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1 Introduction.

The main objective of this paper is to study the robustness of the exponen-
tial dichotomy in nonautonomous linear ordinary differential equations under
integrally small perturbations in infinite dimensional Banach spaces. Also,
we provide some applications to the case of rapidly oscillating perturbations,
with arbitrarily small periods, showing that even in this case the dichotomy
is robust. In particular, our results extend some results given in Coppel [2]
to infinite dimensions. Based in Rodrigues [6] and in Kloeden & Rodrigues
[5] [7], we use the class of functions that we call Generalized Almost Periodic
Functions that extend the usual class of almost periodic functions and are
suitable to model these oscillating perturbations. We also present an infinite
dimensional example to illustrate the previous abstract results.

Let X be a Banach space and A(t), B(t) be bounded operators defined in
X , such that ‖A(t)‖, ‖B(t)‖ are bounded for every t ∈ R. We consider the
following systems:

ẋ = A(t)x (1)

ẋ = A(t)x +B(t)x. (2)

In Section 3 we show that if system (1) possesses an exponential dichotomy in
R and B(t) is integrably small, then system (2) has an exponential dichotomy
in R. Then if we suppose that B(t) belongs to the class of generalized almost
periodic functions and we consider the systems

ẋ = A(t)x (3)

ẋ = A(t)x +B(ωt)x, (4)

if system (3) has an exponential dichotomy in R and ω is sufficiently large,
then system (4) has also an exponential dichotomy in R. We observe that if
B(t) is periodic then B(ωt) will have small period if ω is large.

In [7], page 17, there is a two dimensional example such that (1) has a non-
trivial exponential dichotomy (and therefore it is not asymptotically stable),
B(t) is periodic with very large period and very small mean value and (2) is
asymptotically stable.

In Section 4 we present an infinite dimensional example where A(t) = A
is constant, (3) admits an exponential dichotomy, B(t) belongs to the class of
generalized almost periodic functions and (4) has an exponential dichotomy
with sufficiently large ω.

In Section 5 we consider a case where the linear part is constant, un-
bounded, generates a C0-semigroup and the perturbation B(t) is small in some
sense, and in Theorem 3 we present the necessary results for this case. In Ex-
ample 1 we present an application of our abstract results to the heat equation.
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2 Integral Inequalities

In the next lemma we prove a new integral inequality that will be very useful
to show our main results.

Lemma 1 Let s be a fixed number in R. Let u(t) ≥ 0 be a real continuous
and bounded function for t ≥ s, such that

u(t) ≤ Ke−α(t−s) +N

∫ t

s
e−µ(t−τ)u(τ)dτ + L

∫ t

s
e−α(t−τ)u(τ)dτ

+M

∫ ∞

t
eγ(t−τ)u(τ)dτ, (5)

where K, N , L, M, µ, α, γ are positive numbers, with µ < α. Let β
.
= N

µ
+ L

α
+ M

γ
< 1.

Then

u(t) ≤
K

1− β
e
−(α−

N+L

1−β
)(t−s)

, t ≥ s.

Also, if u(t) ≥ 0 is continuous and bounded for t ≤ s, and

u(t) ≤ Keα(t−s) +N

∫ s

t
eµ(t−τ)u(τ)dτ + L

∫ s

t
eα(t−τ)u(τ)dτ

+M

∫ t

−∞

e−γ(t−τ)u(τ)dτ, (6)

where K, N , L, M, µ, α, γ are positive numbers, with µ < α, then

u(t) ≤
K

1− β
e
(α−

N+L

1−β
)(t−s)

, t ≤ s.

Proof We will first prove that u(t) → 0 as t → ∞. Suppose, by contradiction,
that this is not true. Let δ

.
= lim supt→∞ u(t). Then δ > 0.

Let 0 < ν < θ < 1. Then there exists t1 > s such that u(t) ≤ δ
θ for t ≥ t1.
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Therefore for t ≥ t1,

u(t) ≤ Ke−α(t−s) +N

∫ t1

s

e−µ(t−τ)u(τ)dτ +N

∫ t

t1

e−µ(t−τ)u(τ)dτ

+L

∫ t1

s

e−α(t−τ)u(τ)dτ + L

∫ t

t1

e−α(t−τ)u(τ)dτ

+M

∫ ∞

t

eγ(t−τ)u(τ)dτ

≤ Ke−α(t−s) +N

∫ t1

s

e−µ(t−τ)u(τ)dτ +
N δ

θ

∫ t

t1

e−µ(t−τ)dτ

+L

∫ t1

s

e−α(t−τ)u(τ)dτ +
Lδ

θ

∫ t

t1

e−α(t−τ)dτ

+
Mδ

θ

∫ ∞

t

eγ(t−τ)u(τ)dτ

≤ Ke−α(t−s) +N

∫ t1

s

e−µ(t−τ)u(τ)dτ +
N δ

µθ

+L

∫ t1

s

e−α(t−τ)u(τ)dτ +
Lδ

αθ
+

Mδ

γθ

= Ke−α(t−s) +N

∫ t1

s

e−µ(t−τ)u(τ)dτ + L

∫ t1

s

e−µ(t−τ)u(τ)dτ

+[
N

µ
+

L

α
+

M

γ
]
δ

θ

= Ke−α(t−s) + (N + L)

∫ t1

s

e−µ(t−τ)u(τ)dτ + β
δ

θ
.

Then δ = lim supt→∞ u(t) ≤ βδ
θ < δ, which is a contradiction. Therefore

u(t) → 0 as t → ∞.

Now for t ≥ s let v(t)
.
= supτ≥t u(τ). We can see that v(t) is a decreasing

function for t ≥ s.

