Exponential decay for the solutions of nonlinear elliptic systems posed in unbounded cylinders **

Juan Casado-Díaz
Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, C. Tarfia s / n 41012, Sevilla, Spain

Received 3 November 2005
Available online 12 June 2006
Submitted by Steven G. Krantz

Abstract

We study the asymptotic behavior at infinity of the solutions of a nonlinear elliptic system posed in a cylinder of infinite length. The problem is written in a variational formulation, where we ask the derivative of the solutions to be in L^{p}. We show that an exponential decay at infinity for the second member implies exponential decay for the derivative of the solutions. We also give an application of this result to the study of boundary layers problems.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Nonlinear problems; Elliptic systems; Unbounded domains; Exponential decay; Boundary layers

1. Introduction

Our interest in the present paper is to prove the exponential decay at infinity of the derivative of the solutions of some nonlinear elliptic problems in unbounded domains. This type of problems usually appears in the study of boundary layers (see, e.g., [1-4,8,9]).

We will consider an infinite cylinder $\Omega=(0,+\infty) \times \omega$, with $\omega \subset \mathbf{R}^{N-1}, N \geqslant 2$, a bounded connected open set. For a Carathéodory function $a: \Omega \times \mathbf{R}^{M} \times \mathbf{R}^{M \times N} \rightarrow \mathbf{R}^{M \times N}$, such that there exist $p \in(1,+\infty), \alpha, \beta>0$ with

[^0]\[

$$
\begin{equation*}
a(x, s, \xi): \xi \geqslant \alpha|\xi|^{p}, \quad|a(x, s, \xi)| \leqslant \beta|\xi|^{p-1}, \quad \forall s \in \mathbf{R}^{M}, \forall \xi \in \mathbf{R}^{M \times N}, \text { a.e. } x \in \Omega \tag{1.1}
\end{equation*}
$$

\]

and a function $G \in L^{p^{\prime}}(\Omega)^{M \times N}$, let us study the behavior at infinity of a solution of the nonlinear variational system

$$
\left\{\begin{array}{l}
u \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \quad D u \in L^{p}(\Omega)^{M \times N}, \tag{1.2}\\
\int_{\Omega}(a(x, u, D u)-G): D v d x=0, \\
\forall v \text { with } v \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \\
D v \in L^{p}(\Omega)^{M \times N}, v=0 \text { on }\{0\} \times \omega .
\end{array}\right.
$$

Here, the space V is a subspace of $W^{1, p}(\omega)^{M}$ which satisfies one of the following hypotheses:
(i) There exists a constant $C_{V}>0$ such that

$$
\begin{equation*}
\|z\|_{L^{p}(\omega)^{M}} \leqslant C_{V}\|D z\|_{L^{p}(\omega)^{M \times N}}, \quad \forall z \in V \tag{1.3}
\end{equation*}
$$

(ii) The space V contains the constant functions in ω and there exists a constant $C_{V}>0$ such that

$$
\begin{equation*}
\left\|z-\frac{1}{|\omega|} \int_{\omega} z d x^{\prime}\right\|_{L^{p}(\omega)^{M}} \leqslant C_{V}\|D z\|_{L^{p}(\omega)^{M \times N}}, \quad \forall z \in V . \tag{1.4}
\end{equation*}
$$

The variational formulation (1.2) essentially means that u satisfies a nonlinear partial differential system in Ω. Indeed, if we assume that $C_{c}^{\infty}(\omega)^{M}$ is contained in V (which is not necessary), we deduce from (1.2) that, in the sense of the distributions, u satisfies the equation

$$
\begin{equation*}
-\operatorname{div}(a(x, u, D u)-G)=0 \quad \text { in } \Omega . \tag{1.5}
\end{equation*}
$$

The choice of V permits to consider several boundary conditions on $(0,+\infty) \times \partial \omega$. In this way, the following choices work well:

- $V=\left\{v \in W^{1, p}(\omega)^{N}: v=0\right.$ on $\left.\Gamma\right\}$, where Γ is a subset of $\partial \omega$ of positive measure. Assuming ω Lipschitz if $\Gamma \neq \partial \omega$, we know from the Poincaré inequality that (i) holds, and (1.2) gives that u satisfies the Dirichlet condition $u=0$ on $(0,+\infty) \times \Gamma$ and the Neumann condition $(a(x, u, D u)-G(x)) v=0$ on $(0,+\infty) \times(\partial \omega \backslash \Gamma)$, where ν denotes the unitary outside normal to Ω on $(0,+\infty) \times \partial \omega$.
- $V=W^{1, p}(\omega)^{N}$. Assuming ω Lipschitz, we know from the Poincaré-Wirtinger inequality that (ii) is satisfied, and (1.2) gives that u satisfies the Neumann condition ($a(x, u, D u$) $G(x)) v=0$ on $(0,+\infty) \times \partial \omega$, with ν as above.
- ω is a parallelotop and V is composed by the restrictions to ω of the functions in $W_{\mathrm{loc}}^{1, p}\left(\mathbf{R}^{N-1}\right)$ which are periodic of period ω. Then, as above, we deduce from the PoincaréWirtinger inequality that (ii) is satisfied, and assuming G and $a(., s, \xi)$, with $(s, \xi) \in$ $\mathbf{R}^{N} \times \mathbf{R}^{M \times N}$, extended by periodicity to the whole of \mathbf{R}^{N-1}, (1.2) gives that u is a solution in the sense of the distributions of the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(a(x, u, D u)-G)=0 \quad \text { in }(0,+\infty) \times \mathbf{R}^{N-1} \\
u \text { is periodic of period } \omega \text { on }\{T\} \times \mathbf{R}^{N-1}, \forall T>0
\end{array}\right.
$$

We remark that (1.2) does not impose any boundary condition for u on $\{0\} \times \omega$. This is due to the fact that we are interested in the behavior of u when x_{1} tends to ∞ and thus, its value on $x_{1}=0$ is not important.

Denoting for $T>0, \Omega_{T}=(T,+\infty) \times \omega$, our aim in the present paper is to show the following result (see Corollary 2.2):

Theorem 1.1. There exist two constants $C, \gamma>0$ (which only depend on $C_{V}, \alpha, \beta, p, N$) such that if G satisfies

$$
\begin{equation*}
\int_{\Omega_{T}}|G|^{p^{\prime}} d x \leqslant K e^{-\lambda T}, \quad \forall T>0 \tag{1.6}
\end{equation*}
$$

for some constants $K, \lambda>0$, then u satisfies

$$
\begin{equation*}
\int_{\Omega_{T}}|D u|^{p} d x \leqslant\left(\int_{\Omega}|D u|^{p} d x+C K\right) e^{-\gamma T}+C K E_{\lambda, \gamma}(T) \tag{1.7}
\end{equation*}
$$

with $E_{\lambda, \gamma}(T)$ given by

$$
\frac{1}{\gamma-\lambda} e^{-\lambda T} \quad \text { if } \gamma>\lambda, \quad T e^{-\gamma T} \quad \text { if } \gamma=\lambda, \quad \frac{1}{\lambda-\gamma} e^{-\gamma T} \quad \text { if } \gamma<\lambda,
$$

i.e., assuming exponential decay for G at infinity, we deduce exponential decay for $D u$ at infinity. This implies (see Propositions 2.3 and 2.5) that for every $\mu \in(0, \lambda), e^{\frac{\mu}{p} x_{1}}$ Du belongs to $L^{p}(\Omega)^{M \times N}$, and that there exists $u_{l} \in \mathbf{R}^{M}$ (the limit of u at infinity), with $u_{l}=0$ if (i) is satisfied, such that

$$
\left\|u-u_{l}\right\|_{L^{p}(\{T\} \times \omega)^{M}} \leqslant C e^{-\frac{\mu}{p} T}, \quad \forall T>0 .
$$

Theorem 1.1 will be in fact a consequence of another result (see Theorem 2.1), which we think it is interesting by itself, showing that if G is just in $L^{p^{\prime}}(\Omega)^{M \times N}$, then

$$
\int_{\Omega_{T}}|D u|^{p} d x \leqslant\left(\int_{\Omega}|D u|^{p} d x+C \int_{\Omega}|G|^{p^{\prime}} d x\right) e^{-\gamma T}+C \int_{0}^{T} \int_{\Omega_{t}} e^{\gamma(t-T)}|G|^{p^{\prime}} d x d t
$$

which gives an estimate of how $D u$ decreases to zero at infinity depending on the decreasing of G.

