R}^{2}\right)$ be the unique solution, up to a polynomial function of degree one, of $\Delta \chi=h$ in \mathbb{R}^{2} (Theorem 9.6 in [9]). Then, we take $\boldsymbol{u}_{h}=\nabla \chi \in \boldsymbol{W}_{0}^{1,2}\left(\mathbb{R}^{2}\right)$. Problem (O) is then written as:

$$
-\Delta \boldsymbol{z}+\boldsymbol{v} \cdot \nabla \boldsymbol{z}+\nabla \pi=\mathbf{k}, \quad \nabla \cdot \boldsymbol{z}=0 \quad \text { in } \mathbb{R}^{2}
$$

with $\mathbf{k}=\boldsymbol{f}+\Delta \boldsymbol{u}_{h}-\boldsymbol{v} \cdot \nabla \boldsymbol{u}_{h}$. Because of $(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}_{h} \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right) \hookrightarrow W_{0}^{-1,2}\left(\mathbb{R}^{2}\right)$, by using Lax-Milgram's Lemma (as in the bounded case) we can deduce the existence of a solution $\boldsymbol{z} \in \boldsymbol{W}_{0}^{1,2}\left(\mathbb{R}^{2}\right)$ with $\nabla \cdot \boldsymbol{z}=0$, unique up to a constant vector of \mathbb{R}^{2}. Lax-Milgram's Lemma hypotheses are satisfied because, on the one hand, we know that the quotient norm $\|\boldsymbol{z}\|_{W_{0}^{1,2}\left(\mathbb{R}^{2}\right) / \mathbb{R}^{2}}$ is equivalent to that one defined as $\|\nabla \boldsymbol{z}\|_{L^{2}\left(\mathbb{R}^{2}\right)}$, and, on the other hand, $(\boldsymbol{v} \cdot \nabla) \boldsymbol{z} \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)$ for any $\boldsymbol{z} \in \boldsymbol{W}_{0}^{1,2}\left(\mathbb{R}^{2}\right)$. The pressure can be recovered by using Theorem 1 in [10].
(ii) Regularity: Assume that $f \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)$ and $\nabla h \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)$ (which, in particular, implies that $h \in L^{2,1}\left(\mathbb{R}^{2}\right)$). Therefore,

$$
-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f}-\boldsymbol{v} \cdot \nabla \boldsymbol{u} \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \nabla \cdot \boldsymbol{u}=h .
$$

By using Theorem 3.14 in [10], one deduces (9).

3. The Oseen problem in bounded domains for a less regular v

The aim of this section is the analysis of the existence of solutions of (O) in a bounded domain $(n=2$ or 3) when $\boldsymbol{v} \in \mathbf{L}_{\sigma}^{s}(\Omega)$ for $s<n$. We analyze the case for $\boldsymbol{f} \in \mathbf{H}^{-1}(\Omega), h=0$ and $\boldsymbol{g}=\mathbf{0}$. Observe that the term $(\boldsymbol{v} \cdot \nabla) \boldsymbol{u}$ can also be written as $\nabla \cdot(\boldsymbol{u} \otimes \boldsymbol{v})$. The proof of Theorem $3.2(n=2)$ applies directly from that one of Theorem $3.1(n=3)$.

Theorem 3.1. Let $\Omega \subset \mathbb{R}^{3}$ a Lipschitz bounded domain,

$$
\boldsymbol{f} \in \mathbf{H}^{-1}(\Omega), \quad h=0, \quad \boldsymbol{g}=\mathbf{0} \quad \text { and } \quad \boldsymbol{v} \in \boldsymbol{L}_{\sigma}^{6 / 5+\alpha}(\Omega)
$$

for any $0<\alpha \leq 9 / 5$. Then, there exists a solution of (O) such that $(\boldsymbol{u}, \pi) \in \mathbf{H}_{0}^{1}(\Omega) \times L^{q(\alpha)}(\Omega) / \mathbb{R}$ for $q(\alpha)=(6(6+5 \alpha)) /(36+5 \alpha)$ with the estimate:

$$
\begin{equation*}
\|\boldsymbol{u}\|_{\mathbf{H}^{1}(\Omega)}+\|\pi\|_{L^{q(\alpha)}(\Omega) / \mathbb{R}} \leq C\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{6 / 5+\alpha}(\Omega)}\right)\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)} \tag{10}
\end{equation*}
$$

