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Abstract
In this paper, we introduce a novel model of multi-issue bankruptcy problem inspired from a
real problem of abatement of emissions of different pollutants in which pollutants can have
more than one effect on atmosphere. In ourmodel, therefore, several perfectly divisible goods
(estates) have to be allocated among certain set of agents (claimants) that have exactly one
claim which is used in all estates simultaneously. In other words, unlike of the multi-issue
bankruptcy problems already existent in the literature, this model study situations with multi-
dimensional states, one for each issue and where each agent claims the same to the different
issues in which participates. In this context, we present an allocation rule that generalizes
the well-known constrained equal awards rule from a procedure derived from analyzing this
rule for classical bankruptcy problems as the solution to a sucession of linear programming
problems. Next, we carry out an study of its main properties, and we characterize it using
the well-known property of consistency.

Keywords Multi-issue bankruptcy problems · Allocation rules · Constrained equal awards
rule

1 Introduction

A bankruptcy poblem describes a situation in which an endowment, perfectly divisible, must
be distributed among a set of agents who have claims on it but the endowment is not enough to
completely satisfy all of them. An allocation for such a problem should meet two reasonable
conditions: (1) agents can neither receive more than they claim nor less than nothing, (2) the
endowment should be fully distributed. These problems were first studied by O’Neill (1982)
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and Aumann and Maschler (1985) . Since then this problem and their extensions have been
widely studied (see Thomson 2003, 2015, 2019) for an excellent analysis of bankruptcy
problems from an axiomatic perspective) and many applications of them can be found in the
literature (see, for example, Gallastegui et al. 2002; Pulido et al. 2008, 2002; Niyato and
Hossain 2006; Casas-Méndez et al. 2011; Bergantiños et al. 2012; Gozálvez et al. 2012; Hu
et al. 2012; Lucas-Estañ et al. 2012; Giménez-Gómez et al. 2016; Sánchez-Soriano et al.
2016; Gutiérrez et al. 2018; Bergantiños et al. 2018; Duro et al. 2020; Wickramage et al.
2020, among others).

To illustrate our model, consider now that a certain authority is interested in reducing the
emission of pollutants into the atmosphere. However, there are many pollutants, each with
different effects and consequences. There are pollutants that contribute to the greenhouse
effect and thus to climate change, and others that are harmful to health because they are
carcinogenic, cause respiratory problems or other diseases. On the one hand, water vapour
(H2O), carbon dioxide (CO2), nitrous oxide (NO2), methane (CH4), and ozone (O3) are the
primary greenhouse effect gases (GHG’s), but also sulphur hexafluoride (SF6), hydrofluoro-
carbons (HFCs) and perfluorocarbons (PFCs) are relevant according to the Kyoto Protocol.
On the other hand, carbonmonoxide (CO), sulphur dioxide (SO2), nitrous oxide (NO2), ozone
(O3), ammonia (NH3), particulate matter (PM), polycyclic aromatic hydrocarbon (PAH) and
volatile organic compounds (VOCs) among others are considered very harmful to health.
Thus, for example, the Gothenburg Protocol sets emission ceilings for SO2, NO2, VOCs
and NH3. Therefore, we can find international, European, national and regional directives,
laws, and regulations in order to control their emissions. Some examples are the well-known
Paris Agreement or the Kyoto Protocol for the global reduction of GHGs or the Gothenburg
Protocol to abate the acidification, eutrophication and ground-level ozone. Furthermore, we
can observe that there are gases that contribute to both the greenhouse effect and the air
pollution. For details on these and other topics related to the protection of the environment
and health visit the webpage https://greenfacts.org.

The entire system for the abatement of pollutants could be represented in a hierarchical
structure of two levels (see Fig. 1). In the first level, we would have the effect of pollutants,
and in the second level the pollutants themselves. The ultimate goal of that authority is for
emissions per year of the different pollutants to be below certain levels (for example, emitted
tons per year) in order to better control the pollution and their effects. In this sense, the
authority fixes certain levels of emissions (total tons per year) for each effect of pollutants.
However, pollutants could contribute to more than one effect as we have shown above.
Thus, we consider the particular situation in which there are different amounts of emissions
of different pollutants and the authority fixes maximum levels of emissions (total tons per
year) for each effect of pollutants according, for example, to their effects on air quality or
contribution to climate change, in order to abate these emissions and keep them below certain
levels (tons per year). The approach of setting a level of emissions per year is the usual one
in the directives and protocols in this regard, so the particular impact of a pollutant in each
effect in the atmosphere is not considered, it is simply a matter of reducing its emissions
and with it, its negative impact on air quality or the greenhouse effect. Moreover, in this
context, if we set global emission levels for greenhouse gases and for air polluting gases
separately, it seems reasonable that when distributing efforts to abate the different pollutants,
more emphasis should be placed on those that are being emitted the most, for example, this
is what happens with CO2 or NO2, and therefore, those that are being emitted least are
less affected. Therefore, if we allocate the emission quotas among the different pollutants,
this allocation would have to be as egalitarian as possible to the quantity claimed by the
atmospheric pollutant that pollutes the least to keep controlled the pollution levels. This is
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Fig. 1 Example of a two level hierarchical structure for the abatement of GHGs and air pollutants

reminiscent of the constrained equal award rule (CEA) in bankruptcy problems. Therefore,
we have a kind of multi-issue bankruptcy problem which is different from other multi-issue
bankruptcy problems as the multi-issue problems as we will explain below. Of course, if
we were only interested in a particular effect of pollutants, we obtain a classical bankruptcy
problem, where the estate is the amount fixed for the effect (total tons per year) and the claims
are the current emission levels of pollutants (tons per year).

This problem remembers a multi-issue bankruptcy problem in which the issues are the
effects of pollutants. Multi-issue bankruptcy problems introduced by Calleja et al. (2005)
describe situations in which there are a perfect divisible estate which can be divided between
various issues, and a number of claimants that have claims on each of those issues.1 Therefore,
there are a perfect divisible estate, several issues, and claimants with vectors of claims with
as many coordinates as issues, such that the total amount of claims is above the estate. The
central question for these problems is how the estate should be allocated. This problem is
solved by means of allocation rules and there are several approaches to it (see, for example,
Calleja et al. 2005; Borm et al. 2005; Izquierdo and Timoner 2016). However, we have ex
ante one estate for each effect on atmosphere, and the claimants are the pollutants, and each
pollutant has just one claim which is the same for each of the estates of the effects which it
contributes to. This approach is different from the multi-issue bankruptcy problems in the
literature.

In our case, we have several perfectly divisible estates, and claimants have exactly one
claim which is used in all estates simultaneously. Now, again, the question is how the estate
should be allocated in a reasonableway. As far as we know this approach is totally novel in the
literature and then fills a gap in the bankruptcy problems that have been dealt until now.More-
over, we study a generalization of the constrained equal awards (CEA) rule (Maimonides,
twelfth century) to this context, and provide an axiomatic analysis of it.

The CEA rule has been studied in multi-issue bankruptcy problems in different settings.
Lorenzo-Freire et al. (2010) introduce the two-stage constrained equal awards rule. In the
first stage, the estate is distributed among the issues taking into account the total claims for
each issue and applying the CEA rule. In the second stage, the part of the estate assigned to
each issue is distributed among the claimants by applying again the CEA rule. This rule is
characterized by some known axioms, in this context, and a kind of consistency property that
connects the first and second stage, among others. Bergantiños et al. (2011) provide three new
characterizations of the two-stage CEA rule for multi-issue bankruptcy problems by adapting
known properties for bankruptcy problems to the multi-issue case. Bergantiños et al. (2018)
introduce and characterize a two-stage allocation rule formulti-issue bankruptcy problems by
combining the CEA rule and the proportional rule. Izquierdo and Timoner (2016) propose the
CEA rule for constrained multi-issue bankruptcy problems by using the so-called multi-issue
reference systems and a quadratic optimization problem. They characterize their CEA rule
by using consistency and Lorez-domination properties. In this paper, we introduce the CEA

1 “An issue constitutes a reason on the basis of which the estate is to be divided”. (Calleja et al. 2005, page
731.)
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rule for multi-issue bankruptcy problems with crossed claims by using two different iterative
procedures. One of them is based on linear programming and the other is related to the CEA
rule for one issue bankrutcy problems. We characterize our CEA rule by means of Pareto
efficiency, conditional equal division and consistency, showing that is uniquely determined
by conditional equal division and consistency. Finally, we provide another characterization
following the obtained in Yeh (2006).

