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Abstract

We study the asymptotic behavior at infinity of the solutions of a nonlinear elliptic system posed in a
cylinder of infinite length. The problem is written in a variational formulation, where we ask the derivative
of the solutions to be in L”. We show that an exponential decay at infinity for the second member implies
exponential decay for the derivative of the solutions. We also give an application of this result to the study
of boundary layers problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Our interest in the present paper is to prove the exponential decay at infinity of the derivative of
the solutions of some nonlinear elliptic problems in unbounded domains. This type of problems
usually appears in the study of boundary layers (see, e.g., [1-4,8,9]).

We will consider an infinite cylinder £2 = (0, +00) X w, with @ C RY-1 N >2, abounded
connected open set. For a Carathéodory function a : 2 x RM x R¥*N _ RMXN ‘guch that there
exist p € (1, +00), o, B > 0 with
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a(x,s,&):£ > als)?, |a(x,s,&)|<BIEIP!, VseRM, ve e RN ae xe,
(1.1

and a function G € L?' (2)M*VN let us study the behavior at infinity of a solution of the nonlinear
variational system

uelPO,T; V)NWLP(0,T; LP(w)M), YT >0, DueLP(2)M*N,
[(a(x, u, Du) — G) :Dvdx =0,

2

Yo withv € LP(0, T; V) N WP (0, T; LP (0)M), VT >0,

Dve LP(2)M*N y=0o0n{0} x w.

(1.2)

Here, the space V is a subspace of W7 (w) which satisfies one of the following hypotheses:

(i) There exists a constant Cy > 0 such that
lzllLrym < CvlIDzllppymxn, VzeV. (1.3)

(i) The space V contains the constant functions in @ and there exists a constant Cy > 0 such
that

1
z—— [ zdx’

|a)| < CV ||DZ||L1)((U)M><N, VzeV. (14)
[0

LP ()M

The variational formulation (1.2) essentially means that u satisfies a nonlinear partial differen-
tial system in £2. Indeed, if we assume that C2° (w)M is contained in V (which is not necessary),
we deduce from (1.2) that, in the sense of the distributions, u satisfies the equation

—diV(d(x,u,Du)—G):O in £2. (1.5)

The choice of V permits to consider several boundary conditions on (0, +00) X dw. In this
way, the following choices work well:

- V={veWh?()"N: v=00n I}, where I is a subset of dw of positive measure. Assuming
w Lipschitz if I" # dw, we know from the Poincaré inequality that (i) holds, and (1.2) gives
that u satisfies the Dirichlet condition # =0 on (0, +00) x I and the Neumann condition
(a(x,u, Du) — G(x))v =0 on (0, +00) x (dw \ I'), where v denotes the unitary outside
normal to £2 on (0, +00) X dw.

- V =W!hP(w)N. Assuming w Lipschitz, we know from the Poincaré—Wirtinger inequality
that (ii) is satisfied, and (1.2) gives that u satisfies the Neumann condition (a(x, u, Du) —
G(x))v=0o0n (0, 400) x dw, with v as above.

— o is a parallelotop and V is composed by the restrictions to w of the functions in
Wl})’cp (RN - l) which are periodic of period w. Then, as above, we deduce from the Poincaré—
Wirtinger inequality that (ii) is satisfied, and assuming G and a(.,s,§), with (s,§) €
RV x RM*N extended by periodicity to the whole of R¥=1, (1.2) gives that u is a solu-
tion in the sense of the distributions of the problem

—diV(a(x, u, Du) — G) =0 in (0, 400) x RN,

u is periodic of period w on {T} x R¥N~!, vT > 0.



J. Casado-Diaz / J. Math. Anal. Appl. 328 (2007) 151-169 153

We remark that (1.2) does not impose any boundary condition for # on {0} x w. This is due
to the fact that we are interested in the behavior of # when x; tends to oo and thus, its value on
x1 = 0 is not important.

Denoting for T > 0, 27 = (T, +00) X w, our aim in the present paper is to show the following
result (see Corollary 2.2):

Theorem 1.1. There exist two constants C,y > 0 (which only depend on Cy,«, B, p, N) such
that if G satisfies

/|G|P’dx<Ke—”, VT > 0, (1.6)
fr

for some constants K, ). > 0, then u satisfies

/|Du|"dx< (f|Du|”dx+CK)e_VT+CKEM,(T), (1.7)
Qr 2

with E; , (T) given by

1 1
e ifysa, Te T ify =2, e’ ify <,
y—A A=y

i.e., assuming exponential decay for G at infinity, we deduce exponential decay for Du at in-
0

finity. This implies (see Propositions 2.3 and 2.5) that for every i € (0, 1), e?”"! Du belongs to

LP(2)M*N and that there exists u; € RM (the limit of u at infinity), with u; = 0 if (i) is satisfied,

such that

_KkT
”u - ul”L”({T}Xw)M < Ce » , VT > 0.

Theorem 1.1 will be in fact a consequence of another result (see Theorem 2.1), which we
think it is interesting by itself, showing that if G is justin L” (£2)M*¥  then

T
/|Du|de< </|Du|de+c/|G|P’dx)eVT+C//eWT)|G|P’dxdt,
2r 2 2 02

which gives an estimate of how Du decreases to zero at infinity depending on the decreasing
of G.

