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Abstract

We study the asymptotic behavior at infinity of the solutions of a nonlinear elliptic system posed in a
cylinder of infinite length. The problem is written in a variational formulation, where we ask the derivative
of the solutions to be in Lp . We show that an exponential decay at infinity for the second member implies
exponential decay for the derivative of the solutions. We also give an application of this result to the study
of boundary layers problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Our interest in the present paper is to prove the exponential decay at infinity of the derivative of
the solutions of some nonlinear elliptic problems in unbounded domains. This type of problems
usually appears in the study of boundary layers (see, e.g., [1–4,8,9]).

We will consider an infinite cylinder Ω = (0,+∞) × ω, with ω ⊂ RN−1, N � 2, a bounded
connected open set. For a Carathéodory function a : Ω ×RM ×RM×N → RM×N , such that there
exist p ∈ (1,+∞), α,β > 0 with
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a(x, s, ξ) : ξ � α|ξ |p,
∣∣a(x, s, ξ)

∣∣ � β|ξ |p−1, ∀s ∈ RM, ∀ξ ∈ RM×N, a.e. x ∈ Ω,

(1.1)

and a function G ∈ Lp′
(Ω)M×N , let us study the behavior at infinity of a solution of the nonlinear

variational system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0, Du ∈ Lp(Ω)M×N,∫

Ω

(
a(x,u,Du) − G

) : Dv dx = 0,

∀v with v ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0,

Dv ∈ Lp(Ω)M×N, v = 0 on {0} × ω.

(1.2)

Here, the space V is a subspace of W 1,p(ω)M which satisfies one of the following hypotheses:

(i) There exists a constant CV > 0 such that

‖z‖Lp(ω)M � CV ‖Dz‖Lp(ω)M×N , ∀z ∈ V. (1.3)

(ii) The space V contains the constant functions in ω and there exists a constant CV > 0 such
that ∥∥∥∥z − 1

|ω|
∫
ω

zdx′
∥∥∥∥

Lp(ω)M
� CV ‖Dz‖Lp(ω)M×N , ∀z ∈ V. (1.4)

The variational formulation (1.2) essentially means that u satisfies a nonlinear partial differen-
tial system in Ω . Indeed, if we assume that C∞

c (ω)M is contained in V (which is not necessary),
we deduce from (1.2) that, in the sense of the distributions, u satisfies the equation

−div
(
a(x,u,Du) − G

) = 0 in Ω. (1.5)

The choice of V permits to consider several boundary conditions on (0,+∞) × ∂ω. In this
way, the following choices work well:

– V = {v ∈ W 1,p(ω)N : v = 0 on Γ }, where Γ is a subset of ∂ω of positive measure. Assuming
ω Lipschitz if Γ 
= ∂ω, we know from the Poincaré inequality that (i) holds, and (1.2) gives
that u satisfies the Dirichlet condition u = 0 on (0,+∞) × Γ and the Neumann condition
(a(x,u,Du) − G(x))ν = 0 on (0,+∞) × (∂ω \ Γ ), where ν denotes the unitary outside
normal to Ω on (0,+∞) × ∂ω.

– V = W 1,p(ω)N . Assuming ω Lipschitz, we know from the Poincaré–Wirtinger inequality
that (ii) is satisfied, and (1.2) gives that u satisfies the Neumann condition (a(x,u,Du) −
G(x))ν = 0 on (0,+∞) × ∂ω, with ν as above.

– ω is a parallelotop and V is composed by the restrictions to ω of the functions in
W

1,p

loc (RN−1) which are periodic of period ω. Then, as above, we deduce from the Poincaré–
Wirtinger inequality that (ii) is satisfied, and assuming G and a(. , s, ξ), with (s, ξ) ∈
RN × RM×N , extended by periodicity to the whole of RN−1, (1.2) gives that u is a solu-
tion in the sense of the distributions of the problem{

−div
(
a(x,u,Du) − G

) = 0 in (0,+∞) × RN−1,

u is periodic of period ω on {T } × RN−1, ∀T > 0.



J. Casado-Díaz / J. Math. Anal. Appl. 328 (2007) 151–169 153
We remark that (1.2) does not impose any boundary condition for u on {0} × ω. This is due
to the fact that we are interested in the behavior of u when x1 tends to ∞ and thus, its value on
x1 = 0 is not important.

Denoting for T > 0, ΩT = (T ,+∞)×ω, our aim in the present paper is to show the following
result (see Corollary 2.2):

Theorem 1.1. There exist two constants C,γ > 0 (which only depend on CV ,α,β,p,N) such
that if G satisfies∫

ΩT

|G|p′
dx � Ke−λT , ∀T > 0, (1.6)

for some constants K,λ > 0, then u satisfies∫
ΩT

|Du|p dx �
( ∫

Ω

|Du|p dx + CK

)
e−γ T + CKEλ,γ (T ), (1.7)

with Eλ,γ (T ) given by

1

γ − λ
e−λT if γ > λ, T e−γ T if γ = λ,

1

λ − γ
e−γ T if γ < λ,

i.e., assuming exponential decay for G at infinity, we deduce exponential decay for Du at in-

finity. This implies (see Propositions 2.3 and 2.5) that for every μ ∈ (0, λ), e
μ
p

x1Du belongs to
Lp(Ω)M×N , and that there exists ul ∈ RM (the limit of u at infinity), with ul = 0 if (i) is satisfied,
such that

‖u − ul‖Lp({T }×ω)M � Ce
− μ

p
T
, ∀T > 0.

Theorem 1.1 will be in fact a consequence of another result (see Theorem 2.1), which we
think it is interesting by itself, showing that if G is just in Lp′

(Ω)M×N , then∫
ΩT

|Du|p dx �
( ∫

Ω

|Du|p dx + C

∫
Ω

|G|p′
dx

)
e−γ T + C

T∫
0

∫
Ωt

eγ (t−T )|G|p′
dx dt,

which gives an estimate of how Du decreases to zero at infinity depending on the decreasing
of G.

