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Abstract: This study analyzes the lead time of the bending operation in the wind turbine tower
manufacturing process. Since the operation involves a significant amount of employee interaction
and the parts processed are heavy and voluminous, there is considerable variability in the recorded
lead times. Therefore, a machine learning regression analysis has been applied to the bending process.
Two machine learning algorithms have been used: a multivariate Linear Regression and the M5P
method. The goal of the analysis is to gain a better understanding of the effect of several factors
(technical, organizational, and experience-related) on the bending process times, and to attempt to
predict these operation times as a way to increase the planning and controlling capacity of the plant.
The inclusion of the experience-related variables serves as a basis for analyzing the impact of age
and experience on the time-wise efficiency of workers. The proposed approach has been applied to
the case of a Spanish wind turbine tower manufacturer, using data from the operation of its plant
gathered between 2018 and 2021. The results show that the trained models have a moderate predictive
power. Additionally, as shown by the output of the regression analysis, there are variables that would
presumably have a significant impact on lead times that have been found to be non-factors, as well as
some variables that generate an unexpected degree of variability.

Keywords: machine learning; regression; process control; wind power; lead time; bending; worker experience

1. Introduction

Wind power was the largest-growing renewable energy source in 2019, exceeding
its electricity generation in the previous year by 160 TWh [1]. Considering the surge in
electricity prices (reportedly, increasing 34.3% in only a year for Spanish households [2]),
and as the energy demand grows globally, the current goal is to raise power output,
which can be achieved through more efficient exploitation of wind currents. There are
currently two strategies to do so: increasing the wind capturing area by using larger
rotor blades and installing the wind generators at higher altitudes, where wind flows in a
much more consistent manner. Both strategies require the manufacturing of increasingly
taller towers; however, these structures endure a complex, mainly non-automated, and
costly manufacturing process. Therefore, product innovations must be paralleled by
improvements in the efficiency and management of their manufacturing process.

As stated above, the manufacturing of towers for wind turbines is not automated. That
is, it requires a constant involvement of workers, be it for processing the pieces (usually
aided by a semi-automatic tool) or for supervising the operation of a machine. Additionally,
the pieces that compose a wind tower, steel cylinders referred to as ferrules, are heavy (up to
25 tons) and voluminous, which significantly complicates the transportation and processing
of the parts; these two reasons pose a considerable drawback to the manufacturing of wind
towers: the lead times of the processes show a tremendous variability, and this issue
strongly hinders the controlling and planning of the manufacturing process, which avoids
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detecting deviations in production. At the same time, production plans are hardly precise
and usually just loosely followed. If the time needed to process parts was accurately
defined, the time windows utilized in production planning could be significantly slimmed.

The goal of this study is to analyze and predict the completion time of the main process
of wind tower manufacturing: bending. Through this operation, steel plates are inserted
between rolls and transformed into cylinders, which then need to be welded in order to
fully close the ferrules. In order to examine the data and predict the processing times,
several machine learning algorithms have been tested using a validation set, selecting the
multivariate Linear Regression and M5P methods as the most adequate techniques for this
analysis. Additionally, multiple experience-related variables have been obtained and added
to the dataset in a second stage; this has been done to compare the performances of the
models with and without these variables and to determine if such additional information
can improve their predictive power. Finally, the effect of the input variables on the bending
lead time has been analyzed by examining the importance assigned to each factor in
the models.

Several machine learning approaches have been conducted in the wind industry, but
they usually do not involve the manufacturing process; most academic works focus on
the operation of wind farms, particularly on the monitoring of the condition of the wind
turbines [3]. A case study has been used to validate this methodology. The data used
correspond to the operation of a Spanish wind tower manufacturer from 2018 to 2021.

Therefore, this article addresses three areas regarding machine learning and wind
power that, based on a thorough review of the literature (part of which is shown in
Section 3), are receiving insufficient research attention: the prediction of process lead times
using machine-learning-based approaches, wind turbine manufacturing, and the effect
of experience-related variables on workers’ efficiency. In this work, through the use of
a real-world case study, these three research gaps are addressed, using an intuitive and
user-friendly machine learning workbench, WEKA. The case presented in this article could
potentially serve as a basis for similar studies conducted in wind turbine manufacturing
and comparable industries. With this goal, the methodology followed has been presented
in a general way, and later particularized for the case study at hand. Furthermore, the use
of the WEKA software makes the approach followed in this study more accessible to other
researchers or industry managers, independent of their programming knowledge.