The above results are given in Section 2. In Section 3, we show how Theorem 1.1 permits
to deduce the existence of solutions of some nonlinear elliptic systems posed in unbounded
cylinders, such that its gradient exponentially decreases to zero at infinity. For this purpose,
besides of (1.1) we will assume that @ is monotone in its last variable, i.e., it satisfies

(ax,s,&1) —a(x,s,£)): (E1—£&) >0, Vs eRY, V&, 6 e RM*N ae x e,

and that V is closed in W7 (w)™ . Then, using the theory of monotone operators of J. Leray
and J.L. Lions [6,7], we prove the existence of a solution u for problem (1.2). It can be taken
also satisfying a boundary condition (Dirichlet, Neumann, ...) on {0} x £2 (see Proposition 3.1).
From Theorem 1.1 this function u is such that there exists u > 0, with

"1 Du e LP(2)M*N, (1.8)
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The existence of solutions of partial differential problems which have an exponential decay
at infinity, in the sense that (1.8) is satisfied, has also been considered by other authors (see,
e.g., [1,5,9-11]), specially in the case of linear problems. In particular, we refer to L. Tartar (see,
e.g., [9]), who solved this problem for linear operators by introducing an original generalization
of the Lax—Milgram theorem. We remark that our strategy in the present paper is different. At the
place of directly look for a solution of (1.5) which satisfies (1.8), we just search for functions u
such that Du € L?((0, +00) x w)M*VN  whose existence is classical, and then we prove that they
have exponential decay. A result in this sense has also been obtained by L. Tartar and G. Weiske
[10,11] in the case of linear operators.

The existence of solutions of elliptic partial differential problems in unbounded domains,
having an exponential decay at infinity, is a classical problem in the study of boundary layer
problems. In Section 4 we give a simple example which shows that a problem like (1.2) arises in
a natural way in the study of boundary layers. Thus, it shows how the results of the present paper
can be applied. More complex situations can be found, for example, in [2—4].

2. Exponential decay results

We will study in this section the decay at infinity of the derivative of the solutions of the
nonlinear system (1.2).

We take p > 1, and p’ = %

We denote by w C RY-!1 N > 2, a connected bounded open set, and by V a subspace of
WLP (@)™ such that the hypotheses (i) or (ii) of the Introduction are satisfied.

For every T > 0, we define 27 = (T, +00) X w. In the case T = 0, we simplify the notation
by writing £2 = (0, +00) x w.

For x € £2, we will use the decomposition x = (x1, x’), with x1 € (0, +00), x’ € w.

The first vector of the usual basis of RV is denoted by e;.

The orthogonal product of two matrices A, B € RM¥*V is written as A : B.

Along the present section, a:2 x RM x RM*N _ RM*N 5 a Carathéodory function
(a = a(x,s, &) measurable in x and continuous in s, &), which satisfies that there exist «, 8 > 0,
such that for every £ e RY*V every s € RM, and a.e. x € £2, we have

algl” <a(x,s,§):&, 2.1
la(x,s, &) < BlEIP™". 2.2)

With these assumptions, the following theorem estimates the decay at the infinity of the gradient
of the solution of (1.2) depending of the decay of G.

Theorem 2.1. Assume G € L”,(.Q)MXN, and let u be a solution of the variational problem (1.2).
Then, for

a(p—1

T 23

we have
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C ,
/|Du|pdx</|Du|pdxe_VT RAa V (/IGIP dxe™V —/IGlp dx)
o 2 O"Bp Qr

T

+y( 1 - H)ﬁp)//ey(r DIGIP'dxdt, VT >0.  (24)

0 £

Proof. Taking the function x — u(x)@(x1), with ¢ € C2°(0, +00), as test function in (1.2), we

have
400
/ </(a(x, u, Du) — G) : Du dx’)godxl

0 w

+o00
d
+ / </(a(x,u,Du)—G):u®eldx’)d—(pdxl =0,
X1

0 w
for every ¢ € C2°, which, by definition of weak derivative, shows

%( / (a(x, u, Du) — G) ‘u ®e1dx/> = / (a(x, u, Du) — G) ‘Dudx', (2.5)
1

{x1}xw {x1}xw

in the sense of the distributions in (0, +00). On the other hand, defining A : (0, +00) — R by

A(xy) = /(a(x,u,Du)—G):Dudx,

24

we also have

dA
—(x1)=— / (a(x, u, Du) — G) : Dudx’ in the sense of the distributions.