The above results are given in Section 2. In Section 3, we show how Theorem 1.1 permits
to deduce the existence of solutions of some nonlinear elliptic systems posed in unbounded
cylinders, such that its gradient exponentially decreases to zero at infinity. For this purpose,
besides of (1.1) we will assume that a is monotone in its last variable, i.e., it satisfies(

a(x, s, ξ1) − a(x, s, ξ2)
)
: (ξ1 − ξ2) � 0, ∀s ∈ RM, ∀ξ1, ξ2 ∈ RM×N, a.e. x ∈ Ω,

and that V is closed in W 1,p(ω)M . Then, using the theory of monotone operators of J. Leray
and J.L. Lions [6,7], we prove the existence of a solution u for problem (1.2). It can be taken
also satisfying a boundary condition (Dirichlet, Neumann, . . . ) on {0}×Ω (see Proposition 3.1).
From Theorem 1.1 this function u is such that there exists μ > 0, with

eμx1Du ∈ Lp(Ω)M×N. (1.8)
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The existence of solutions of partial differential problems which have an exponential decay
at infinity, in the sense that (1.8) is satisfied, has also been considered by other authors (see,
e.g., [1,5,9–11]), specially in the case of linear problems. In particular, we refer to L. Tartar (see,
e.g., [9]), who solved this problem for linear operators by introducing an original generalization
of the Lax–Milgram theorem. We remark that our strategy in the present paper is different. At the
place of directly look for a solution of (1.5) which satisfies (1.8), we just search for functions u

such that Du ∈ Lp((0,+∞)×ω)M×N , whose existence is classical, and then we prove that they
have exponential decay. A result in this sense has also been obtained by L. Tartar and G. Weiske
[10,11] in the case of linear operators.

The existence of solutions of elliptic partial differential problems in unbounded domains,
having an exponential decay at infinity, is a classical problem in the study of boundary layer
problems. In Section 4 we give a simple example which shows that a problem like (1.2) arises in
a natural way in the study of boundary layers. Thus, it shows how the results of the present paper
can be applied. More complex situations can be found, for example, in [2–4].

2. Exponential decay results

We will study in this section the decay at infinity of the derivative of the solutions of the
nonlinear system (1.2).

We take p > 1, and p′ = p
p−1 .

We denote by ω ⊂ RN−1, N � 2, a connected bounded open set, and by V a subspace of
W 1,p(ω)M such that the hypotheses (i) or (ii) of the Introduction are satisfied.

For every T > 0, we define ΩT = (T ,+∞) × ω. In the case T = 0, we simplify the notation
by writing Ω = (0,+∞) × ω.

For x ∈ Ω , we will use the decomposition x = (x1, x
′), with x1 ∈ (0,+∞), x′ ∈ ω.

The first vector of the usual basis of RN is denoted by e1.
The orthogonal product of two matrices A,B ∈ RM×N is written as A : B .
Along the present section, a :Ω × RM × RM×N → RM×N is a Carathéodory function

(a = a(x, s, ξ) measurable in x and continuous in s, ξ ), which satisfies that there exist α,β > 0,
such that for every ξ ∈ RM×N , every s ∈ RM , and a.e. x ∈ Ω , we have

α|ξ |p � a(x, s, ξ) : ξ, (2.1)∣∣a(x, s, ξ)
∣∣ � β|ξ |p−1. (2.2)

With these assumptions, the following theorem estimates the decay at the infinity of the gradient
of the solution of (1.2) depending of the decay of G.

Theorem 2.1. Assume G ∈ Lp′
(Ω)M×N , and let u be a solution of the variational problem (1.2).

Then, for

γ = α(p − 1)

βCV (p + 1)
, (2.3)

we have
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∫
ΩT

|Du|p dx �
∫
Ω

|Du|p dx e−γ T + γCV

αβ
1

p−1

(∫
Ω

|G|p′
dx e−γ T −

∫
ΩT

|G|p′
dx

)

+ γ

(
1

αp′ + p − 1

(p + 1)βp′

) T∫
0

∫
Ωt

eγ (t−T )|G|p′
dx dt, ∀T � 0. (2.4)

Proof. Taking the function x → u(x)ϕ(x1), with ϕ ∈ C∞
c (0,+∞), as test function in (1.2), we

have
+∞∫
0

(∫
ω

(
a(x,u,Du) − G

) : Dudx′
)

ϕ dx1

+
+∞∫
0

(∫
ω

(
a(x,u,Du) − G

) : u ⊗ e1 dx′
)

dϕ

dx1
dx1 = 0,

for every ϕ ∈ C∞
c , which, by definition of weak derivative, shows

d

dx1

( ∫
{x1}×ω

(
a(x,u,Du) − G

) : u ⊗ e1 dx′
)

=
∫

{x1}×ω

(
a(x,u,Du) − G

) : Dudx′, (2.5)

in the sense of the distributions in (0,+∞). On the other hand, defining Λ : (0,+∞) → R by

Λ(x1) =
∫

Ωx1

(
a(x,u,Du) − G

) : Dudx,

we also have
dΛ

dx1
(x1) = −

∫
{x1}×ω

(
a(x,u,Du) − G

) : Dudx′ in the sense of the distributions.

So, from (2.5) we deduce there exists C ∈ R, such that for a.e. x1 ∈ (0,+∞), we have∫
Ωx1

(
a(x,u,Du) − G

) : Dudx +
∫

{x1}×ω

(
a(x,u,Du) − G

) : u ⊗ e1 dx′ = C. (2.6)

If (i) is satisfied, then by Hölder’s inequality, (1.3) and (2.2), the second term of (2.6) satisfies∣∣∣∣ ∫
{x1}×ω

(
a(x,u,Du) − G

) : u ⊗ e1 dx′
∣∣∣∣

� CV

∥∥β|Du|p−1 + |G|∥∥
Lp′

({x1}×ω)M×N ‖Du‖Lp({x1}×ω)M×N

� CV

(
β‖Du‖p

Lp({x1}×ω)M×N + ‖G‖
Lp′

({x1}×ω)M×N ‖Du‖Lp({x1}×ω)M×N

)
, (2.7)

for a.e. x1 > 0.
If (ii) is satisfied, we consider ψ ∈ Lp(0,+∞)M , and then we define v : Ω → RM by

v(x) =
x1∫

ψ(s) ds, ∀x ∈ Ω.
0
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Since the constant functions belong to V , we can take v as test function in (1.2). This gives∫
Ω

(
a(x,u,Du) − G

) : ψ ⊗ e1 dx = 0,

which by the arbitrariness of ψ , shows∫
{x1}×ω

(
a(x,u,Du) − G

)
j,1 dx′ = 0, ∀j ∈ {1, . . . ,M}, a.e. x1 ∈ (0,+∞) (2.8)

(the index j,1 denotes the corresponding component). Thus, defining

ū(x1) = 1

|ω|
∫

{x1}×ω

udx′, a.e. x1 ∈ (0,+∞),

we get∫
Ωx1

(
a(x,u,Du) − G

) : u ⊗ e1 dx =
∫

Ωx1

(
a(x,u,Du) − G

) : (u − ū) ⊗ e1 dx.