The rest of the paper is organized as follows. In Sect. 2, multi-issue bankruptcy prob-
lems with crossed claims (MBC) are introduced and the concept of rule in this context is
formally established. In Sect. 3, the constrained equal awards rule for multi-issue bankruptcy
problems with crossed claims is defined as the optimal solution of a succession of linear
programs and it is shown that satisfies the concept of Lorenz week dominance. In Sect. 4, an
analysis of the behavior of the CEA rule in this context, according to principles like equity,
efficiency monotonicity or consistency is carried out. In fact, the study of all these properties
is determinant to make a choice of a reasonable rule to different situations. As a result of the
properties satisfied by this rule, it can be deduced that it is a good choice when looking for
allocations equitables or consistent, in particular, in the situation illustrated of abatement of
emissions of different pollutants into the atmosphere. Additionally, in Sect. 5, we get a better
insight of the CEA rule for multi-issue bankruptcy problems with crossed claims character-
izing it by means of the combination of three of these principles, namely, Pareto efficiency,
conditional equal division and consistency. Additionally, we obtain another characterization
of CEA in this setting with similar properties to the characterization of CEA given in Yeh
(2006). Section 6 concludes.

2 Multi-issue bankruptcy problems with crossed claims

We consider a situation where there are a finite set of issues (effects of pollutants) M =
{1, 2, . . . ,m} such that each issue j has a perfectly divisible estate e j (maximum level of
emissions for that effect of pollutans). Let E = (e1, e2, . . . , em) be the vector of estates.
There are a finite set of claimants (pollutants) N = {1, 2, . . . , n} such that each claimant i
claims ci (emissions of pollutant i) of those estates which belongs to. Let c = (c1, c2, . . . , cn)
be the vector of claims. Now, each claimant claims to different set of issues. Thus, α is a set-
valued function that associates with every i ∈ N a subset α(i) ⊂ M . In fact, α(i) represents
the issues to which claimant i asks for. Furthermore,

∑
i : j∈α(i) ci > e j , for all j ∈ M ,

otherwise, those estates could be discarded from the problem because they do not impose
any limitation, and so the allocation would be trivial. Therefore, a multi-issue bankruptcy
problem with crossed claims (MBC in short) is defined by a 5-tuple (M, N , E, c, α), and the
family of all these problems is denoted by MBC.

We illustrate the structure of these problems in the following example.

Example 1 Consider the following multi-issue bankruptcy problem with crossed claims
MBC = (M, N , E, c, α) with M = {1, 2, 3}; N = {1, 2, 3, 4, 5, 6, 7, 8}; E = (40, 60, 70);
c = (20, 30, 20, 40, 30, 8, 50, 40); and α(1) = {1}, α(2) = {1, 2}, α(3) = {1}, α(4) = {2},
α(5) = {1, 2}, α(6) = {2}, α(7) = {2, 3}, and α(8) = {3}. This situation is depicted in Fig.
2.

At first sight, a simplistic approach could be to solve three bankruptcy problems, one
for each issue, but this is not so simple, because there are claimants with claims to different
issues and this could lead to unfeasible or incompatible allocations. Therefore, amore detailed
analysis of this type of problem is necessary.
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c8 = 40c7 = 50c6 = 8c5 = 30c4 = 40c3 = 20c2 = 30c1 = 20

e1 = 40 e2 = 60 e3 = 70

Fig. 2 Example 1

In Example 1, we can clearly observe the structure of our model of multi-issue bankruptcy
problem. This model differs from other multi-issue models in three elements. First, there are
several issues, each one with their own endowments (this feature would be similar to the
approach in Izquierdo and Timoner (2016) to multi-issues bankruptcy problems), i.e., in our
model the estate, E , is a vector while in other multi-issue models the estate E is a single
number. Second, we do not have a vector of claims for each issue as in all approches to multi-
issues bankruptcy problems have, but a single vector of claims for all issues simultaneously.
And finally, this vector of claims can result in the same claim to be considered in several
issues at the same time.

On the other hand, when there is a single issue in multi-issue bankruptcy problems
with crossed claims correspond to the well-known bankruptcy problems (B) (O’Neill 1982;
Aumann and Maschler 1985). In this case, we have a triplet (N , E, c) instead of 5-tuple
(M, N , E, c, α), because we only have a single issue and M and α become irrelevant for the
analysis of this problem. Therefore, multi-issue bankruptcy problems are a possible extension
of bankruptcy problems.

Given a problem (M, N , E, c, α) ∈ MBC, a feasible allocation for it, it is a vector x ∈ R
N

such that:

1. 0 ≤ xi ≤ ci , for all i ∈ N .
2.

∑
i∈N : j∈α(i) xi ≤ e j , for all j ∈ M ,

and we denote by A(M, N , E, c, α) the set of all its feasible allocations.
Requirement 1 means that each agent receives at most her claim but not less than nothing.

Requirement 2 means that no estates can be overpassed with the allocation. Therefore, a
feasible allocation x ∈ R

N represents an allocation to the claimants which is simultaneously
feasible for all issues.

A rule for multi-issue bankruptcy problems with crossed claims is a mapping R that asso-
ciates with every (M, N , E, c, α) ∈ MBC a unique feasible allocation R(M, N , E, c, α) ∈
A(M, N , E, c, α).

Example 2 Consider again the MBC problem in Example 1. Two possible allocations are the
following:

• R(M, N , E, c, α) = (12.5, 7.5, 12.5, 7.5, 7.5, 7.5, 30, 40).
• R(M, N , E, c, α) = (13.75, 6.25, 13.75, 6.25, 6.25, 6.25, 35, 35).

Both allocations given in Example 2 satisfy the two requirements and, additionally, it is
easy to check that they are efficient for all issues, i.e., Requirement 2 is satisfied with equality.
However, this is not possible, in general, as the following example shows.

Remark 1 Consider again the MBC in Example 1 but only changing c7 = 65 and e3 = 105.
In this situation, it is obvious that if an allocation is efficient for Issue 3, then it is unfeasible
for Issue 2.

Therefore, in view of Remark 1, we cannot make Requirement 2 more demanding if we
want to achieve at least one possible allocation.
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3 The constrained equal awards rule for MBC problems

The constrained equal awards rule (CEA) is one of the main rules to solve bankruptcy
problems (see Herrero and Villar 2001). This rule simply divides as equally as possible the
estate among the claimants. The question here is what as equally as possible means. In the
context of one-issue bankruptcy problems, as equitably as possible means that no claimant
can get more than those with smaller claims, except that the latter have already received their
entire claim. This can be formulated mathematically as follows:

For each (N , E, c) ∈ B,
CEAi (N , E, c) = min{ci , β}, i ∈ N , (1)

where β is a positive real number satisfying
∑

i∈N CEAi (N , E, c) = E .
How to extrapolate this to the MBC situations. To do this, in this paper, we introduce the

CEA rule as the result of the optimal solution of a succession of linear programs.2

Given a problem (N , E, c) ∈ B, in order to allocate E among the claimants according to
CEA, we proceed as follows:

(P1)

max z1

s.a : ∑
i∈N xi ≤ E

xi ≤ ci , for all i ∈ N
xi ≥ z1, for all i ∈ N
xi ≥ 0, for all i ∈ N , and z1 ≥ 0

Let z∗1 be the optimal value of the linear problem (P1). Ifnz∗1 = E , thenCEAi (N , E, c) =
z∗1. Otherwise, the following linear problem must be solved:

(P2)

max z2

s.a : ∑
i∈N xi ≤ E

xi ≤ ci , for all i ∈ N
xi ≥ z∗1 + μ0(ci − z∗1)z2, for all i ∈ N
xi ≥ 0, for all i ∈ N , and z2 ≥ 0

where for each a ∈ R,

μ0(a) =
{
0 if a ≤ 0,

1 otherwise.