The above results are given in Section 2. In Section 3, we show how Theorem 1.1 permits to deduce the existence of solutions of some nonlinear elliptic systems posed in unbounded cylinders, such that its gradient exponentially decreases to zero at infinity. For this purpose, besides of (1.1) we will assume that a is monotone in its last variable, i.e., it satisfies

$$
\left(a\left(x, s, \xi_{1}\right)-a\left(x, s, \xi_{2}\right)\right):\left(\xi_{1}-\xi_{2}\right) \geqslant 0, \forall s \in \mathbf{R}^{M}, \forall \xi_{1}, \xi_{2} \in \mathbf{R}^{M \times N}, \text { a.e. } x \in \Omega
$$

and that V is closed in $W^{1, p}(\omega)^{M}$. Then, using the theory of monotone operators of J. Leray and J.L. Lions [6,7], we prove the existence of a solution u for problem (1.2). It can be taken also satisfying a boundary condition (Dirichlet, Neumann, ...) on $\{0\} \times \Omega$ (see Proposition 3.1). From Theorem 1.1 this function u is such that there exists $\mu>0$, with

$$
\begin{equation*}
e^{\mu x_{1}} D u \in L^{p}(\Omega)^{M \times N} . \tag{1.8}
\end{equation*}
$$

The existence of solutions of partial differential problems which have an exponential decay at infinity, in the sense that (1.8) is satisfied, has also been considered by other authors (see, e.g., $[1,5,9-11]$), specially in the case of linear problems. In particular, we refer to L. Tartar (see, e.g., [9]), who solved this problem for linear operators by introducing an original generalization of the Lax-Milgram theorem. We remark that our strategy in the present paper is different. At the place of directly look for a solution of (1.5) which satisfies (1.8), we just search for functions u such that $D u \in L^{p}((0,+\infty) \times \omega)^{M \times N}$, whose existence is classical, and then we prove that they have exponential decay. A result in this sense has also been obtained by L. Tartar and G. Weiske [10,11$]$ in the case of linear operators.

The existence of solutions of elliptic partial differential problems in unbounded domains, having an exponential decay at infinity, is a classical problem in the study of boundary layer problems. In Section 4 we give a simple example which shows that a problem like (1.2) arises in a natural way in the study of boundary layers. Thus, it shows how the results of the present paper can be applied. More complex situations can be found, for example, in [2-4].

2. Exponential decay results

We will study in this section the decay at infinity of the derivative of the solutions of the nonlinear system (1.2).

We take $p>1$, and $p^{\prime}=\frac{p}{p-1}$.
We denote by $\omega \subset \mathbf{R}^{N-1}, N \geqslant 2$, a connected bounded open set, and by V a subspace of $W^{1, p}(\omega)^{M}$ such that the hypotheses (i) or (ii) of the Introduction are satisfied.

For every $T>0$, we define $\Omega_{T}=(T,+\infty) \times \omega$. In the case $T=0$, we simplify the notation by writing $\Omega=(0,+\infty) \times \omega$.

For $x \in \Omega$, we will use the decomposition $x=\left(x_{1}, x^{\prime}\right)$, with $x_{1} \in(0,+\infty), x^{\prime} \in \omega$.
The first vector of the usual basis of \mathbf{R}^{N} is denoted by e_{1}.
The orthogonal product of two matrices $A, B \in \mathbf{R}^{M \times N}$ is written as $A: B$.
Along the present section, $a: \Omega \times \mathbf{R}^{M} \times \mathbf{R}^{M \times N} \rightarrow \mathbf{R}^{M \times N}$ is a Carathéodory function ($a=a(x, s, \xi$) measurable in x and continuous in s, ξ), which satisfies that there exist $\alpha, \beta>0$, such that for every $\xi \in \mathbf{R}^{M \times N}$, every $s \in \mathbf{R}^{M}$, and a.e. $x \in \Omega$, we have

$$
\begin{align*}
& \alpha|\xi|^{p} \leqslant a(x, s, \xi): \xi \tag{2.1}\\
& |a(x, s, \xi)| \leqslant \beta|\xi|^{p-1} \tag{2.2}
\end{align*}
$$

With these assumptions, the following theorem estimates the decay at the infinity of the gradient of the solution of (1.2) depending of the decay of G.

Theorem 2.1. Assume $G \in L^{p^{\prime}}(\Omega)^{M \times N}$, and let u be a solution of the variational problem (1.2). Then, for

$$
\begin{equation*}
\gamma=\frac{\alpha(p-1)}{\beta C_{V}(p+1)} \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{align*}
\int_{\Omega_{T}}|D u|^{p} d x \leqslant & \int_{\Omega}|D u|^{p} d x e^{-\gamma T}+\frac{\gamma C_{V}}{\alpha \beta^{\frac{1}{p^{-1}}}}\left(\int_{\Omega}|G|^{p^{\prime}} d x e^{-\gamma T}-\int_{\Omega_{T}}|G|^{p^{\prime}} d x\right) \\
& +\gamma\left(\frac{1}{\alpha^{p^{\prime}}}+\frac{p-1}{(p+1) \beta^{p^{\prime}}}\right) \int_{0}^{T} \int_{\Omega_{t}} e^{\gamma(t-T)}|G|^{p^{\prime}} d x d t, \quad \forall T \geqslant 0 . \tag{2.4}
\end{align*}
$$

Proof. Taking the function $x \rightarrow u(x) \varphi\left(x_{1}\right)$, with $\varphi \in C_{c}^{\infty}(0,+\infty)$, as test function in (1.2), we have

$$
\begin{aligned}
& \int_{0}^{+\infty}\left(\int_{\omega}(a(x, u, D u)-G): D u d x^{\prime}\right) \varphi d x_{1} \\
& \quad+\int_{0}^{+\infty}\left(\int_{\omega}(a(x, u, D u)-G): u \otimes e_{1} d x^{\prime}\right) \frac{d \varphi}{d x_{1}} d x_{1}=0
\end{aligned}
$$

for every $\varphi \in C_{c}^{\infty}$, which, by definition of weak derivative, shows

$$
\begin{equation*}
\frac{d}{d x_{1}}\left(\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G): u \otimes e_{1} d x^{\prime}\right)=\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G): D u d x^{\prime}, \tag{2.5}
\end{equation*}
$$

in the sense of the distributions in $(0,+\infty)$. On the other hand, defining $\Lambda:(0,+\infty) \rightarrow \mathbf{R}$ by

$$
\Lambda\left(x_{1}\right)=\int_{\Omega_{x_{1}}}(a(x, u, D u)-G): D u d x
$$

we also have

$$
\frac{d \Lambda}{d x_{1}}\left(x_{1}\right)=-\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G): D u d x^{\prime} \quad \text { in the sense of the distributions. }
$$

So, from (2.5) we deduce there exists $C \in \mathbf{R}$, such that for a.e. $x_{1} \in(0,+\infty)$, we have

$$
\begin{equation*}
\int_{\Omega_{x_{1}}}(a(x, u, D u)-G): D u d x+\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G): u \otimes e_{1} d x^{\prime}=C . \tag{2.6}
\end{equation*}
$$

If (i) is satisfied, then by Hölder's inequality, (1.3) and (2.2), the second term of (2.6) satisfies

$$
\begin{align*}
& \left|\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G): u \otimes e_{1} d x^{\prime}\right| \\
& \quad \leqslant C_{V}\left\|\beta|D u|^{p-1}+|G|\right\|_{L^{p^{\prime}}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}} \\
& \quad \leqslant C_{V}\left(\beta\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}^{p}+\|G\|_{L^{p^{\prime}}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}\right) \tag{2.7}
\end{align*}
$$

for a.e. $x_{1}>0$.
If (ii) is satisfied, we consider $\psi \in L^{p}(0,+\infty)^{M}$, and then we define $v: \Omega \rightarrow \mathbf{R}^{M}$ by

$$
v(x)=\int_{0}^{x_{1}} \psi(s) d s, \quad \forall x \in \Omega
$$

Since the constant functions belong to V, we can take v as test function in (1.2). This gives

$$
\int_{\Omega}(a(x, u, D u)-G): \psi \otimes e_{1} d x=0
$$

which by the arbitrariness of ψ, shows

$$
\begin{equation*}
\int_{\left\{x_{1}\right\} \times \omega}(a(x, u, D u)-G)_{j, 1} d x^{\prime}=0, \quad \forall j \in\{1, \ldots, M\}, \text { a.e. } x_{1} \in(0,+\infty) \tag{2.8}
\end{equation*}
$$

(the index $j, 1$ denotes the corresponding component). Thus, defining

$$
\bar{u}\left(x_{1}\right)=\frac{1}{|\omega|} \int_{\left\{x_{1}\right\} \times \omega} u d x^{\prime}, \quad \text { a.e. } x_{1} \in(0,+\infty),
$$

we get

$$
\int_{\Omega_{x_{1}}}(a(x, u, D u)-G): u \otimes e_{1} d x=\int_{\Omega_{x_{1}}}(a(x, u, D u)-G):(u-\bar{u}) \otimes e_{1} d x .
$$