So, by using (ii) at the place of (i) we deduce that (2.7) also holds in this case.
Integrating (2.6) with respect to x1 in (T ,T + 1), for T > 0, and taking into account (2.7), we

easily deduce

|C| �
∫

ΩT

∣∣a(x,u,Du) − G
∣∣|Du|dx

+ CV

(
β‖Du‖p

Lp((T ,T +1)×ω)M×N + ‖G‖
Lp′

((T ,T +1)×ω)M×N ‖Du‖Lp((T ,T +1)×ω)M×N

)
.

Since Du is in Lp(Ω)M×N and G is in Lp′
(Ω)M×N , the right-hand side of this inequality tends

to zero when T tends to infinity. So, C = 0. Returning to (2.6) and using (2.1) and (2.7) we
deduce

α‖Du‖p

Lp(Ωx1 )M×N � ‖G‖
Lp′

(Ωx1 )M×N ‖Du‖Lp(Ωx1 )M×N

+ CV

(
β‖Du‖p

Lp({x1}×ω)M×N

+ ‖G‖
Lp′

({x1}×ω)M×N ‖Du‖Lp({x1}×ω)M×N

)
,

for a.e. x1 > 0, which, by Young’s inequality, gives

α

p′ ‖Du‖p

Lp(Ωx1 )M×N � CV β

(
1 + 1

p

)
‖Du‖p

Lp({x1}×ω)M×N

+ 1

p′

(
1

α
1

p−1

‖G‖p′
Lp′

(Ωx1 )M×N
+ CV

β
1

p−1

‖G‖p′
Lp′

({x1}×ω)M×N

)
,

a.e. x1 > 0.

So, denoting

Ψ (x1) = ‖Du‖p

Lp(Ω )M×N , Φ(x1) = ‖G‖p′
Lp′

(Ω )M×N
, ∀x1 > 0,
x1 x1
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and taking into account the definition of γ , we get

Ψ ′ + γΨ � γ

α

(
1

α
1

p−1

Φ − CV

β
1

p−1

Φ ′
)

, a.e. in (0,+∞),

and then, multiplying by eγ x1 , we obtain

d

dx1

(
eγ x1Ψ

)
� γ

α

(
1

α
1

p−1

+ γCV

β
1

p−1

)
eγ x1Φ − γCV

αβ
1

p−1

d

dx1

(
eγ x1Φ

)
.

Integrating this inequality in (0, T ), T > 0, we deduce (2.4). �
From Theorem 2.1, we easily obtain the following corollary which proves that exponential

decay for G implies exponential decay for Du. Theorem 1.1 in the Introduction, follows from
this result.

Corollary 2.2. Let G be in Lp′
(Ω)M×N , such that there exist K,λ > 0, which satisfy∫

ΩT

|G|p′
dx � Ke−λT , ∀T > 0, (2.9)

and let u be a solution of (1.2). Then, we have∫
ΩT

|Du|p dx �
∫
Ω

|Du|p dxe−γ T + γCV

αβ
1

p−1

∫
Ω

|G|p′
dxe−γ T

+ Kγ

(
1

αp′ + p − 1

(p + 1)βp′

)
Eλ,γ (T ), ∀T > 0, (2.10)

where γ is defined by (2.3) and Eλ,γ (T ) is given by

Eλ,γ (T ) =

⎧⎪⎪⎨⎪⎪⎩
1

γ−λ
e−λT if γ > λ,

T e−γ T if γ = λ,
1

λ−γ
e−γ T if γ < λ.

Proof. The proof is a straightforward consequence of (2.4) and (2.9). �
Corollary 2.2 gives a sufficient condition to have an exponential decay for the derivative of

the solutions of (1.2), in the sense that there exist K̃, λ̃ > 0, such that∫
ΩT

|Du|p dx � K̃e−λ̃T , ∀T > 0.

However, in the study of boundary layers (see, e.g., [1,5,9]), it is more usual to search for func-

tions u such that there exists λ̃ > 0 with e
λ̃
p

x1Du ∈ Lp(Ω)M×N . Applying the next result to the
function h given by

h(x1) =
∫

{x1}×ω

|Du|p dx′, a.e. x1 > 0,

we get that both definitions of exponential decay are in fact equivalent.
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Proposition 2.3. If h ∈ L1(0,+∞) is such that there exists λ > 0, with eλx1h ∈ L1(0,+∞), then
there exists K > 0 such that

+∞∫
T

|h|dx1 � Ke−λT , ∀T > 0. (2.11)

Reciprocally, if h satisfies (2.11), then for every λ̃ ∈ (0, λ) we have

+∞∫
0

|h|eλ̃x1 dx1 �
+∞∫
0

|h|dx1 + Kλ̃

(λ − λ̃)
< +∞. (2.12)

Proof. If h is in L1(0,+∞), and there exists λ > 0, with eλx1h ∈ L1(0,+∞), we just use

+∞∫
T

|h|dx1 �
+∞∫
T

eλx1 |h|dx1 e−λT , ∀T > 0,

to deduce (2.11).
For the reciprocate, we take h such that there exist K,λ > 0 which satisfy (2.11). We define

H : (0,+∞) → R by

H(x1) =
+∞∫
x1

|h|ds, ∀x1 > 0,

and we take λ̃ ∈ (0, λ), T > 0. Taking into account |h| = −H ′, a.e. in (0,+∞), an integration
by parts gives

T∫
0

|h|eλ̃x1 dx1 = −
T∫

0

H ′eλ̃x1 dx1 = H(0) − H(T )eλ̃T + λ̃

T∫
0

Heλ̃x1 dx1.