Let z∗2 be the optimal value of the linear problem (P2). If nz∗1+∑
i∈N μ0(ci − z∗1)z∗2 =

E , then CEAi (N , E, c) = z∗1 + μ0(ci − z∗1)z∗2. Otherwise, a new linear problem must be
solved. In the general step k, we have the following linear problem:

(Pk)

max zk

s.a : ∑
i∈N xi ≤ E

xi ≤ ci , for all i ∈ N
xi ≥ ∑k−1

h=1 μ0(ci − ∑h−1
l=1 z∗l)z∗h + μ0(ci − ∑k−1

l=1 z∗l)zk, for all i ∈ N
xi ≥ 0, for all i ∈ N , and zk ≥ 0

Again, let z∗k be the optimal value of the linear problem (Pk). If
∑

i∈N
∑k

h=1 μ0(ci −
∑h−1

l=1 z∗l)z∗h = E , then CEAi (N , E, c) = ∑k
h=1 μ0(ci − ∑h−1

l=1 z∗l)z∗h . Otherwise, the

2 We can find in Izquierdo and Timoner (2016) another way to obtain CEA by using a quadratic optimization
problem.
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linear problem (Pk+1) must be solved. And so on and so forth, until the estate is fully
distributed or all claims are completely granted. It is obvious that this procedure ends in a
finite number of steps and the final allocation is CEA.

Note that when the last linear problem of the procedure is solved, then we have that
its optimal solution is x∗k = CEA(N , E, c). We illustrate this procedure in the following
example.

Example 3 Consider (N , E, c) ∈ B with N = {1, 2, 3, 4, 5, 6, 7, 8}; E = 170; c =
(20, 30, 20, 40, 30, 8, 50, 40). We now apply the procedure described above to calculate
the CEA rule of this problem.

1. First we solve (P1). The optimal value of this linear problem is z∗1 = 8. Therefore, all
claimants receive 8 units of the estate. In total 64 units of the estate have been distributed,
therefore another round is necessary. Since claimant 6 has obtained her claim, this will
not take part in the distribution of the estate in the next step.

2. In this step,we first guarantee claimants all what they have obtained until the previous
step. The optimal value of (P2) is z∗2 = 12. Thus, all claimants except claimant 6 are
allocated 12 extra units of the estate. In total 148 units of the estate have been distributed,
therefore another round is necessary. Since claimants 1 and 3 have already obtained their
claims, these will not take part in the distribution of the estate in the next step.

3. Again, we first guarantee claimants all what they have obtained until the previous step.
The optimal value of (P3) is z∗3 = 4.4. Thus, all claimants except claimants 1, 3 and 6
are allocated 4.4 extra units of the estate. Since the estate has been fully distributed, the
procedure ends and CEA(N , E, c) = (20, 24.4, 20, 24.4, 24.4, 8, 24.4, 24.4).

Note that this procedure perfectly fits to the following description of CEA in Thomson
(2015):

At first, equal division takes place until each claimant receives an amount equal to
the smallest claim. The smallest claimant drops out, and the next increments of the
endowment are divided equally among the others until each of them receives an amount
equal to the second smallest claim. The second smallest claimant drops out, and so on.

Therefore, following this same procedure we can define the CEA rule for MBC problems.
Given a problem (M, N , E, c, α) ∈ MBC, in the general step k of the procedure, the linear
problem to be solved is given by:

(Pk)

max zk

s.a : ∑
i∈N : j∈α(i) xi ≤ e j , for all j ∈ M

xi ≤ ci , for all i ∈ N

xi ≥ ∑k−1
h=1 μ0(ahi )z∗h + μ0(aki )z

k, for all i ∈ N

xi ≥ 0, for all i ∈ N , and zk ≥ 0

where

ahi = min

⎧
⎨

⎩
ci −

h−1∑

l=1

μ0(ali )z
∗l ,min j∈α(i)

⎧
⎨

⎩
e j −

∑

t∈N : j∈α(t)

h−1∑

s=1

μ0(ast )z
∗s

⎫
⎬

⎭

⎫
⎬

⎭
.
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Note that ahi measures whether claimant i can take part in the distribution of step h taking
into account what she received before and whether there is still something to distribute in
every issue she claims.

In this case, the procedure also ends in a finite number of steps, but not necessarily when
all estates are fully distributed or all claims are completely granted. In this situation the
procedure stops when z∗k = 0, and it holds that

CEAi (M, N , E, c, α) =
k∑

h=1

μ0(ahi )z∗h .

Likewise, we also have that for the last linear problem solved its optimal solution x∗k is
exactly CEA(M, N , E, c, α).

It is important to emphasize that we have introduced CEA rule for bankruptcy problems
as the solution to a sucession of linear programming problems and we have extended this
procedure to MBC . So, it is easy to check that when we have exactly only one issue both
coincide. The only difference is that we additionally take into account how much remains in
each of the estates to which claimants ask for. However, this procedure for MBC problems
does not guarantee that all estates are fully distributed, even when they could be. The next
example illustrates this.

Example 4 Consider again the MBC problem in Example 1. We now calculate the CEA rule
of this problem by applying the procedure described above.

1. The optimal value of (P1) is z∗1 = 8 and this amount is allocated to each claimant. None
of the estates have been fully distributed, so a next step is necessary. However, claimant
6 has obtained her claim, so this will not take part in the distribution of the estates in the
next step.

2. In this step, we guarantee claimants all what they have obtained until the previous step.
The optimal value of (P2) is z∗2 = 2, and this amount is allocated to all claimants
except claimant 6. Now, the estate e1 has been fully distributed, therefore, claimants
requesting part of this estate cannot continue to receive anything else. Otherwise, the
quantity available in that estate would be exceeded. However, the other two estates have
not been fully distributed, hence another step is needed.

3. In this step, we guarantee claimants all what they have obtained until the previous step.
The optimal value of (P3) is z∗3 = 6, and this amount is only allocated to claimants 4, 7,
and 8. Now, the estate e2 has been fully distributed, so claimants 4, and 7 cannot continue
to receive anything else. Again, otherwise, the quantity available in that estate would be
exceeded.

4. In this step, we again guarantee claimants all what they have obtained until the previous
step, and claimant 8 is the only one that can receive something else in this step. The
optimal value of (P4) is z∗4 = 24, and this amount is only allocated to claimant 8.
However, the estate e3 has not been fully distributed, in fact, there are still 14 units
to be distributed. Furthermore x∗4 = (10, 10, 10, 16, 10, 8, 16, 40) that coincides with
CEA(M, N , E, c, α).
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CEA(M, N , E, c, α) is calculated in four steps, and the allocations in each step are the
following:

Claimant Step − 1 Step − 2 Step − 3 Step − 4 Row − total
1 8 2 − − 10
2 8 2 − − 10
3 8 2 − − 10
4 8 2 6 − 16
5 8 2 − − 10
6 8 − − − 8
7 8 2 6 − 16
8 8 2 6 24 40

Column − total 64 14 18 24 120

This allocation does not fully distribute all estates, but it is possible to obtain feasible
allocations for this particular MBC problem which do. For example, the allocations given
in Example 2 fully distribute all estates for this problem, but they are not as egalitarian as
this. Furthermore, although the claimants have received 120 units in total, of the 170 units
that make up the three estates, 156 have been actually distributed. This difference is because
some claimants asked for in several issues simultaneously.

If we look carefully at the application of the procedure in Example 4, we observe that first
a estate is fully distributed, then another estate is completely distributed, and finally the last
estate cannot be distributed in its entirety. Therefore, we can design another procedure based
on the CEA rule itself which follows this scheme. We illustrate it in the following example.

Example 5 Consider once again the MBC problem in Example 1. In order to calculate
CEA(M, N , E, c, α), we proceed as follows:

1. First we calculate the CEA rule for each of the three bankruptcy problems defined by
each issue.

• (N 1,1, E1,1, c1,1). N 1,1 = {1, 2, 3, 5}, E1,1 = 40, and c1,1 = (20, 30, 20, 30).
CEA(N 1,1, E1,1, c1,1) = (10, 10, 10, 10), and β1,1 = 10.