Since u(t) → 0 as t → ∞, given t ∈ [s,∞) there exists t1 ≥ t such that
v(t) = v(τ) = u(t1) for t ≤ τ ≤ t1 and v(τ) < v(t1) if τ > t1. Indeed, let us
prove this statement. Let t̄ such that u(t̄) < v(t). Let t1 = max{τ ∈ [t, t̄]} such
that v(τ) = u(t1). Then for τ ∈ [t, t1] v(τ) = v(t) = u(t1) and v(τ) < v(t1) if
τ > t1.
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Then

v(t) = u(t1) ≤ Ke−α(t1−s) +N

∫ t1

s

e−µ(t1−τ)v(τ)dτ

+L

∫ t1

s

e−α(t1−τ)v(τ)dτ +M

∫ ∞

t1

eγ(t1−τ)v(τ)dτ

≤ Ke−α(t1−s) +N

∫ t

s

e−µ(t1−τ)v(τ)dτ +N

∫ t1

t

e−µ(t1−τ)v(τ)dτ

+L

∫ t

s

e−α(t1−τ)v(τ)dτ + L

∫ t1

t

e−α(t1−τ)v(τ)dτ

+M

∫ ∞

t

eγ(t1−τ)v(τ)dτ

≤ Ke−α(t−s) +N

∫ t

s

e−µ(t1−τ)v(τ)dτ +Nv(t)

∫ t1

t

e−µ(t1−τ)dτ

+L

∫ t

s

e−α(t1−τ)v(τ)dτ + Lv(t)

∫ t1

t

e−α(t1−τ)dτ

+Mv(t)

∫ ∞

t

eγ(t1−τ)dτ

= Ke−α(t−s) + [
N

µ
+

L

α
+

M

γ
]v(t) +N

∫ t

s

e−µ(t−τ)v(τ)dτ

+L

∫ t

s

e−α(t−τ)v(τ)dτ

= Ke−α(t−s) + βv(t) + [N + L]

∫ t

s

e−α(t−τ)v(τ)dτ.

Therefore (1− β)v(t) ≤ Ke−α(t−s) + [N + L]
∫ t

s e−α(t−τ)v(τ)dτ and

v(t) ≤
K

1− β
e−α(t−s) +

N + L

1− β

∫ t

s

e−α(t−τ)v(τ)dτ,

eα(t−s)v(t) ≤
K

1− β
+

N + L

1− β

∫ t

s

eα(t−s)e−α(t−τ)v(τ)dτ

=
K

1− β
+

N + L

1− β

∫ t

s

eα(τ−s)v(τ)dτ

Thanks to Gronwall’s inequality,

eα(t−s)v(t) ≤
K

1− β
e

N+L

1−β (t−s), and so u(t) ≤ v(t) ≤
K

1− β
e−(α−N+L

1−β )(t−s), t ≥ s.

The proof of the second integral inequality is similar.



6 H. M. Rodrigues et al.

3 Robustness of exponential dichotomy in R.

Based on [4] we define the concept of exponential dichotomies. Suppose the
evolution operators T (t, s) ∈ L(X), t ≥ s, for ẋ = A(t)x are defined in R (see
[7] for a detailed description of the concepts used in this paper).

Definition 1 Equation ẋ = A(t)x is said to have an exponential dichotomy
in R, with exponent β > 0 and bound M if there exist projections P (t), t ∈ R

such that

1. T (t, s)(I − P (s)) = (I − P (t))T (t, s), t ≥ s, t, s ∈ R.
2. the restriction T (t, s)|R(I−P (s)), t ≥ s, is an isomorphism of R(I − P (s))

onto R(I −P (t)), and we define T (s, t) as the inverse from R(I −P (t)) to
R(I − P (s)).

3.
‖T (t, s)P (s)‖ ≤ Me−β(t−s)for t ≥ s in R

‖T (t, s)(I − P (s))‖ ≤ Me−β(s−t)for s ≥ t in R
(7)

Remark 1 In [4], P (t) projects X onto the unstable manifold, differing from
the usual convention. In this paper, we chose to follow the usual convention,
thus P (t) will project X onto the stable manifold.

Suppose now that t ∈ R → A(t) ∈ L(X) is continuous and that equation
ẋ = A(t)x has an exponential dichotomy in R. Then, there is no solution x(t)
defined and bounded in R. Let X1 be the subspace of X of initial conditions
on t = 0 of the solutions that are bounded for t ≥ 0 and X2 be the subspace
of X of initial conditions on t = 0 of the solutions that are bounded for t ≤ 0.
Then, we have X = X1 ⊕X2 and P1, P2 the projections from X onto X1 and
X2 respectively. Then we can take P (t) = X(t)P1X

−1(t), where X(t) is the
operator solution of the equation such that X(0) = I.

Theorem 1 Let A, B : R → L(X) be continuous functions such that there
exists M > 0 and ‖A(t)‖ ≤ M and ‖B(t)‖ ≤ M for every t ∈ R. Consider the
equations:

ẋ = A(t)x (8)

ẏ = A(t)y +B(t)y (9)

Let T (t, s) = X(t)X−1(s) be the evolution operator of (8) and S(t, s) =
Y (t)Y −1(s) the evolution operator of (9). We suppose that system (8) ad-
mits an exponential dichotomy in R, i.e., there exist projections P (s), s ∈ R,
constants K > 1, α > 0, such that

‖T (t, s)P (s)‖ ≤ Ke−α(t−s), t ≥ s

‖T (t, s)(I − P (s))‖ ≤ Keα(t−s), t ≤ s
(10)

Assume that there exist δ, h > 0 such that ‖
∫ t2
t1

B(t)dt‖ ≤ δ provided that

|t2 − t1| ≤ h, t1, t2 ∈ R.
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Then, there exist projections Q(s), s ∈ R and constants K̃ and α̃ > 0, such
that we have S(t, s)Q(s) = Q(t)S(t, s) and

‖S(t, s)Q(s)‖ ≤ K̃e−α̃(t−s), t ≥ s

‖S(t, s)(I −Q(s))‖ ≤ K̃eα̃(t−s), t ≤ s

(11)

where, K̃ =
K(1+δ K

1−(K+ 6KM
α

)δ
)

1−β , β = 6KMδ
α < 1, and α̃ = α− 6KMδ

1−β .

Proof We first prove that there exists a projection Q(s) such that S(t, s)Q(s)
is bounded for t ≥ s for t, s ∈ R.

From the variation of constants formula it follows that

S(t, s) = T (t, s) +

∫ t

s

T (t, τ)B(τ)S(τ, s)dτ.

Since we look for Q(s) as a perturbation of P (s), we will show that the fol-
lowing implicit equation

S(t, s)Q(s) = T (t, s)P (s) +

∫ t

s

T (t, τ)B(τ)S(τ, s)Q(s)dτ.

has a solution S(t, s)Q(s) bounded for t ≥ s. Let Y (t, s)
.
= S(t, s)Q(s).