Proof. We approximate \boldsymbol{v} by $\boldsymbol{v}_{\lambda} \in \mathcal{D}_{\sigma}(\bar{\Omega})$ in the $\mathbf{L}^{6 / 5+\alpha}(\Omega)$-norm and look for the solution of the problem:

$$
\left(\mathrm{O}_{\lambda}\right) \quad-\Delta \boldsymbol{u}_{\lambda}+\nabla \cdot\left(\boldsymbol{u}_{\lambda} \otimes \boldsymbol{v}_{\lambda}\right)+\nabla \pi_{\lambda}=\boldsymbol{f} \quad \text { and } \quad \nabla \cdot \boldsymbol{u}_{\lambda}=0 \quad \text { in } \Omega, \quad \boldsymbol{u}_{\lambda}=\mathbf{0} \quad \text { on } \quad \Gamma
$$

Taking \boldsymbol{u}_{λ} as test function in $\left(\mathrm{O}_{\lambda}\right)$, we get the estimate:

$$
\begin{equation*}
\left\|\boldsymbol{u}_{\lambda}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C(\Omega)\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)} \tag{11}
\end{equation*}
$$

By De Rham Theorem, there exists $\pi_{\lambda} \in L^{2}(\Omega)$ (unique up to a constant) such that:

$$
\nabla \pi_{\lambda}=\boldsymbol{f}+\Delta \boldsymbol{u}_{\lambda}-\nabla \cdot\left(\boldsymbol{u}_{\lambda} \otimes \boldsymbol{v}_{\lambda}\right)
$$

Moreover, $\boldsymbol{u}_{\lambda} \otimes \boldsymbol{v}_{\lambda}$ belongs to a bounded set of $\mathbb{L}^{q(\alpha)}(\Omega)$ with $q(\alpha)=(6(6+5 \alpha)) /(36+5 \alpha)$ and which implies that $\nabla \cdot\left(\boldsymbol{u}_{\lambda} \otimes \boldsymbol{v}_{\lambda}\right)$ belongs to a bounded set of $\mathbf{W}^{-1, q(\alpha)}(\Omega)$. Note that if $0<\alpha \leq 9 / 5$ then $1<q(\alpha) \leq 2$. Using (11),

$$
\begin{align*}
&\left\|\nabla \pi_{\lambda}\right\|_{W^{-1, q(\alpha)}(\Omega)} \leq C_{1}(1+C(\Omega))\|f\|_{\mathbf{H}^{-1}(\Omega)}+\left\|\boldsymbol{u}_{\lambda} \otimes \boldsymbol{v}_{\lambda}\right\|_{\mathbb{L}^{q(\alpha)}(\Omega)} \\
& \leq C_{1}(1+C(\Omega))\|f\|_{\mathbf{H}^{-1}(\Omega)}+C_{2}\left\|\boldsymbol{v}_{\lambda}\right\|_{\mathbf{L}^{6 / 5+\alpha}(\Omega)}\left\|\boldsymbol{u}_{\lambda}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \tag{12}\\
& \leq C(\Omega)\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{6 / 5+\alpha}(\Omega)}\right)\|f\|_{\mathbf{H}^{-1}(\Omega)}
\end{align*}
$$

where C_{1} and C_{2} are the constant of the Sobolev embeddings $\mathbf{H}^{-1}(\Omega) \hookrightarrow \mathbf{W}^{-1, q(\alpha)}(\Omega)$ and $\mathbf{H}_{0}^{1}(\Omega) \hookrightarrow \mathbf{L}^{6}(\Omega)$, respectively. Therefore, from (12) we obtain:

$$
\inf _{K \in \mathbb{R}}\left\|\pi_{\lambda}+K\right\|_{L^{q(\alpha)}(\Omega)} \leq C(\Omega)\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{6 / 5+\alpha}(\Omega)}\right)\|f\|_{\mathbf{H}^{-1}(\Omega)}
$$