• (N 2,1, E2,1, c2,1). N 2,1 = {2, 4, 5, 6, 7}, E2,1 = 60, and c2,1 = (30, 40, 30, 8, 50).
CEA(N 2,1, E2,1, c2,1) = (13, 13, 13, 8, 13), and β2,1 = 13.

• (N 3,1, E3,1, c3,1). N 3,1 = {7, 8}, E3,1 = 70, and c3,1 = (50, 40). CEA(N 3,1, E3,1,

c3,1) = (35, 35), and β3,1 = 35.

2. Next, we take β∗1 = min{β1,1, β2,1, β3,1} = 10, and we allocate each claimant i
min{ci , β∗1}. Therefore, we obtain the allocation vector (10, 10, 10, 10, 10, 8, 10, 10).

Now, it is obvious that estate e1 has been fully distributed, and in the next step this
bankruptcy problem and the claimants associated with it are excluded. Moreover, claimant
6 is also excluded because she has got her claim. The other two problems are updated in
claimants, and decreasing estates and claims according to the allocation previously obtained.

1. We calculate the CEA rule for each of the two bankruptcy problems remaining.

• (N 2,2, E2,2, c2,2). N 2,2 = {4, 7}, E2,2 = 12, and c2,2 = (30, 40). CEA(N 2,2, E2,2,

c2,2) = (6, 6), and β2,2 = 6.
• (N 3,2, E3,2, c3,2). N 3,2 = {7, 8}, E3,2 = 50, and c3,2 = (40, 30). CEA(N 3,2, E3,2,

c3,2) = (25, 25), and β3,2 = 25.
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2. Next, we take β∗2 = min{β2,2, β3,2} = 6, and we allocate each claimant i min{ci , β∗2}.
Therefore, we obtain the allocation vector (0, 0, 0, 6, 0, 0, 6, 6).

Now, it is obvious that estate e2 has been fully distributed, and in the next step this
bankruptcy problem and the claimants associated with it are excluded. The third problem is
updated in claimants, and decreasing estates and claims according to the allocation previously
obtained.

1. We calculate the CEA rule for each of the bankruptcy problem remaining.

• (N 3,3, E3,3, c3,3). N 3,3 = {8}, E3,3 = 38, and c3,3 = (24).CEA(N 3,3, E3,3, c3,3) =
(24), and β3,3 = 24.

2. Next, we take β∗3 = min{β3,3} = 24, and we allocate each claimant i min{ci , β∗3}.
Therefore, we obtain the allocation vector (0, 0, 0, 0, 0, 0, 0, 24).

The procedure stops because either estates have been completely distributed or claimants
have obtained their claims. Finally, by adding the allocation vectors obtained in the procedure,
we obtain that CEA(M, N , E, c, α) = (10, 10, 10, 16, 10, 8, 16, 40).

The procedure based on the CEA rule is as follows. In general step k, we calculate the
CEA rule for all bankruptcy problems defined by the available estates in the step k, for each
we determine the values β j,k , and take the minimum β∗k of all of them.We allocate β∗k to all
active claimants in step k and nothing to the others. Next, we update the problem by revising
downwards estates, claimants, and claims. After updating the problem, if no bankruptcy
problem can be defined, we stop. Otherwise we go to the next step with the updated problem,
and so on. Finally, the CEA rule of the MBC is the sum of all allocation vectors obtained.

The following theorem states that both procedures introduced coincide for all MBC prob-
lems.

Theorem 1 Given a problem MBC = (M, N , E, c, α) ∈ MBC, the allocation vectors
obtained by the procedure based on linear programming and the procedure based on the
CEA rule of classical bankrupcty problems coincide, and their outcome corresponds to the
rule CEA(M, N , E, c, α).

Proof In order to prove this result, it suffices to demonstrate that there is a step in the procedure
based on linear programming that coincides with the first step of the procedure based on the
one-issue CEA rule, because after that step we can repeat the same reasoning again.

Given a problem MBC = (M, N , E, c, α), we consider, without loss of generality, that
c1 ≤ c2 ≤ c3 ≤ . . . ≤ cn . Let β∗1 be the first value in the procedure based on the standard
CEA rule. We distinguish three cases:

1. β∗1 ≤ c1. In this case, xi = β∗1, for all i ∈ N and z1 = β∗1 is a feasible solution of
linear program (P1). Moreover, it is optimal because if we increase z1, some estate would
be exceeded by the definition of β∗1.

2. ch ≤ β∗1 < ch+1. In this situation, xi = min{ci , β∗1}, for all i ∈ N and z = β∗1 is
a feasible solution of some linear program (Pk), because β∗1 determines the first estate
which will be fully distributed. Indeed, after a number of steps of the procedure based on
linear programming a first estate must have been distributed. Let k be that step, then the
solution given above is a feasible one for linear problem (Pk) and also optimal by using
the same reasoning as in the previous case.

3. cn ≤ β∗1. In this case, there is no problem and all claims are granted in both procedures.
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For the remaining steps of the procedure based on the one-issue CEA rule the reasoning
is the same as above by only taking into account that in the procedure based on linear
programming we guarantee claimants all what they have obtained until the previous step,
and in the procedure based on the one-issue CEA rule we update the problem. Thus, for
obtaining feasible solutions for the linear programs from the procedure based on CEA, we
just have to accumulate the allocations. ��

An interesting property of CEA for bankruptcy problems is that it is the most egalitarian
allocation in the sense of Lorenz. This result can be extended to the context ofMBCproblems.
To do this, we first introduce the well-known concept of Lorenz dominance adapted to the
context of multi-issue bankruptcy problems with crossed claims.

Given a problem MBC = (M, N , E, c, α) ∈ MBC, and two feasible vectors x, y ∈ R
N+ ,

we say that x Lorenz weakly dominates y, x 	wL y, if
∑k

j=1 x( j) ≥ ∑k
j=1 y( j), for all

k = 1, 2, . . . , h, h ≤ n, where for a vector z ∈ R
N+ , z(1), . . . , z(n) represent its coordinates

rewritten in increasing order.

Theorem 2 Given a problem MBC = (M, N , E, c, α) ∈ MBC, the rule CEA(M, N , E, c,
α) Lorenz weakly dominates all feasible allocations.

Proof The proof follows from the procedure based on linear programing to calculate
CEA(M, N , E, c, α). Indeed, since the minimum amount that all active claimants have to
receive is maximized in each step, and the estates are successively exhausted during the
application of the procedure, no other allocation can improve the equality of the distribution.
If so, in some of the steps the solution would not be optimal, and this is a contradiction. ��

4 Properties

In this section, we present several properties which are interesting in the context of MBC
problems. These properties are related to efficiency, fairness, consistency or monotonicity,
among others.

First, we define when two claimants are considered equal. In our context, claimants are
characterized by two features: their claims and the issues to which they claim. Therefore,
both should be taken into account in the definition of equal agents. Given a problem MBC =
(M, N , E, c, α) ∈ MBC, and two claimants i, j ∈ N , we say they are equal, if ci = c j and
α(i) = α( j).

Next, we give a set of properties which are very natural and reasonable for an allocation
rule.

Property (EFF) Given a rule R, it satisfies efficiency, if for every problem MBC =
(M, N , E, c, α) ∈ MBC, ∑i : j∈α(i) Ri (M, N , E, c, α) = e j , for all j ∈ M.

EFF simply says that the estates must be fully distributed, we know that this property
is very demanding in the context of multi-issue bankruptcy problems with crossed claims
as Remark 1 shows. However, a weaker version of efficiency can be defined by considering
Pareto efficiency. A feasible allocation is Pareto efficient if there is no other feasible allocation
inwhich some individual is better off and no individual isworse off. Formally, given a problem
MBC = (M, N , E, c, α) ∈ MBC, an allocation x ∈ A(M, N , E, c, α) is Pareto efficient if
there is no other allocation x ′ ∈ A(M, N , E, c, α) such that x ′

i ≥ xi ,∀i ∈ N , with at least
one strict inequality. Now Pareto efficiency is defined as follows:
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Property (PEFF) Given a rule R, it satisfies Pareto efficiency, if for every problem MBC =
(M, N , E, c, α) ∈ MBC, R(M, N , E, c, α) is Pareto efficient.