{x1}xw
So, from (2.5) we deduce there exists C € R, such that for a.e. x; € (0, +00), we have
/ (a(x, u, Du) — G) :Dudx + / (a(x, u, Du) — G) u®@erdx’ =C. (2.6)
2y, {x1}xw

If (i) is satisfied, then by Holder’s inequality, (1.3) and (2.2), the second term of (2.6) satisfies

/ (a(x, u, Du) — G) ‘u@erdx’

{x1}xw

SCv[BIDUP ™ +1GI L 11y canymoen I P Lo sty
< CV (ﬂ“Du”Lp({Xl}XCU)MXN + ”G”LP/({XI}XQ))MXN ||Du||LP({x1}Xw)MXN)’ (27)

fora.e. x; > 0.
If (ii) is satisfied, we consider ¥ € L” (0, +00)™, and then we define v : 2 — RM by

v(x)sz(s)ds, Vx € £2.
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Since the constant functions belong to V, we can take v as test function in (1.2). This gives

/(a(x,u,Du)—G):lﬂ@mdx:O,
2

which by the arbitrariness of ¥, shows

/ (a(x,u, Du) — G)j ldx/ =0, Vje{l,...,M}, ae.x; €(0,400) (2.8)
{x1}xew

(the index j, 1 denotes the corresponding component). Thus, defining

1
i(x)) = @l / udx', ae.x; € (0,+00),
{x1}xw

we get

f(a(x,u,Du)—G):u@eldxzf(a(x,u,Du)—G):(u—ﬁ)@eldx.

x| -Qxl

So, by using (ii) at the place of (i) we deduce that (2.7) also holds in this case.
Integrating (2.6) with respect to x in (7, T + 1), for T > 0, and taking into account (2.7), we
easily deduce

IC| < /“a(x,u, Du) — G‘|Du|dx
2r
+ CV (‘B”DM ”i”((T,T—i—])Xw)MXN + ||G||LP/((T)T+])XQ))MXN ”Du||LI7((T,T+1)><CU)MXN)'
Since Du isin L?(£2)M*N and G is in L”/(.Q)MXN, the right-hand side of this inequality tends
to zero when 7T tends to infinity. So, C = 0. Returning to (2.6) and using (2.1) and (2.7) we
deduce

p
a”Du”Ll’(Qx] )M><N < ”G”L]J,(_QX])MXN ||DM||L[)(_QX1)M><N

+ Cv (BlIDull}

LP ({x1) xaw)M*N
+ ||G||L’)/({X1}X(L))MXN ”DM ||L”({X1}XC{))MXN)’

for a.e. x; > 0, which, by Young’s inequality, gives

1
”Du”L!’(Q YMXN < CVﬂ( )”Du”LI’({Xl}Xw)MXN

+%< LY (2 yw ﬁp ”G”Zn ({xl}waxN)’
a.e. x; > 0.
So, denoting
V() = 1Dull ]y g @(xl)—nGuL,,(Q )
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and taking into account the definition of y, we get
1 C
W/—i—yd/gZ( — & — ‘1/ @’), a.e. in (0, +00),
* \grT BT

and then, multiplying by ¢”*!, we obtain

Ay < V(LY g - YEV D (g,

dx; o\ 51 =1 =1 dx]

ar Br afr

Integrating this inequality in (0, T'), 7 > 0, we deduce (2.4). O

From Theorem 2.1, we easily obtain the following corollary which proves that exponential
decay for G implies exponential decay for Du. Theorem 1.1 in the Introduction, follows from
this result.

Corollary 2.2. Let G be in LY (.Q)MXN, such that there exist K, A > 0, which satisfy

/ IGIP dx < Ke™*T, VT >0, (2.9)
fr

and let u be a solution of (1.2). Then, we have

/|Du|de</|Du|dee—VT+@ |G|P dxe T
2r 2 ap =t o
+Ky< 1,+L1,>EM,(T), VT >0, (2.10)
o " (p+1pr )

where y is defined by (2.3) and E, ,,(T) is given by
ﬁe‘” ify >\,
EryM=1Te?T  ify =1,

ﬁe’yT ify <A.

Proof. The proof is a straightforward consequence of (2.4) and (2.9). O

Corollary 2.2 gives a sufficient condition to have an exponential decay for the derivative of
the solutions of (1.2), in the sense that there exist K, A > 0, such that

/ |Du|? dx < I?e_j‘T, VYT > 0.
fr

However, in the study of boundary layers (see, e.g., [1,5,9]), it is more usual to search for func-
- i
tions u such that there exists A > 0 with e»*' Du € LP(2)M*N | Applying the next result to the
function & given by
h(x)) = / |Dul? dx’, a.e.x; >0,
{x1}xw

we get that both definitions of exponential decay are in fact equivalent.
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Proposition 2.3. If h € L' (0, +00) is such that there exists A > 0, with e**'h € L'(0, 400), then
there exists K > 0 such that

+00
/ |h|dx; < Ke T, VT >0. (2.11)
T

Reciprocally, if h satisfies (2.11), then for every € (0, 1) we have

+00 —+00 K..

