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1. Introduction

This work is dedicated to the study of some existence aspect related to the Oseen problem in bounded
domain 2 C R", n =2, 3:

(0O)—Au+v-Vu+Vr=f, V-u=h inf), u=g onl.

In the 3-dimensional case, the existence of weak solutions (u,m) € H(£2) x L%*(2), regular solution in
H2(02) x H(2) and W1P(2) x LP(R2) (and intermediate Sobolev spaces) together with the analysis of the
existence of very weak solutions in LP(£2) x W ~1?(£2) have been analyzed by the authors in [1], assuming v
a solenoidal field belonging to L*(£2) for s > 3 (from now on, we will denote this solenoidal space by L5 (£2)).
However, the existence of solution for the 2-dimensional Oseen system has not been attacked in [1] because
the “logical” assumption of considering the solenoidal field v € L2({2) (in order to obtain weak solutions
for (O)) poses some difficulties in the treatment of the convective term (v - V)u: On the one hand, it is not
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clear if the bilinear form associated is coercive and continuous. Some related results can be found in [2] for
the scalar case (instead of considering a vector field solution u, one considers a scalar unknown 6) and for
g = 0. On the other hand, when 2 = R? an additional awkwardness appears because even if we can prove
Vu € L?(R?), it is not evident that w € LP(R?) (for any p). Giving a successful answer to both previous
problems is our first aim.

Our second aim is to give a first answer to the question of the existence of solution for the Oseen problem
(O) when v only belongs to L5 (£2), with s < n and n = 2, 3.

2. Solutions for the Oseen problem in the 2-dimensional case

The existence of weak solutions in H*({2) for Problem (O) in 2-dimensional domains is not known when
a solenoidal field v that only belongs to L?(2) is considered. In this case, the term (v-V)u belongs only to
L1(£2). It is then not clear neither if the bilinear form associated to the Problem (O), with h = 0 and g = 0:

a(u,w):/ Vu-dea:—I—/(v-V)u-'wdw
Q 7

is coercive on the space V(£2) = {w € H}(2); divw = 0in 2} nor if it is continuous on V() x V(£2). In
order to overcome this difficulty, we use the Hardy space H!(R?). One equivalent definition of such a space
(in the n-dimensional case) is [3]:

H'(R") = {f € L*(R"),R,;f € L*(R"), 1 <j <n} where R; = ai(—A)—l/?

i

A partial study of the BMO spaces (Bounded Mean Oscillation) will be also necessary taking into account
the duality between H! and the BMO (see [4]). Moreover, the V M O-space (Vanishing Mean Oscillator) is
a subspace of the BMO: a function f in BMO(R") is said to be in VMO(R") if

1 — — 1
lim sup — / — flde =0, where f= —— / .
r—0 zo R rn |f f| f |B(J}0,T)‘ f
B(zo,r) B(xo,r)

It is also crucial the fact that H!(R?) — VMO(R?) (see [5]).
With these ingredients, we will prove one of the two main results of this work, namely Theorem 2.2 in
bounded domains and Theorem 2.5 if 2 = R2. In order to prove them, we use the following result:

Lemma 2.1. Assume v € L2(2) and y € H3(2). Then (v-V)y € H1(2) and

(v V)yllg-100) < CllvllLz ) VYllLz (o) (1)

Moreover, we have that

(v-Vz, z)H_1(Q)XH(1)(Q) =0 forall z€ HY(R). (2)

Proof. Indeed, considering w € L?(R?) the extension of v to R? given by: w = v in 2, and w = V@ in
2" = R\ 2 where 6 is the solution of the following problem:

AO =0 in (Y, %z—v'n on I,

with VO € L2(£’) that satisfies

IV8llgz(r) < Cllo-nll 12 < Cllollgao)
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because V - v = 0 in 2. Moreover, V - v = 0 in {2 implies (v n,1)r = 0 and the existence of 6 is ensured
by Theorem 3.1 [6]. Observe that V - w = 0 in R? because for ¢ € D(R?):