The remainder of the article is structured as follows. Next, a more comprehensive
description of the bending operation and its relevance in the wind turbine tower manufac-
turing process is presented in Section 2, followed by a brief overview of machine learning
methods and their application to the wind power industry found in Section 3. The method-
ology utilized in this study is thoroughly described in Section 4; Section 5 summarizes and
discusses the results of the analyses; finally, Section 6 presents the conclusions of the study.

2. Wind Turbine Tower Manufacturing: The Bending Process

In order to provide a context for this study, a brief overview of the bending process in
wind tower manufacturing is presented next.

The steel structures that support the generator and rotor of a wind turbine are called
towers and can weigh from 60 to 300 tons. Towers of off-shore generators (wind turbines
installed in large bodies of water) are generally more massive than those of on-shore
generators. Wind towers are assembled on-site by joining steel cylinders or cones, called
sections, together. There are at least three sections in a wind tower: the bottom, mid and
top sections. If there are more than three of them, the remaining ones are considered to be
mid-sections. The sections are bolted to each other using flanges that have been previously
welded to their bases; these sections are the final product of a wind tower manufacturing
plant. They are built using ferrules, smaller cylinders, or cones that are welded together.
There are five main processes that characterize the wind turbine tower manufacturing
process: bending, longitudinal welding, flange fitting, ferrule fitting and circular welding.
The process starts with rectangular steel plates, which may have been processed before to
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adjust their dimensions or bevels, which are bent into a ring shape (bending). In order to
bend the plates, they are inserted through rollers lengthwise, slowly giving them a circular
shape. Next, the gap between the edges of the bent plate is welded (longitudinal welding).
The now-closed ferrules are transported to a table in which they are joined by weld spots to
the flanges (flange fitting). Flanges are steel joints used to connect one tower section with
another though bolts. Therefore, not all ferrules need to be fitted with flanges, only the
top and bottom ones of each section. All ferrules are then taken to long hangars in which
they are fitted next to each other and fixed in place through spot welding (ferrule fitting).
Finally, the union between the ferrules is secured by welding throughout the perimeter of
each junction (circular welding), giving way to a semi-finished section, pending surface
treatment and other auxiliary processes.

Bending is a critical step of the wind turbine tower manufacturing process, for sev-
eral reasons:

• The bending operation is one of the first carried out in the manufacturing process and,
additionally, constitutes the bottleneck of the process. Having a bottleneck at the start
of the production process can lead to non-desired idle times at downstream operations.
Since the technical specifications require bending to be carried out before any other
of the main operations in the manufacturing process, the focus must be placed on
ensuring a continuous workflow at the bending station.

• Minor defects caused during bending can significantly slow down posterior operations;
these faults derive in delays, especially during the fit-up process. In this operation, two
ferrules that have already undergone the bending and longitudinal welding processes
are set up next to each other and their relative position is fixed by spot welding; thus,
is it at this point that imperfections caused by bending, mainly non-circularity (ovality)
and lack of flatness, are easily identified.

• Reworks are costly and time-consuming. When a major bending-related fault is
detected in the downstream processes, the part must be transported back to the
bending station; it must be kept in mind that the layout of these types of plants is
optimized with the goal of reducing the difficulty of the movements required in the
normal production flow. Both the configuration of the layout and the large size of the
machines explain why reworks usually involve moving the parts between buildings,
using multiple transports, and occupying several employees. The direct outcome is
that these reworks cause great delays in production, mainly for two reasons: (a) if
the fault is detected in or after the fit-up process, the production of the entirety of
the section must be stopped, since the ferrules are either partially or fully welded to
each other. The affected operation cannot continue until the faulty ferrule has been
reprocessed and moved back to said station; (b) whether the fault has been detected
before or after the fit-up process, the defective ferrule is assigned top priority, moved
to the bending station and reprocessed before any other ferrule in the backlog, in
order to attempt to meet the customer’s delivery deadline. Additionally, if a different
product is being processed at the bending station, it is likely that the machine or tools
configurations are to be modified, deriving from the corresponding set-up times.