So, by using (ii) at the place of (i) we deduce that (2.7) also holds in this case.
Integrating (2.6) with respect to x_{1} in ($T, T+1$), for $T>0$, and taking into account (2.7), we easily deduce

$$
\begin{aligned}
|C| \leqslant & \int_{\Omega_{T}}|a(x, u, D u)-G||D u| d x \\
& +C_{V}\left(\beta\|D u\|_{L^{p}((T, T+1) \times \omega)^{M \times N}}^{p}+\|G\|_{L^{p^{\prime}}((T, T+1) \times \omega)^{M \times N}}\|D u\|_{L^{p}((T, T+1) \times \omega)^{M \times N}}\right) .
\end{aligned}
$$

Since $D u$ is in $L^{p}(\Omega)^{M \times N}$ and G is in $L^{p^{\prime}}(\Omega)^{M \times N}$, the right-hand side of this inequality tends to zero when T tends to infinity. So, $C=0$. Returning to (2.6) and using (2.1) and (2.7) we deduce

$$
\begin{aligned}
\alpha\|D u\|_{L^{p}\left(\Omega_{x_{1}}\right)^{M \times N}}^{p} \leqslant & \|G\|_{L^{p^{\prime}}\left(\Omega_{x_{1}}\right)^{M \times N}}\|D u\|_{L^{p}\left(\Omega_{x_{1}}\right)^{M \times N}} \\
& +C_{V}\left(\beta\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}^{p}\right. \\
& \left.+\|G\|_{L^{p^{\prime}}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}\right)
\end{aligned}
$$

for a.e. $x_{1}>0$, which, by Young's inequality, gives

$$
\begin{aligned}
\frac{\alpha}{p^{\prime}}\|D u\|_{L^{p}\left(\Omega_{x_{1}}\right)^{M \times N}}^{p} \leqslant & C_{V} \beta\left(1+\frac{1}{p}\right)\|D u\|_{L^{p}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}^{p} \\
& +\frac{1}{p^{\prime}}\left(\frac{1}{\alpha^{\frac{1}{p-1}}}\|G\|_{L^{p^{\prime}\left(\Omega_{x_{1}}\right)^{M \times N}}}^{p^{\prime}}+\frac{C_{V}}{\beta^{\frac{1}{p-1}}}\|G\|_{L^{p^{\prime}}\left(\left\{x_{1}\right\} \times \omega\right)^{M \times N}}^{p^{\prime}}\right),
\end{aligned}
$$

a.e. $x_{1}>0$.

So, denoting

$$
\Psi\left(x_{1}\right)=\|D u\|_{L^{p}\left(\Omega_{x_{1}}\right)^{M \times N}}^{p}, \quad \Phi\left(x_{1}\right)=\|G\|_{L^{p^{\prime}}\left(\Omega_{x_{1}}\right)^{M \times N}}^{p^{\prime}}, \quad \forall x_{1}>0
$$

and taking into account the definition of γ, we get

$$
\Psi^{\prime}+\gamma \Psi \leqslant \frac{\gamma}{\alpha}\left(\frac{1}{\alpha^{\frac{1}{p-1}}} \Phi-\frac{C_{V}}{\beta^{\frac{1}{p-1}}} \Phi^{\prime}\right), \quad \text { a.e. in }(0,+\infty),
$$

and then, multiplying by $e^{\gamma x_{1}}$, we obtain

$$
\frac{d}{d x_{1}}\left(e^{\gamma x_{1}} \Psi\right) \leqslant \frac{\gamma}{\alpha}\left(\frac{1}{\alpha^{\frac{1}{p-1}}}+\frac{\gamma C_{V}}{\beta^{\frac{1}{p-1}}}\right) e^{\gamma x_{1}} \Phi-\frac{\gamma C_{V}}{\alpha \beta^{\frac{1}{p-1}}} \frac{d}{d x_{1}}\left(e^{\gamma x_{1}} \Phi\right) .
$$

Integrating this inequality in ($0, T$), $T>0$, we deduce (2.4).
From Theorem 2.1, we easily obtain the following corollary which proves that exponential decay for G implies exponential decay for $D u$. Theorem 1.1 in the Introduction, follows from this result.

Corollary 2.2. Let G be in $L^{p^{\prime}}(\Omega)^{M \times N}$, such that there exist $K, \lambda>0$, which satisfy

$$
\begin{equation*}
\int_{\Omega_{T}}|G|^{p^{\prime}} d x \leqslant K e^{-\lambda T}, \quad \forall T>0 \tag{2.9}
\end{equation*}
$$

and let u be a solution of (1.2). Then, we have

$$
\begin{align*}
\int_{\Omega_{T}}|D u|^{p} d x \leqslant & \int_{\Omega}|D u|^{p} d x e^{-\gamma T}+\frac{\gamma C_{V}}{\alpha \beta^{\frac{1}{p^{-1}}}} \int_{\Omega}|G|^{p^{\prime}} d x e^{-\gamma T} \\
& +K \gamma\left(\frac{1}{\alpha^{p^{\prime}}}+\frac{p-1}{(p+1) \beta^{p^{\prime}}}\right) E_{\lambda, \gamma}(T), \quad \forall T>0 \tag{2.10}
\end{align*}
$$

where γ is defined by (2.3) and $E_{\lambda, \gamma}(T)$ is given by

$$
E_{\lambda, \gamma}(T)= \begin{cases}\frac{1}{\gamma-\lambda} e^{-\lambda T} & \text { if } \gamma>\lambda \\ T e^{-\gamma T} & \text { if } \gamma=\lambda \\ \frac{1}{\lambda-\gamma} e^{-\gamma T} & \text { if } \gamma<\lambda\end{cases}
$$

Proof. The proof is a straightforward consequence of (2.4) and (2.9).
Corollary 2.2 gives a sufficient condition to have an exponential decay for the derivative of the solutions of (1.2), in the sense that there exist $\widetilde{K}, \tilde{\lambda}>0$, such that

$$
\int_{\Omega_{T}}|D u|^{p} d x \leqslant \widetilde{K} e^{-\tilde{\lambda} T}, \quad \forall T>0
$$

However, in the study of boundary layers (see, e.g., $[1,5,9]$), it is more usual to search for functions u such that there exists $\tilde{\lambda}>0$ with $e^{\frac{\tilde{\lambda}}{p} x_{1}} D u \in L^{p}(\Omega)^{M \times N}$. Applying the next result to the function h given by

$$
h\left(x_{1}\right)=\int_{\left\{x_{1}\right\} \times \omega}|D u|^{p} d x^{\prime}, \quad \text { a.e. } x_{1}>0,
$$

we get that both definitions of exponential decay are in fact equivalent.

Proposition 2.3. If $h \in L^{1}(0,+\infty)$ is such that there exists $\lambda>0$, with $e^{\lambda x_{1}} h \in L^{1}(0,+\infty)$, then there exists $K>0$ such that

$$
\begin{equation*}
\int_{T}^{+\infty}|h| d x_{1} \leqslant K e^{-\lambda T}, \quad \forall T>0 . \tag{2.11}
\end{equation*}
$$

Reciprocally, if h satisfies (2.11), then for every $\tilde{\lambda} \in(0, \lambda)$ we have

$$
\begin{equation*}
\int_{0}^{+\infty}|h| e^{\tilde{\lambda} x_{1}} d x_{1} \leqslant \int_{0}^{+\infty}|h| d x_{1}+\frac{K \tilde{\lambda}}{(\lambda-\tilde{\lambda})}<+\infty \tag{2.12}
\end{equation*}
$$

Proof. If h is in $L^{1}(0,+\infty)$, and there exists $\lambda>0$, with $e^{\lambda x_{1}} h \in L^{1}(0,+\infty)$, we just use

$$
\int_{T}^{+\infty}|h| d x_{1} \leqslant \int_{T}^{+\infty} e^{\lambda x_{1}}|h| d x_{1} e^{-\lambda T}, \quad \forall T>0
$$

to deduce (2.11).
For the reciprocate, we take h such that there exist $K, \lambda>0$ which satisfy (2.11). We define $H:(0,+\infty) \rightarrow \mathbf{R}$ by

$$
H\left(x_{1}\right)=\int_{x_{1}}^{+\infty}|h| d s, \quad \forall x_{1}>0
$$

and we take $\tilde{\lambda} \in(0, \lambda), T>0$. Taking into account $|h|=-H^{\prime}$, a.e. in $(0,+\infty)$, an integration by parts gives

$$
\int_{0}^{T}|h| e^{\tilde{\lambda} x_{1}} d x_{1}=-\int_{0}^{T} H^{\prime} e^{\tilde{\lambda} x_{1}} d x_{1}=H(0)-H(T) e^{\tilde{\lambda} T}+\tilde{\lambda} \int_{0}^{T} H e^{\tilde{\lambda} x_{1}} d x_{1}
$$

Using (2.11) in this inequality and then taking the limit when T tends to infinity, we deduce (2.12).

