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a b s t r a c t

The aim of this work is twofold: proving the existence of solution (u, π) ∈ H1(Ω) ×
L2(Ω) in bounded domains of R2 and the whole plane for the Oseen problem (O)
for solenoidal vector fields v in L2(Ω), and analyzing the same problem in bounded
domains of Rn for n = 2, 3 when h = 0, g = 0 and the solenoidal field v belongs to
Ls(Ω) for s < n.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This work is dedicated to the study of some existence aspect related to the Oseen problem in bounded
domain Ω ⊂ Rn, n = 2, 3:

(O) − ∆u + v · ∇u + ∇π = f , ∇ · u = h in Ω , u = g on Γ .

In the 3-dimensional case, the existence of weak solutions (u, π) ∈ H1(Ω) × L2(Ω), regular solution in
H2(Ω) × H1(Ω) and W1,p(Ω) × Lp(Ω) (and intermediate Sobolev spaces) together with the analysis of the
existence of very weak solutions in Lp(Ω) × W −1,p(Ω) have been analyzed by the authors in [1], assuming v
a solenoidal field belonging to Ls(Ω) for s ≥ 3 (from now on, we will denote this solenoidal space by Ls

σ(Ω)).
However, the existence of solution for the 2-dimensional Oseen system has not been attacked in [1] because
the “logical” assumption of considering the solenoidal field v ∈ L2(Ω) (in order to obtain weak solutions
for (O)) poses some difficulties in the treatment of the convective term (v · ∇)u: On the one hand, it is not
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clear if the bilinear form associated is coercive and continuous. Some related results can be found in [2] for
the scalar case (instead of considering a vector field solution u, one considers a scalar unknown θ) and for
g = 0. On the other hand, when Ω = R2 an additional awkwardness appears because even if we can prove
∇u ∈ L2(R2), it is not evident that u ∈ Lp(R2) (for any p). Giving a successful answer to both previous
problems is our first aim.

Our second aim is to give a first answer to the question of the existence of solution for the Oseen problem
(O) when v only belongs to Ls

σ(Ω), with s < n and n = 2, 3.

2. Solutions for the Oseen problem in the 2-dimensional case

The existence of weak solutions in H1(Ω) for Problem (O) in 2-dimensional domains is not known when
a solenoidal field v that only belongs to L2(Ω) is considered. In this case, the term (v · ∇)u belongs only to
L1(Ω). It is then not clear neither if the bilinear form associated to the Problem (O), with h = 0 and g = 0:

a(u, w) =
∫
Ω

∇u · ∇w dx +
∫
Ω

(v · ∇)u · w dx

is coercive on the space V(Ω) = {w ∈ H1
0(Ω); div w = 0 inΩ} nor if it is continuous on V(Ω) × V(Ω). In

order to overcome this difficulty, we use the Hardy space H1(R2). One equivalent definition of such a space
(in the n-dimensional case) is [3]:

H1(Rn) = {f ∈ L1(Rn), Rjf ∈ L1(Rn), 1 ≤ j ≤ n} where Rj = ∂

∂xj
(−∆)−1/2.

A partial study of the BMO spaces (Bounded Mean Oscillation) will be also necessary taking into account
the duality between H1 and the BMO (see [4]). Moreover, the V MO-space (Vanishing Mean Oscillator) is
a subspace of the BMO: a function f in BMO(Rn) is said to be in V MO(Rn) if

lim
r→0

sup
x0∈Rn

1
rn

∫
B(x0,r)

|f − f |dx = 0, where f = 1
|B(x0, r)|

∫
B(x0,r)

f.