Note that PEFF implies that at least one estate is fully distributed, but not EFF .However,
EFF implies PEFF . Therefore, PEFF is a weaker property than EFF .

Property (ETE) Given a rule R, it satisfies equal treatment of equals, if for every prob-
lem MBC = (M, N , E, c, α) ∈ MBC and every pair of equal claimants i, j ∈ N,
Ri (M, N , E, c, α) = R j (M, N , E, c, α).

ET E is related to impartiality and says that claimants with the same claims and the same
set of issues must be treated equally in the final allocation.

Property (CTI) Given a rule R, it satisfies claims truncation invariance, if for every
problem MBC = (M, N , E, c, α) ∈ MBC, when considering the problem MBC ′ =
(M, N , E, c′, α) ∈ MBC such that c′

i = min
{
ci ,min{e j | j ∈ α(i)}}, for all i ∈ N; then

R(M, N , E, c, α) = R(M, N , E, c′, α).

CT I says that if the claims are truncated by the estates, then the final allocation does
not change. This property appears in Curiel et al. (1987) and it is used to characterize the
so-called game theoretical rules for one-issue bankruptcy problems. Dagan and Volij (1993)
were the first to propose this property as an axiom.

Property (RMR) Given a rule R, it satisfies respect of minimal rights, if for every problem
MBC = (M, N , E, c, α) ∈ MBC, for all i ∈ N,

Ri (M, N , E, c, α) ≥ min
j : j∈α(i)

max{0, e j −
∑

k∈N\{i}: j∈α(k)

ck}.

Property (CED) Given a rule R, it satisfies conditional equal division, if for every problem
MBC = (M, N , E, c, α) ∈ MBC, for all i ∈ N,

Ri (M, N , E, c, α) ≥ min
j : j∈α(i)

min

{

ci ,
e j

|k : j ∈ α(k)|
}

.

Property (SEC) Given a rule R, it satisfies securement, if for every problem MBC =
(M, N , E, c, α) ∈ MBC, for all i ∈ N,

Ri (M, N , E, c, α) ≥ min
j : j∈α(i)

min

{
ci

|k : j ∈ α(k)| ,
e j

|k : j ∈ α(k)|
}

.

RMR, CED and SEC are related to the minimum amount that should reasonably be
guaranteed to each claimant. The concept of minimal right was introduced by Tijs (1981)
in the context of cooperative games to define the τ -value. Thus, RMR says that a claimant
should receive at least what is left when all the other claimants are completely satisfied in
their claims. CED was introduced by Moulin (2000) for rationing problems. In our context,
this property means that an agent should obtain her claim if this is less than any egalitarian
distribution of the estates of the issues she claims, and in other case, at least the minimal
egalitarian distribution of the estates of all issues she claims. Finally, SEC was introduced
for bankruptcy problems by Moreno-Ternero and Villar (2004). They use this property along
with other properties to characterize the Talmud rule (Aumann and Maschler 1985). In the
environment of MBC problems, this property means that a rule should guarantee to agents
at least the minimal egalitarian distribution of the estates of all issues they claims when they
are feasible, and the minimal egalitarian distribution of the estates of all issues they claims
otherwise.
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Property (CFC)Given a rule R, it satisfies conditional full compensation, if for every problem
MBC = (M, N , E, c, α) ∈ MBC and each i ∈ N, such that

∑
k: j∈α(k) min{ck, ci } ≤ e j ,

for all j ∈ M, then Ri (M, N , E, c, α) = ci .

CFC means that if the claim of a claimant is so small that if all claimants with higher
claims asked for the same amount as her, all claims would be fully honored, then it seems
reasonable that said claimant receives her claim. This property was introduced by Herrero
and Villar (2002) and used to characterize the CEA rule.

Property (CM) Given a rule R, it satisfies claim monotonicity, if for every pair of problems
MBC = (M, N , E, c, α) ∈ MBC and MBC ′ = (M, N , E, c′, α) ∈ MBC, such that
ci ≥ c′

i and c j = c′
j , for all j ∈ N\{i}, then Ri (M, N , E, c, α) ≥ Ri (M, N , E, c′, α).

CM means that if the claim of a claimant increasing she cannot receive less than she
received in the previous situation. In Kasajima and Thomson (2011) monotonicity properties
are studied in the context of the adjudication of conflicting claims.

Before introducing the last property we need to introduce the concept of reduced
problem. Given a problem MBC = (M, N , E, c, α) ∈ MBC, and N ′ ⊂ N , the
reduced problem associated with N ′, MBCN ′ = (M ′, N ′, E ′R, c|N ′ , α) ∈ MBC, where
M ′ = { j ∈ M : there exists i ∈ N ′ such that j ∈ α(i)}, E ′R =

(
e′R
j

)

j∈M ′ with

e′R
j = e j − ∑

i∈N\N ′: j∈α(i) Ri (M, N , E, c, α), for all j ∈ M ′, and c|N ′ is the vector whose
coordinates correspond to the claimants in N ′.

Property (CONS) Given a rule R, it satisfies consistency, if for every problem MBC =
(M, N , E, c, α) ∈ MBC, and N ′ ⊂ N, it holds that

Ri (M, N , E, c, α) = Ri (M
′, N ′, E ′R, c|N ′ , α), for all i ∈ N ′.

CONS means that if a subset of claimants leave the problem respecting what had been
assigned to those who remain, then what those players get in the new reduced problem is
the same as what they got in the whole problem. Consistency properties have been used
to characterize many bankruptcy rules, because they represents a requirement of robustness
when some agents leave the problem with their allocations (see Thomson (2011, 2018) for
surveys about the application of consistency properties and their principles behind.)

The CEA rule for MBC problems satisfies all properties above mentioned but efficiency
as Example 4 shows. We establish this in the following theorem.

Theorem 3 The CEA rule for multi-issue bankruptcy problems with crossed claims satisfies
PEFF, ETE, CTI, RMR, CED, SEC, CFC, CM, and CONS.

Proof We prove the result property by property.

• CEA satisfies PEFF by definition.
• ETE. If two claimants are symmetric, then CEA allocates both the same, since the proce-

dure to calculate the rule treats, in each step, all active claimants egalitarianly, so if two
claimants are symmetric, they stop receiving at the same step.

• CTI. Since the claims are used as upperbounds in the procedure based on linear program-
ming and the estates cannot be exceeded, theCEA rule satisfies CTI because upperbounds
are not relevant for solving the linear programs when they are above the estates.

• RMR. CEA satisfies this property by definition of the rule.
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• CED. Given a problem MBC = (M, N , E, c, α) ∈ MBC, and i ∈ N . We distinguish
three cases:

1. Ri (M, N , E, c, α) = ci ≥ min j : j∈α(i) min
{
ci ,

e j
|k: j∈α(k)|

}
.

2. Ri (M, N , E, c, α) < ci and there exists j ∈ α(i)which is fully distributed. Consider
that the first issue in α(i) whose associated estate was fully distributed was j∗ in the
k-th step of the procedure based on the standard CEA rule. Until step (k − 1)-th
claimant i has received the same as those active claimants in the step k-th and more
than those inactive claimants in step (k − 1)-th. Now in the step k-th, claimant i is
going to receive exactly the same as the other active claimants in the issue j∗, and they
can be less than the beginning, therefore, Ri (M, N , E, c, α) ≥ min

{
ci ,

e j
|k: j∗∈α(k)|

}
.

3. Ri (M, N , E, c, α) < ci and there does not exist j ∈ α(i) which is fully distributed.
This case is not possible because if there does not exist j ∈ α(i) which is fully
distributed, then claimant i gets her claim.