Using (2.11) in this inequality and then taking the limit when T tends to infinity, we de-
duce (2.12). �
Remark 2.4. Given f : Ω → RM , such that there exists λ > 0, with e

λ
p′ x1

f ∈ Lp′
(Ω)M , it is

easy to check that the matrix function G : Ω → RM×N defined by

G(x) =
+∞∫
x1

f (t, x′) ⊗ e1 dt, a.e. x ∈ Ω,

is such that e
λ̃
p′ x1

G belongs to Lp′
(Ω)M×N , for every λ̃ ∈ (0, λ), and satisfies∫

G : Dv dx =
∫

f v dx,
Ω Ω
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when v ∈ W 1,p((0, T ) × ω)M , for every T > 0, v = 0 on {0} × ω, and Dv ∈ Lp(Ω)M×N. Thus,
if u is a solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0, Du ∈ Lp(Ω)M×N,∫

Ω

a(x,u,Du) : Dv dx =
∫
Ω

f v dx,

∀v ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0,

v = 0 on {0} × ω, Dv ∈ Lp(Ω)M×N,

we get that u is also a solution of (1.2), and by an easy application of Proposition 2.3, we can
apply Corollary 2.2 to deduce an exponential decay for the derivative of u. This permits to apply
our results to a partial differential system of the form

−diva(x,u,Du) = f in Ω.

To finish this section let us now prove that the exponential decay for Du gives an exponential
decay of u to a constant.

Proposition 2.5. Let u be in Lp(0, T ;V ) ∩ W 1,p(0, T ;Lp(ω)M), for every T > 0, such that

there exists λ > 0, with e
λ
p

x1Du ∈ Lp(Ω)M×N , then, there exists the “limit” ul ∈ RM of u at
infinity, which satisfies

‖u − ul‖Lp({T }×ω)M �
(

CV + 2

(
p − 1

λ

) 1
p′ 1

|ω|
)∥∥e

λ
p

x1Du
∥∥

Lp(Ω)M×N e
− λ

p
T
, (2.13)

for every T > 0. Moreover, if V satisfies (1.3), then ul = 0.

Proof. For every T ,S > 0, with T < S, we have

∫
ω

∣∣u(S, x′) − u(T , x′)
∣∣p dx′ =

∫
ω

∣∣∣∣∣
S∫

T

∂u

∂x1
dx1

∣∣∣∣∣
p

dx′

�
∫
ω

( S∫
T

e
− λ

p−1 x1 dx1

)p−1( S∫
T

eλx1

∣∣∣∣ ∂u

∂x1

∣∣∣∣p dx1

)
dx′,

which gives

∥∥u(S, .) − u(T , .)
∥∥

Lp(ω)M
�

(
p − 1

λ

) 1
p′

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N . (2.14)

Thus, we get

∥∥u(T , .)
∥∥

Lp(ω)M
�

∥∥u(S, .)
∥∥

Lp(ω)M
+

(
p − 1

λ

) 1
p′

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N ,

which integrating with respect to S in (T ,T + 1) proves

∥∥u(T , .)
∥∥

Lp(ω)M
� ‖u‖Lp(ΩT )M +

(
p − 1

) 1
p′

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N . (2.15)

λ
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If V satisfies (1.3), the above inequality shows

∥∥u(T , .)
∥∥

Lp(ω)M
�

(
CV +

(
p − 1

λ

) 1
p′ )

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N ,

and then we deduce (2.13) with ul = 0.
If V satisfies (1.4), we can apply (2.15) with u replaced by the function

x ∈ Ω �→ u(x) − 1

|ω|
∫

{x1}×ω

udy′,

which implies as above∥∥∥∥u(T , .) − 1

|ω|
∫

{T }×ω

udy′
∥∥∥∥

Lp(ω)M

�
(

CV +
(

p − 1

λ

) 1
p′ )

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N . (2.16)

On the other hand, applying (2.14) with u replaced by the function

x ∈ Ω �→ 1

|ω|
∫

{x1}×ω

udy′,

we have∥∥∥∥ 1

|ω|
∫

{S}×ω

udy′ − 1

|ω|
∫

{T }×ω

udy′
∥∥∥∥

Lp(ω)M
�

(
p − 1

λ

) 1
p′

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N ,

for every T ,S > 0, S > T . This means that the application

T ∈ (0,+∞) �→ 1

|ω|
∫

{T }×ω

udy′

has a limit ul at infinity. Taking the limit when S tends to infinity in the above inequality, we then
get ∥∥∥∥ul − 1

|ω|
∫

{T }×ω

udy′
∥∥∥∥

Lp(ω)M
�

(
p − 1

λ

) 1
p′

e
− λ

p
T
∥∥e

λ
p

x1Du
∥∥

Lp(ΩT )M×N ,

which joining to (2.16) proves (2.13). �
3. Existence of solutions with gradient exponentially decreasing to zero

As a consequence of the results obtained in the previous section, let us now give an existence
result for the solutions of nonlinear elliptic systems in unbounded cylinders, such that its gradient
exponentially decreases to zero.

We start with the following result about the existence of solution for problem (1.2).
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Proposition 3.1. We consider a bounded open set ω ⊂ RN−1, N � 2. Then, for p > 1, we take
a Carathéodory function a : Ω × RN × RM×N → RM×N which satisfies hypotheses (2.1), (2.2)
and the following monotonicity condition(

a(x, s, ξ1) − a(x, s, ξ2)
)
(ξ1 − ξ2) � 0, ∀s ∈ RM, ∀ξ1, ξ2 ∈ RM×N, a.e. x ∈ Ω, (3.1)

and a closed subspace V ⊂ W 1,p(ω)M . Then, for every G ∈ Lp′
(Ω)M×N , and every

u0 ∈ Lp(0,+∞;V ) ∩ W 1,p(0,+∞;Lp(ω)M), there exists a solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0,

Du ∈ Lp(Ω)M×N, u = u0 on {0} × ω,∫
Ω

(
a(x,u,Du) − G

) : Dv dx = 0,

∀v with v ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0,

Dv ∈ Lp(Ω)M×N, v = 0 on {0} × ω.