It is also crucial the fact that H1(R2) ↪→ V MO(R2) (see [5]).
With these ingredients, we will prove one of the two main results of this work, namely Theorem 2.2 in

bounded domains and Theorem 2.5 if Ω = R2. In order to prove them, we use the following result:

Lemma 2.1. Assume v ∈ L2
σ(Ω) and y ∈ H1

0 (Ω). Then (v · ∇)y ∈ H−1(Ω) and

∥(v · ∇)y∥H−1(Ω) ≤ C ∥v∥L2(Ω)∥∇y∥L2(Ω). (1)

Moreover, we have that
⟨v · ∇z, z⟩H−1(Ω)×H1

0(Ω) = 0 for all z ∈ H1
0(Ω). (2)

Proof. Indeed, considering w ∈ L2(R2) the extension of v to R2 given by: w = v in Ω , and w = ∇θ in
Ω ′ = R2\Ω where θ is the solution of the following problem:

∆θ = 0 in Ω ′, ∂θ

∂n
= −v · n on Γ ,

with ∇θ ∈ L2(Ω ′) that satisfies

∥∇θ∥L2(Ω ′) ≤ C∥v · n∥H−1/2(Γ) ≤ C ∥v∥L2(Ω)
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because ∇ · v = 0 in Ω . Moreover, ∇ · v = 0 in Ω implies ⟨v · n, 1⟩Γ = 0 and the existence of θ is ensured
by Theorem 3.1 [6]. Observe that ∇ · w = 0 in R2 because for φ ∈ D(R2):

⟨∇ · w, φ⟩ = −
∫
Ω

v · ∇φ dx −
∫
Ω ′

∇θ · ∇φ dx = ⟨v · n, φ⟩Γ − ⟨v · n, φ⟩Γ = 0,

and ∥w∥L2(R2) ≤ C ∥v∥L2(Ω). On the other hand, we consider ỹ the extension by zero of y that satisfies
ỹ ∈ H1(R2). Using Theorem II.2 point (2) or Theorem II.1 point (2) in [3], we can deduce that
w · ∇ỹ ∈ H1(R2) and the bound

∥w · ∇ỹ∥H1(R2) ≤ C∥w∥L2(R2)∥∇ỹ∥L2(R2) ≤ C∥v∥L2(Ω)∥∇y∥L2(Ω).

Now, we have to prove that v · ∇y ∈ H−1(Ω) and ⟨v · ∇y, y⟩H−1(Ω)×H1
0 (Ω) = 0. Indeed, for φ ∈ D(Ω)⏐⏐⏐⏐∫

Ω

φv · ∇y dx
⏐⏐⏐⏐ =

⏐⏐⏐⏐∫
R2

φ̃w · ∇ỹ dx
⏐⏐⏐⏐ ≤ ∥w · ∇ỹ∥H1(R2)∥φ̃∥BMO(R2)

≤ C∥v∥L2(Ω)∥∇y∥L2(Ω)∥φ̃∥H1(R2)
≤ C∥v∥L2(Ω)∥∇y∥L2(Ω)∥φ∥H1(Ω)

because H1(R2) ↪→ V MO(R2) ↪→ BMO(R2). In that way, as D(Ω) is dense in H1
0 (Ω), we can deduce that

v · ∇y ∈ H−1(Ω) and estimate (1).
For the proof of (2), let us consider zk ∈ D(Ω) be such that zk → z in H1

0(Ω). Then,

|⟨v · ∇z, z⟩H−1(Ω)×H1
0(Ω) − ⟨v · ∇zk, zk⟩H−1(Ω)×H1

0(Ω)|
≤ |⟨v · ∇(z − zk), z⟩H−1(Ω)×H1

0(Ω)| + |⟨v · ∇zk, (zk − z)⟩H−1(Ω)×H1
0(Ω)|

Using (1) and the convergence of zk to z in H1
0(Ω), both duality terms on the right-hand-side of the previous

inequality tend to 0 when k → +∞.
Finally, from ⟨v · ∇zk, zk⟩H−1(Ω)×H1

0(Ω) = 0, we can deduce (2). □

Theorem 2.2 (Existence of Weak Solution for (O)). Let Ω be a Lipschitz bounded domain in R2. Let

f ∈ H−1(Ω), v ∈ L2
σ(Ω), h ∈ L2(Ω) and g ∈ H1/2(Γ )

satisfy the compatibility condition ∫
Ω

h(x) dx =
∫

∂Ω

g · n dσ. (3)

Then, the problem (O) has a unique solution (u, π) ∈ H1(Ω)×L2(Ω)/R. Moreover, there exist some constants
C1 > 0 and C2 > 0 such that:

∥u∥H1(Ω) ≤ C1

(
∥f ∥H−1(Ω) +

(
1 + ∥v∥L2(Ω)

) (
∥h∥L2(Ω) + ∥g∥H1/2(Γ)

))
, (4)

∥π∥L2(Ω)/R ≤ C2

(
∥f ∥H−1(Ω) +

(
1 + ∥v∥L2(Ω)

) (
∥h∥L2(Ω) + ∥g∥H1/2(Γ)

))
, (5)

where C1 = C(Ω) and C2 = C1

(
1 + ∥v∥L2(Ω)

)
.