Then we should prove that the equation

Y (t, s) = T (t, s)P (s) +

∫ t

s

T (t, τ)B(τ)Y (τ, s)dτ

has a solution Y (t, s) ∈ L(X) bounded for t ≧ s and t, s ∈ R, and then
Q(s) = S(t, s)−1Y (t, s):

Y (t, s) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

+

∫ t

s

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

= T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

+

∫ ∞

s

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

+

∫ t

∞

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

= T (t, s)[P (s) +

∫ ∞

s

T (s, τ)(I − P (τ))B(τ)Y (τ, s)dτ ]

+

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

+

∫ t

∞

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ.
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Since

∫ ∞

s

T (s, τ)(I − P (τ))B(τ)Y (τ, s)dτ

= (I − P (s))

∫ ∞

s

T (s, τ)(I − P (τ))B(τ)Y (τ, s)dτ

and T (t, s)(I − P (s))
∫∞

s
T (s, τ)(I −P (τ))B(τ)Y (τ, s)dτ is bounded for t ≥ s

this implies that this term must be equal zero.

Therefore we must solve the equation,

Y (t, s) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

+

∫ t

∞

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ.

We will first estimate Y (t, s) in an arbitrary interval of length h. To this
end, we consider the strip Hh

.
= {(s, t) ∈ R2 : s ≤ t ≤ s+ h}. For (t, s) ∈ Hh

consider the integral equation:

Y (t, s) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ (12)

We prove the existence of a solution Y (t, s) of this equation using the
Banach Fixed Point Theorem.

Now we consider the space Yh
.
= BC(Hh, X) of the bounded continuous

functions Y from Hh to X with the norm |Y |
.
= sup(s,t)∈Hh) |Y (t, s)|. This is

a Banach space. For Y ∈ Yh we define the operator T as

(T Y )(t, s)
.
= T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ. (13)

We first prove that T (Yh) ⊂ Yh. The continuity is trivial. Let us prove the
boundedness. Let Y ∈ Yh. For (s, t) ∈ Hh
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|(T Y )(t, s)| ≤ |T (t, s)P (s)|+

∣∣∣∣
∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

∣∣∣∣

+

∣∣∣∣
∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

∣∣∣∣

≤ Ke−α(t−s) +

∫ t

s

Ke−α(t−τ)M |Y | dτ

+

∫ ∞

t

Ke−α(τ−t)M |Y | dτ

≤ K +
2KM |Y |

α

From (13) it follows that

(T Y )(t, s) = T (t, s)P (s) + (T1Y )(t, s),

where

(T1Y )(t, s) =

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ. (14)

Since (T1Y )(t, s) is linear, to prove that (T Y )(t, s) is a contraction it is suffi-
cient to prove that (T1Y )(t, s) is a contraction.

Let us analyse the first integral of (14). Let (s, t) ∈ Hh such that s ≤ t ≤
s+ h. Consider the integral:

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ.

We let Ct(τ)
.
=
∫ τ

t B(u)du. In order to use the smallness of the integral Ct(τ)
.
=∫ τ

t
B(u)du, we will perform an integration by parts taking the derivative of

three terms:

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]

= −T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s) + T (t, τ)P (τ)B(τ)Y (τ, s)

+T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s).

Therefore

T (t, τ)P (τ)B(τ)Y (τ, s)

=
d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]

+T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)

−T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s).
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Integrating,

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

=

∫ t

s

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

+

∫ t

s

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ

−

∫ t

s

T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ

= −T (t, s)P (s))Ct(s)Y (s, s) +

∫ t

s

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ

−

∫ t

s

T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ.

Therefore,

∣∣∣∣
∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

∣∣∣∣

≤ T (t, s)P (s))Ct(s)Y (s, s)|+ |

∫ t

s

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ |

+

∣∣∣∣
∫ t

s

T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ

∣∣∣∣

≤ Kδe−α(t−s)|Y (s, s)|+ 3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)|dτ.

We conclude that for (s, t) ∈ Hh, that is for s ≤ t ≤ s+ h,

∣∣∣∣
∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

∣∣∣∣

≤ Kδe−α(t−s)|Y (s, s)|+ 3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)|dτ. (15)



Title Suppressed Due to Excessive Length 11

Now if s < t let n ∈ N such that s+ nh ≤ t ≤ s+ (n+ 1)h.

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

=

n−1∑

j=0

∫ s+(j+1)h

s+jh

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

+

∫ t

s+nh

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

=
n−1∑

j=0

∫ s+(j+1)h

s+jh

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ

+

∫ t

s+nh

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ

−
n−1∑

j=0

∫ s+(j+1)h

s+jh

T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ

−

∫ t

s+nh

T (t, τ)P (τ)Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ

+

n−1∑

j=0

∫ s+(j+1)h

s+jh

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

+

∫ t

s+nh

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ.
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But

n−1∑

j=0

∫ s+(j+1)h

s+jh

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

+

∫ t

s+nh

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

=

∫ s+h

s

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

+

∫ s+2h

s+h

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ + · · ·+

+

∫ s+(n−1)h

s+(n−2)h

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

+

∫ t

s+(n−1)h

d

dτ
[T (t, τ)P (τ)Ct(τ)Y (τ, s)]dτ

= [T (t, s+ h)P (s+ h)Ct(s+ h)Y (s+ h, s)− T (t, s)P (s)Ct(s)Y (s, s)]

+[T (t, s+ 2h)P (s+ 2h)Ct(s+ 2h)Y (s+ 2h, s)

−T (t, s+ h)P (s+ h)Ct(s+ h)Y (s+ h, s)] + · · ·+

+T (t, s+ (n− 1)h)P (s+ (n− 1)h)Ct(s+ (n− 1)h)Y (s+ (n− 1)h, s)

−T (t, s+ (n− 2)h)P (s+ (n− 2)h)Ct(s+ (n− 2)h)Y (s+ (n− 2)h, s)

−T (t, s+ (n− 1)h)P (s+ (n− 1)h)Ct(s+ (n− 1)h)Y (s+ (n− 1)h, s)

= −T (t, s)P (s)C(s)Y (s, s).

