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Abstract. In this paper, we focus on protein contact map prediction,
one of the most important intermediate steps of the protein folding prob-
lem. The objective of this research is to know how short-range interac-
tions can contribute to a system based on decision trees to learn about
the correlation among the covalent structures of a protein residues. We
propose a solution to predict protein contact maps that combines the
use of decision trees with a new input codification for short-range in-
teractions. The method’s performance was very satisfactory, improving
the accuracy instead using all information of the protein sequence. For a
globulin data set the method can predict contacts with a maximal accu-
racy of 43%. The presented predictive model illustrates that short-range
interactions play the predominant role in determining protein structure.
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1 Introduction

The protein structure prediction still being one of the greatest challenges of bioin-
formatics [1]. And, inter-residual contactmaps is a critical step for the inter-residue
contacts prediction problem. The ability to make successful predictions involves
understanding the relationshipbetweena sequence and its protein structure [2,3,4,5].

Multiplemethods to predict contactmaps have been developed.Based on ab ini-
tio approaches, in homology methods, fold recognition, template-based methods,
machine learning, neural network and others [6,7,8,9,10,11,12,13,14]. The predic-
tion quality of these methods has not been improved to satisfactory levels, despite
of years of attempts. The main reason for this is perhaps that, it is hard to learn
long-range dependencies on contact maps, hence it is especially difficult to predict
contacts between residues that have large sequence separations. In addition, an-
other important drawback of these methods is the insufficient capacity to explain
their knowledge model for the protein’s folding process understanding.

The traditional or ab initio folding method employs the principle of predict-
ing protein structure from its known amino acid sequence (a0, a1, . . . , an), in
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order to derive the 3D structure of proteins. We know that a protein chain folds
spontaneously and leads to a unique three dimensional structure when placed in
aqueous solution. The folding process cannot occur by random conformational
search for the lowest energy state. Proteins must form the structure in a time-
ordered sequence of events, now called a ”pathway”. The nature of these events,
whether they are restricted to ”native contacts” (defined as contacts that are
retained in the final structure) or whether they might include non-specific in-
teractions, such as a general collapse in size at the very beginning, were left
unanswered [15].

In this paper we propose a solution to predict protein contact maps based on
short-range interactions. Despite of some evidences of long-range interactions in
stabilizing protein folding, the objective of this research is to know how short-
range interactions can contribute to a system based on decision trees to learn
the correlation among the covalent structures of a protein residues. Taking into
account the high degree of flexibility and the simplicity of understanding of a
solution based on decision trees, the proposed algorithm employs the Quinlan
C4.5 method, according to previous papers [16,17].

This article is structured as follows. A methodology section, which explains the
proteins data set selection criteria, the definition of contact maps, the proposed
model architecture and the measures employed for the algorithm effectiveness. A
results section, we show tabular and graphical experimentation results. Finally,
the conclusions of this research.

2 Materials and Methods

2.1 Data Bases

To analyse the effect of short-range interactions on prediction, we use a set of
non-homologous proteins of solved 3D structure. Initially, the set counts 2485
proteins with the lowest possible homology (less than 25% of identity), extracted
from the Protein Data Bank (PDB) using PDB select tool. This set is firstly
reduced by excluding those proteins which has non-standard amino acid residues.
They were excluded those chains whose backbone was broken. They were chosen
only the chains whose: structure does not contain redundant sequences; without
ligands, to eliminate false contacts due to the presence of hetero-atoms; and,
those proteins that do not belong to the same family or have a common origin.
Reducing the list to 173 proteins. This data set combines maximum coverage
with minimum redundancy following the Fariselli criteria [6].

With the goal of comparing the proposed predictor with previous methods
in the state of the art we employed 53 globulin protein sequences proposed by
Zhang [2]. This is a set with a few homologous sequences extracted from PDB.

2.2 Contact Maps Definition

Contact maps are compactly 2D representation of 3D conformation of a protein
in a symmetrical square matrix of pairwise inter-residue contacts. The calcula-
tion of the distances among the residues is determined by Euclidean distance.



Fig. 1. Contact Map of 2igd protein, constructed with a threshold of 8Å. Left: 3D
structure for protein. Right: its contact map showing parallel (top right cluster) and
anti parallel sheets (top left and bottom right cluster), and helix features (thin cluster
close to main diagonal).

The contact map of a protein (figure 1) is a particularly useful representation
of protein structure. This representation provides useful information about the
protein’s structural motives and it also captures non-local interactions giving
clues to its tertiary structure.

2.3 Model Architecture

Decision trees have been proved to be a successful method for prediction of
contact maps of proteins [16,17]. Those classifiers make it possible to have un-
derstandable rules, which can be used to find further explanations of the data
that are classified.

To predict contact map, we use an algorithm based on the Quinlan C4.5
decision tree [18], using the default setting. Our method builds decision trees
for all possibles pairs of contacts, which has a total of 400 trees (20 x 20 amino
acids). The prediction is treated as a classification problem, which takes into
account the contacts or non-contacts between residues.