The three reasons given above reflect the importance of the efficiency of the bending
operation for the overall performance of the manufacturing process. From an organizational,
as opposed to technical, standpoint, there are two major aspects that could help improve
the efficiency of the bending process: strict control of the anomalies during production that
generate faulty parts, and the improvement of the accuracy of the production schedules.
Controlling the production anomalies would allow detecting a higher percentage of faulty
parts just as the bending operation concludes, thus avoiding most defective units being
passed downstream. On the other hand, designing accurate production plans would
facilitate a continuous workflow at the bending station, reducing the idle times in posterior
processes. Pérez-Cubero and Poler [4] highlight the importance of accounting for processing
lead time variations on job-shop production scheduling. Additionally, given the relevance
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of reworks, it is essential that the schedules of the bending station can be recalculated with
accuracy, so as to reduce the impact on the overall lead times of the rest of the units.

3. Machine Learning and Wind Turbine Tower Manufacturing

In his seminal work, Samuel [5] coined the concept of machine learning; the author
believed that programming computers to learn from experience could alleviate much effort
devoted to tasks that were trivial but still involved a learning process. Samuel’s work
led the way for an immense amount of research on machine learning techniques and
applications. Jordan and Mitchell [6] claim that the focus of this field of study is centered
around two main research lines: finding out how to construct computer systems that learn
from experience, and identifying the fundamental laws governing learning systems.

The use of machine learning techniques for lead time prediction has not received
sufficient research attention from academia. A systematic review performed by Kang, Catal
and Tekinerdogan [7] highlights quality-related problems as the most frequently addressed
a problem in the literature on machine learning applications to production lines, with a
clear predominance over lead-time prediction, yield improvement, waste reduction or even
preventive maintenance; this could be due to the scarcity of data regarding times and other
operational and process data, however, this obstacle is likely to disappear as industries
advance in their digitization process, thus increasing their sensorization and the availability
of data.

Most of the literature regarding lead time prediction with machine learning techniques
addresses the forecasting of the total flow time or completion time, that is, the time elapsed
between the arrival of a part and the fulfillment of all the operations required in its manu-
facturing specifications; these works utilize historical data of the process times, and focus
on organizational variables, such as the precedence between operations or the dispatch
rules used, to train the models and generalize for future instances. For example, Backus
et al. [8] make use of three different machine learning algorithms to predict the cycle time
of product lots in a factory: clustering, regression trees and the K-nearest-neighbors model;
they also propose a hybrid method that first groups the lots based on their similarity using
a clustering algorithm, and then generates a regression tree for each of those clusters. Simi-
larly, Öztürk et al. [9] utilize a regression tree model to estimate the flowtimes in different
make-to-order shop configurations, testing their approach through a computer simulation.

Along the same lines, Alenezi et al. [10] posit a support vector regression model for
the real-time prediction of order flowtimes in a make-to-order manufacturing environment;
while these works focus on organizational variables, such as the precedence between
operations or the dispatch rules used, the approach presented in this article is centered on
the variables affecting the process itself.

Alternatively, Wang and Jiang [11] present a deep neural network that predicts order
completion times based on order information and real-time production data obtained
from a RFID system embedded in the manufacturing process. The authors show that
their deep-belief network approach outperforms other neural networks training methods,
such as back-propagation, multi-hidden layers back-propagation and combining principal
components analysis and back-propagation.

As shown, most of the research relevant to this article addresses the prediction of the
completion time; this is logical, since completion time is a key parameter, necessary to
provide customers with delivery deadlines and to assess the overall performance of the
manufacturing process; however, some researchers have started to shift their focus towards
individual process lead-time estimation. Gyulai et al. [12] present a data analytics tool for
“situation aware” production control. Their tool utilizes a closed-loop control in order to
deploy and update online a digital data twin [13]; this tool is based on accurate simulation
models of manufacturing systems, which allow performing prospective simulations that
forecast deviations in production. Their models are enabled by process lead time predictions
based on machine learning algorithms, as presented in [14,15]. The results presented by the
authors indicate that traditional analytical techniques are outperformed by the machine
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learning methods that they had tested for the lead time predictions. After comparing the
results provided by multiple machine learning algorithms, the authors selected the Random
Forest method for their system.