(3.2)

Proof. We denote by W the space of v ∈ Lp(0, T ;V ) ∩ W 1,p(0, T ;Lp(ω)M), for every T > 0,
such that Dv ∈ Lp(Ω)M×N , v = 0 on {0} × ω. This is a reflexive space endowed with the norm

‖v‖W = ‖Dv‖Lp(Ω)M×N , ∀v ∈ W.

We take A : W → W ′ as the operator given by〈
A(w), v

〉
W ′,W =

∫
Ω

a
(
x,u0 + w,D(u0 + w)

) : Dv dx, ∀v,w ∈ W.

The operator A is well defined because a is a Carathéodory function, (2.2) and
Du0 ∈ Lp(Ω)M×N , which imply that a(x,u0 +w,D(u0 +w)) ∈ Lp′

(Ω)M×N , for every w ∈ W .
Defining then G ∈ W ′ by

G(v) =
∫
Ω

G : Dv dx, ∀v ∈ W,

problem (3.2) is equivalent to show the existence of w ∈ W such that A(w) = G. Thus, it is
enough to show that A is surjective. For this purpose, we apply the Leray–Lions theory for
pseudomonotone problems (see [6,7]).

Clearly A is continuous because a is a Carathéodory function and (2.2).
By (2.1), the operator A satisfies

lim‖v‖W →∞
〈A(v), v〉W ′,W

‖v‖W

= +∞.

Thanks to the Rellich–Kondrachov compactness theorem, the monotonicity property (3.1)
of a, and (2.2), it is easy to apply Minty’s rule to show that if vn is a sequence in W which
converges weakly in W to some v ∈ W , and it is such that there exists Λ ∈ W ′, with

A(vn) ⇀ Λ in W ′, lim sup
n→∞

〈
A(v), v

〉
W ′,W � 〈Λ,v〉W ′,W ,

then A(v) = Λ.
These properties of A imply that A is surjective (see [6,7]). �
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Remark 3.2. Proposition 3.1 shows the existence of a solution of problem (1.2) which satisfies
the Dirichlet boundary condition u = u0 on {0}×Ω . Analogously, we can prove the existence of
solution for other boundary conditions on {0} × Ω , such as a Neumann or a Fourier condition.

As a consequence of Proposition 3.1, we have (we refer to [5,9–11] for related results in the
linear case)

Corollary 3.3. We consider a bounded open set ω ⊂ RN−1, N � 2. Then, for p > 1, we take a
Carathéodory function a : Ω × RM × RM×N → RM×N which satisfies hypotheses (2.1), (2.2)
and (3.1), and a closed subspace V ⊂ W 1,p(ω)M . Also, we assume that one of the hypothe-
ses (1.3) or (1.4) hold. Then, for every G : Ω → RM×N , such that there exists λ > 0 with

e
λ
p′ x1

G ∈ Lp′
(Ω)M×N , and every u0 ∈ Lp(0,+∞;V ) ∩ W 1,p(0,+∞;Lp(ω)M), there exists

a solution of problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ Lp(0, T ;V ) ∩ W 1,p
(
0, T ;Lp(ω)M

)
, ∀T > 0,

∃λ̃ > 0, with e
λ̃
p′ x1

Du ∈ Lp(Ω)M×N, u = u0 on {0} × ω,∫
Ω

(
a(x,u,Du) − G

) : Dv dx = 0,

∀v ∈ C∞
c (0,+∞;V ).

(3.3)

Proof. It is enough to define u as the solution of (3.2) given by Proposition 3.1 and then to apply
Corollary 2.2 and Proposition 2.3. �
4. An example of application to the study of boundary layers

In this section, let us show with an example, how the results of the present paper apply to the
study of boundary layers problems. We will show that for this type of problems it is natural to
get with a variational equation with a similar structure to (1.2). To simplify the exposition, let us
consider the simple case of a linear singular perturbed equation in a square. Namely, let us study
the asymptotic behavior when ε tends to zero of the solutions of the partial differential problem⎧⎪⎨⎪⎩−ε2 ∂2uε

∂x2
1

− ∂2uε

∂x2
2

= f in (0,1)2,

uε = 0 on ∂(0,1)2.

(4.1)

More complex applications can be found in [2–4].
Along this section, we denote by C and λ, nonnegative generic constants which can change

from a line to another one, and which do not depend on ε.
We start with the following result

Proposition 4.1. For every f ∈ L2((0,1)2) the solution uε of (4.1) converges strongly in
L2(0,1;H 1

0 (0,1)) to the unique solution u0 of⎧⎨⎩−∂2u0

∂x2
2

= f in (0,1),
(4.2)
u0(x1,0) = u0(x1,1) = 0, a.e. x1 ∈ (0,1).
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Moreover, if f ∈ W 1,∞(0,1;L2(0,1)) then there exists C > 0 such that

ε2
∫

(0,1)2

∣∣∣∣∂(uε − u0)

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(uε − u0)

∂x2

∣∣∣∣2

dx � Cε. (4.3)

Proof. Taking uε as test function in (4.1), we get

ε2
∫

(0,1)2

∣∣∣∣∂uε

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂uε

∂x2

∣∣∣∣2

dx =
∫

(0,1)2

f uε dx, (4.4)

which joining to the Poincaré inequality

1∫
0

∣∣uε(x1, x2)
∣∣2

dx2 � C

1∫
0

∣∣∣∣∂uε

∂x2
(x1, x2)

∣∣∣∣2

dx2, a.e. x1 ∈ (0,1),

implies that the partial derivatives of uε satisfy the estimate

ε2
∫

(0,1)2

∣∣∣∣∂uε

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂uε

∂x2

∣∣∣∣2

dx � C. (4.5)

In particular, uε is bounded in L2(0,1;H 1
0 (0,1)) and thus, up to a subsequence, there exists

u0 ∈ L2(0,1;H 1
0 (0,1)) such that uε converges weakly in H 1

0 (0,1) to u0. Once we prove that u0
satisfies (4.2), we will deduce by uniqueness that it is not necessary to extract any subsequence.