= A
/|h|e“1 dx; < / st + 2
0 0

< 4o00. 2.12)

A =2

Proof. If /1 is in Ll(O, +00), and there exists A > 0, with eMipell (0, 400), we just use

+o00 +00
/|h|dx1<fe“l|h|dx1e—”, VT > 0,
T T

to deduce (2.11).
For the reciprocate, we take /& such that there exist K, A > 0 which satisfy (2.11). We define
H : (0,4+00) — R by

+00
H(x1)=/|h|ds, Vx; >0,

X1

and we take A € (0, 1), T > 0. Taking into account |z| = —H’, a.e. in (0, +00), an integration
by parts gives

T T T
f|h|eix1 dx =—/H/eix1 dxy = H(0) — H(T)e'T +i/Heixl dx.
0 0 0

Using (2.11) in this inequality and then taking the limit when 7 tends to infinity, we de-
duce (2.12). O

Remark 2.4. Given f : 2 — R such that there exists A > 0, with "' f € LP' ()M, it is
easy to check that the matrix function G : 2 — RM*N defined by

+00
G(X)=/f(t,x’)®eldt, ae x €82,

X1

A , N
is such that e 7" G belongs to L? (£2)M*N  for every i € (0, 1), and satisfies

/G:Dvdx:ffvdx,
Q

2
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when v e WhP((0, T) x w)M, forevery T > 0, v =0 on {0} X w, and Dv € L?(2)M*N _ Thus,
if u is a solution of

ueLPO,T;V)NWP(0,T; LP(0)™), VT >0, Du e LP(2)M*N,

/a(x,u,Du) : Dvdx:/fvdx,

2 2

Yve LP(0,T; V)NWLP(0, T; LP(0)M), VT > 0,
v=0o0n{0} x w, DveLP(2)M*N,

we get that u is also a solution of (1.2), and by an easy application of Proposition 2.3, we can
apply Corollary 2.2 to deduce an exponential decay for the derivative of u. This permits to apply
our results to a partial differential system of the form

—diva(x,u, Du)=f in £2.

To finish this section let us now prove that the exponential decay for Du gives an exponential
decay of u to a constant.

Proposition 2.5. Let u be in LP(0,T; V) N WLP(0, T; LP (w)™), for every T > 0, such that
A

there exists . > 0, with e?™ Du € LP(2)M*N | then, there exists the “limit” u; € RM of u at

infinity, which satisfies

1
p—1\r 1 L _kT
||U_Ml||Lp({T}><w)M < (Cv+2<T) m)“ePXIDuHLP(Q)MXNe P, (2.13)

for every T > 0. Moreover, if V satisfies (1.3), then u; = 0.

Proof. Forevery T, S > 0, with T < S, we have

/|u(s,x’) —u(T, x")|" dx’ =/

w w
p
</</epl1“ dx1> (/e)‘xl aa_u dxl) dx’,
1
w T T
which gives
1

p—1\?» _ip, 2

fu(S, ) —u(T, ‘)”L”@JWS(T) e 7 ler™ Dul| g - (2.14)

Thus, we get

p—1

1
— A
HM(T, -)”Lp(w)M g ||u(S, ')HL/’(Q))M—i_ <T>’ e pTHe‘DXIDuHLp(QT)MXN’

which integrating with respect to S in (7', T + 1) proves

Pk Ay
e 7 ||eP "'Du

—1
||'4(T» ')”Lp(w)M < ”u”LP(QT)M + (PT> ||Lp(_QT)M><N- (2.15)
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If V satisfies (1.3), the above inequality shows

1
—1\7\ _2 L
(T | Loy < ( Cv + PZ2)")e ’A’T”J’MD“”LPQ MXN >
@) . )

and then we deduce (2.13) with u; = 0.
If V satisfies (1.4), we can apply (2.15) with u replaced by the function

1
erHu(x)—ﬁ / udy,
®

{x1}xw

which implies as above

1
u(T,.) — ol / udy

{T}xw

L”(a))M

!
—1\7\ _2 A
< (Cv-l-(pT)P )e ;T”epx'Du”L,,(_Qr)MxN. (2.16)

On the other hand, applying (2.14) with u replaced by the function

1
XEN > — / udy,
2]
{x1}xw

we have

1
HE / udy/—m / udy
{Txw

1 4
I
{S}xw

—1 _h X
< (pT>p e ZT”e;XIDu“Lp(QT)Mst

LP ()M
forevery T, S > 0, S > T. This means that the application

1
T €(0,4+00) > — / udy
o]

{T}xw

has a limit u; at infinity. Taking the limit when S tends to infinity in the above inequality, we then

get
1
u — — / udy
|l
{Tixw

which joining to (2.16) proves (2.13). O

1
-1\ _2 X
<(55) e Dul gy e

LP ()M

3. Existence of solutions with gradient exponentially decreasing to zero

As a consequence of the results obtained in the previous section, let us now give an existence
result for the solutions of nonlinear elliptic systems in unbounded cylinders, such that its gradient
exponentially decreases to zero.

We start with the following result about the existence of solution for problem (1.2).
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Proposition 3.1. We consider a bounded open set © C RN\, N > 2. Then, for p > 1, we take
a Carathéodory function a : 2 x RN x RM*N — RM*N \which satisfies hypotheses (2.1), (2.2)
and the following monotonicity condition

(a(x,s,&1) —a(x,5,6))(E —&) >0, VseRY, v& 65 eRYN aexen2, 3.1
and a closed subspace V.C WLP(w)M. Then, for every G e LP/(.Q)MXN, and every
ug € LP(0, +o00; V)N Wl’p(O, +o00; LP(w)M), there exists a solution of the problem
weLlO,T;V)NWhP(0,T; LP(w)M), VT >0,

Du e LP(S)YM*N 4y =ugon {0} x w,

/(a(x,u,Du)—G):Dvdx:O, (3.2)
2

Vv withv e LP(0,T; V)N WP(0, T; LP (@)M), VT > 0,

DveLP(2)M*N — y=00n{0} x w.