(V-w, @)= —/ v-Vodx— [ VO -Vodx=(v-n,o)r —(v-n,po)p =0,
Ie; o

and [|wllp2@e2) < C|v]L2(p). On the other hand, we consider y the extension by zero of y that satisfies

y € HY(R?). Using Theorem I1.2 point (2) or Theorem II.1 point (2) in [3], we can deduce that

w - Vy € HY(R?) and the bound

|w - VYl @2y < Clwllzee VYl ey < Cllvliuzo)IVyllLze)-

Now, we have to prove that v-Vy € H~1(£2) and (v - Vy7y>H*1(_Q)><Hé(Q) = 0. Indeed, for ¢ € D(£2)

/gov~Vyd:c / pw-Vydz
Q R2

w- V37||H1(R2) ||95||BMO(R2)

<
< Clvllez o) IVYllLz (o) 191l g r2)
< ClvllezoIVYlluz o) lell a0

because H!(R?) — VMO(R?) — BMO(R?). In that way, as D({2) is dense in H}({2), we can deduce that
v-Vy € H () and estimate (1).
For the proof of (2), let us consider z; € D(£2) be such that zx — z in H}(£2). Then,

{v- V2, 2)u-10)xmt(2) = (V- V2, 2 a-1(0)xm1 (o)
<[ Vi(z = z), 2)u-1(0)xmi (o)) + (v Vi, (21 = 2)u-1(0) <1l (o)

Using (1) and the convergence of z to z in H(£2), both duality terms on the right-hand-side of the previous
inequality tend to 0 when k& — +oc0.
Finally, from (v - Vzk,zk>H,1(Q)XH(1)(Q) =0, we can deduce (2). O

Theorem 2.2 (Ezistence of Weak Solution for (0)). Let 2 be a Lipschitz bounded domain in R?. Let
feHYN), vell(R), helL?*R) and geHY(D)
satisfy the compatibility condition
h(x) dz :/ g-ndo. (3)
Q o0

Then, the problem (O) has a unique solution (u, ) € H'(£2)x L?(2)/R. Moreover, there exist some constants
C1 >0 and Cy > 0 such that:

lullen ey < Cu(Iflls-rcey + (1+ I0lzge) ) (12 + gl ) (4)

Imlzecaym < Co(Ifli-1() + (1 + 0l ) (1hllz2ee) + gl ) (5)

where Cy = C(£2) and Cy = Cy (1 + ||v||L2(Q)).

Proof. Although some parts of this proof are identical to the proof made in [1], we include the whole
argument here for completeness. In order to prove the existence of solution, first (using Lemma 3.3 in [7], for
instance) we lift the boundary and the divergence data. Then, there exists ug € H!(£2) such that V- uy = h
in 2, ug =g on I' and:

lolless (@) < C (Ikllz2ay + gl o ry) - (6)
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Therefore, it remains to find (z,7) = (u — ug, 7) in HY(2) x L?(§2) such that:
—Az+v-Vz+Vr=F and V-2=0in{2, z=0 on/. (7)

being F = f + Aug — (v V)ug. From Lemma 2.1, we deduce that (v-V)ug € H71(£2), then F € H1(02).
Since the space D,(2) = {p € D(N2); V-¢ = 0} is dense in the space V({2), the previous problem is

equivalent to:
Find z € V(2) such that: V¢ € V(£2)

/QVZ Vedz+((v- V)2, 0)u-1(0)xui(0) = (F: P)u-1(0) <1l (0)

Now, using (2) by Lax-Milgram’s Theorem, if we assume that F € H~!(§2), then we can deduce the
existence of a unique z € H}({2) solution of (7) verifying:

Izlar2) < ClFla-1(o)