Taking ϕ ∈ C∞
c (Ω), as test function in (4.1), we get

ε2
∫

(0,1)2

∂uε

∂x1

∂ϕ

∂x1
dx +

∫
(0,1)2

∂uε

∂x2

∂ϕ

∂x2
dx =

∫
(0,1)2

f ϕ dx, (4.6)

and then, by the convergence of uε to u0 in L2(0,1;H 1
0 (0,1)), the inequality∣∣∣∣ε2

∫
(0,1)2

∂uε

∂x1

∂ϕ

∂x1
dx

∣∣∣∣ �
(

ε2
∫

(0,1)2

∣∣∣∣∂uε

∂x1

∣∣∣∣2

dx

) 1
2
(

ε2
∫

(0,1)2

∣∣∣∣ ∂ϕ

∂x1

∣∣∣∣2

dx

) 1
2

,

and (4.5), we can pass to the limit in (4.6) to deduce that u0 satisfies∫
(0,1)2

∂u0

∂x2

∂ϕ

∂x2
dx =

∫
(0,1)2

f ϕ dx,

for every ϕ ∈ C∞
c ((0,1)2) and then, by density, for every ϕ ∈ L2(0,1;H 1

0 (0,1)). So, u0 is the
unique solution of (4.2). Returning to (4.4), passing to the limit in ε, and using (4.2), we get

lim sup
ε→0

∫
(0,1)2

∣∣∣∣∂uε

∂x2

∣∣∣∣2

dx

� lim
ε→0

(
ε2

∫
2

∣∣∣∣∂uε

∂x1

∣∣∣∣2

dx +
∫

2

∣∣∣∣∂uε

∂x2

∣∣∣∣2

dx

)

(0,1) (0,1)
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= lim
ε→0

∫
(0,1)2

f uε dx =
∫

(0,1)2

f u0 dx =
∫

(0,1)2

∣∣∣∣∂u0

∂x2

∣∣∣∣2

dx,

which shows that the convergence of uε to u0 holds in L2(0,1;H 1
0 (0,1)) strong.

Let us now assume that f belongs to W 1,∞(0,1;L2(0,1)). Then, since u0 is the solu-
tion of (4.2), we deduce that it belongs to W 1,∞(0,1;H 2(0,1) ∩ H 1

0 (0,1)). Thus, taking

ψε ∈ C∞(0,1) such that ψε(0) = ψε(1) = 0, ψε = 1 in (ε,1 − ε), and | dψε

dx1
| � 2

ε
in (0,1),

we easily deduce that ũε(x) = u0(x)ψε(x1) satisfies

ε2
∫

(0,1)2

∣∣∣∣∂(ũε − u0)

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(ũε − u0)

∂x2

∣∣∣∣2

dx � Cε. (4.7)

From this inequality and the equation satisfied by u0, we get that ũε satisfies

−ε2 ∂2ũε

∂x2
1

− ∂2ũε

∂x2
2

= f + hε in (0,1)2, (4.8)

where hε ∈ H−1((0,1)2) is such that

∣∣〈hε,ϕ〉∣∣ � C
√

ε

(
ε2

∫
(0,1)2

∣∣∣∣ ∂ϕ

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣ ∂ϕ

∂x2

∣∣∣∣2

dx

) 1
2

,

for every ϕ ∈ H 1
0 ((0,1)2) (where C does not depend on ε and ϕ). Taking uε − ũε as test function

in the difference of (4.1) and (4.8) we deduce

ε2
∫

(0,1)2

∣∣∣∣∂(uε − ũε)

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(uε − ũε)

∂x2

∣∣∣∣2

dx � Cε,

and then, from (4.7), we conclude (4.3). �
Remark 4.2. Proposition 4.1 provides the approximation uε ∼ u0. However, contrary to uε ,
u0 does not vanish in general on {0,1} × (0,1). If we assume that u0 vanishes on this set (iff
f does it), then we can replace the right-hand side of (4.3) by ε2 (or even ε4 if f belongs to
W 2,∞(0,1;L2(0,1))). When u0 does not vanish on {0,1} × (0,1), all we can prove is (4.3),
because u0 is not a good approximation of uε near {0,1} × (0,1). Thus, we need to add some
boundary layer terms to u0 in order to have a better approximation. We will see in the next
proposition how these terms can be obtained by studying the asymptotic behavior of uε − u0
near {0,1} × (0,1). For this purpose, we will introduce the dilatations y1 = x1

ε
, y1 = 1−x1

ε
for x1

close to {0} and {1}, respectively, and then we will take into account estimate (4.3).

Proposition 4.3. Assume f ∈ W 1,∞(0,1;L2(0,1)). Defining uε and u0 as the respective solu-
tions of (4.1) and (4.2), we introduce wl

ε,w
r
ε ∈ H 1((0, 1

ε
) × (0,1)) by

wl
ε(y1, y2) = uε(εy1, y2) − u0(εy1, y2),

wr
ε(y1, y2) = uε(1 − εy1, y2) − u0(1 − εy1, y2). (4.9)
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Then, taking wl
0,w

r
0 as the solutions of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl
0 ∈ L2

(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇wl
0 ∈ L2

(
(0,+∞) × (0,1)

)
, wl

0(0, y2) = −u0(0, y2), a.e. y2 ∈ (0,1),∫
(0,+∞)×(0,1)

∇wl
0∇v dx = 0,

∀v with v ∈ L2
(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇v ∈ L2
(
(0,+∞) × (0,1)

)
, v(0, y2) = 0, a.e. y2 ∈ (0,1),

(4.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr
0 ∈ L2

(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇wr
0 ∈ L2

(
(0,+∞) × (0,1)

)
, wr

0(0, y2) = −u0(1, y2), a.e. y2 ∈ (0,1),∫
(0,+∞)×(0,1)

∇wr
0∇v dx = 0,

∀v with v ∈ L2
(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇v ∈ L2
(
(0,+∞) × (0,1)