Proof. We denote by W the space of v € L?(0, T; V)N W'P(0, T; L? (w)M), for every T > 0,
such that Dv € LP(2)M*N v =0 on {0} x w. This is a reflexive space endowed with the norm

Iollw = 1DVl sy, Yo e W,

We take A : W — W’ as the operator given by

(A(w), v)W,_W = /a(x, uo +w, D(ug + w)) :Dvdx, Yv,weW.
22

The operator A is well defined because a is a Carathéodory function, (2.2) and
Dug € LP(2)M*N which imply that a(x, ug+w, D(ug+w)) € LP (2)M*N foreveryw € W.
Defining then G € W’ by

g(v)=/G:Dvdx, Yve W,
2

problem (3.2) is equivalent to show the existence of w € W such that A(w) = G. Thus, it is
enough to show that A is surjective. For this purpose, we apply the Leray—Lions theory for
pseudomonotone problems (see [6,7]).

Clearly A is continuous because a is a Carathéodory function and (2.2).

By (2.1), the operator A satisfies

(A(), v)w'w
_ = +oo
Iollw—oo  Jlvllw
Thanks to the Rellich—-Kondrachov compactness theorem, the monotonicity property (3.1)
of a, and (2.2), it is easy to apply Minty’s rule to show that if v, is a sequence in W which
converges weakly in W to some v € W, and it is such that there exists A € W', with
A@y) = A in W', Timsup(A(v), v),, , < (A, 0)w w,
n—00 ’
then A(v) = A.
These properties of A imply that A is surjective (see [6,7]). O
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Remark 3.2. Proposition 3.1 shows the existence of a solution of problem (1.2) which satisfies
the Dirichlet boundary condition u = ug on {0} x £2. Analogously, we can prove the existence of
solution for other boundary conditions on {0} x §2, such as a Neumann or a Fourier condition.

As a consequence of Proposition 3.1, we have (we refer to [5,9—11] for related results in the
linear case)

Corollary 3.3. We consider a bounded open set © C RN ™1, N > 2. Then, for p > 1, we take a
Carathéodory function a : 2 x RM x RM*N _ RM*N \which satisfies hypotheses (2.1), (2.2)
and (3.1), and a closed subspace V.C WP (w)M. Also, we assume that one of the hypothe-
ses (1.3) or (1.4) hold. Then, for every G : 2 — RM*N  such that there exists A > 0 with

Py
-7 X1

e’ G e Lp/(.Q)MXN, and every ug € LP(0,4+00; V) N WLP (0, 400; LP (w)M), there exists
a solution of problem

uweLPO,T;V)NWP(0,T; LP(w)™), VT >0,

35 > 0, with e” "' Du e LP(2)™N | u = ug on {0} x o,
(3.3)

/(a(x, u, Du) — G) :Dvdx =0,

Q

Yv e C°(0, +o0; V).

Proof. It is enough to define u as the solution of (3.2) given by Proposition 3.1 and then to apply
Corollary 2.2 and Proposition 2.3. O

4. An example of application to the study of boundary layers

In this section, let us show with an example, how the results of the present paper apply to the
study of boundary layers problems. We will show that for this type of problems it is natural to
get with a variational equation with a similar structure to (1.2). To simplify the exposition, let us
consider the simple case of a linear singular perturbed equation in a square. Namely, let us study
the asymptotic behavior when ¢ tends to zero of the solutions of the partial differential problem

) u,  0%u,

=f in(0,1)?,
x?  9x3 ;o@D 4.1)

ue =0 ond(0, 1)2.
More complex applications can be found in [2—4].
Along this section, we denote by C and A, nonnegative generic constants which can change

from a line to another one, and which do not depend on €.
We start with the following result

Proposition 4.1. For every f € L>((0,1)?) the solution us of (4.1) converges strongly in
L2(O, 1; H(} (0, 1)) to the unique solution ug of

9%u

8x22

uo(x1,0) =ug(x1, 1) =0, a.e x1€(0,1).

=f in(0,1), 42
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Moreover, if f € W00, 1; L2(0, 1)) then there exists C > 0 such that

3(us — uo) | (e — uo) |?