Therefore if s < t and n ∈ N such that s+ nh ≤ t ≤ s+ (n+ 1)h, we have

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

= −T (t, s)P (s)C(s)Y (s, s) +

n−1∑

j=0

∫ s+(j+1)h

s+jh

T (t, τ)P (τ)A(τ)C(τ)Y (τ, s)dτ

+

∫ t

s+nh

T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ

+

n−1∑

j=0

∫ s+(j+1)h

s+jh

T (t, τ)P (τ)[A(τ) +B(τ)]Ct(τ)Y (τ, s)dτ

+

∫ t

s+nh

T (t, τ)P (τ)[A(τ) +B(τ)]Ct(τ)Y (τ, s)dτ.
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Estimating,

∣∣∣∣
∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

∣∣∣∣
≤ |T (t, s)P (s)Ct(s)Y (s, s)|

+

n−1∑

j=0

∫ s+(j+1)h

s+jh

|T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)dτ |

+

∫ t

s+nh

|T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)|dτ

+
n−1∑

j=0

∫ s+(j+1)h

s+jh

|T (t, τ)P (τ)[A(τ) +B(τ)]Ct(τ)Y (τ, s)dτ |

+

∫ t

s+nh

|T (t, τ)P (τ)A(τ)Ct(τ)Y (τ, s)|dτ

≤ δKe−α(t−s)|Y (s, s)|

+KMδ

n−1∑

j=0

∫ s+(j+1)h

s+jh

e−α(t−τ)|Y (τ, s)|dτ

+KMδ

∫ t

s+nh

e−α(t−τ)|Y (τ, s)|dτ

+2KMδ

n−1∑

j=0

∫ s+(j+1)h

s+jh

e−α(t−τ)|Y (τ, s)|dτ

+2KMδ

n−1∑

j=0

∫ t

s+nh

e−α(t−τ)|Y (τ, s)|dτ

= 4KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)|dτ.

Therefore, if s < t, let n ∈ N such that s+ nh ≤ t ≤ s+ (n+ 1)h, we have

∣∣∣∣
∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

∣∣∣∣ ≤ δKe−α(t−s)|Y (s, s)|

+3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)|dτ. (16)

Consider now
∫∞

t
T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ .

As before, we pick s ≤ t ≤ s+ h, and we estimate the integral

∫ t

s

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ.

Let us denote Ct(τ) =
∫ τ

t
B(u)du.
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Taking derivatives,

d

dτ
[T (t, τ)(I − P (τ))Ct(τ)Y (τ, s)]

= −T (t, τ)(I − P (τ))A(τ)Ct(τ)Y (τ, s)

+T (t, τ)(I − P (τ))B(τ)Y (τ, s)

+T (t, τ)(I − P (τ))Ct(τ)(A(τ) +B(τ))Y (τ, s).

Therefore

T (t, τ)(I − P (τ))B(τ)Y (τ, s)

=
d

dτ
[T (t, τ)(I − P (τ))Ct(τ)Y (τ, s)]

+T (t, τ)(I − P (τ))A(τ)Ct(τ)Y (τ, s)

−T (t, τ)(I − P (τ))Ct(τ)(A(τ) +B(τ))Y (τ, s).

Integrating,

∫ t

s

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

=

∫ t

s

d

dτ
[T (t, τ)(I − P (τ))Ct(τ)Y (τ, s)]dτ

+

∫ t

s

T (t, τ)(I − P (τ))A(τ)Ct(τ)Y (τ, s)dτ

−

∫ t

s

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

−

∫ t

s

T (t, τ)(I − P (τ))Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ

= T (t, s)(I − P (s))Ct(s)Y (s, s)

+

∫ t

s

T (t, τ)(I − P (τ))A(τ)Ct(τ)Y (τ, s)dτ

−

∫ t

s

T (t, τ)(I − P (τ))Ct(τ)(A(τ) +B(τ))Y (τ, s)dτ.
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We have
∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

=

∞∑

N=0

∫ t+(N+1)h

t+Nh

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

=

∞∑

N=0

∫ t+(N+1)h

t+Nh

d

dτ
[T (t, τ)(I − P (τ))Ct(τ)Y (τ, s)]dτ

+
∞∑

N=0

∫ t+(N+1)h

t+Nh

[T (t, τ)(I − P (τ))A(τ)Ct(τ)Y (τ, s)

−T (t, τ)(I − P (τ))Ct(τ)(A(τ) +B(τ))Y (τ, s)]dτ

Since the first term is zero we have
∣∣∣∣
∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

∣∣∣∣

≤
∞∑

N=0

∫ t+(N+1)h

t+Nh

Keα(t−τ)3Mδ|Y (τ, s)|dτ

= 3KMδ

∫ ∞

t

eα(t−τ)|Y (τ, s)|dτ

≤
3KMδ

α
|Y |. (17)

Therefore

|(T1Y )(t, s)| ≤ δ

[
K

1− e−αh
+

3KM

α
+

3KM

α

]
|Y |,

and we conclude that, if δ is sufficiently small, T1 is contraction and so T is
a contraction. The Banach Fixed Point Theorem ensures the existence of a
unique fixed point Y (t, s).

From the above inequality also follows that for s ≤ t
∣∣∣∣
∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ

∣∣∣∣ ≤ 3KMδ

∫ ∞

t

eα(t−τ)|Y (τ, s)|dτ (18)

Therefore

Y (t, s) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)dτ, (19)

and Y (s, s) = P (s) +

∫ ∞

s

T (s, τ)(I − P (τ))B(τ)Y (τ, s)dτ.
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From (19) it follows that

Y (t, s)Y (s, s) = T (t, s)P (s)Y (s, s)

+

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)Y (s, s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)Y (s, s)dτ.

But

P (s)Y (s, s) = P (s)− P (s)

∫ ∞

s

T (s, τ)(I − P (τ))B(τ)Y (τ, s)dτ

= P (s)−

∫ ∞

s

T (s, τ)P (τ)(I − P (τ))B(τ)Y (τ, s)dτ

= P (s).

Then Y (t, s)Y (s, s) is also a solution of (19) and so Y (t, s)Y (s, s) = Y (t, s).
This implies that Y (s, s)Y (s, s) = Y (s, s) and soQ(s)

.
= Y (s, s) is a projection.

In particular,
P (s)Q(s) = P (s).

Also from (19), it follows that Y (t, s)P (s) is a solution, and then Y (t, s)P (s) =
Y (t, s), which implies that Y (s, s)P (s) = Y (s, s) and so Q(s)P (s) = Q(s).