)
, v(0, y2) = 0, a.e. y2 ∈ (0,1),

(4.11)

we have

wl
ε ⇀ wl

0, wr
ε ⇀ wr

0 in H 1((0, T ) × (0,1)
)
, ∀T > 0, (4.12)

∇wl
εχ(0, 1

ε
)×(0,1)

⇀ ∇wl
0, ∇wr

εχ(0, 1
ε
)×(0,1)

⇀ ∇wr
0 in L2((0,+∞) × (0,1)

)2
. (4.13)

Proof. Let us only prove the result for wl
ε , the proof for wr

ε is very similar.
Using the change of variables y1 = x1

ε
, y2 = x2 in (4.3), we get∫

(0, 1
ε
)×(0,1)

∣∣∇wl
ε

∣∣2
dy � C, (4.14)

which joining to wl
ε(0, y2) = −u0(0, y2) for a.e. y2 ∈ (0,1) and wl

ε = 0 on (0, 1
ε
) × {0,1},

shows that wl
ε is bounded in L2(0, T ;H 1

0 (0,1)) ∩ H 1(0, T ;L2(0,1)), for every T > 0. Thus,
extracting a subsequence if necessary, we deduce that there exists wl

0 ∈ L2(0, T ;H 1
0 (0,1)) ∩

H 1(0, T ;L2(0,1)), for every T > 0, with wl
0(0, y2) = −u0(0, y2) for a.e. x2 ∈ (0,1), such that

the first assertion of (4.12) holds. From (4.14), we also have that ∇wl
0 belongs to L2((0,+∞) ×

(0,1))2 and that the first assertion of (4.13) holds. Once we prove that wl
0 satisfies (4.10), we

will deduce by uniqueness that there is not necessary to extract any subsequence.
Now, for v ∈ C∞

c ((0,+∞) × (0,1)), and ε > 0 small enough, we take vε given by

vε(x1, x2) = v

(
x1

ε
, x2

)
, a.e. (x1, x2) ∈ (0,1)2,

as test function in the difference of (4.1) and (4.2). This gives
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∫
(0,+∞)×(0,1)

∇wl
ε∇v dy = ε

∫
(0,1)2

∂(uε − u0)

∂x1

∂vε

∂x1
dx + 1

ε

∫
(0,1)2

∂(uε − u0)

∂x2

∂vε

∂x2
dx

= −ε

∫
(0,1)2

∂u0

∂x1

∂vε

∂x1
dx → 0.

Since the support of v is compact, we can pass to the limit in ε to deduce∫
(0,+∞)×(0,1)

∇wl
0∇v dy = 0, ∀v ∈ C∞

c

(
(0,+∞) × (0,1)

)
.

Using that C∞
c ((0,+∞) × (0,1)) is dense in the space of v ∈ L2(0, T ;H 1

0 (0,1)) ∩
H 1(0, T ;L2(0,1)), for every T > 0, such that v = 0 on {0}×(0,1), ∇v ∈ L2((0,+∞)×(0,1))2,
endowed of the norm ‖v‖ = ‖∇v‖L2((0,+∞)×(0,1))2 we then get that wl

0 is the solution
of (4.10). �
Remark 4.4. Proposition 4.3 gives the approximations

uε(x) − u0(x) ∼ wl
0

(
x1

ε
, x2

)
, uε(x) − u0(x) ∼ wl

0

(
1 − x1

ε
, x2

)
,

near {0} × (0,1) and {1} × (0,1), respectively. Usually (see, e.g., [1,5,8,9]), in order to obtain
this type of asymptotic development, the boundary layer terms wl

0, wr
0 are searched to have a

derivative with an exponential decay at infinity. But the above proof shows that the error esti-
mate (4.3) and the changes of variables y1 = x1

ε
and y1 = 1−x1

ε
give that the natural space is

composed by functions with gradient in L2. The results of the previous section prove that the
solutions of (4.10) and (4.11) have a gradient which decreases exponentially to zero and then,
the equivalence with the classical choice.

To finish this section let us now use the above results to obtain an asymptotic expansion
of arbitrary order of the solutions of (4.1) and in particular, to see how using wl

0 and wr
0, we

can improve the approximation given by of uε given by u0. This will be a consequence of the
following lemma.

Lemma 4.5. For f ∈ W 1,∞(0,1;L2(0,1)), we consider uε,u0,w
l
0 and wr

0 the respective solu-
tions of (4.1), (4.2), (4.10), (4.11). Also, we define z0

ε ∈ H 1((0,1)2) by

z0
ε(x1, x2) = u0(x) + wl

0

(
x1

ε
, x2

)
+ wr

0

(
1 − x1

ε
, x2

)
in (0,1)2, (4.15)

and û0
ε ∈ H 1

0 ((0,1)2) as the solution of⎧⎪⎨⎪⎩−ε2 ∂2û0
ε

∂x2
1

− ∂2û0
ε

∂x2
2

= f − ε2 ∂2u0

∂x2
1

in (0,1)2,

û0
ε = 0 on ∂(0,1)2.

(4.16)

Then, there exist C,λ > 0 such that

ε2
∫

(0,1)2

∣∣∣∣∂(z0
ε − û0

ε)

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(z0
ε − û0

ε)

∂x2

∣∣∣∣2

dx � Ce− λ
ε . (4.17)
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Proof. From (4.10) and (4.11), the functions wl
0,w

r
0 satisfy the equations

−�wl
0 = −�wr

0 = 0 in (0,+∞) × (0,1),

in the sense of the distributions. Thus, from (4.2), the function z0
ε satisfies

−ε2 ∂2z0
ε

∂x2
1

− ∂2z0
ε

∂x2
2

= f − ε2 ∂2u0

∂x2
1

in (0,1)2, (4.18)

in the sense of the distributions.
Since wl

0, wr
0 satisfy (4.10), (4.11), we can apply Corollary 2.2 and Proposition 2.5 to deduce∫

(T ,+∞)×(0,1)

(∣∣wl
0

∣∣2 + ∣∣∇wl
0

∣∣2)
dx � Ce−λT ,

∫
(T ,+∞)×(0,1)

(∣∣wr
0

∣∣2 + ∣∣∇wr
0

∣∣2)
dx � Ce−λT , ∀T > 0.