22 / (g — uo) dx + / (ue — uo) dx < Ce. (4.3)

X1 X2
(0.1)2 (0.1)2
Proof. Taking u, as test function in (4.1), we get

du |* du, |*

&2 / Jhe dx + / Ote dx = / fuedx, 4.4)
8x1 X2

0,1)? (0,12 (0,12
which joining to the Poincaré inequality
1

1
2
2 dJu
/!Ms(X1,xz)| dX2<C/‘—g(x1,X2)
0x2
0 0

dx,, ae.x;€(0,1),

implies that the partial derivatives of u, satisfy the estimate

2
2

dx +
8/3X1x/

(0,1)2 (0,1)2

2
dx <C. (4.5)

ollg olg

dx2

In particular, u, is bounded in L2(O, 1; HO1 (0, 1)) and thus, up to a subsequence, there exists

ug € L2(O, 1; H(} (0, 1)) such that u, converges weakly in H(} (0, 1) to ug. Once we prove that ug

satisfies (4.2), we will deduce by uniqueness that it is not necessary to extract any subsequence.
Taking ¢ € C°(82), as test function in (4.1), we get

du, 9 du 9
£ / e 29 ax + / e 29 gy = / fodx, 4.6)

0x1 0x1 dx2 0x2
(0,1)2 (0,1)2 (0,1)2

and then, by the convergence of u, to ug in L?(0, 1; H& (0, 1)), the inequality

2 1 2 1
dug 0 2 2
g2 - —¢de < (82 / dx) (82 / dx) R
0x1 0x1
(0,1)2 (0.1)2 (0,1)2

and (4.5), we can pass to the limit in (4.6) to deduce that u( satisfies

dx = dx,
BXQ 8)62 / f§0
(0,1)2 (0,12

oug ap

0x1

0x]

dug 0@

for every ¢ € C2°((0, 1)2) and then, by density, for every ¢ € L0, 1; HO1 (0, 1)). So, ug is the
unique solution of (4.2). Returning to (4.4), passing to the limit in ¢, and using (4.2), we get

. f due [°
lim sup —| dx
e—0 0x2
(0,1)2
due |* due |*
< lim 82/ te dx—l—/ e dx
e—0 0x1 dx2



164 J. Casado-Diaz / J. Math. Anal. Appl. 328 (2007) 151-169

=gi£})/fu8dx= / fuodx=/

(0,1) (0,1) (0,1)2

dup 2

dx,
0x2

which shows that the convergence of u, to ug holds in L%(0,1; H(} (0, 1)) strong.

Let us now assume that f belongs to W10, 1: L2(0, 1)). Then, since ug is the solu-
tion of (4.2), we deduce that it belongs to W!*°(0,1; H*(0,1) N Hy(0, 1)). Thus, taking
Ye € C*(0, 1) such that ¥, (0) = ¥.(1) =0, ¥ =1 in (¢,1 — &), and |'Zl'ff| < % in (0, 1),
we easily deduce that i, (x) = ug(x)¥.(x1) satisfies

82/ i — uo) 2dx+f e — uo)
0x1 0x)

(0,1)? (0,1)?

2
dx < Ce. 4.7

From this inequality and the equation satisfied by u, we get that ii, satisfies

, %0, %,

2 2
ax; dx5

=f+he in(0, 1) (4.8)
where h, € H~1((0, 1)2) is such that
2 \1

dx) ,

forevery ¢ € HO1 ((0, 1)?) (where C does not depend on ¢ and ¢). Taking u, — i, as test function
in the difference of (4.1) and (4.8) we deduce

82/ a(ug—aa?dH/ 8(ue — iic)
0x1 0x2

(0,12 0,1)2

(e, )] <cﬁ(s2 f ‘a—w
3)61
2

0,1

2
dp
d T
A / ‘3)62
2

0,1)

2
dx < Ce,

and then, from (4.7), we conclude (4.3). O

Remark 4.2. Proposition 4.1 provides the approximation u, ~ ug. However, contrary to u,,
uo does not vanish in general on {0, 1} x (0, 1). If we assume that u( vanishes on this set (iff
f does it), then we can replace the right-hand side of (4.3) by &2 (or even &* if f belongs to
W22(0, 1; L2(0, 1))). When ug does not vanish on {0, 1} x (0, 1), all we can prove is (4.3),
because u( is not a good approximation of u, near {0, 1} x (0, 1). Thus, we need to add some
boundary layer terms to ug in order to have a better approximation. We will see in the next
proposition how these terms can be obtained by studying the asymptotic behavior of u, — ug
near {0, 1} x (0, 1). For this purpose, we will introduce the dilatations y; = ’fs—', v = 1—le for x1
close to {0} and {1}, respectively, and then we will take into account estimate (4.3).

Proposition 4.3. Assume f € w0, 1; L%(0, 1)). Defining u, and u as the respective solu-
tions of (4.1) and (4.2), we introduce wé, w, € H'((0, %) x (0, 1)) by

wl(y1, y2) = ue(ey1, y2) — uoleyt, y2),
wl (1, y2) =us(1 —ey1, y2) —uo(l — eyy, y2). 4.9)
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Then, taking wé, wy, as the solutions of

wh e L2(0, T; H} (0, D) N H'(0,T; L*(0, 1)), VT > 0,
Vg € L2((0,+00) x (0, 1)), wp(0, y2) = —uo(0, y2), a.e. y2 € (0, 1),

VuwhVudx =0, (4.10)
(0,400)x(0,1)
Vv withv e L*(0, T; H} (0, 1)) N H'(0, T; L>(0, 1)), VT >0,