• SEC. CED implies SEC.
• CFC. This property follows from the structure of the linear programs in the procedure to

calculate CEA.
• CM. This property also follows from the structure of the linear programs in the procedure

to calculate CEA.
• CONS.GivenMBC = (M, N , E, c, α) ∈ MBC andMBCN ′ = (M ′, N ′, E ′CE A, c|N ′ ,

α) ∈ MBC the reduced game associatedwith N ′ ⊂ N , let r be the number of steps needed
to calculate CEA of the problem MBC = (M, N , E, c, α) by applying the procedure
based on the standard CEA rule. We define the following two sequences of sets:

N = N1 ⊃ N2 ⊃ · · · ⊃ Nr , and N ′ = N ′
1 ⊃ N ′

2 ⊃ · · · ⊃ N ′
r ,

where Nk is the subset of claimants of N who were active in step k, and, N ′
k is the subset

of claimants of N ′ whowere active in step k. Obviously, N ′
k ⊂ Nk , for all k = 1, 2, . . . , r .

Note that, in the application of the procedure based on the standard CEA rule, at least
one estate is fully distributed in each step, and if at the end of the procedure some estates
are not fully distributed, then if feasible the last active claimants will receive as much as
possible until the limit of their claims.
Now, let f be the last step in which at least one estate was fully distributed, f ≤ r . We
distinguish three cases:

1. f < 1. In this case, all claimants get their claims in the problem MBC =
(M, N , E, c, α), and, obviously, claimants in N ′ also get their claims in MBCN ′ =
(M ′, N ′, E ′CE A, c|N ′ , α). In fact, this case is not considered as a problem according
to the definition of MBC problems.

2. 1 ≤ f < r . Since the CEA rule for standard bankruptcy problems is consistent,
and N ′

k ⊂ Nk , for all k = 1, 2, . . . , f , claimants in N ′ will get until that step
the same in the application of the procedure based on the standard CEA rule in
both problems, MBC = (M, N , E, c, α) and MBCN ′ = (M ′, N ′, E ′CE A, c|N ′ , α).
Thus, in the case of some N ′

k , k ≤ f , to be empty, then the result immediately
follows. Therefore, we consider now that N ′

k = ∅ for some k > f . In this case, active

claimants in N ′
f +1 will get their claims both in MBCN and MBCN ′

. Consequently,

CEAi (M, N , E, c, α) = CEAi (M ′, N ′, E ′CE A, c|N ′ , α), for all i ∈ N ′.
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3. f = r . Since the CEA rule for standard bankruptcy problems is consistent, and
N ′
k ⊂ Nk , for all k = 1, 2, . . . , f = r , claimants in N ′ will get the same in both

problems when CEA is applied.

��

5 Characterization

In this section, the aim is to get a better knowledge of the CEA rule for MBC by describing
it in a unique way as a combination of some reasonable axioms. This combination of prin-
ciples is very important to understand the behavior of this rule and be able to make a good
choice. The characterization given uses three appealing axioms: Pareto efficiency, conditional
equal division and consistency. In particular, consistency is a robust axiom that describes the
invariance of a rule with respect to any change in the number of agents. In fact, this symbolic
principle focus on the reduction in the number of agents and reflects not only fairness but
also stability and its role in characterizations is significant, an interesting introduction to the
literature on the “consistency principle” and its“converse”can be found in Thomson (2011).

Lemma 1 For each problem (M, N , E, c, α) ∈ MBC, and each Pareto efficient allo-
cation x ∈ A(M, N , E, c, α), if for each N ′ ⊂ N with |N ′| = |N | − 1, we have
xi = CEAi (M ′, N ′, E ′x , c|N ′ , α) for all i ∈ N ′, then x = CEA(M, N , E, c, α).

Proof We first prove that if there is xi = CEAi (M, N , E, c, α), then the result holds. Indeed,
let us consider x in the conditions of the statement, and xi = CEAi (M, N , E, c, α). We now
consider N ′ = N\{i}, since xi = CEAi (M, N , E, c, α),

(M ′, N ′, E ′x , c|N ′ , α) = (M ′, N ′, E ′CE A, c|N ′ , α).

By hypothesis, we have that

xk = CEAk(M
′, N ′, E ′x , c|N ′ , α) for all k ∈ N ′.

Moreover, since CEA satisfies consistency,

CEAk(M, N , E, c, α) = CEAk(M
′, N ′, E ′CE A, c|N ′ , α) for all k ∈ N ′.

Therefore, CEAk(M ′, N ′, E ′CE A, c|N ′ , α) = xk for all k ∈ N ′.
Let us consider x in the conditions of the statement and we assume without loss of

generality that x1 ≤ x2 . . . ≤ x|N |. We are going to prove that x1 = CEA1(M, N , E, c, α)

always holds. We distinguish two cases:

• x1 = c1. We take any N ′ ⊂ N with 1 ∈ N ′ and |N ′| = |N | − 1. By definition of CEA,
in the first step the following linear program has to be solved:

max z1

s.a : ∑
i∈N ′: j∈α(i) xi ≤ e′x

j , for all j ∈ M ′
xi ≤ ci , for all i ∈ N ′
xi ≥ z1, for all i ∈ N ′
xi ≥ 0, for all i ∈ N ′, and z1 ≥ 0

By hypothesis, we know that c1 = CEA1(M ′, N ′, E ′x , c|N ′ , α). Therefore, since c1 is the
minimumvalue of the allocation x , the solution xi = c1 for all i ∈ N ′ is a feasible solution
of the linear program above, and also optimal because x1 ≤ c1. Therefore z∗1 = c1.
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On the other hand, for the original problem (M, N , E, c, α), in the first step the linear
program to be solved is given by

max z1

s.a : ∑
i∈N : j∈α(i) xi ≤ e j , for all j ∈ M

xi ≤ ci , for all i ∈ N
xi ≥ z1, for all i ∈ N
xi ≥ 0, for all i ∈ N , and z1 ≥ 0

Now, since e′x
j ≤ e j for all j ∈ M ′ and c1 ≤ x j for all j ∈ N , z∗1 = c1 is a feasible

solution of this linear program and also optimal for the same reasons as before. Therefore,
CEA1(M, N , E, c, α) = c1.

• x1 < c1. We take any N ′ ⊂ N with 1 ∈ N ′ and |N ′| = |N | − 1. By definition of CEA,
in the first step the following linear program has to be solved:

max z1

s.a : ∑
i∈N ′: j∈α(i) xi ≤ e′x

j , for all j ∈ M ′
xi ≤ ci , for all i ∈ N ′
xi ≥ z1, for all i ∈ N ′
xi ≥ 0, for all i ∈ N ′, and z1 ≥ 0

By hypothesis, we know that x1 = CEA1(M ′, N ′, E ′x , c|N ′ , α). Therefore, since x1 is the
minimumvalue of the allocation x , the solution xi = x1 for all i ∈ N ′ is a feasible solution
of the linear program above. Moreover, it must be optimal because otherwise, since x1 <

c1, CEA1(M ′, N ′, E ′x , c|N ′ , α) > x1 which leads to a contradiction with the hypothesis.
Furthermore, for the same reason, at least one of the inequalities

∑
i∈N ′: j∈α(i) xi ≤

e′x
j , j ∈ M ′, must be saturated in the optimal solution xi = x1 for all i ∈ N ′.

Eventually, for each N ′ ⊂ N with 1 ∈ N ′ and |N ′| = |N | − 1, the saturated issue could
be different. Note that all claimants i in N ′ such that the saturated issue belongs to α(i)
are allocated the same, x1. Now, we take N ′ such that 1 ∈ {i ∈ N : j∗ ∈ α(i)} ⊂ N ′
such that j∗ is a saturated item in the first step of the calculation of CEA. Note that each
claimant i in N ′ such that j∗ ∈ α(i) receive exactly x1 in CEA(M ′, N ′, E ′x , c|N ′ , α).
On the other hand, for the original problem (M, N , E, c, α), in the first step the linear
program to be solved is given by

max z1

s.a : ∑
i∈N : j∈α(i) xi ≤ e j , for all j ∈ M

xi ≤ ci , for all i ∈ N
xi ≥ z1, for all i ∈ N
xi ≥ 0, for all i ∈ N , and z1 ≥ 0

Now, since e′x
j∗ = e j∗ , e′x

j ≤ e j for all j ∈ M\{ j∗} and x1 ≤ x j for all j ∈ N , z∗1 = x1
is a feasible solution of this linear program and also optimal for the same reasons as
before. Therefore, CEA1(M, N , E, c, α) = x1.
If N ′ such that 1 ∈ {i ∈ N : j∗ ∈ α(i)} ⊂ N ′ with j∗ a saturated item in the first step
of the calculation of CEA does not exist, then there will be j ′ ∈ M such that j ′ ∈ α(i)
for all i ∈ N which will be saturated for all N ′ ⊂ N with 1 ∈ N ′ and |N ′| = |N | − 1.
Therefore, taking into account that each claimant i in N ′ such that j∗ ∈ α(i) receive
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exactly x1 in CEA(M ′, N ′, E ′x , c|N ′ , α), we obtain that xi = x1 for all i ∈ N . Once
again, following similar arguments as before, we have that CEA1(M, N , E, c, α) = x1.