< (Iflaror + (14 Iollzcon) (IWlz2oy + lalharrocr) ) ®

which added to estimate (6) makes (4). We can recover the pressure 7 thanks to the De Rham’s Lemma
(Lemma 6 in [1] and Corollary IT1.5.1 in [8]). Now, —Az+v-Vz— F € H71(2) and:

V(PGV(.Q), <*AZ+'UVZ*F,(P>H—1(Q)XH(1)(Q) :0
Thanks to De Rham’s Lemma, there exists a unique 7 € L?(2)/R such that
—Az+v-Vz+Vr=F

with [|7]| L2(0y/r < C[V7|lg-1(0)- Finally, estimate (5) follows from the previous equation and estimate (8)
for z. O

With the same procedure than in [1], we can prove strong and weak-W1P(£2) regularity for (O) in the
2-dimensional bounded case. These results can be stated as follows:

Theorem 2.3 (Ezistence of Strong Solution For (O)). Let p > 1,
feLp(.Q), her’p(Q)7 'UELZ(.Q) and geW271/p7p(l—|)

satisfying the compatibility condition (3) with s =2 ifp<2,s=pifp>2ands=2+¢ (¢>0) if p=2.
Then, the unique solution of (O) given by Theorem 2.2 (u,m) belongs to W2P(£2) x WLP(£2), and there
exists a constant C' > 0 such that:

lullwer2y + l7llwie)r <C (1+[|vllLs(e))
x (Ifloce + (1+ I0ls(@) (IRlwoge) + Iglwa-1/acr) ))
Theorem 2.4. Let
p>1, feW ™ P(Q), helP(R), vell(R) and ge W V/PP(D)

satisfying the compatibility condition (3). Then, the problem (O) has a unique solution (u,7) € WHP(2) x
LP(2)/R, and there exists a constant C > 0 such that:

v
lulwiogy + (1410l Imlzrwm < C (1+ vl )
x (I lw-rog) + (14 I0llacey ) (I8llzoi) + Igllwi-1macr ))

withy=0ifp>2andy=—-11ifp<2.
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If we treat the case of 2 = R?, we have to introduce the Sobolev spaces:
W2 (R?) = {@ € D'(R?); wi € L*(R?), Vp € LQ(RQ)} :
1

W2 (R?) = {gp € D'(R?); wﬁ € L*(R?), % € L*(R?), V3p € L2(R2)} :
2 1
where w1 = (1 + |z|) In(2 + |z|) and we = (1 + |z|)? In(2 + |z|) (see Definition (7.1), p. 593 in [9]). We
denote by W, "*(R?) the dual space of Wy?(R?). Recall [5] that the space W, ?(R?) is densely embedded
in VMO(R?), and therefore H'(R?) = [VMO(R?)]" < Wy "*(R2).

Theorem 2.5 (Case 2 = R?). (i) Let
f=divF with FeL*R?* and he L*(R?).

Then, the problem (O) has a unique solution (u,7) satisfying u € Wy (R?) and = € L*(R?), where 7 is
unique and w is unique up to an additive constant vector field.
(i) Moreover, if
fFeH (R?) and Vhe HY(R?),

then
Viu € HY(R?), VreH' (R?), VucIL> (R?) and wuc L®R?), (9)

being L?1(R?) is the Lorentz space of all measurable functions f satisfying

o0
/ t=Y2 4 (t) dt < 400,
0

where the rearrangement function f* is defined by f*(t) = sup{s € (0,00); p({z € R?; |f(z)| > s}) > t},
for p the Lebesque measure on R2.