Proof. Although some parts of this proof are identical to the proof made in [1], we include the whole
argument here for completeness. In order to prove the existence of solution, first (using Lemma 3.3 in [7], for
instance) we lift the boundary and the divergence data. Then, there exists u0 ∈ H1(Ω) such that ∇ · u0 = h

in Ω , u0 = g on Γ and:
∥u0∥H1(Ω) ≤ C

(
∥h∥L2(Ω) + ∥g∥H1/2(Γ)

)
. (6)
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Therefore, it remains to find (z, π) = (u − u0, π) in H1
0(Ω) × L2(Ω) such that:

− ∆z + v · ∇z + ∇π = F and ∇ · z = 0 in Ω , z = 0 on Γ . (7)

being F = f + ∆u0 − (v · ∇)u0. From Lemma 2.1, we deduce that (v · ∇)u0 ∈ H−1(Ω), then F ∈ H−1(Ω).
Since the space Dσ(Ω) = {φ ∈ D(Ω); ∇ · φ = 0} is dense in the space V(Ω), the previous problem is
equivalent to:

Find z ∈ V(Ω) such that: ∀φ ∈ V(Ω)∫
Ω

∇z · ∇φ dx + ⟨(v · ∇)z, φ⟩H−1(Ω)×H1
0(Ω) = ⟨F , φ⟩H−1(Ω)×H1

0(Ω).

Now, using (2) by Lax–Milgram’s Theorem, if we assume that F ∈ H−1(Ω), then we can deduce the
existence of a unique z ∈ H1

0(Ω) solution of (7) verifying:

∥z∥H1(Ω) ≤ C ∥F∥H−1(Ω)

≤ C
(

∥f ∥H−1(Ω) +
(

1 + ∥v∥L2(Ω)

) (
∥h∥L2(Ω) + ∥g∥H1/2(Γ)

))
,

(8)

which added to estimate (6) makes (4). We can recover the pressure π thanks to the De Rham’s Lemma
(Lemma 6 in [1] and Corollary III.5.1 in [8]). Now, −∆z + v · ∇z − F ∈ H−1(Ω) and:

∀φ ∈ V(Ω), ⟨−∆z + v · ∇z − F , φ⟩H−1(Ω)×H1
0(Ω) = 0.

Thanks to De Rham’s Lemma, there exists a unique π ∈ L2(Ω)/R such that

−∆z + v · ∇z + ∇π = F

with ∥π∥L2(Ω)/R ≤ C ∥∇π∥H−1(Ω). Finally, estimate (5) follows from the previous equation and estimate (8)
for z. □

With the same procedure than in [1], we can prove strong and weak-W 1,p(Ω) regularity for (O) in the
2-dimensional bounded case. These results can be stated as follows:

Theorem 2.3 (Existence of Strong Solution For (O)). Let p > 1,

f ∈ Lp(Ω), h ∈ W 1,p(Ω), v ∈ Ls
σ(Ω) and g ∈ W2−1/p,p(Γ )

satisfying the compatibility condition (3) with s = 2 if p < 2, s = p if p > 2 and s = 2 + ε (ε > 0) if p = 2.
Then, the unique solution of (O) given by Theorem 2.2 (u, π) belongs to W2,p(Ω) × W 1,p(Ω), and there
exists a constant C > 0 such that:

∥u∥W2,p(Ω) + ∥π∥W 1,p(Ω)/R ≤ C
(
1 + ∥v∥Ls(Ω)

)
×

(
∥f ∥Lp(Ω) +

(
1 + ∥v∥Ls(Ω)

) (
∥h∥W 1,p(Ω) + ∥g∥W2−1/p,p(Γ)