Remark 2.4. Given $f: \Omega \rightarrow \mathbf{R}^{M}$, such that there exists $\lambda>0$, with $e^{\frac{\lambda}{p^{\prime}} x_{1}} f \in L^{p^{\prime}}(\Omega)^{M}$, it is easy to check that the matrix function $G: \Omega \rightarrow \mathbf{R}^{M \times N}$ defined by

$$
G(x)=\int_{x_{1}}^{+\infty} f\left(t, x^{\prime}\right) \otimes e_{1} d t, \quad \text { a.e. } x \in \Omega
$$

is such that $e^{\frac{\tilde{\lambda}}{p^{x}} x_{1}} G$ belongs to $L^{p^{\prime}}(\Omega)^{M \times N}$, for every $\tilde{\lambda} \in(0, \lambda)$, and satisfies

$$
\int_{\Omega} G: D v d x=\int_{\Omega} f v d x
$$

when $v \in W^{1, p}((0, T) \times \omega)^{M}$, for every $T>0, v=0$ on $\{0\} \times \omega$, and $D v \in L^{p}(\Omega)^{M \times N}$. Thus, if u is a solution of

$$
\left\{\begin{array}{l}
u \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \quad D u \in L^{p}(\Omega)^{M \times N}, \\
\int_{\Omega} a(x, u, D u): D v d x=\int_{\Omega} f v d x, \\
\forall v \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \\
v=0 \text { on }\{0\} \times \omega, \quad D v \in L^{p}(\Omega)^{M \times N},
\end{array}\right.
$$

we get that u is also a solution of (1.2), and by an easy application of Proposition 2.3, we can apply Corollary 2.2 to deduce an exponential decay for the derivative of u. This permits to apply our results to a partial differential system of the form

$$
-\operatorname{div} a(x, u, D u)=f \quad \text { in } \Omega .
$$

To finish this section let us now prove that the exponential decay for $D u$ gives an exponential decay of u to a constant.

Proposition 2.5. Let u be in $L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right)$, for every $T>0$, such that there exists $\lambda>0$, with $e^{\frac{\lambda}{p} x_{1}} D u \in L^{p}(\Omega)^{M \times N}$, then, there exists the "limit" $u_{l} \in \mathbf{R}^{M}$ of u at infinity, which satisfies

$$
\begin{equation*}
\left\|u-u_{l}\right\|_{L^{p}(\{T\} \times \omega)^{M}} \leqslant\left(C_{V}+2\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} \frac{1}{|\omega|}\right)\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}(\Omega)^{M \times N}} e^{-\frac{\lambda}{p} T}, \tag{2.13}
\end{equation*}
$$

for every $T>0$. Moreover, if V satisfies (1.3), then $u_{l}=0$.
Proof. For every $T, S>0$, with $T<S$, we have

$$
\begin{aligned}
\int_{\omega}\left|u\left(S, x^{\prime}\right)-u\left(T, x^{\prime}\right)\right|^{p} d x^{\prime} & =\int_{\omega}\left|\int_{T}^{S} \frac{\partial u}{\partial x_{1}} d x_{1}\right|^{p} d x^{\prime} \\
& \leqslant \int_{\omega}\left(\int_{T}^{S} e^{-\frac{\lambda}{p-1} x_{1}} d x_{1}\right)^{p-1}\left(\int_{T}^{S} e^{\lambda x_{1}}\left|\frac{\partial u}{\partial x_{1}}\right|^{p} d x_{1}\right) d x^{\prime}
\end{aligned}
$$

which gives

$$
\begin{equation*}
\|u(S, .)-u(T, .)\|_{L^{p}(\omega)^{M}} \leqslant\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}} \tag{2.14}
\end{equation*}
$$

Thus, we get

$$
\|u(T, .)\|_{L^{p}(\omega)^{M}} \leqslant\|u(S, .)\|_{L^{p}(\omega)^{M}}+\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}},
$$

which integrating with respect to S in $(T, T+1)$ proves

$$
\begin{equation*}
\|u(T, .)\|_{L^{p}(\omega)^{M}} \leqslant\|u\|_{L^{p}\left(\Omega_{T}\right)^{M}}+\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}} \tag{2.15}
\end{equation*}
$$

If V satisfies (1.3), the above inequality shows

$$
\|u(T, .)\|_{L^{p}(\omega)^{M}} \leqslant\left(C_{V}+\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}}\right) e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}}
$$

and then we deduce (2.13) with $u_{l}=0$.
If V satisfies (1.4), we can apply (2.15) with u replaced by the function

$$
x \in \Omega \mapsto u(x)-\frac{1}{|\omega|} \int_{\left\{x_{1}\right\} \times \omega} u d y^{\prime}
$$

which implies as above

$$
\begin{align*}
& \left\|u(T, .)-\frac{1}{|\omega|} \int_{\{T\} \times \omega} u d y^{\prime}\right\|_{L^{p}(\omega)^{M}} \\
& \quad \leqslant\left(C_{V}+\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}}\right) e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}} \tag{2.16}
\end{align*}
$$

On the other hand, applying (2.14) with u replaced by the function

$$
x \in \Omega \mapsto \frac{1}{|\omega|} \int_{\left\{x_{1}\right\} \times \omega} u d y^{\prime}
$$

we have

$$
\left\|\frac{1}{|\omega|} \int_{\{S\} \times \omega} u d y^{\prime}-\frac{1}{|\omega|} \int_{\{T\} \times \omega} u d y^{\prime}\right\|_{L^{p}(\omega)^{M}} \leqslant\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}}
$$

for every $T, S>0, S>T$. This means that the application

$$
T \in(0,+\infty) \mapsto \frac{1}{|\omega|} \int_{\{T\} \times \omega} u d y^{\prime}
$$

has a limit u_{l} at infinity. Taking the limit when S tends to infinity in the above inequality, we then get

$$
\left\|u_{l}-\frac{1}{|\omega|} \int_{\{T\} \times \omega} u d y^{\prime}\right\|_{L^{p}(\omega)^{M}} \leqslant\left(\frac{p-1}{\lambda}\right)^{\frac{1}{p^{\prime}}} e^{-\frac{\lambda}{p} T}\left\|e^{\frac{\lambda}{p} x_{1}} D u\right\|_{L^{p}\left(\Omega_{T}\right)^{M \times N}}
$$

which joining to (2.16) proves (2.13).

3. Existence of solutions with gradient exponentially decreasing to zero

As a consequence of the results obtained in the previous section, let us now give an existence result for the solutions of nonlinear elliptic systems in unbounded cylinders, such that its gradient exponentially decreases to zero.

We start with the following result about the existence of solution for problem (1.2).

Proposition 3.1. We consider a bounded open set $\omega \subset \mathbf{R}^{N-1}, N \geqslant 2$. Then, for $p>1$, we take a Carathéodory function a : $\Omega \times \mathbf{R}^{N} \times \mathbf{R}^{M \times N} \rightarrow \mathbf{R}^{M \times N}$ which satisfies hypotheses (2.1), (2.2) and the following monotonicity condition

$$
\begin{equation*}
\left(a\left(x, s, \xi_{1}\right)-a\left(x, s, \xi_{2}\right)\right)\left(\xi_{1}-\xi_{2}\right) \geqslant 0, \quad \forall s \in \mathbf{R}^{M}, \forall \xi_{1}, \xi_{2} \in \mathbf{R}^{M \times N}, \text { a.e. } x \in \Omega \tag{3.1}
\end{equation*}
$$

and a closed subspace $V \subset W^{1, p}(\omega)^{M}$. Then, for every $G \in L^{p^{\prime}}(\Omega)^{M \times N}$, and every $u_{0} \in L^{p}(0,+\infty ; V) \cap W^{1, p}\left(0,+\infty ; L^{p}(\omega)^{M}\right)$, there exists a solution of the problem

$$
\left\{\begin{array}{l}
u \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \tag{3.2}\\
D u \in L^{p}(\Omega)^{M \times N}, \quad u=u_{0} \text { on }\{0\} \times \omega, \\
\int_{\Omega}(a(x, u, D u)-G): D v d x=0, \\
\forall v \text { with } v \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \\
D v \in L^{p}(\Omega)^{M \times N}, \quad v=0 \text { on }\{0\} \times \omega .
\end{array}\right.
$$

Proof. We denote by W the space of $v \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right)$, for every $T>0$, such that $D v \in L^{p}(\Omega)^{M \times N}, v=0$ on $\{0\} \times \omega$. This is a reflexive space endowed with the norm

$$
\|v\|_{W}=\|D v\|_{L^{p}(\Omega)^{M \times N}}, \quad \forall v \in W
$$

We take $\mathcal{A}: W \rightarrow W^{\prime}$ as the operator given by

$$
\langle\mathcal{A}(w), v\rangle_{W^{\prime}, W}=\int_{\Omega} a\left(x, u_{0}+w, D\left(u_{0}+w\right)\right): D v d x, \quad \forall v, w \in W
$$

The operator \mathcal{A} is well defined because a is a Carathéodory function, (2.2) and $D u_{0} \in L^{p}(\Omega)^{M \times N}$, which imply that $a\left(x, u_{0}+w, D\left(u_{0}+w\right)\right) \in L^{p^{\prime}}(\Omega)^{M \times N}$, for every $w \in W$. Defining then $\mathcal{G} \in W^{\prime}$ by

$$
\mathcal{G}(v)=\int_{\Omega} G: D v d x, \quad \forall v \in W
$$

problem (3.2) is equivalent to show the existence of $w \in W$ such that $\mathcal{A}(w)=\mathcal{G}$. Thus, it is enough to show that \mathcal{A} is surjective. For this purpose, we apply the Leray-Lions theory for pseudomonotone problems (see $[6,7]$).