Now, it is necessary to take the limit when $\lambda \rightarrow 0$: We can extract a subsequence of $\left(\boldsymbol{u}_{\lambda}\right)$ and $\left(\pi_{\lambda}+C_{\lambda}\right)$ (that will be called in the same way that the original one) such that:

$$
\boldsymbol{u}_{\lambda} \rightharpoonup \boldsymbol{u} \quad \text { in } \mathbf{H}_{0}^{1}(\Omega), \quad \pi_{\lambda}+C_{\lambda} \rightharpoonup \pi \quad \text { in } L^{q(\alpha)}(\Omega)
$$

where (\boldsymbol{u}, π) is solution of (O) and satisfies (10).
Theorem 3.2. Let $\Omega \subset \mathbb{R}^{2}$ a Lipschitz bounded domain, $\boldsymbol{f} \in \mathbf{H}^{-1}(\Omega), h=0, \boldsymbol{g}=\mathbf{0}$ and $\boldsymbol{v} \in \mathbf{L}_{\sigma}^{1+\alpha}(\Omega)$ with $0<\alpha \leq 1$. Then, there exists a solution of (O) such that $(\boldsymbol{u}, \pi) \in \mathbf{H}_{0}^{1}(\Omega) \times L^{q(\beta)}(\Omega) / \mathbb{R}$ for $q(\beta)=1+\beta$, for any $0<\beta<\alpha$, with the estimate:

$$
\|\boldsymbol{u}\|_{\mathbf{H}^{1}(\Omega)}+\|\pi\|_{L^{q(\beta)}(\Omega) / \mathbb{R}} \leq C\left(1+\|\boldsymbol{v}\|_{\mathbf{L}^{1+\alpha}(\Omega)}\right)\|\boldsymbol{f}\|_{\mathbf{H}^{-1}(\Omega)}
$$

Acknowledgments

The second author is partially supported by MINECO Project MTM2015-69875-P (Ministerio de Economía y Competitividad, Spain) with the participation of FEDER.

References

[1] C. Amrouche, M.Á. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal. 199 (2) (2011) 597-651, http://dx.doi.org/10.1007/s00205-010-0340-8.
[2] H. Kim, Y.-H. Kim, On weak solutions of elliptic equations with singular drifts, SIAM J. Math. Anal. 47 (2) (2015) 1271-1290, http://dx.doi.org/10.1137/14096270X.
[3] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (3) (1993) 247-286.
[4] C. Fefferman, E.M. Stein, H^{p} spaces of several variables, Acta Math. 129 (3-4) (1972) 137-193, http://dx.doi.org/10.100 7/BF02392215.
[5] H. Brezis, L. Nirenberg, Degree theory and BMO. II. Compact manifolds with boundaries, Selecta Math. (N.S.) 2 (3) (1996) 309-368, http://dx.doi.org/10.1007/BF01587948, With an appendix by the authors and Petru Mironescu.
[6] C. Amrouche, V. Girault, J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: An approach in weighted Sobolev spaces, J. Math. Pures Appl. (9) 76 (1) (1997) 55-81, http://dx.doi.org/10.1016/S002 1-7824(97)89945-X.
[7] C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44(119) (1) (1994) 109-140.
[8] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, in: Springer Monographs in Mathematics, second ed., Springer, New York, 2011, p. xiv+1018, http://dx.doi.org/10.1007/978-0-387-09620-9, steadystate problems.
[9] C. Amrouche, V. Girault, J. Giroire, Weighted Sobolev spaces for Laplace's equation in \mathbf{R}^{n}, J. Math. Pures Appl. (9) 73 (6) (1994) 579-606.
[10] F. Alliot, C. Amrouche, The Stokes problem in \mathbf{R}^{n} : An approach in weighted Sobolev spaces, Math. Models Methods Appl. Sci. 9 (5) (1999) 723-754, http://dx.doi.org/10.1142/S0218202599000361.

[^0]: * Corresponding author.

 E-mail addresses: cherif.amrouche@univ-pau.fr (C. Amrouche), angeles@us.es (M.Á. Rodríguez-Bellido).