As input coding, the proposed method introduces the use of short-range inter-
actions as a basis for training the predictor. Taking into account that oligopep-
tides are a few amino acids covalently joined (up to 10) and the average length
of structural motives regions (up to 21), the algorithm employs vectors of length
21. This is equivalent to shift a window of length 21 by the amino acids chain.
The built vector includes information of the substring formed among non adja-
cent amino acids. It is created a vector for each possible short-range interactions
that can be formed in the protein (figure 2).

For a couple of amino A1 A2, the first 20 elements of the vector match the
existing amino acids and contain their frequencies in the substring that is formed



Fig. 2. Scheme of input coding for decision trees. The first 20 bits in the coding,
represent the frequency that appears the amino acids in the sub-chain. Where cero
means that this amino acid is not present in the sub-chain. The last bit encodes by
class (Contact or Not-Contact).

between the pair of amino acids analysed. To define the Class we adopt a thresh-
old value of 8Å.

The decision tree-based predictor of protein contact maps (DTP) is shown
in Figure 3. Given the distance matrix of a protein set with known structure
(P1, P2, ..., Pn), the DTP builds a model of two-dimensional array of size NxN,
where N is the number of amino acids (20). Each matrix cell contains a function
f(A1,A2,S) formed by a decision tree, whose input vector is composed by the
amino acids couple (A1, A2) and the information extracted from the substring
(S) contained between them. For an unknown sequence (S?), each couples of
amino acids is evaluated in the built model. The result of prediction is obtained
by the occurrence of contact or non-contact.

2.4 The Pre-processing Procedure

Contact map prediction is an unbalanced problem. These maps contain, as av-
erage, a number of contacts (NC) considerably lower than the number of non-
contacts (NNC) about 1/13. NC increases almost linearly with protein sequence
length (data not shown). For this reason NNC increases with the square of the
protein length.

The C4.5 decision trees. This algorithm is based on the data frequency and it
is highly susceptible to the unbalance problem. To avoid the unbalanced effects
we edit the data base applying an oversampling method. This method reproduces

Fig. 3. Scheme of the decision tree-based predictor of protein contact maps. Where P1

to Pn are the training proteins, A is the algorithm that creates the knowledge model
and S? is the unknown sequence.



the minority class until mitigate the problem, taking into account the unbalance-
ratio. This value is statistically calculated for each couple of amino acids in the
protein. As result, the number of predicted contacts of a residue becomes a
function of its structural environment.

2.5 Evaluation of the Efficiency

The effectiveness of prediction (Ap) is calculated as the ratio of true positives
(1). This is because this equation penalizes non-contacts and prioritizes contacts.

Ap = TP/(TP + FN) (1)

In order to compare the effectiveness of the predictor, an extra measure is ap-
plied: the improvement over a random predictor (2). This measure computes the
ratio between Ap (1) and the accuracy of a random predictor (Nc / Np):

R = Ap/(Nc/Np) (2)

where Nc is the number of real contacts in the protein of length Lp, and Np are
all the possible contacts. In this paper in order to limit the prediction of local
contacts (clustered along the main diagonal of the contact map) the proposed
procedure does not include contacts between residues whose sequence separation
is less than four residues.

3 Results

To study the influence of short-range interactions in the proteins, are analysed
the distribution of protein contacts and structural motives with respect to the
length of the sequence separation. We used the set of 173 proteins grouped into
four classes, according to their sequences length (Ls): Ls < 100 (65 proteins),
100 ≤ Ls < 170 (57), 170 ≤ Ls < 300 (30) and Ls > 300 (21).

At first,with the aimof the study the distribution of inter-residual contacts,were
analysed the frequencies of their appearance depending on the residues separation
in the sequence (figure 4). It was used a thresholds range from 5Å to 12Å. It is
obvious that most of contacts are concentrated in low sequences separation. As-
suming a loss of 5% of contacts, the 95% is concentrated in sequence separations
≤ 150 and the 70% are concentrated just in residues with separation 10.

Another interesting analysis is to take into account the length by structural
motives regions (helical and beta regions). We also studied the distribution of
the number of residues per helical segment and per β-sheet segment (figure 5).

The fact that the length of β-regions in proteins is shorter than the helical
segments is clearly shown in figure 5. Helical segment appears in regions from 3
to 20 amino acids and β-segment appears in regions from 2 to 10 amino acids.
In average, the 80% of structural motives appears to be in the range of 2 to 10
amino acids.



Fig. 4. Contacts distribution histogram. Plotting the contacts frequency as a function
of sequence separation, for thresholds of 5Å to 12Å.

The distribution of contacts and structural motives, indicates that contacts in
proteins are not randomly distributed and occur, predominantly, among residues
with a low sequence separation.