Thus, taking ψ ∈ C∞([0,1]) such that ψ(s) = 1 in [0, 1
2 ], ψ(1) = 0, and defining

ž0
ε ∈ H 1((0,1)2) as

ž0
ε(x) = u0(x) + wl

0

(
x1

ε
, x2

)
ψ(x1) + wr

0

(
1 − x1

ε
, x2

)(
1 − ψ(x1)

)
,

we get

ε2
∫

(0,1)2

∣∣∣∣∂(ž0
ε − z0

ε)

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(ž0
ε − z0

ε)

∂x2

∣∣∣∣2

dx � Ce− λ
ε . (4.19)

From this inequality and (4.18), we conclude that ž0
ε satisfies the equation

−ε2 ∂2ž0
ε

∂x2
1

− ∂2ž0
ε

∂x2
2

= f − ε2 ∂2u0

∂x2
1

+ rε in (0,1)2, (4.20)

where rε ∈ H−1((0,1)2) is such that

∣∣〈rε, v〉∣∣ � Ce− λ
ε

(
ε2

∫
(0,1)2

∣∣∣∣ ∂v

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣ ∂v

∂x2

∣∣∣∣2

dx

) 1
2

, ∀v ∈ H 1
0

(
(0,1)2),

where C and λ do not depend of v. Taking the difference of (4.20) and (4.16), we deduce
that (4.31) holds with z0

ε replaced by ž0
ε and then, from (4.19), we conclude (4.31). �

As an application of Lemma 4.5, we have

Theorem 4.6. For f ∈ W 2k+2,∞(0,1;L2(0,1)), k ∈ N, we take u0 ∈ W 2k+2,∞(0,1;H 2(0,1))

as the solution of (4.2), then for j ∈ {1, . . . , k} we define uj ∈ W 2(k−j)+2,∞(0,1;H 2(0,1)) as
the solution of⎧⎪⎨⎪⎩−∂2uj

∂x2
2

= ∂2uj−1

∂x2
1

in (0,1),

u (x ,0) = u (x ,1) = 0, a.e. x ∈ (0,1),

(4.21)
j 1 j 1 1
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and for j ∈ {0, . . . , k}, we define wl
j , wr

j as the solutions of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl
j ∈ L2

(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇wl
j ∈ L2

(
(0,+∞) × (0,1)

)
, wl

j (0, y2) = −uj (0, y2), a.e. y2 ∈ (0,1),∫
(0,+∞)×(0,1)

∇wl
j∇v dx = 0,

∀v with v ∈ L2
(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇v ∈ L2
(
(0,+∞) × (0,1)

)
, v(0, y2) = 0, a.e. y2 ∈ (0,1),

(4.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr
j ∈ L2

(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇wr
j ∈ L2

(
(0,+∞) × (0,1)

)
, wr

j (0, y2) = −wj(1, y2), a.e. y2 ∈ (0,1),∫
(0,+∞)×(0,1)

∇wr
j∇v dx = 0,

∀v with v ∈ L2
(
0, T ;H 1

0 (0,1)
) ∩ H 1

(
0, T ;L2(0,1)

)
, ∀T > 0,

∇v ∈ L2
(
(0,+∞) × (0,1)

)
, v = 0 on {0} × ω,

(4.23)

and z
j
ε by

zj
ε (x1, x2) = uj (x) + wl

j

(
x1

ε
, x2

)
+ wr

j

(
1 − x1

ε
, x2

)
in (0,1)2. (4.24)

Then, there exists C > 0 such that if uε is the solution of (4.1), we have

ε2
∫

(0,1)2

∣∣∣∣∂(uε − ∑k
j=0 ε2j z

j
ε )

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(uε − ∑k
j=0 ε2j z

j
ε )

∂x2

∣∣∣∣2

dx � Cε4k+4. (4.25)

Proof. We denote u0
ε = uε , and û0

ε as the solution of (4.16), then for j ∈ {1, . . . , k+1}, we define

u
j
ε , û

j
ε as the respective solutions of⎧⎪⎨⎪⎩−ε2 ∂2u

j
ε

∂x2
1

− ∂2u
j
ε

∂x2
2

= ∂2uj−1

∂x2
1

in (0,1)2,

u
j
ε = 0 on ∂(0,1)2,

(4.26)

⎧⎪⎨⎪⎩−ε2 ∂2û
j
ε

∂x2
1

− ∂2û
j
ε

∂x2
2

= ∂2uj−1

∂x2
1

− ε2 ∂2uj

∂x2
1

in (0,1)2,

u
j
ε = 0 on ∂(0,1)2.

(4.27)

Taking the difference of (4.1) and (4.2) if j = 0 or (4.26) and (4.27) if j � 1, we have

u
j
ε − û

j
ε

ε2
= uj+1

ε , ∀j ∈ {0, . . . , k}, (4.28)

and then we get

uε = u0
ε =

k∑
ε2j ûj

ε + ε2k+2uk+1
ε . (4.29)
j=0
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Moreover, using ûk+1
ε as test function in (4.26), with j = k + 1, we have

ε2
∫

(0,1)2

∣∣∣∣∂uk+1
ε

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂uk+1
ε

∂x2

∣∣∣∣2

dx � C.

So, from (4.29), we get

ε2
∫

(0,1)2

∣∣∣∣∂(uε − ∑k
j=0 ε2j û

j
ε )

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(uε − ∑k
j=0 ε2j û

j
ε )

∂x2

∣∣∣∣2

dx � Cε4k+4. (4.30)

From Lemma 4.5 applied to problem (4.1) if j = 0 or problem (4.26) if j ∈ {1, . . . , k}, we also
know that there exist C,λ > 0 such that

ε2
∫

(0,1)2

∣∣∣∣∂(z
j
ε − û

j
ε )

∂x1

∣∣∣∣2

dx +
∫

(0,1)2

∣∣∣∣∂(z
j
ε − û

j
ε )

∂x2

∣∣∣∣2

dx � Ce− λ
ε , (4.31)

for every j ∈ {0, . . . , k}. Thus, taking into account (4.30) we get (4.25). �
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