Clearly \mathcal{A} is continuous because a is a Carathéodory function and (2.2).
By (2.1), the operator \mathcal{A} satisfies

$$
\lim _{\|v\|_{W} \rightarrow \infty} \frac{\langle\mathcal{A}(v), v\rangle_{W^{\prime}, W}}{\|v\|_{W}}=+\infty
$$

Thanks to the Rellich-Kondrachov compactness theorem, the monotonicity property (3.1) of a, and (2.2), it is easy to apply Minty's rule to show that if v_{n} is a sequence in W which converges weakly in W to some $v \in W$, and it is such that there exists $\Lambda \in W^{\prime}$, with

$$
\mathcal{A}\left(v_{n}\right) \rightharpoonup \Lambda \quad \text { in } W^{\prime}, \quad \limsup _{n \rightarrow \infty}(\mathcal{A}(v), v\rangle_{W^{\prime}, W} \leqslant\langle\Lambda, v\rangle_{W^{\prime}, W},
$$

then $\mathcal{A}(v)=\Lambda$.
These properties of \mathcal{A} imply that \mathcal{A} is surjective (see [6,7]).

Remark 3.2. Proposition 3.1 shows the existence of a solution of problem (1.2) which satisfies the Dirichlet boundary condition $u=u_{0}$ on $\{0\} \times \Omega$. Analogously, we can prove the existence of solution for other boundary conditions on $\{0\} \times \Omega$, such as a Neumann or a Fourier condition.

As a consequence of Proposition 3.1, we have (we refer to [5,9-11] for related results in the linear case)

Corollary 3.3. We consider a bounded open set $\omega \subset \mathbf{R}^{N-1}, N \geqslant 2$. Then, for $p>1$, we take a Carathéodory function $a: \Omega \times \mathbf{R}^{M} \times \mathbf{R}^{M \times N} \rightarrow \mathbf{R}^{M \times N}$ which satisfies hypotheses (2.1), (2.2) and (3.1), and a closed subspace $V \subset W^{1, p}(\omega)^{M}$. Also, we assume that one of the hypotheses (1.3) or (1.4) hold. Then, for every $G: \Omega \rightarrow \mathbf{R}^{M \times N}$, such that there exists $\lambda>0$ with $e^{\frac{\lambda}{p^{\prime}} x_{1}} G \in L^{p^{\prime}}(\Omega)^{M \times N}$, and every $u_{0} \in L^{p}(0,+\infty ; V) \cap W^{1, p}\left(0,+\infty ; L^{p}(\omega)^{M}\right)$, there exists a solution of problem

$$
\left\{\begin{array}{l}
u \in L^{p}(0, T ; V) \cap W^{1, p}\left(0, T ; L^{p}(\omega)^{M}\right), \forall T>0, \tag{3.3}\\
\exists \tilde{\lambda}>0, \text { with } e^{\frac{\tilde{\lambda}}{p^{\prime}} x_{1}} D u \in L^{p}(\Omega)^{M \times N}, \quad u=u_{0} \text { on }\{0\} \times \omega, \\
\int_{\Omega}(a(x, u, D u)-G): D v d x=0, \\
\forall v \in C_{c}^{\infty}(0,+\infty ; V) .
\end{array}\right.
$$

Proof. It is enough to define u as the solution of (3.2) given by Proposition 3.1 and then to apply Corollary 2.2 and Proposition 2.3.

4. An example of application to the study of boundary layers

In this section, let us show with an example, how the results of the present paper apply to the study of boundary layers problems. We will show that for this type of problems it is natural to get with a variational equation with a similar structure to (1.2). To simplify the exposition, let us consider the simple case of a linear singular perturbed equation in a square. Namely, let us study the asymptotic behavior when ε tends to zero of the solutions of the partial differential problem

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \frac{\partial^{2} u_{\varepsilon}}{\partial x_{1}^{2}}-\frac{\partial^{2} u_{\varepsilon}}{\partial x_{2}^{2}}=f \quad \text { in }(0,1)^{2} \tag{4.1}\\
u_{\varepsilon}=0 \quad \text { on } \partial(0,1)^{2}
\end{array}\right.
$$

More complex applications can be found in [2-4].
Along this section, we denote by C and λ, nonnegative generic constants which can change from a line to another one, and which do not depend on ε.

We start with the following result
Proposition 4.1. For every $f \in L^{2}\left((0,1)^{2}\right)$ the solution u_{ε} of (4.1) converges strongly in $L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$ to the unique solution u_{0} of

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} u_{0}}{\partial x_{2}^{2}}=f \quad \text { in }(0,1) \tag{4.2}\\
u_{0}\left(x_{1}, 0\right)=u_{0}\left(x_{1}, 1\right)=0, \quad \text { a.e. } x_{1} \in(0,1)
\end{array}\right.
$$

Moreover, if $f \in W^{1, \infty}\left(0,1 ; L^{2}(0,1)\right)$ then there exists $C>0$ such that

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-u_{0}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-u_{0}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C \varepsilon \tag{4.3}
\end{equation*}
$$

Proof. Taking u_{ε} as test function in (4.1), we get

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{2}}\right|^{2} d x=\int_{(0,1)^{2}} f u_{\varepsilon} d x \tag{4.4}
\end{equation*}
$$

which joining to the Poincaré inequality

$$
\int_{0}^{1}\left|u_{\varepsilon}\left(x_{1}, x_{2}\right)\right|^{2} d x_{2} \leqslant C \int_{0}^{1}\left|\frac{\partial u_{\varepsilon}}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right|^{2} d x_{2}, \quad \text { a.e. } x_{1} \in(0,1)
$$

implies that the partial derivatives of u_{ε} satisfy the estimate

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{2}}\right|^{2} d x \leqslant C . \tag{4.5}
\end{equation*}
$$

In particular, u_{ε} is bounded in $L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$ and thus, up to a subsequence, there exists $u_{0} \in L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$ such that u_{ε} converges weakly in $H_{0}^{1}(0,1)$ to u_{0}. Once we prove that u_{0} satisfies (4.2), we will deduce by uniqueness that it is not necessary to extract any subsequence.

Taking $\varphi \in C_{c}^{\infty}(\Omega)$, as test function in (4.1), we get

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}} \frac{\partial u_{\varepsilon}}{\partial x_{1}} \frac{\partial \varphi}{\partial x_{1}} d x+\int_{(0,1)^{2}} \frac{\partial u_{\varepsilon}}{\partial x_{2}} \frac{\partial \varphi}{\partial x_{2}} d x=\int_{(0,1)^{2}} f \varphi d x \tag{4.6}
\end{equation*}
$$

and then, by the convergence of u_{ε} to u_{0} in $L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$, the inequality

$$
\left|\varepsilon^{2} \int_{(0,1)^{2}} \frac{\partial u_{\varepsilon}}{\partial x_{1}} \frac{\partial \varphi}{\partial x_{1}} d x\right| \leqslant\left(\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{1}}\right|^{2} d x\right)^{\frac{1}{2}}\left(\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial \varphi}{\partial x_{1}}\right|^{2} d x\right)^{\frac{1}{2}}
$$

and (4.5), we can pass to the limit in (4.6) to deduce that u_{0} satisfies

$$
\int_{(0,1)^{2}} \frac{\partial u_{0}}{\partial x_{2}} \frac{\partial \varphi}{\partial x_{2}} d x=\int_{(0,1)^{2}} f \varphi d x
$$

for every $\varphi \in C_{c}^{\infty}\left((0,1)^{2}\right)$ and then, by density, for every $\varphi \in L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$. So, u_{0} is the unique solution of (4.2). Returning to (4.4), passing to the limit in ε, and using (4.2), we get