From (19) it follows that

Y (t, s)Q(s) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)Y (τ, s)Q(s)dτ

−

∫ ∞

t

T (t, τ)(I − P (τ))B(τ)Y (τ, s)Q(s)dτ,

and from (16) and (17) it follows that, for s ≤ t

|Y (t, s)Q(s)| ≤ K(1 + δ|Y (s, s)|)e−α(t−s) + 3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)Q(s)|dτ

+3KMδ

∫ ∞

t

eα(t−τ)|Y (τ, s)Q(s)|dτ. (20)

Thus we must estimate |Y (s, s)|. From (19), using the estimates (15) and 17)
we obtain for s ≤ t ≤ s+ h

|Y (t, s)| ≤ Ke−α(t−s) + δKe−α(t−s)|Y (s, s)|

+3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)|dτ

+3KMδ

∫ ∞

t

eα(t−τ)|Y (τ, s)|dτ.

and

|Y | ≤ K + δK|Y |+
3KMδ

α
|Y |+

3KMδ

α
|Y | = K + δK|Y |+

6KMδ

α
|Y |.
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Then

|Y | ≤
K

1−Kδ(1 + 6M
α )

In particular

|Y (s, s)| = |Q(s)| ≤
K

1− (K + 6KM
α )δ

and thus we have a bound for |Q(s)|.

|Y (t, s)Q(s)| ≤ K(1 + δ
K

1− (K + 6KM
α )δ

)e−α(t−s)

+3KMδ

∫ t

s

e−α(t−τ)|Y (τ, s)Q(s)|dτ + 3KMδ

∫ ∞

t

eα(t−τ)|Y (τ, s)Q(s)|dτ

If we let S(t, s)Q(s) = Y (t, s)Q(s), from Lemma 1, we obtain

|S(t, s)Q(s)| ≤
K(1 + δ K

1−(K+ 6KM
α )δ

)

1− β
e−(α− 6KMδ

1−β )(t−s), t ≥ s (21)

and β = 6KMδ
α .

From the variation of constants formula it follows that

S(t, s) = T (t, s) +

∫ t

s

T (t, τ)B(τ)S(τ, s)dτ.

Since we are looking for a projection W (s) as a perturbation of I − P (s),
we will show that the following implicit equation

S(t, s)W (s) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)B(τ)S(τ, s)W (s)dτ.

has a solution S(t, s)W (s) bounded for t ≤ s. Let Z(t, s)
.
= S(t, s)W (s), then

Z(t, s) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)B(τ)Z(τ, s)dτ,

and if Z(t, s) is bounded for t ≤ s,

Z(t, s) = T (t, s)(I − P (s))

+

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

s

T (t, τ)P (τ)B(τ)Z(τ, s)dτ.
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Z(t, s) = T (t, s)(I − P (s))

+

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

s

T (t, τ)P (τ)B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ

+

∫ −∞

t

T (t, τ)P (τ)B(τ)Z(τ, s)dτ

= T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ

−

∫ s

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ.

But∫ s

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ = T (t, s)P (s)

∫ s

−∞

T (s, τ)P (τ)B(τ)Z(τ, s)dτ.

Since this term should be bounded for t ≤ s, then it must be equal to 0.
Therefore,

Z(t, s) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ.

Now we proceed as in (12). Let H
.
= {(t, s) ∈ R2 : t ≤ s}. For (t, s) ∈ H we

consider the integral equation:

Z(t, s) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ. (22)

We now prove the existence of a solution Z(t, s) for this equation by using
the Banach Fixed Point Theorem. To this end, we consider the space Z

.
=

BC(H,X) of the bounded continuous functions Z from H to X with the
norm |Z|

.
= supt≤s |Z(t, s)|. This is a Banach space. For Z ∈ Z we define the

operator T1 as

(T1Z)(t, s) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ.
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One can prove that T1Z ⊂ Z) and that T1 is a contraction. Then the integral
equation (22) has a unique solution Z(t, s) in Z.

Since Z(t, s)Z(s, s) is also a solution of that equation, this implies that
Z(s, s)Z(s, s) = Z(s, s) and so Z(s, s) is a projection and

Z(s, s) = I − P (s) +

∫ s

−∞

T (s, τ)P (τ)B(τ)Z(τ, s)dτ.

Now

(I −Q(s))Z(s, s) = (I −Q(s))(I − P (s))

+

∫ s

−∞

(I −Q(s))T (s, τ)P (τ)B(τ)Z(τ, s)dτ

= I −Q(s) +

∫ s

−∞

T (s, τ)(I −Q(τ))P (τ)B(τ)Z(τ, s)dτ

= (I −Q(s)) +

∫ s

−∞

T (s, τ)(P (τ) − P (τ)B(τ)Z(τ, s)dτ

= I −Q(s).

Therefore Z(s, s) = I −Q(s). From (22) it follows that

S(t, s)(I −Q(s)) = T (t, s)(I − P (s)) +

∫ t

s

T (t, τ)(I − P (τ))B(τ)Z(τ, s)dτ

+

∫ t

−∞

T (t, τ)P (τ)B(τ)Z(τ, s)dτ. (23)

If we proceed as in the estimate of S(t, s)Q(s) in 21, and use (1), we can prove
that

|S(t, s)(I −Q(s))| ≤
K(1 + δ K

1−(K+ 6KM
α )δ

)

1− β
e(α−

6KMδ
1−β )(s−t), s ≤ t (24)

and β = 6KMδ
α .

Following the ideas of [7] pages 9 and 10 and from Coppel [2] page 8 we
obtain

Corollary 1 Let A, B : R → L(X) be continuous functions such that
‖A(t)‖ ≤ M and ‖B(t)‖ ≤ M for every t ∈ R, where M is a positive constant.
Suppose that B(t) is a generalized almost periodic function (GAP) with mean
value zero. Consider the equations

ẋ = A(t)x (25)

ẋ = A(t)x +B(ωt)x (26)

Let T (t, s) be the evolution operator of (25) and Sω(t, s) be the evolution op-
erator of (26). Suppose that there exist projections P (s), s ∈ R such that
|T (t, s)P (s)| ≤ Ke−α(t−s) for t ≥ s and |T (t, s)(I − P (s))| ≤ Keα(t−s) for
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t ≤ s , t, s ∈ R, where α > 0 and K > 1. Then there exist projections
Qω(s), s ∈ R, K̃ > K, β̃ < α and ω0 > 0 such that for ω > ω0

|Sω(t, s)Qω(s)| ≤ K̃e−β̃(t−s), t ≥ s,

|Sω(t, s)(I −Qω(s))| ≤ K̃eβ̃(t−s), t ≤ s,

where Sω(t, s) indicates the evolution operator of (26).

Consider now A ∈ GAP . Then we have A(t) = A0 + B(t), where A0 =
M(A) and M(B) = 0, where M denotes the mean value. We suppose that
|A0| ≤ M and |B(t)| ≤ M for every t ∈ R. Consider the equations:

ẋ = A0x (27)

ẋ = A0x+B(ωt)x. (28)

Let T (t)
.
= eA0t be the group generated by (27) and Sω(t, s) be the evolution

operator of (28). The next corollary follows from Corollary 1.