))
Theorem 2.4. Let

p > 1, f ∈ W−1,p(Ω), h ∈ Lp(Ω), v ∈ L3
σ(Ω) and g ∈ W1−1/p,p(Γ )

satisfying the compatibility condition (3). Then, the problem (O) has a unique solution (u, π) ∈ W1,p(Ω) ×
Lp(Ω)/R, and there exists a constant C > 0 such that:

∥u∥W1,p(Ω) +
(

1 + ∥v∥L3(Ω)

)γ

∥π∥Lp(Ω)/R ≤ C
(

1 + ∥v∥L3(Ω)

)
×

(
∥f ∥W−1,p(Ω) +

(
1 + ∥v∥L3(Ω)

) (
∥h∥Lp(Ω) + ∥g∥W1−1/p,p(Γ)

))
with γ = 0 if p ≥ 2 and γ = −1 if p < 2.
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If we treat the case of Ω = R2, we have to introduce the Sobolev spaces:

W 1,2
0 (R2) =

{
φ ∈ D′(R2); φ

w1
∈ L2(R2), ∇φ ∈ L2(R2)

}
,

W 2,2
0 (R2) =

{
φ ∈ D′(R2); φ

w2
∈ L2(R2), ∇φ

w1
∈ L2(R2), ∇2φ ∈ L2(R2)

}
,

where w1 = (1 + |x|) ln(2 + |x|) and w2 = (1 + |x|)2 ln(2 + |x|) (see Definition (7.1), p. 593 in [9]). We
denote by W −1,2

0 (R2) the dual space of W 1,2
0 (R2). Recall [5] that the space W 1,2

0 (R2) is densely embedded
in V MO(R2), and therefore H1(R2) =

[
V MO(R2)

]′
↪→ W −1,2

0 (R2).

Theorem 2.5 (Case Ω = R2). (i) Let

f = divF with F ∈ L2(R2) and h ∈ L2(R2).

Then, the problem (O) has a unique solution (u, π) satisfying u ∈ W1,2
0 (R2) and π ∈ L2(R2), where π is

unique and u is unique up to an additive constant vector field.
(ii) Moreover, if

f ∈ H1(R2) and ∇h ∈ H1(R2),

then
∇2u ∈ H1(R2), ∇π ∈ H1(R2), ∇u ∈ L2,1(R2) and u ∈ L∞(R2), (9)

being L2,1(R2) is the Lorentz space of all measurable functions f satisfying∫ ∞

0
t−1/2f∗(t) dt < +∞,

where the rearrangement function f∗ is defined by f∗(t) = sup{s ∈ (0, ∞); µ({x ∈ R2; |f(x)| > s}) > t},
for µ the Lebesgue measure on R2.

Proof. (i) Existence: Let χ ∈ W 2,2
0 (R2) be the unique solution, up to a polynomial function of degree one,

of ∆χ = h in R2 (Theorem 9.6 in [9]). Then, we take uh = ∇χ ∈ W 1,2
0 (R2). Problem (O) is then written as:

−∆z + v · ∇z + ∇π = k, ∇ · z = 0 in R2,

with k = f +∆uh − v · ∇uh. Because of (v · ∇)uh ∈ H1(R2) ↪→ W −1,2
0 (R2), by using Lax–Milgram’s Lemma

(as in the bounded case) we can deduce the existence of a solution z ∈ W 1,2
0 (R2) with ∇ · z = 0, unique

up to a constant vector of R2. Lax–Milgram’s Lemma hypotheses are satisfied because, on the one hand, we
know that the quotient norm ∥z∥W 1,2

0 (R2)/R2 is equivalent to that one defined as ∥∇z∥L2(R2), and, on the
other hand, (v · ∇)z ∈ H1(R2) for any z ∈ W 1,2

0 (R2). The pressure can be recovered by using Theorem 1
in [10].

(ii) Regularity: Assume that f ∈ H1(R2) and ∇h ∈ H1(R2) (which, in particular, implies that h ∈ L2,1(R2)).
Therefore,

−∆u + ∇π = f − v · ∇u ∈ H1(R2) and ∇ · u = h.