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{2}}\right|^{2} d x \\
& \quad \leqslant \lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}}{\partial x_{2}}\right|^{2} d x\right)
\end{aligned}
$$

$$
=\lim _{\varepsilon \rightarrow 0} \int_{(0,1)^{2}} f u_{\varepsilon} d x=\int_{(0,1)^{2}} f u_{0} d x=\int_{(0,1)^{2}}\left|\frac{\partial u_{0}}{\partial x_{2}}\right|^{2} d x
$$

which shows that the convergence of u_{ε} to u_{0} holds in $L^{2}\left(0,1 ; H_{0}^{1}(0,1)\right)$ strong.
Let us now assume that f belongs to $W^{1, \infty}\left(0,1 ; L^{2}(0,1)\right)$. Then, since u_{0} is the solution of (4.2), we deduce that it belongs to $W^{1, \infty}\left(0,1 ; H^{2}(0,1) \cap H_{0}^{1}(0,1)\right)$. Thus, taking $\psi_{\varepsilon} \in C^{\infty}(0,1)$ such that $\psi_{\varepsilon}(0)=\psi_{\varepsilon}(1)=0, \psi_{\varepsilon}=1$ in $(\varepsilon, 1-\varepsilon)$, and $\left|\frac{d \psi_{\varepsilon}}{d x_{1}}\right| \leqslant \frac{2}{\varepsilon}$ in $(0,1)$, we easily deduce that $\tilde{u}_{\varepsilon}(x)=u_{0}(x) \psi_{\varepsilon}\left(x_{1}\right)$ satisfies

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(\tilde{u}_{\varepsilon}-u_{0}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(\tilde{u}_{\varepsilon}-u_{0}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C \varepsilon \tag{4.7}
\end{equation*}
$$

From this inequality and the equation satisfied by u_{0}, we get that \tilde{u}_{ε} satisfies

$$
\begin{equation*}
-\varepsilon^{2} \frac{\partial^{2} \tilde{u}_{\varepsilon}}{\partial x_{1}^{2}}-\frac{\partial^{2} \tilde{u}_{\varepsilon}}{\partial x_{2}^{2}}=f+h_{\varepsilon} \quad \text { in }(0,1)^{2} \tag{4.8}
\end{equation*}
$$

where $h_{\varepsilon} \in H^{-1}\left((0,1)^{2}\right)$ is such that

$$
\left|\left\langle h_{\varepsilon}, \varphi\right\rangle\right| \leqslant C \sqrt{\varepsilon}\left(\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial \varphi}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial \varphi}{\partial x_{2}}\right|^{2} d x\right)^{\frac{1}{2}}
$$

for every $\varphi \in H_{0}^{1}\left((0,1)^{2}\right)$ (where C does not depend on ε and φ). Taking $u_{\varepsilon}-\tilde{u}_{\varepsilon}$ as test function in the difference of (4.1) and (4.8) we deduce

$$
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\tilde{u}_{\varepsilon}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\tilde{u}_{\varepsilon}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C \varepsilon
$$

and then, from (4.7), we conclude (4.3).
Remark 4.2. Proposition 4.1 provides the approximation $u_{\varepsilon} \sim u_{0}$. However, contrary to u_{ε}, u_{0} does not vanish in general on $\{0,1\} \times(0,1)$. If we assume that u_{0} vanishes on this set (iff f does it), then we can replace the right-hand side of (4.3) by ε^{2} (or even ε^{4} if f belongs to $\left.W^{2, \infty}\left(0,1 ; L^{2}(0,1)\right)\right)$. When u_{0} does not vanish on $\{0,1\} \times(0,1)$, all we can prove is (4.3), because u_{0} is not a good approximation of u_{ε} near $\{0,1\} \times(0,1)$. Thus, we need to add some boundary layer terms to u_{0} in order to have a better approximation. We will see in the next proposition how these terms can be obtained by studying the asymptotic behavior of $u_{\varepsilon}-u_{0}$ near $\{0,1\} \times(0,1)$. For this purpose, we will introduce the dilatations $y_{1}=\frac{x_{1}}{\varepsilon}, y_{1}=\frac{1-x_{1}}{\varepsilon}$ for x_{1} close to $\{0\}$ and $\{1\}$, respectively, and then we will take into account estimate (4.3).

Proposition 4.3. Assume $f \in W^{1, \infty}\left(0,1 ; L^{2}(0,1)\right)$. Defining u_{ε} and u_{0} as the respective solutions of (4.1) and (4.2), we introduce $w_{\varepsilon}^{l}, w_{\varepsilon}^{r} \in H^{1}\left(\left(0, \frac{1}{\varepsilon}\right) \times(0,1)\right)$ by

$$
\begin{align*}
& w_{\varepsilon}^{l}\left(y_{1}, y_{2}\right)=u_{\varepsilon}\left(\varepsilon y_{1}, y_{2}\right)-u_{0}\left(\varepsilon y_{1}, y_{2}\right) \\
& w_{\varepsilon}^{r}\left(y_{1}, y_{2}\right)=u_{\varepsilon}\left(1-\varepsilon y_{1}, y_{2}\right)-u_{0}\left(1-\varepsilon y_{1}, y_{2}\right) \tag{4.9}
\end{align*}
$$

Then, taking w_{0}^{l}, w_{0}^{r} as the solutions of

$$
\begin{align*}
& \left\{\begin{array}{l}
w_{0}^{l} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla w_{0}^{l} \in L^{2}((0,+\infty) \times(0,1)), \quad w_{0}^{l}\left(0, y_{2}\right)=-u_{0}\left(0, y_{2}\right), \text { a.e. } y_{2} \in(0,1), \\
\\
\quad \int_{(0,+\infty) \times(0,1)} \nabla w_{0}^{l} \nabla v d x=0, \\
\forall v \text { with } v \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla v \in L^{2}((0,+\infty) \times(0,1)), \quad v\left(0, y_{2}\right)=0, \text { a.e. } y_{2} \in(0,1), \\
\\
\quad \int_{(0,+\infty) \times(0,1)}^{w_{0}^{r} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0,} \begin{array}{l}
\nabla w_{0}^{r} \in L^{2}((0,+\infty) \times(0,1)), \quad w_{0}^{r}\left(0, y_{2}\right)=-u_{0}\left(1, y_{2}\right), \text { a.e. } y_{2} \in(0,1), \\
\forall v \text { with } v \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla v \in L^{2}((0,+\infty) \times(0,1)), \quad v\left(0, y_{2}\right)=0, \text { a.e. } y_{2} \in(0,1),
\end{array}
\end{array}\right. \tag{4.10}
\end{align*}
$$

we have

$$
\begin{align*}
& w_{\varepsilon}^{l} \rightharpoonup w_{0}^{l}, \quad w_{\varepsilon}^{r} \rightharpoonup w_{0}^{r} \quad \text { in } H^{1}((0, T) \times(0,1)), \forall T>0 \tag{4.12}\\
& \nabla w_{\varepsilon}^{l} \chi_{\left(0, \frac{1}{\varepsilon}\right) \times(0,1)} \rightharpoonup \nabla w_{0}^{l}, \quad \nabla w_{\varepsilon}^{r} \chi_{\left(0, \frac{1}{\varepsilon}\right) \times(0,1)} \rightharpoonup \nabla w_{0}^{r} \quad \text { in } L^{2}((0,+\infty) \times(0,1))^{2} \tag{4.13}
\end{align*}
$$

Proof. Let us only prove the result for w_{ε}^{l}, the proof for w_{ε}^{r} is very similar.
Using the change of variables $y_{1}=\frac{x_{1}}{\varepsilon}, y_{2}=x_{2}$ in (4.3), we get

$$
\begin{equation*}
\int_{\left(0, \frac{1}{\varepsilon}\right) \times(0,1)}\left|\nabla w_{\varepsilon}^{l}\right|^{2} d y \leqslant C \tag{4.14}
\end{equation*}
$$

which joining to $w_{\varepsilon}^{l}\left(0, y_{2}\right)=-u_{0}\left(0, y_{2}\right)$ for a.e. $y_{2} \in(0,1)$ and $w_{\varepsilon}^{l}=0$ on $\left(0, \frac{1}{\varepsilon}\right) \times\{0,1\}$, shows that w_{ε}^{l} is bounded in $L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right)$, for every $T>0$. Thus, extracting a subsequence if necessary, we deduce that there exists $w_{0}^{l} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap$ $H^{1}\left(0, T ; L^{2}(0,1)\right)$, for every $T>0$, with $w_{0}^{l}\left(0, y_{2}\right)=-u_{0}\left(0, y_{2}\right)$ for a.e. $x_{2} \in(0,1)$, such that the first assertion of (4.12) holds. From (4.14), we also have that ∇w_{0}^{l} belongs to $L^{2}((0,+\infty) \times$ $(0,1))^{2}$ and that the first assertion of (4.13) holds. Once we prove that w_{0}^{l} satisfies (4.10), we will deduce by uniqueness that there is not necessary to extract any subsequence.