Corollary 2 Assume that system (8) admits an exponential dichotomy in R,
i.e., there exist projections P , constants K > 1, α > 0, such that

‖T (t)P‖ ≤ Ke−α(t−s), t ≥ s (29)

‖T (t)(I − P )‖ ≤ Keα(t−s), t ≤ s (30)

Then there exist projections Qω(s), s ∈ R and constants K̃ > K, 0 < α̃ < α
and ω0 > 0 such that for every ω > ω0 we have

Sω(t, s)Qω(s) ≤ K̃e−α̃(t−s), ∀t ≥ s,

Sω(t, s)(I −Qω(s)) ≤ K̃eα̃(t−s), ∀t ≤ s.
⊓⊔

4 Example of Exponential Dichotomy.

If we proceed as in the infinite dimensional example in [7], we can construct

bounded operators A1, A2 from ℓ2 to ℓ2, such that |eA1t| ≤ e
−a
2 t for t ≥ 0 and

|eA2t| ≤ e
a
2 t for t ≤ 0.

If we proceed as in [7], defining L(a,ν)
.
=

(
a 0
0 νJ + aI

)
, L1

.
= L(1/2,1/4),

L2
.
= L(3/2,1/4), A1

.
= log(L1) and A2

.
= log(L2), where

J :=




0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·




(31)
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Now we consider the bounded linear operator

A
.
=

(
A1 0
0 A2

)
(32)

and projections

P1
.
=

(
I 0
0 0

)
, P2

.
=

(
0 0
0 I

)
,

and we have

|eAtP1| ≤ e
−a
2 t, t ≥ 0, |eAtP2| ≤ e

a
2 t, t ≤ 0. (33)

Let B(t)
.
=

(
B11(t) B12(t)
B21(t) B22(t)

)
be a generalized almost periodic function

GAP with mean value zero, |A| ≤ M, supt∈R
|B(t)| ≤ M .

Consider the equations:

ẋ = Ax (34)

ẏ = Ay +B(ωt)y (35)

From the above assumptions and the last previous result it follows the next
one.

Corollary 3 Let Sω(t, s) be the evolution operator of (35). Then there exist

ω0 > 0, constants K̃ ≥ 1, α̃ ≤ α, projections Q(s), s ∈ R such that for ω ≥ ω0

|S(t, s)Q(s)| ≤ K̃e−α̃(t−s), t ≥ s,

|S(t, s)(I −Q(s))| ≤ K̃eα̃(t−s), t ≤ s.

Fig. 1 Left: The spectrum of L1 given by σ(L1) = B1/4(1/2). Right: The spectrum of A1

given by σ(A1) = log(σ(L1)).

⊓⊔
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Fig. 2 Left: The spectrum of L2 given by σ(L2) = B1/4(3/2). Right: The spectrum of A2

given by σ(A2) = log(σ(L2)).

5 A case where the infinitesimal generator is unbounded.

In this section we consider the equations

ẋ = Ax

ẏ = Ay +B(t)y,

where we assume that D is dense in X and A : D → X is the infinitesimal
generator of a C0 semigroup T (t). We also assume that there exist a projection
P : X → X and constants K ≥ 1, α ∈ R, such that the following exponential
dichotomy is satisfied:

‖T (t)P‖ ≤ Ke−αt, t ≥ 0
‖T (t)(I − P )‖ ≤ Keαt, t ≤ 0

(36)

Let us now recall an important result from Henry [4, page 30].

Theorem 2 Suppose A is a closed operator in a Banach space X and assume
that the spectrum of A can be decomposed as

σ(A) = σ+ ∪ σ1 ∪ σ2, σ1 ∩ σ2 = ∅,

σ+ ⊂ {λ ∈ C : Re(λ) ≥ α > 0} is a bounded spectral set, σ1 ∪ σ2 ⊂ {λ ∈ C :
Re(λ) ≤ −α}, σ1 is a bounded spectral set of A, and σ2 = σ(A)− σ1 is closed
and unbounded and so σ2 ∪ {−∞} is another spectral set.

Let I − P , P1and P2 be, respectively, the projections associated with these
three spectral sets: σ+, σ1, σ2, and X+

.
= (I − P )X and Xj = Pj(X), j =

1, 2. Then X−
.
= X1 ⊕ X2 and Xj are invariant under A, and if Aj is the

restriction of A to Xj, for j = 1, 2 and A+ is the restriction of A to X+ then
A+ : X+ → X+ is bounded σ(A+) = σ+ and

A1 : X1 → X1 is bounded, σ(A1) = σ1, D(A2) = D(A) ∩X2 and σ(A2) = σ2.

Furthemore, P = P1 + P2.
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Now we will analyse some smallness conditions on the perturbation B(t),
such that equation (39) also admits an exponential dichotomy. The case when
B(t) is uniformly small is studied in Kloeden-Rodrigues [5] without leaving
the continuous case. Similar results are obtained by Carvalho et al. [1], but
they first find the result for the discrete case.

Similar results to the next theorem are treated by Carvalho et al. [1] and

Dalekii-Krein [3] but they use the stronger assumption that
∫ t

τ |B(t)| is small,
with the norm inside the integral, and in the first one, they prove via a dis-
cretization method. Similar results are obtained by Henry [4, Theorem 7.6.11,
page 238], where he also considers first the discrete case, and requires that
B(t) is uniformly small and integrally small.

Our next result is an extension of a classical result of Coppel [2] to the
infinite dimensional case, and A being an unbounded operator.

Theorem 3 Let h and δ be positive real numbers.
Suppose that A : D(A) ⊂ X → X is the generator of a C0-semigroup

T (t), t ≥ 0, B(t) ∈ L(X) and |B(t)| ≤ M for every t ∈ R. Assume that for
every t ∈ R we have that R(B(t)) ⊂ D(A), AB(t) is bounded and BA(t) can
be extended to a bounded operator. Also assume that B(t) is integrally small,
that is, ∣∣∣∣

∫ u

t

B(τ)dτ

∣∣∣∣ ≤ δ whenever |t− u| ≤ h.

Suppose we can decompose σ(A)
.
= σ+ ∪ σ1 ∪ σ2, as in Theorem 2, and

define the respective projections I − P , P1 and P2, with P = P1 + P2.
Suppose the equation

ẋ = Ax (37)

admits an exponential dichotomy, or more specifically,

|T (t)(I − P )| ≤ Keαt,

|T (t)P1| ≤ Ke−αt,

|T (t)P2| ≤ Ke−µt,

where K > 0 and µ > α > 0.
Assume that δ is sufficiently small in such a way that δ < α

6KM . We also
assume that |P2B(t)| < Mδ, for every t ∈ R (See Example 1 below).