Proof. (i) Existence: Let x € VVO2 -2 (R?) be the unique solution, up to a polynomial function of degree one,
of Ax = h in R? (Theorem 9.6 in [9]). Then, we take u, = Vx € W,**(R?). Problem (O) is then written as:

—Az4+v-Vz+Vr=k, V-z=0 inR?

with k = f + Aw;, — v- Vay,. Because of (v-V)uy, € H1(R?) < W, “*(R?), by using Lax Milgram’s Lemma
(as in the bounded case) we can deduce the existence of a solution z € W, *(R?) with V - z = 0, unique
up to a constant vector of R?. Lax—Milgram’s Lemma hypotheses are satisfied because, on the one hand, we

know that the quotient norm || 1.2 g2y g2 18 equivalent to that one defined as ||V 2|22y, and, on the

2|
0

other hand, (v-V)z € H'(R?) for any z € W, *(R?). The pressure can be recovered by using Theorem 1

in [10].

(i) Regularity: Assume that f € H!(R?) and Vh € H!(R?) (which, in particular, implies that h € L?1(R?)).

Therefore,

~Au+Vr=f—v-VucH (R?) and V- -u=h.

By using Theorem 3.14 in [10], one deduces (9).



C. Amrouche and M.A. Rodriguez-Bellido / Applied Mathematics Letters 91 (2019) 220226 225

3. The Oseen problem in bounded domains for a less regular v

The aim of this section is the analysis of the existence of solutions of (O) in a bounded domain (n = 2
or 3) when v € L5 (£2) for s < n. We analyze the case for f € H™!(£2), h = 0 and g = 0. Observe that the
term (v - V)u can also be written as V - (u ® v). The proof of Theorem 3.2 (n = 2) applies directly from
that one of Theorem 3.1 (n = 3).

Theorem 3.1. Let 2 C R3 a Lipschitz bounded domain,
feH YY), h=0, g=0 and ve L¥YT(N)

for any 0 < a < 9/5. Then, there exists a solution of (O) such that (u,n) € H(R2) x LI (2)/R for
g(a) = (6(6 + 5a))/(36 4+ 5ar) with the estimate:

lullers @) + 17l ator yym < € (14 I0llgorsaa ) Ifla-1(q) (10)

Proof. We approximate v by vy € D, (1) in the LS/57%()-norm and look for the solution of the problem:
(0)) —Aupy+V-(un®vy\)+Vmry=f and V-uy =0 inf2, un=0 on I
Taking u, as test function in (O,), we get the estimate:
lurlliz o) < CU) IFlla-1(0)- (11)
By De Rham Theorem, there exists my € L?({2) (unique up to a constant) such that:
Vay=f+ Auy — V- (uy @ vy).

Moreover, uy ® vy belongs to a bounded set of L4(*)(£2) with ¢(a) = (6(6 + 5))/(36 + 5a) and which
implies that V - (uy ® vy) belongs to a bounded set of W~14(®)(£2). Note that if 0 < o < 9/5 then
1 < ¢q(a) < 2. Using (11),

VTl —1.ate) () < C1 (L 4+ C(2) | flla-1(2) + [[tr @ vallpa@) (o)
< C1(1+C(2) [ flla-1(0) + Ca lvallLess+a (o) lwallu ) (12)

< (@) (1+ 0llgs/sragy) Il o)

where C; and C; are the constant of the Sobolev embeddings H™!(£2) < W~14(®) () and H}(2) < L%(£2),
respectively. Therefore, from (12) we obtain:

it s+ Kllacer o < C2) (14 [ols/araay ) 1f 1o

Now, it is necessary to take the limit when A — 0: We can extract a subsequence of (wy) and (7 + C))
(that will be called in the same way that the original one) such that:

uy — u in H}(2), >+ Cy =7 in LI)(R),

where (u, ) is solution of (O) and satisfies (10). O

Theorem 3.2. Let 2 C R? a Lipschitz bounded domain, f € H1(£2), h=0, g = 0 and v € LLT(2) with
0 < a < 1. Then, there exists a solution of (O) such that (u,7) € H§(2) x LI (02)/R for ¢(B) = 1+ 3,
for any 0 < B < «, with the estimate:

el o) + ||7T||Lq(6>(n)/]R <C (1 + |\U||L1+a(rz)) ||f||H—1(Q)
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