Now, for $v \in C_{c}^{\infty}((0,+\infty) \times(0,1))$, and $\varepsilon>0$ small enough, we take v_{ε} given by

$$
v_{\varepsilon}\left(x_{1}, x_{2}\right)=v\left(\frac{x_{1}}{\varepsilon}, x_{2}\right), \quad \text { a.e. }\left(x_{1}, x_{2}\right) \in(0,1)^{2}
$$

as test function in the difference of (4.1) and (4.2). This gives

$$
\begin{aligned}
\int_{(0,+\infty) \times(0,1)} \nabla w_{\varepsilon}^{l} \nabla v d y & =\varepsilon \int_{(0,1)^{2}} \frac{\partial\left(u_{\varepsilon}-u_{0}\right)}{\partial x_{1}} \frac{\partial v_{\varepsilon}}{\partial x_{1}} d x+\frac{1}{\varepsilon} \int_{(0,1)^{2}} \frac{\partial\left(u_{\varepsilon}-u_{0}\right)}{\partial x_{2}} \frac{\partial v_{\varepsilon}}{\partial x_{2}} d x \\
& =-\varepsilon \int_{(0,1)^{2}} \frac{\partial u_{0}}{\partial x_{1}} \frac{\partial v_{\varepsilon}}{\partial x_{1}} d x \rightarrow 0 .
\end{aligned}
$$

Since the support of v is compact, we can pass to the limit in ε to deduce

$$
\int_{+\infty) \times(0,1)} \nabla w_{0}^{l} \nabla v d y=0, \quad \forall v \in C_{c}^{\infty}((0,+\infty) \times(0,1))
$$

Using that $C_{c}^{\infty}((0,+\infty) \times(0,1))$ is dense in the space of $v \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap$ $H^{1}\left(0, T ; L^{2}(0,1)\right)$, for every $T>0$, such that $v=0$ on $\{0\} \times(0,1), \nabla v \in L^{2}((0,+\infty) \times(0,1))^{2}$, endowed of the norm $\|v\|=\|\nabla v\|_{L^{2}((0,+\infty) \times(0,1))^{2}}$ we then get that w_{0}^{l} is the solution of (4.10).

Remark 4.4. Proposition 4.3 gives the approximations

$$
u_{\varepsilon}(x)-u_{0}(x) \sim w_{0}^{l}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right), \quad u_{\varepsilon}(x)-u_{0}(x) \sim w_{0}^{l}\left(\frac{1-x_{1}}{\varepsilon}, x_{2}\right)
$$

near $\{0\} \times(0,1)$ and $\{1\} \times(0,1)$, respectively. Usually (see, e.g., $[1,5,8,9]$), in order to obtain this type of asymptotic development, the boundary layer terms w_{0}^{l}, w_{0}^{r} are searched to have a derivative with an exponential decay at infinity. But the above proof shows that the error estimate (4.3) and the changes of variables $y_{1}=\frac{x_{1}}{\varepsilon}$ and $y_{1}=\frac{1-x_{1}}{\varepsilon}$ give that the natural space is composed by functions with gradient in L^{2}. The results of the previous section prove that the solutions of (4.10) and (4.11) have a gradient which decreases exponentially to zero and then, the equivalence with the classical choice.

To finish this section let us now use the above results to obtain an asymptotic expansion of arbitrary order of the solutions of (4.1) and in particular, to see how using w_{0}^{l} and w_{0}^{r}, we can improve the approximation given by of u_{ε} given by u_{0}. This will be a consequence of the following lemma.

Lemma 4.5. For $f \in W^{1, \infty}\left(0,1 ; L^{2}(0,1)\right)$, we consider $u_{\varepsilon}, u_{0}, w_{0}^{l}$ and w_{0}^{r} the respective solutions of (4.1), (4.2), (4.10), (4.11). Also, we define $z_{\varepsilon}^{0} \in H^{1}\left((0,1)^{2}\right)$ by

$$
\begin{equation*}
z_{\varepsilon}^{0}\left(x_{1}, x_{2}\right)=u_{0}(x)+w_{0}^{l}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right)+w_{0}^{r}\left(\frac{1-x_{1}}{\varepsilon}, x_{2}\right) \quad \text { in }(0,1)^{2}, \tag{4.15}
\end{equation*}
$$

and $\hat{u}_{\varepsilon}^{0} \in H_{0}^{1}\left((0,1)^{2}\right)$ as the solution of

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \frac{\partial^{2} \hat{u}_{\varepsilon}^{0}}{\partial x_{1}^{2}}-\frac{\partial^{2} \hat{u}_{\varepsilon}^{0}}{\partial x_{2}^{2}}=f-\varepsilon^{2} \frac{\partial^{2} u_{0}}{\partial x_{1}^{2}} \quad \text { in }(0,1)^{2} \tag{4.16}\\
\hat{u}_{\varepsilon}^{0}=0 \quad \text { on } \partial(0,1)^{2}
\end{array}\right.
$$

Then, there exist $C, \lambda>0$ such that

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(z_{\varepsilon}^{0}-\hat{u}_{\varepsilon}^{0}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(z_{\varepsilon}^{0}-\hat{u}_{\varepsilon}^{0}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C e^{-\frac{\lambda}{\varepsilon}} . \tag{4.17}
\end{equation*}
$$

Proof. From (4.10) and (4.11), the functions w_{0}^{l}, w_{0}^{r} satisfy the equations

$$
-\Delta w_{0}^{l}=-\Delta w_{0}^{r}=0 \quad \text { in }(0,+\infty) \times(0,1)
$$

in the sense of the distributions. Thus, from (4.2), the function z_{ε}^{0} satisfies

$$
\begin{equation*}
-\varepsilon^{2} \frac{\partial^{2} z_{\varepsilon}^{0}}{\partial x_{1}^{2}}-\frac{\partial^{2} z_{\varepsilon}^{0}}{\partial x_{2}^{2}}=f-\varepsilon^{2} \frac{\partial^{2} u_{0}}{\partial x_{1}^{2}} \quad \text { in }(0,1)^{2} \tag{4.18}
\end{equation*}
$$

in the sense of the distributions.
Since w_{0}^{l}, w_{0}^{r} satisfy (4.10), (4.11), we can apply Corollary 2.2 and Proposition 2.5 to deduce

$$
\begin{aligned}
& \int_{(T,+\infty) \times(0,1)}\left(\left|w_{0}^{l}\right|^{2}+\left|\nabla w_{0}^{l}\right|^{2}\right) d x \leqslant C e^{-\lambda T}, \\
& \int_{(T,+\infty) \times(0,1)}\left(\left|w_{0}^{r}\right|^{2}+\left|\nabla w_{0}^{r}\right|^{2}\right) d x \leqslant C e^{-\lambda T}, \quad \forall T>0 .
\end{aligned}
$$

Thus, taking $\psi \in C^{\infty}([0,1])$ such that $\psi(s)=1$ in $\left[0, \frac{1}{2}\right], \psi(1)=0$, and defining $\check{z}_{\varepsilon}^{0} \in H^{1}\left((0,1)^{2}\right)$ as

$$
\check{z}_{\varepsilon}^{0}(x)=u_{0}(x)+w_{0}^{l}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right) \psi\left(x_{1}\right)+w_{0}^{r}\left(\frac{1-x_{1}}{\varepsilon}, x_{2}\right)\left(1-\psi\left(x_{1}\right)\right),
$$

we get

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(\check{z}_{\varepsilon}^{0}-z_{\varepsilon}^{0}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(\check{z}_{\varepsilon}^{0}-z_{\varepsilon}^{0}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C e^{-\frac{\lambda}{\varepsilon}} \tag{4.19}
\end{equation*}
$$

From this inequality and (4.18), we conclude that $\check{z}_{\varepsilon}^{0}$ satisfies the equation

$$
\begin{equation*}
-\varepsilon^{2} \frac{\partial^{2} z_{\varepsilon}^{0}}{\partial x_{1}^{2}}-\frac{\partial^{2} \check{z}_{\varepsilon}^{0}}{\partial x_{2}^{2}}=f-\varepsilon^{2} \frac{\partial^{2} u_{0}}{\partial x_{1}^{2}}+r_{\varepsilon} \quad \text { in }(0,1)^{2} \tag{4.20}
\end{equation*}
$$

where $r_{\varepsilon} \in H^{-1}\left((0,1)^{2}\right)$ is such that

$$
\left|\left\langle r_{\varepsilon}, v\right\rangle\right| \leqslant C e^{-\frac{\lambda}{\varepsilon}}\left(\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial v}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial v}{\partial x_{2}}\right|^{2} d x\right)^{\frac{1}{2}}, \quad \forall v \in H_{0}^{1}\left((0,1)^{2}\right)
$$

where C and λ do not depend of v. Taking the difference of (4.20) and (4.16), we deduce that (4.31) holds with z_{ε}^{0} replaced by $\check{z}_{\varepsilon}^{0}$ and then, from (4.19), we conclude (4.31).