In analogy with the bounded case, if Ct(u)
.
=
∫ u

t B(τ)dτ , we suppose that
for t ≤ u ≤ t+ h

|P1Ct(u)B| ≤ Mδ, |(I − P )Ct(u)B| ≤ Mδ,
|P1ACt(u)| ≤ Mδ, |(I − P )ACt(u)| ≤ Mδ,
|P1Ct(u)A| ≤ Mδ, |(I − P )Ct(u)A| ≤ Mδ.

(38)

If the above assumptions are satisfied, then the perturbed equation

ẏ = Ay +B(t)y (39)
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also admits an exponential dichotomy, that is,

|S(t, s)Q(s)| ≤ 2Ke−(α−4KMδ)(t−s) , t ≥ s

|S(t, s)(I −Q(s))| ≤ 2Ke(α−4KMδ)(t−s) , t ≤ s.

Proof We will partially follow the steps of Theorem 1. Let us consider

S(t, s)Q(s) = T (t− s)P +

∫ t

s

T (t− τ)PB(τ)S(τ, s)Q(s)dτ

+

∫ ∞

t

T (t− τ)(I − P )B(τ)S(τ, s)Q(s)dτ.

S(t, s)Q(s) = T (t− s)P +

∫ t

s

T (t− τ)P2B(τ)S(τ, s)Q(s)dτ

+

∫ t

s

T (t− τ)P1B(τ)S(τ, s)Q(s)dτ

+

∫ ∞

t

T (t− τ)(I − P )B(τ)S(τ, s)Q(s)dτ.

|S(t, s)Q(s)| ≤ |T (t− s)P |+

∣∣∣∣
∫ t

s

T (t− τ)P2B(τ)S(τ, s)Q(s)dτ

∣∣∣∣

+

∣∣∣∣
∫ t

s

T (t− τ)P1B(τ)S(τ, s)Q(s)dτ

∣∣∣∣

+

∣∣∣∣
∫ ∞

t

T (t− τ)(I − P )B(τ)S(τ, s)Q(s)dτ

∣∣∣∣ .

To estimate the two last integrals we proceed as in the proof of Theorem 1
using the fact that B(t) is integrably small and in the first integral we use the
estimate |T (t)P2| ≤ Ke−µt.

∣∣∣∣
∫ t

s

T (t− τ)P2B(τ)S(τ, s)Q(s)dτ

∣∣∣∣ ≤
∫ t

s

Ke−µ(t−τ)Mδ|S(τ, s)Q(s)|dτ.

Therefore we obtain

|S(t, s)Q(s)| ≤ Ke−α(t−s) +

∫ t

s

Ke−µ(t−τ)Mδ|S(τ, s)Q(s)|dτ

+

∫ t

s

Ke−α(t−τ)Mδ|S(τ, s)Q(s)|dτ

+

∫ ∞

t

Keα(t−τ)Mδ|S(τ, s)Q(s)|dτ.

Now we use Lemma 1 with

N = KMδ, L = KMδ, M = KMδ,
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β
.
= KMδ(

1

µ
+

2

α
) < KMδ(

1

α
+

2

α
) ≤

3KMδ

α
<

1

2
.

Then we have that β < 1
2 if δ < α

6KM , −β > − 1
2 and so 1− β > 1

2 .

|S(t, s)Q(s)| ≤ 2Ke
−(α− 2KMδ

1−KMδ( 1
µ

+ 2
α

)
)(t−s)

, t ≥ s

But

2KMδ

1−KMδ( 1µ + 2
α )

≤
2KMδ

1/2
≤ 4KMδ,

(α−
2KMδ

1−KMδ( 1µ + 2
α )

) ≥ α− 4KMδ,

−(α−
2KMδ

1−KMδ( 1µ + 2
α )

) ≤ −(α− 4KMδ),

therefore,

|S(t, s)Q(s)| ≤ 2Ke−(α−4KMδ)(t−s), t ≤ s, if δ <
α

6KM
.

For t ≤ s

S(t, s)(I −Q(s)) = T (t− s)(I − P )

+

∫ s

t

T (t− τ)P2B(τ)S(τ, s)(I −Q(s))dτ

+

∫ s

t

T (t− τ)P1B(τ)S(τ, s)(I −Q(s))dτ

+

∫ t

−∞

T (t− τ)(I − P )B(τ)S(τ, s)(I −Q(s))dτ.
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|S(t, s)(I −Q(s))| ≤ |T (t− s)(I − P )|

+

∫ s

t

|T (t− τ)P2B(τ)S(τ, s)(I −Q(s))|dτ

+

∫ s

t

|T (t− τ)P1B(τ)S(τ, s)(I −Q(s)|)dτ

+

∫ t

−∞

|T (t− τ)(I − P )B(τ)S(τ, s)(I −Q(s))|dτ

≤ Keα(t−s) +

∫ s

t

Keµ(t−τ)Mδ|S(τ, s)(I −Q(s))|dτ

+

∫ s

t

Keα(t−τ)Mδ|S(τ, s)(I −Q(s))|dτ

+

∫ t

−∞

Ke−α(t−τ)Mδ|S(τ, s)(I −Q(s))|dτ

≤ Keα(t−s) +KMδ

∫ s

t

eµ(t−τ)|S(τ, s)(I −Q(s))|dτ

+KMδ

∫ s

t

eα(t−τ)|S(τ, s)(I −Q(s))|dτ

+KMδ

∫ t

−∞

e−α(t−τ)|S(τ, s)(I −Q(s))|dτ.

Now we use Lemma 1 with

N = KMδ, L = KMδ, M = KMδ,

β
.
= KMδ(

1

µ
+

2

α
) < KMδ(

1

α
+

2

α
) ≤

3KMδ

α
<

1

2
.

We obtain

|S(t, s)(I −Q(s))| ≤ K
1

1−KMδ( 1µ + 2
α )

e
(α− 2KMδ

1−KMδ( 1
µ

+ 2
α

)
)(t−s)

, t ≤ s.

Therefore,

|S(t, s)(I −Q(s))| ≤ 2Ke(α−4KMδ)(t−s), t ≤ s, if δ <
α

6KM
.

Remark 2 The method used, the unbounded operatorA and its domain impose
restrictions on the class of perturbations B(t) that can be used. For example
if D(t) ∈ L(X) is continuous and bounded for t ∈ R, is integrally small and
0 belongs to the resolvent set of A, we could define B(t)

.
= A−1D(t)A−1 and

then the above assumptions including (38) could be satisfied.