By using Theorem 3.14 in [10], one deduces (9).
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3. The Oseen problem in bounded domains for a less regular v

The aim of this section is the analysis of the existence of solutions of (O) in a bounded domain (n = 2
or 3) when v ∈ Ls

σ(Ω) for s < n. We analyze the case for f ∈ H−1(Ω), h = 0 and g = 0. Observe that the
term (v · ∇)u can also be written as ∇ · (u ⊗ v). The proof of Theorem 3.2 (n = 2) applies directly from
that one of Theorem 3.1 (n = 3).

Theorem 3.1. Let Ω ⊂ R3 a Lipschitz bounded domain,

f ∈ H−1(Ω), h = 0, g = 0 and v ∈ L6/5+α
σ (Ω)

for any 0 < α ≤ 9/5. Then, there exists a solution of (O) such that (u, π) ∈ H1
0(Ω) × Lq(α)(Ω)/R for

q(α) = (6(6 + 5α))/(36 + 5α) with the estimate:

∥u∥H1(Ω) + ∥π∥Lq(α)(Ω)/R ≤ C
(

1 + ∥v∥L6/5+α(Ω)

)
∥f ∥H−1(Ω) (10)

Proof. We approximate v by vλ ∈ Dσ(Ω) in the L6/5+α(Ω)-norm and look for the solution of the problem:

(Oλ) − ∆uλ + ∇ · (uλ ⊗ vλ) + ∇πλ = f and ∇ · uλ = 0 in Ω , uλ = 0 on Γ

Taking uλ as test function in (Oλ), we get the estimate:

∥uλ∥H1
0(Ω) ≤ C(Ω) ∥f ∥H−1(Ω). (11)

By De Rham Theorem, there exists πλ ∈ L2(Ω) (unique up to a constant) such that:

∇πλ = f + ∆uλ − ∇ · (uλ ⊗ vλ).

Moreover, uλ ⊗ vλ belongs to a bounded set of Lq(α)(Ω) with q(α) = (6(6 + 5α))/(36 + 5α) and which
implies that ∇ · (uλ ⊗ vλ) belongs to a bounded set of W−1,q(α)(Ω). Note that if 0 < α ≤ 9/5 then
1 < q(α) ≤ 2. Using (11),

∥∇πλ∥W −1,q(α)(Ω) ≤ C1 (1 + C(Ω)) ∥f∥H−1(Ω) + ∥uλ ⊗ vλ∥Lq(α)(Ω)
≤ C1 (1 + C(Ω)) ∥f∥H−1(Ω) + C2 ∥vλ∥L6/5+α(Ω)∥uλ∥H1

0(Ω)

≤ C(Ω)
(

1 + ∥v∥L6/5+α(Ω)

)
∥f∥H−1(Ω)

(12)

where C1 and C2 are the constant of the Sobolev embeddings H−1(Ω) ↪→ W−1,q(α)(Ω) and H1
0(Ω) ↪→ L6(Ω),

respectively. Therefore, from (12) we obtain:

inf
K∈R

∥πλ + K∥Lq(α)(Ω) ≤ C(Ω)
(

1 + ∥v∥L6/5+α(Ω)

)
∥f∥H−1(Ω)

Now, it is necessary to take the limit when λ → 0: We can extract a subsequence of (uλ) and (πλ + Cλ)
(that will be called in the same way that the original one) such that:

uλ ⇀ u in H1
0(Ω), πλ + Cλ ⇀ π in Lq(α)(Ω),

where (u, π) is solution of (O) and satisfies (10). □

Theorem 3.2. Let Ω ⊂ R2 a Lipschitz bounded domain, f ∈ H−1(Ω), h = 0, g = 0 and v ∈ L1+α
σ (Ω) with

0 < α ≤ 1. Then, there exists a solution of (O) such that (u, π) ∈ H1
0(Ω) × Lq(β)(Ω)/R for q(β) = 1 + β,

for any 0 < β < α, with the estimate:

∥u∥H1(Ω) + ∥π∥Lq(β)(Ω)/R ≤ C
(

1 + ∥v∥L1+α(Ω)

)
∥f ∥H−1(Ω)
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