As an application of Lemma 4.5, we have
Theorem 4.6. For $f \in W^{2 k+2, \infty}\left(0,1 ; L^{2}(0,1)\right), k \in \mathbf{N}$, we take $u_{0} \in W^{2 k+2, \infty}\left(0,1 ; H^{2}(0,1)\right)$ as the solution of (4.2), then for $j \in\{1, \ldots, k\}$ we define $u_{j} \in W^{2(k-j)+2, \infty}\left(0,1 ; H^{2}(0,1)\right)$ as the solution of

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} u_{j}}{\partial x_{2}^{2}}=\frac{\partial^{2} u_{j-1}}{\partial x_{1}^{2}} \quad \text { in }(0,1), \tag{4.21}\\
u_{j}\left(x_{1}, 0\right)=u_{j}\left(x_{1}, 1\right)=0, \text { a.e. } x_{1} \in(0,1),
\end{array}\right.
$$

and for $j \in\{0, \ldots, k\}$, we define w_{j}^{l}, w_{j}^{r} as the solutions of

$$
\begin{align*}
& \left\{\begin{array}{l}
w_{j}^{l} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla w_{j}^{l} \in L^{2}((0,+\infty) \times(0,1)), \quad w_{j}^{l}\left(0, y_{2}\right)=-u_{j}\left(0, y_{2}\right), \text { a.e. } y_{2} \in(0,1), \\
\\
\quad \int_{(0,+\infty) \times(0,1)} \nabla w_{j}^{l} \nabla v d x=0, \\
\forall v \text { with } v \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla v \in L^{2}((0,+\infty) \times(0,1)), \quad v\left(0, y_{2}\right)=0, \text { a.e. } y_{2} \in(0,1),
\end{array}\right. \tag{4.22}\\
& \left\{\begin{array}{l}
w_{j}^{r} \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla w_{j}^{r} \in L^{2}((0,+\infty) \times(0,1)), \quad w_{j}^{r}\left(0, y_{2}\right)=-w_{j}\left(1, y_{2}\right), \text { a.e. } y_{2} \in(0,1), \\
\quad \int_{(0,+\infty) \times(0,1)} \quad \nabla w_{j}^{r} \nabla v d x=0, \\
\forall v \text { with } v \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap H^{1}\left(0, T ; L^{2}(0,1)\right), \forall T>0, \\
\nabla v \in L^{2}((0,+\infty) \times(0,1)), \quad v=0 \text { on }\{0\} \times \omega,
\end{array}\right. \tag{4.23}
\end{align*}
$$

and z_{ε}^{j} by

$$
\begin{equation*}
z_{\varepsilon}^{j}\left(x_{1}, x_{2}\right)=u_{j}(x)+w_{j}^{l}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right)+w_{j}^{r}\left(\frac{1-x_{1}}{\varepsilon}, x_{2}\right) \quad \text { in }(0,1)^{2} . \tag{4.24}
\end{equation*}
$$

Then, there exists $C>0$ such that if u_{ε} is the solution of (4.1), we have

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\sum_{j=0}^{k} \varepsilon^{2 j} z_{\varepsilon}^{j}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\sum_{j=0}^{k} \varepsilon^{2 j} z_{\varepsilon}^{j}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C \varepsilon^{4 k+4} \tag{4.25}
\end{equation*}
$$

Proof. We denote $u_{\varepsilon}^{0}=u_{\varepsilon}$, and $\hat{u}_{\varepsilon}^{0}$ as the solution of (4.16), then for $j \in\{1, \ldots, k+1\}$, we define $u_{\varepsilon}^{j}, \hat{u}_{\varepsilon}^{j}$ as the respective solutions of

$$
\begin{align*}
& \left\{\begin{array}{l}
-\varepsilon^{2} \frac{\partial^{2} u_{\varepsilon}^{j}}{\partial x_{1}^{2}}-\frac{\partial^{2} u_{\varepsilon}^{j}}{\partial x_{2}^{2}}=\frac{\partial^{2} u_{j-1}}{\partial x_{1}^{2}} \text { in }(0,1)^{2}, \\
u_{\varepsilon}^{j}=0 \text { on } \partial(0,1)^{2},
\end{array}\right. \tag{4.26}\\
& \left\{\begin{array}{l}
-\varepsilon^{2} \frac{\partial^{2} \hat{u}_{\varepsilon}^{j}}{\partial x_{1}^{2}}-\frac{\partial^{2} \hat{\boldsymbol{u}}_{\varepsilon}^{j}}{\partial x_{2}^{2}}=\frac{\partial^{2} u_{j-1}}{\partial x_{1}^{2}}-\varepsilon^{2} \frac{\partial^{2} u_{j}}{\partial x_{1}^{2}} \quad \text { in }(0,1)^{2}, \\
u_{\varepsilon}^{j}=0 \quad \text { on } \partial(0,1)^{2} .
\end{array}\right.
\end{align*}
$$

Taking the difference of (4.1) and (4.2) if $j=0$ or (4.26) and (4.27) if $j \geqslant 1$, we have

$$
\begin{equation*}
\frac{u_{\varepsilon}^{j}-\hat{u}_{\varepsilon}^{j}}{\varepsilon^{2}}=u_{\varepsilon}^{j+1}, \quad \forall j \in\{0, \ldots, k\} \tag{4.28}
\end{equation*}
$$

and then we get

$$
\begin{equation*}
u_{\varepsilon}=u_{\varepsilon}^{0}=\sum_{j=0}^{k} \varepsilon^{2 j} \hat{u}_{\varepsilon}^{j}+\varepsilon^{2 k+2} u_{\varepsilon}^{k+1} \tag{4.29}
\end{equation*}
$$

Moreover, using $\hat{u}_{\varepsilon}^{k+1}$ as test function in (4.26), with $j=k+1$, we have

$$
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}^{k+1}}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial u_{\varepsilon}^{k+1}}{\partial x_{2}}\right|^{2} d x \leqslant C
$$

So, from (4.29), we get

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\sum_{j=0}^{k} \varepsilon^{2 j} \hat{u}_{\varepsilon}^{j}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(u_{\varepsilon}-\sum_{j=0}^{k} \varepsilon^{2 j} \hat{u}_{\varepsilon}^{j}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C \varepsilon^{4 k+4} \tag{4.30}
\end{equation*}
$$

From Lemma 4.5 applied to problem (4.1) if $j=0$ or problem (4.26) if $j \in\{1, \ldots, k\}$, we also know that there exist $C, \lambda>0$ such that

$$
\begin{equation*}
\varepsilon^{2} \int_{(0,1)^{2}}\left|\frac{\partial\left(z_{\varepsilon}^{j}-\hat{u}_{\varepsilon}^{j}\right)}{\partial x_{1}}\right|^{2} d x+\int_{(0,1)^{2}}\left|\frac{\partial\left(z_{\varepsilon}^{j}-\hat{u}_{\varepsilon}^{j}\right)}{\partial x_{2}}\right|^{2} d x \leqslant C e^{-\frac{\lambda}{\varepsilon}}, \tag{4.31}
\end{equation*}
$$

for every $j \in\{0, \ldots, k\}$. Thus, taking into account (4.30) we get (4.25).

References

[1] A. Bensoussan, J.L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., vol. 5, North-Holland, Amsterdam, 1978.
[2] J. Casado-Díaz, The two-scale convergence method applied to the asymptotic behavior on the boundary of periodic homogeneization problems, in press.
[3] J. Casado-Díaz, J.D. Martín-Gómez, J. Couce-Calvo, A rigorous asymptotic development for a control problem in a thin domain, in press.
[4] J. Casado-Díaz, F. Murat, Asymptotic expansion and error estimates for diffusion problems in thin domains, in press.
[5] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
[6] J. Leray, J.L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965) 97-107.
[7] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
[8] J.L. Lions, Perturbations singulières dans les problèmes aux limites et en côntrole optimal, Lecture Notes in Math., vol. 323, Springer, Berlin, 1973.
[9] J.L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, Sci. Press/Gordon \& Breach, Beijing/New York, 1981.
[10] L. Tartar, personal communication.
[11] G. Weiske, On some problems related to linear elasticity, optimal design and homogenisation, PhD thesis, Carnegie Mellon Univ., 1997.

[^0]: ty This work has been partially supported by the projects BFM 2002-00672 of the "Ministerio de Ciencia y Tecnología" of Spain and FQM309 of the "Junta de Andalucía."

 E-mail address: jcasadod@us.es.