Remark 3 Another case is when B(t) ∈ L(X) is continuous and bounded for
t ∈ R, is integrally small, commutes with A and B(t)A can be considered as
a bounded operator. In this case B(t) acts as a smooth operator. This will be
observed in some applications to the heat equation below.
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Example 1 Application to the Heat Equation

In this part we use some results of Henry [4], page 119.

LetX = L2(0, π), Au = − d2u
dx2 . Let D(A) = H1

0 (0, π)∩H
2(0, π). If φn(x) =√

2
π sinnx and u =

∑∞

n=1 φn(φn, u), then define ‖u‖ = [
∑∞

n=1 |(φn, u)|2]1/2.

Au =
∞∑

n=1

(−n2)φn(φn, u), eAtu =
∞∑

n=1

e−n2tφn(φn, u),

σ(A) = {−n2, n = 1, 2, 3, . . .}.

Consider the equations

∂u

∂t
=

∂2u

∂x2
+ λu, 0 < x < π; u = 0 at x = 0, π (40)

This equation defines a local dynamical system in X1/2 = H1
0 (0, π) and

σ(A− λI) = {λ− n2 : n = 1, 2, 3 . . .}.
Let T (t) be the semigroup generated by A−λI. If λ > 1 we can decompose

the space H1
0 (0, π) = E−⊕E+, with projections Pλ and (I −Pλ), respectively

on E+ and E− and we will have an exponential dichotomy:
{
‖T (t)Pλ‖ ≤ Ke−αt, t ≥ 0,
‖T (t)(I − Pλ)‖ ≤ Keαt, t ≤ 0.

The subspace E+ is generated by the eigenfunctions φn(x), such that λ−
n2 > 0.

For n ∈ N, let bn(t) be real continuous functions in t ∈ R.
Consider now the equation

∂u

∂t
=

∂2u

∂x2
+ λu+B(t)u, 0 < x < π; u = 0 at x = 0, π, (41)

where B(t)u
.
=
∑∞

n=1 bn(t)φn(φn, u).
In order to simplify the calculations and to verify the assumptions (38) of

Theorem 3, we will assume thatM = 1 and |bn(t)| ≤
1

n22(n+1)/2 , ∀ t ∈ R, n ≥ 1.
We will also assume that for δ > 0, sufficiently small and h > 0 sufficiently
large that |

∫ u

t
bn(τ)dτ | ≤

1
n22(n+1)/2 δ for |t− u| ≤ h.

In this case we consider

σ+
λ = {λ− n2 > 0, n = 1, 2, . . . , Nλ},

σ−
λ = {λ− n2 < 0, n = Nλ + 1, Nλ + 2, . . . ,Mλ},

σ−∞
λ = {λ− n2, n = Mλ + 1, . . . ,∞}, Mλ ≥ Nλ + 1

Consider the projections: (I − Pλ)u
.
=
∑Nλ

n=1 φn(φn, u) associated to σ+
λ

and Pλu
.
=
∑∞

n=Nλ+1 φn(φn, u) associated to σ−
λ ∪ σ−∞

λ = {n : λ − n2 < 0}.

Let P1 = P1(λ) be the projection associated to σ−
λ and P2 = P2(λ) asso-

ciated to σ−∞
λ , be given respectively by P1u =

∑Mλ

n=Nλ+1 φn(φn, u), P2u =∑∞

n=Mλ+1 φn(φn, u).
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P2e
Atu =

∞∑

n=Mλ+1

e−n2tφn(φn, u),

‖P2e
Atu‖ =

∥∥∥∥∥

∞∑

n=Mλ+1

e−n2tφn(φn, u)

∥∥∥∥∥ =
(

∞∑

n=Mλ+1

∣∣∣e−n2tφn(φn, u)
∣∣∣
2
) 1

2

= e−(Mλ+1)2t

(
∞∑

n=Mλ+1

∣∣∣e−(n2−(Mλ+1)2)tφn(φn, u)
∣∣∣
2
) 1

2

≤ e−(Mλ+1)2t

(
∞∑

n=Mλ+1

|φn(φn, u)|
2

) 1
2

= e−(Mλ+1)2t‖u‖.

Taking µ
.
= (Mλ + 1)2, we obtain ‖P2e

Atu‖ ≤ e−(Mλ+1)2t‖u‖ = e−µt‖u‖, for
t ≥ 0.

Next we prove that P2 commutes with B(t).

P2B(t)u =

∞∑

n=Mλ+1

φn(φn, B(t)u) =

∞∑

n=Mλ+1

φn(φn,

∞∑

k=1

bk(t)φk(φk, u))

=

∞∑

n=Mλ+1

bn(t)φn(φn, u)

B(t)P2u =

∞∑

n=1

bn(t)φn(φn, Pu) =

∞∑

n=1

bn(t)φn(φn,

∞∑

k=Mλ+1

φn(φk, u))

=
∞∑

n=Mλ+1

bn(t)φn(φn, u).

‖P2B(t)u‖ ≤

[
∞∑

n=Mλ+1

|bn(t)|
2

]1/2 [ ∞∑

n=Mλ+1

|(φn, u)|
2

]1/2

≤

[
∞∑

n=Mλ+1

(
δ

2(n+1)/2

)2
]1/2

‖u‖ ≤ δ

[
∞∑

n=0

(
1

2(n+1)/2

)2
]1/2

‖u‖

= δ‖u‖

Therefore B(t) commutes with Pλ and with I − Pλ and also with P1 and
P2, |P2B(t)| → 0, asMλ → ∞, uniformly with respect to t ∈ R. With a similar

calculation we can prove (I − Pλ)B(t)v =
∑N

n=1 bn(t)φn(φn, v).
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Also if u ∈ D(A) we have

APλu =

∞∑

n=1

(−n2)φn(φn, Pλu) =

∞∑

n=1

(−n2)φn

(
φn,

∞∑

k=Nλ+1

φk(φk, u)

)

=

∞∑

n=Nλ+1

(−n2)φn(φn, u)

PλAu =

∞∑

n=Nλ+1

φn(φn, Au) =

∞∑

n=Nλ+1

φn(φn,

∞∑

k=1

(−k2)φk(φk, u))

=

∞∑

n=Nλ+1

(−n2)φn(φn, u).

Therefore APλ = PλA and so they commute and they are both bounded
operators.

In order to use Theorem 3 we consider Ct(u)
.
=
∫ u

t B(τ)dτ and it is easy to

see that PλCt(v) = Ct(u)Pλ and PλCt(v) =
∑∞

n=Nλ+1

∫ u

t bn(τ)dτφn(φn, v).
Hence, it can be seen that the conditions of Theorem 3 are satisfied.
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