To solve our specific problem, three methods are implemented:

– DTP: employs all information included in the protein sequences. The length
of sub-sequences is not limited.

– DTPsi: method variation that employs as input coding only the short-
interactions present. The input vector will be formed by the information
of amino acids with maximal sequence separation up to 20.

– DTPsi ed: it is the DTPsi method but we apply a pre-processing algorithm
to the input data. Taking into account the unbalanced nature of present
classes in this problem, we used an oversampling method to balance the
database.

The implemented methods are tested on the selected database using a 10 folds
cross-validation procedure. With the intention of highlighting the relationship

Fig. 5. Distribution of the number of residues per helical segment and per β-sheet
segment



Table 1. Comparison of the performance of the different methods used to predict
contact maps

Ls < 100(65) 100 ≤ Ls < 170(57) 170 ≤ Ls < 300(30) Ls ≥ 300(21)
Ap R Ap R Ap R Ap R

DTP 0,12 2,33 0,05 2,75 0,03 4,26 0,03 7,52
DTPsi 0,13 2,10 0,07 2,14 0,06 1,18 0,04 3,47
DTPsi ed 0,18 1,71 0,14 1,61 0,13 1,38 0,12 1,49

between the results and the proteins size, the values of effectiveness were calcu-
lated after grouping proteins according to their sequence length (table 1).

The results show that, in general, for all proteins, the algorithm trained with
short-range interactions (DTPsi) show a good behaviour. DTPsi not only im-
proves the minimum efficiency threshold proposed by the DTP algorithm, when
is applied an algorithm to balance the class (DTPsi ed), it improves drastically
the prediction effectiveness.

Figure 7 shows the effectiveness of predictions based on the proteins length,
using different methods (DTP, DTPsi and DTPsi ed). This graph shows that the
effectiveness of the algorithm is dependent on the length of the protein. However,
like the rest of algorithms, DTPsi ed is more efficient to predict contacts in short
sequences and it’s efficiency decreases when the sequence length is incremented.

3.1 Comparison with the Previous Methods

To compare the accuracy of our algorithm with respect to the previous methods
we used the set of 53 proteins. Here the protein sequences are grouped into
four classes: Ls<100, 100≤Ls<200, 200≤Ls<300, Ls>300, according to their
sequences’ length (Ls). The proteins 1TTF, 1E88, 1NAR, 1BTJ B and 1J7E A,
were used to test the trained algorithm. The proposed procedure does not include
contacts between residues whose sequence separation is less than four, to avoid
small ranges of false contacts.

The table 2 shows the comparative results for the algorithms: Occ (Occu-
pancy method) [19], based on a filtered procedure, reached an accuracy about
26%; Net 75 method [20], it uses multiple sequence alignment as input for a
classical feed-forward neural network trained with a standard back-propagation
algorithm, reached the accuracy of about 28%; RBFNN method [2] uses a binary
input encoding scheme with a radial-based function neural network optimized
by a genetic algorithm, reached an accuracy of 32%; and DTPsi ed, achieved the
best accuracy: 43%.

Considering the relationship between the residue length and the average ac-
curacy, our algorithm can improve the prediction performance dramatically. Ex-
cept for sequence length less than 100 where there are not differences respect to
RBFNN method.



Fig. 6. This graph shows the efficiency of the contacts prediction based on the sequence
lengths of proteins. In the x-axis values are represented the effectiveness achieved by
the predictors, depending on the length of the sequences. The vertical axis represents
the effectiveness values.

Table 2. Comparison of the predictors accuracy: Occ, Net 75, RBFNN and DTPsi ed
(our method). Ls is the length of the protein sequence. For this comparison it was
employed the experimental results reported by Zhan[2].

Methods Ls<100 100≤Ls<200 200≤Ls<300 Ls>300

Occ 0,26 0,21 0,15 0,10
Net75 0,26 0,28 0,21 0,20
RBFNN 0,30 0,31 0,32 0,28
DTPsi ed 0,30 0,43 0,35 0,29

Fig. 7. This graph shows the comparative results in the prediction of contacts consider-
ing the sequence lengths of proteins. In the x-axis are represented the values effectively
achieved by the predictors, depending on the length of the sequences. The vertical axis
represents the effectiveness.



4 Conclusions

The presented predictive model illustrates how short-range interactions play a
predominant role in determining protein structure. The proposed method com-
bines the use of decision trees with a new input encoding for short-range interac-
tions. The method performance was very satisfactory. It improves the accuracy
with respect to the obtained by the DTP method. In a comparison with reported
algorithm for a globulin data set, DTPsi ed can predict contacts with a maximal
accuracy of 43%.

Acknowledgements. This research is inserted in the doctoral program in Soft
Computing, developed by the University of Las Villas in Cuba and the Andalu-
sian Universities, under the sponsorship of the AUIP, which has promoted and
apported the financial support to the entire program and research visits. Special
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