Vv e L*((0,400) x (0, 1)), v(0,y2) =0, a.e. y» € (0,1),

wh € L*(0, T; Hy (0, D) N H'(0,T; L*(0, 1)), VT > 0,
Vg € L2((0,+00) x (0. 1), w(0, y2) = —uo(1, y2). a.e. y2 € (0. 1),

VwyVvdx =0, @.11)
(0,4-00)x(0,1)
Vv withv € L*(0, T; Hy (0, 1)) N H'(0, T; L*(0, 1)), VT >0,
Vv e L2((0,400) x (0, 1)), v(0,y2) =0, a.e. y2 € (0, 1),

we have

wh =~ wh,  w —wl in H'(©0,T) x (0,1)), VT >0, (4.12)
e 0 0

&

i i ) 2
Vwex(o’é)x(o’l) — Vuwy, Vw;x(o,ﬁ)x(o,l) —~Vwy inlL ((O, +00) x (0, 1)) . (4.13)

Proof. Let us only prove the result for wi, the proof for wy is very similar.
Using the change of variables y; = %‘, y2 =x2 in (4.3), we get

/ IVwlPdy < C, (4.14)

0.1)x(,1)

which joining to wf?(O, y2) = —up(0, y2) for a.e. y, € (0,1) and wé =0 on (0, %) x {0, 1},
shows that w’, is bounded in L?(0, T; H} (0, 1)) N H'(0, T; L?(0, 1)), for every T > 0. Thus,
extracting a subsequence if necessary, we deduce that there exists wé € LZ(O, T; HO1 O, 1)) N
H'(0,T; L*(0, 1)), for every T > 0, with w)(0, y2) = —u0(0, y») for a.e. x5 € (0, 1), such that
the first assertion of (4.12) holds. From (4.14), we also have that Vwé belongs to L2((0, +00) x
(0, 1))? and that the first assertion of (4.13) holds. Once we prove that wé satisfies (4.10), we
will deduce by uniqueness that there is not necessary to extract any subsequence.
Now, for v € CZ°((0, +00) x (0, 1)), and & > 0 small enough, we take v; given by

Ve (x1,x2) = v<—, xz), a.e. (x1,x2) € (0, 1),
€

as test function in the difference of (4.1) and (4.2). This gives
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d(ue —up) 0 1 e — ug) 0
V!l Vody =¢ / e —ug) e, 1 / e —uo) dve
0x1 0x1 e dx2 9x2
(0,4+00)x(0,1) ©0.1)2 .12
oug ovg
= —& - d O
0x1 0xq

(0,1)2
Since the support of v is compact, we can pass to the limit in ¢ to deduce

VwhVudy =0, Vve CX((0,+00) x (0, 1)).
(0,4+00)x(0,1)
Using that C°((0,+00) x (0,1)) is dense in the space of v € L?(0,T; Hy(0,1)) N
H'(0,T; L*(0, 1)), forevery T > 0, such that v = 0 on {0} x (0, 1), Vv € L2((0, +00) x (0, 1))?,

endowed of the norm [[v]| = [[VVll12(0.+00)x(0.1))2 W€ then get that wé is the solution
of (4.10). O

Remark 4.4. Proposition 4.3 gives the approximations

1 x1 [ 1—x1
ug(x) —uo(x) ~ wy, 2 2) ug (x) —uo(x) ~ wy -2

near {0} x (0, 1) and {1} x (0, 1), respectively. Usually (see, e.g., [1,5,8,9]), in order to obtain
this type of asymptotic development, the boundary layer terms wé, wy, are searched to have a
derivative with an exponential decay at infinity. But the above proof shows that the error esti-
mate (4.3) and the changes of variables y; = 1—1 and y; = space is
composed by functions with gradient in L?. The results of the previous section prove that the
solutions of (4.10) and (4.11) have a gradient which decreases exponentially to zero and then,
the equivalence with the classical choice.

To finish this section let us now use the above results to obtain an asymptotic expansion
of arbitrary order of the solutions of (4.1) and in particular, to see how using wé and wy, we
can improve the approximation given by of u, given by ug. This will be a consequence of the

following lemma.

Lemma 4.5. For f € W1’°°(O, 1; L2(0, 1)), we consider u., ug, wé and w(’) the respective solu-
tions of (4.1), (4.2), (4.10), (4.11). Also, we define 72 € H'((0, 1)*) by

0 1 X1 A 1—x1 . )
7o (x1, x2) = up(x) + wy = x2 |+ wg - , X2 in (0, 1)~, 4.15)
and 122 € H& ((0, 1)?) as the solution of
82 ~0 32 ~0 82
Mzs _ uzg — f _ 82—u20 in (0’ 1)2’
0x] dx;y 0x] (4.16)

a2=0 ond(0,1)%.
Then, there exist C, A > 0 such that

f ‘a(z — %) |? dx+ / ’8(2 —a9)?
3X1 3)62

(0,12 0,1)?

dx < Ce % 4.17)
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Proof. From (4.10) and (4.11), the functions w(l), wy, satisfy the equations
—Awh=—Awy=0 in (0, +00) x (0, 1),

in the sense of the distributions. Thus, from (4.2), the function zg satisfies

3220 9270 5 8%ug )
- — =f—¢ in (0, 1)*, 4.18
Bxf Bx% f 8x12 ©.D ( )

in the sense of the distributions.
Since wé, wy, satisfy (4.10), (4.11), we can apply Corollary 2.2 and Proposition 2.5 to deduce