��
Theorem 4 The CEA rule for multi-issue bankruptcy problems with crossed claims is the
only rule that satisfies PEFF, CED, and CONS.

Proof We proceed by induction in the number of claimants in the problem.

1. |N | = 1. If a rule R satisfiesCED then, it is obvious that for all problem (M, N , E, c, α),
such that |N | = 1,

R1(M, N , E, c, α) = min
j : j∈α(1)

min
{
c1, e j

}
.

2. |N | = 2. We distinguish two cases:

a. α(1) ∩ α(2) = ∅. In this case, by the definition of rule and PEFF ,

R1(M, N , E, c, α) = min
j : j∈α(1)

min
{
c1, e j

}
and

R2(M, N , E, c, α) = min
j : j∈α(2)

min
{
c2, e j

}
.

b. α(1) ∩ α(2) = ∅. By the definition itself of allocation rule,

R1(M, N , E, c, α) ≤ min
j : j∈α(1)\α(2)

min
{
c1, e j

} = c′
1,

R2(M, N , E, c, α) ≤ min
j : j∈α(2)\α(1)

min
{
c1, e j

} = c′
2.

We now take

e∗ = min
{
e j : j ∈ α(1) ∩ α(2)

}
.

Next, two cases are distinguished:
i. c′

1 + c′
2 ≤ e∗. Since R1(M, N , E, c, α) ≤ c′

1, R2(M, N , E, c, α) ≤ c′
2, and R

satisfies PEFF ,

R1(M, N , E, c, α) = c′
1 and R2(M, N , E, c, α) = c′

2.

.
ii. c′

1 + c′
2 > e∗. If a rule satisfies CED, then

Ri (M, N , E, c, α) ≥ min

{

ci , min
j : j∈α(i)

{
e j

|{k : j ∈ α(k)}|
}}

= min

{

c′
i ,
e∗

2

}

, i = 1, 2.

Finally, we assume, without loss of generality, that c′
1 ≤ c′

2 and distinguish three
cases:
A. e∗

2 ≤ c′
1 ≤ c′

2. Then,

Ri (M, N , E, c, α) ≥ e∗

2
, i = 1, 2.

By the definition of rule,

Ri (M, N , E, c, α) = e∗

2
, i = 1, 2.
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B. c′
1 ≤ e∗

2 ≤ c′
2. Then,

R1(M, N , E, c, α) ≥ c′
1 and R2(M, N , E, c, α) ≥ e∗

2
.

Now, since R1(M, N , E, c, α) ≤ c′
1, R1(M, N , E, c, α) = c′

1; and by
PEFF ,

R2(M, N , E, c, α) = min{c′
2, e

∗ − c′
1} = e∗ − c′

1.

C. c′
1 ≤ c′

2 ≤ e∗
2 . Then Ri (M, N , E, c, α) ≥ c′

i , i = 1, 2. Hence,

Ri (M, N , E, c, α) = c′
i , i = 1, 2.

Therefore, if a rule satisfies PEFF and CED is also completely determined when
|N | = 2. Since CEA satisfies PEFF and CED, any other rule that satisfies these
properties coincides with CEA when |N | ≤ 2

3. |N | = 3. Let R be a rule that satisfies PEFF , CED and CONS, and let
(M, N , E, c, α) ∈ MBC, then we have that

R(M, N , E, c, α) = CEA(M, N , E, c, α).

Indeed, for each N ′ = {i1, i2} ⊂ N such that |N ′| = 2, since R satisfies CONS,

Rik (M
′, N ′, E ′R, c|N ′ , α) = Rik (M, N , E, c, α), k = 1, 2,

and since |N ′| = 2, we have that

Rik (M
′, N ′, E ′R, c|N ′ , α) = CEAik (M

′, N ′, E ′R, c|N ′ , α), k = 1, 2.

Since we can take all possible N ′ = {i1, i2} ⊂ N , by Lemma 1

R(M, N , E, c, α) = CEA(M, N , E, c, α).

4. |N | ≤ k. Let us suppose that for each (M, N , E, c, α)with |N | ≤ k, R(M, N , E, c, α) =
CEA(M, N , E, c, α).

5. |N | = k + 1. For each N ′ ⊂ N such that |N ′| = k, since R satisfies CONS,

Ri (M
′, N ′, E ′R, c|N ′ , α) = Ri (M, N , E, c, α), i ∈ N ′.

and since |N ′| ≤ k, we have that

Ri (M
′, N ′, E ′R, c|N ′ , α) = CEAi (M

′, N ′, E ′R, c|N ′ , α), i ∈ N ′.

Finally, since we can take all possible N ′ ⊂ N with |N ′| = k, by Lemma 1,

R(M, N , E, c, α) = CEA(M, N , E, c, α).

��
Note that from Theorem 4, we know that for |N | = 2, CEA is the only rule satisfying

PEFF and CED for multi-issue bankruptcy problems with crossed claims. Next, in the
following propositions, we show the role of each property in Theorem 4. We first prove that
CED and CONS imply PEFF , then, we show that CED and CONS are necessary, and
that any other combination of two properties do not imply the remaining third. Therefore,
CEA can also be characterized by only CED and CONS. This is established below in
Corollary 1. However, we have preferred to keep the characterization with PEFF because
this way we obtain a different characterization of CEA for the case of two agents as described
above.
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Proposition 1 If a rule satisfies CED and CONS then it satisfies PEFF.

Proof Let us suppose by contradiction that a rule R satisfies CED and CONS but not
PEFF . Therefore, there is a problem (M, N , E, c, α) ∈ MBC such that R(M, N , E, c, α)

is not Pareto efficient. Since R(M, N , E, c, α) is not Pareto effcient, there exists x ∈
A(M, N , E, c, α) such that xi ≥ Ri (M, N , E, c, α),∀i ∈ N , with at least one strict inequal-
ity. Le i0 be such that xi0 > Ri0(M, N , E, c, α). We now take N ′ = {i0} and its associated
reduced problem (M ′, N ′, E ′, c|N ′ , α). For each j ∈ M ′,

e′
j = e j −

∑

i∈N\{i0}: j∈α(i)

Ri (M, N , E, c, α).

Since x ∈ A(M, N , E, c, α) and satisfies that xi0 > Ri0(M, N , E, c, α), then xi0 ≤
e′
j ,∀ j ∈ α(xi0). Moreover, by CED,

Ri0(M
′, N ′, E ′, c, α) ≥ min

{

ci0 , min
j : j∈α(i0)

{
e′
j

}}

.

Therefore, we have the following chain of inequalities

Ri0(M, N , E, c|N ′ , α) ≥ min

{

ci0 , min
j : j∈α(i0)

{
e′
j

}}

≥ xi0 > Ri0(M, N , E, c, α),

which is a contradiction with the fact that R satisfies CONS. ��
Corollary 1 The CEA rule for multi-issue bankruptcy problems with crossed claims is the
only rule that satisfies CED, and CONS.

Proposition 2 The properties CED and CONS in Theorem 4 (and Corollary 1) are necessary.

Proof We consider the two possible situations:

• For each problem (M, N , E, c, α) ∈ MBC, we define the following rule:

R∗
i (M, N , E, c, α) = min

⎧
⎨

⎩
ci , min

j∈α(i)

⎧
⎨

⎩
e j −

∑

k:k<i; j∈α(k)

R ∗k (M, N , E, c, α)

⎫
⎬

⎭

⎫
⎬

⎭
,∀i ∈ N ,

which is calculated recursively allocating from the agent with the lowest number to the
agent with the highest number.
By definition this rule satisfies PEFF and CONS, but not CED.

• For each problem (M, N , E, c, α) ∈ MBC, we define the following rule in two steps.
We first allocate to each agent the following:

Fi (M, N , E, c, α) = min

{

ci , min
j : j∈α(i)

{
e j

|{k : j ∈ α(k)}|
}}

,∀i ∈ N .

Then we consider the following problem (M, N , E ′, c′, α):

e′
j = e j −

∑

i : j∈α(i)

Fi (M, N , E, c, α),∀ j ∈ M,

c′
i = ci − Fi (M, N , E, c, α),∀i ∈ N .

Finally, the rule is given by

Ri (M, N , E, c, α) = Fi (M, N , E, c, α) + R∗
i (M, N , E ′, c′, α),∀i ∈ N .
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By definition this rule satisfies CED and PEFF , but not CONS as the following
example shows. We consider the problem M = {1}, N = {1, 2, 3}, E = (12), c =
(3, 6, 6), α(i) = 1,∀i ∈ N . We have that

F1(M, N , E, c, α) = 3, F2(M, N , E, c, α) = 4, F3(M, N , E, c, α) = 4,

and

R1(M, N , E, c, α) = 3, R2(M, N , E, c, α) = 5, R3(M, N , E, c, α) = 4.

Let us consider N ′ = {2, 3}, it is easy to check that

R2(M
′, N ′, E ′, c|N ′ , α) = 4.5, and R3(M

′, N ′, E ′, c|N ′ , α) = 4.5.

��
Note that CED for MBC problems is the equivalent of conditional equal division lower

bound (Moulin 2000) for bankruptcy problems, but it is not the same as conditional equal
division full compensation (this was called exemption by Herrero and Villar (2001)). In
bankruptcy problems, for |N | = 2, CEA is the only rule satisfying the conditional equal
division lower bound (Thomson 2015), we do not mention efficiency because all bankruptcy
rules satisfy it. Here, we obtain the same result forMBCproblems by using PEFF andCED
(see the proof of the case |N | = 2 in Theorem 4). However, when using conditional equal
division full compensation an extra property is necessary to characterize CEA in bankruptcy
problems with |N | = 2. In addition, for bankruptcy problems when |N | = 2, conditional full
compensation (this was called sustainability by Herrero and Villar (2002)) and conditional
equal division full compensation coincide.

Proposition 3 For multi-issue bankruptcy problems with crossed claims, CFC and CM
imply CED.

Proof Let R be a rule satisfying CFC and CM , and (M, N , E, c, α) ∈ MBC. For each
i ∈ N , we consider the following problem (M, N , E, c′i , α) ,

c′i
i = min

{

ci , min
j : j∈α(i)

{
e j

|{k : j ∈ α(k)}|
}}

, c′i
k = ck,∀k ∈ N\{i}.

By CFC , it holds that Ri (M, N , E, c′i , α) = c′i
i ,∀i ∈ N . Since R satisfies CM ,

Ri (M, N , E, c, α) ≥ Ri (M, N , E, c′i , α),∀i ∈ N .

Therefore, R satisties CED. ��
Corollary 2 The CEA rule for multi-issue bankruptcy problems with crossed claims is the
only rule that satisfies PEFF, CFC, CM and CONS.

Corollary 2 corresponds to the characterization of CEA inMBCproblems equivalent to the
characterization of CEA in Yeh (2006) (see, Thomson 2015, Th. 4b and Th. 14). Of course,
other characterizations of the classical constrained equal awards rule could try to be extended
to this context, for example the characterization of CEA in Herrero and Villar (2002). In the
latter case, we would first have to define what composition down (Moulin 2000) means in
this context. Since we have many issues, it could be extended in different ways. In any case,
this last characterization and others in the literature would be interesting for further research
in this framework.
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6 Conclusions and further research

This paper is related to one of the earliest problems arised in the economic literature. In fact,
this problem already appeared in primal documents as the Talmud, or in essays of Aristotle
or Maimonides. However, their mathematical modelization was first carried out by O’Neill
(1982). The common and central question in these problems is how to divide when there is
not enough. An extension of the classical bankcruptcy problems appears with the introductin
of multi-issue bankruptcy problems (Calleja et al. 2005) allowing that claims of agents can
be referred to different issues.

In this paper, we go beyong of it with the purpose of solving a real problem of abatement
of emissions of different pollutants in which pollutants can contribute tomore than one effect.
To do this, we establish a new and original model based on multi-issues bankrupcy problem
(MB) called multi-issue bankruptcy problems with crossed claims (MBC). This novel model
presents a multi-dimensional state, one for each issue and each agent claims the same to
the different issues in which participates, these are essential differences with respect to MB
problems.

Similar as for MB problems, in this new framework, problems are solved through rules
that assigns to each MB problem a distribution pointing out the amount obtained for each
agent in each issue. In this paper, we have allocated according to the CEA rule for bankruptcy
problems introducing it as the solution to a sucession of linear programming problems and
extending this procedure to this framework. Currently, we are working to solve this problem
through other possible allocations or rules. In particular, futher research will include to extent
to this context other rules already studied forMB problems as the proportional rule3(Moreno-
Ternero 2009; Bergantiños et al. 2010), the constrained equal losses (CEL) analyzed for MB
problems in Lorenzo-Freire et al. (2010), the ramdon arrival rule (O’Neill 1982) based on
the Shapley value (Shapley 1953) (see Algaba et al. 2019b for an updating on theoretical
and applied aspects about this outstanding value), or the Talmud rule studied in the setting
of bankrupcy problems (see, for instance, Moreno-Ternero and Villar 2006), among others.

Finally, in the literature of Operations Research (OR) there exist problems that could fit
well in this theoretical model, for example, set covering problems. Bergantiños et al. (2020)
study the problem of how to allocate costs in set covering problems when a reasonable cover
is given in advance. These problems are described by a 4-tuple (N , M, c, A), where N is the
set of agents, M is the set of facilities open, c ∈ R

M+ is the vector costs associated with the
facilities, and A = {A j } j∈M with A j ⊂ N for each j ∈ M denotes the agents covered by
each facility. The question to be answered is how to allocate the total costs among the agents.
If we look carefully at the structure of the problem, we can observe a certain similarity with
multi-issue bankruptcy problems with crossed claims in the following way. We first identify
agents with pollutants and issues with facilities (regions). Thus, we have a set of pollutants
that affect several regions, this is described by A that plays the role of function α. On the
other hand, we consider that each region fixes a maximum level of pollution which is given
by vector c that plays the role of vector E . Thus, the following problem arises: How to set
pollutant emission levels when pollutants affect different regions? But one extra element is
necessary in this problem: the pollutant emissions to be abated, i.e., the claims. Therefore,
the set covering problem is the following. When we have a set of regions that impose limits
on pollutant emissions, and these emissions come from several pollutants that can affect

3 The proportional rule is one of the most relevant and popular to deal with allocation problems in general,
see, for instance, Algaba et al. (2019a) who introduce two solutions belonging to the family of proportional
solutions for the problem of sharing the profit of a combined ticket for a transport system in the setting of
coloured graphs.
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several of the regions simultaneously, the question to be answered is, how to set the emission
limits of pollutants in such a way that the limits established by the regions are covered? This
problem can be analyzed as a multi-issue bankruptcy problemwith crossed claims. However,
what happens if no reference on the ex-ante emissions of the pollutants are given? In this
case, the problem have exactly four elements, (N , M, c, A), and the question to be answered
is, how to set maximal limits of emissions of pollutants such that the regional limits are
not exceeded? Therefore, these relationships between set covering problems and multi-issue
bankruptcy problems with crossed claims would be interesting to study them in greater detail
in further research.
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