(ubf? + V) ax < ceT,
(T,+00)x(0,1)
wh 2+ v’ |*) dx <Ce T, VT >0.
(lw|” + [Vwg]
(T,+00)x(0,1)

Thus, taking v € C°°([0,1]) such that ¥(s) = 1 in [O,%], Y1) = 0, and defining
29e H'((0,1)?) as

20(x) =uo(x) + wé(i—],xz)l/f(xﬂ + w{)(l _

8(28—Z8) 8(
/‘ 0x] dx+ /‘ sz

0,1)2 (0,1)2

‘ X2)(1 —Y(xn),

we get

x < Ce %, (4.19)

From this inequality and (4.18), we conclude that Eg satisfies the equation
L 2 3%ug

R st in (0, 1)?, (4.20)

where r, € H=1((0, 1)?) is such that

_X 2 v 2 v
|(re, v)| < Ce™ ¢ & dx + 5
2

2 \3
dx) ., Yve Hy((0,1)%),

ax; X
0.2 ©.1)

where C and A do not depend of v. Taking the difference of (4.20) and (4.16), we deduce
that (4.31) holds with zg replaced by Eg and then, from (4.19), we conclude (4.31). O

As an application of Lemma 4.5, we have

Theorem 4.6. For f € WH*¥2°(0, 1; L*(0, 1)), k € N, we take ug € W*+2°(0, 1; H*(0, 1))
as the solution of (4.2), then for j € {1,...,k} we define u; € W**=D+2.(0,1; H2(0, 1)) as
the solution of
uj  0%uj
_ ”21 — ”12 L in, 1),
3x3 dx3 4.21)
uj(xl,O) = uj(xl, 1) =0, a.e x1 €(0,1),
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and for j €{0, ..., k}, we define wi», w; as the solutions of

wh € L*(0, T Hy (0, 1)) N H'(0, T; L*(0, 1)), VT >0,

Vwi. € L*((0, +00) x (0, 1)), wi.(O, y2) = —u;(0, y2), a.e. y2 € (0, 1),
Vwé-Vv dx =0,

(0,400)x(0,1)

Vv withv e L*(0, T; H} (0, D) N H'(0, T; L*(0, 1)), VT >0,

Vv e Lz((O, +00) x (0, 1)), v(0,y2) =0, a.e. y; €(0,1),

w’ € L*(0, T; Hy (0, D) N H'(0,T; L*(0, 1)), VT >0,

Vw’ € L*((0,+00) x (0, D)), w}(0,y2) = —w;(1,y2), a.e. y2 € (0, 1),

(4.22)

VwVudx =0,
(0,4-00)x(0,1)
Vv withv € L*(0, T; Hy (0, D)) N H'(0, T; L*(0, 1)), VT >0,
Vv e L((0, +00) x (0,1)), v=00n{0} x w,

(4.23)

and zg by

j L[ *1 A 1—x1 . 2
7l (x1,x2) =u;(x) + w; ;, x )+ w; - , X2 in (0, 1)~. 4.24)
Then, there exists C > 0 such that if u, is the solution of (4.1), we have
2/8%—gwﬁ@2 faw—ﬁwﬁ&
& dx +
9 0x2

xi
0,1y ©0,1)?

2
dx < Ce*t4 . (4.25)

Proof. We denote ug = ug,and ﬁg as the solution of (4.16), then for j € {1, ..., k+ 1}, we define

ul, i} as the respective solutions of

82 J 82 J 82 .
—e2l 0 TR AL 0,102,
0xy 0x; oxy (4.26)
ul =0 ona(0,1)2,
232ﬁ£ 32ﬁ£ _ 3214]'71 23214]' . 2
> — > = 5 —¢ 5 in (0, 1)~,
dx] 9x; 0xy 0x3 4.27)
ul =0 on (0, 1)2.
Taking the difference of (4.1) and (4.2) if j =0 or (4.26) and (4.27) if j > 1, we have

Mé - ﬁé Jj+1 .
2 = Vje{0,... k}, (4.28)
and then we get
k
ue=ul =" eil + e 2l (4.29)

J=0
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Moreover, using uk‘H as test function in (4.26), with j =k + 1, we have

, Juk+1 2 k+1
£ dx + x < C.
3)61
(0,1)2 0,1)2
So, from (4.29), we get
due — K e2q! a(u Xl
/‘ (e =2 =0 / ‘ (e = Do) dx < Ce¥ . (4.30)
0x1 X2
(0,1)2 0,1)?

From Lemma 4.5 applied to problem (4.1) if j =0 or problem (4.26) if j € {1, ..., k}, we also
know that there exist C, A > 0 such that

/ ‘a(zg—us it / ‘a@g_ﬁg) 2
dx2

(0,1)2 (0.1)2
for every j € {0, ..., k}. Thus, taking into account (4.30) we get (4.25). O

dx < Ce %, 4.31)
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