These works make use of two groups of variables for the training and prediction of the
lead times: static data regarding product features, extracted from the enterprise resource
planner (ERP), and dynamic event-based logs drawn from the manufacturing execution
systems (MES). While their approach allows for a real-time prediction and control, the
work presented in this article is directed mainly toward the characteristics of the part being
processed. There are still contextual variables, such as the personnel operating the machine,
the shift in which the part is manufactured or the machine itself, but all of these variables
can be previously set and tested by the manager. The goal with this is that predictions of
the process lead time can be obtained with enough time in advance to serve as input for
the scheduling.

Regarding the case study presented in this work, it is noticeable that wind turbine
manufacturing has received very little attention in the academic literature. Most of the
works regarding machine learning techniques and wind power focus on the operational
phase of the wind turbines. Mainly, three research lines can be outlined: the prediction
of the electrical output, which can be based only on historical data [16], on wind velocity
records [17,18]—which can also be predicted using Machine Learning and Artificial Intelli-
gence techniques as hybrid models [19], fuzzy logic [20], Deep Learning [21] or ensemble
methods [22]—or on multiple environmental variables [23,24]; the creation of assistant
systems for the design and control of wind turbines [25] and wind farms [26–28]; and the
development of smart and knowledge-based maintenance system for the wind turbines,
mainly focused towards fault classification [29,30], anomaly detection [31] and remaining
useful life (RUL) estimation [32–34]. For an exhaustive review of the machine-learning-
based approaches to wind turbine condition monitoring, see Ref. [3].

However, reportedly, only Sainz [35] addresses the wind turbine manufacturing
process from an operational standpoint. The author describes different steps of the process
and indicates several automation technologies that would give way to an increase in the
production capacity of the industry. Additionally, no works have been found that focus on
the manufacturing of wind turbine towers, or that apply machine learning and artificial
intelligence techniques to the wind turbine manufacturing process control and planning.

There has also been a wide research stream on the effect of aging on worker produc-
tivity, but most of it has been conducted from a theoretical or even medical standpoint.
Previous works suggest that workforce aging could hinder productivity, mostly due to
age-related deterioration of some cognitive and physical abilities [36]. Most importantly,
age has been found to increase the potential to be involved in occupational accidents in
industrial settings, which is particularly notable in the case of workers aged 50 or more [37].
A method to assess worker performance is the Work Ability Index (WAI) [38], based on a
questionnaire administered to the employees including data regarding absenteeism, health,
and self-evaluation; however, Theppitak et al. [39] did not find a significant effect of WAI
on task performance for industrial workers. In fact, the authors found a higher impact of
the workers’ ages on task performance than on the WAI. Additionally, Kumudini et al. [40]
found that age is more detrimental to the WAI of average-performance industrial workers
than to the higher-performing ones. Nevertheless, the study presented in this paper focuses
on the effect of age and experience from a purely operational standpoint, that is, focusing
exclusively on the influence of these input factors on the lead time of the bending operation
in wind turbine tower manufacturing.

After a study of the relevant literature, it can be seen that, by creating machine learning
models that are capable of analyzing high volumes of data and of identifying underlying
patterns between the relevant variables, the accuracy of the lead time predictions can be
significantly improved. It must be noted that in many companies, especially those that
are less digitized, such as the case studied in this work, these predictions are made just by
averaging the historical records, or even just based on personal experience. Therefore, in
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order to design a somewhat accurate production plan, managers must use large margins
of error for the lead times; in this case, these margins of error can significantly increase
the idle times at the bending station and, particularly, at the downstream processes. By
reducing the difference between the actual lead times and their prediction, the sought-after
continuous flow at the bottleneck of the process can be achieved. Additionally, after a
major fault and its mandatory rework, the recalculated schedules would be more accurate
and, thus, would allow the plant to retrieve its original production goals faster. Finally,
the machine-learning-based predictions can also serve as the basis of an anomaly control
system. Traditionally, these systems resort to sensorization, such as recording the vibrations
of the machine [41], to assess whether the equipment is working towards its expected
performance or not; however, once again, in industries with low degrees of digitization,
these signals are usually not available. For these cases, the mismatch between the expected
lead time and the actual lead time could be used as an indicator of the performance of the
machine and the quality of the part being manufactured.

To sum up, the main contribution of the article is two-fold. On the one hand, a novel,
machine-learning approach to the prediction of the lead time of a process in the wind
turbine manufacturing industry is presented in this study. On the other hand, a previously
unexplored inclusion of age and experience-related variables into lead-time prediction
modules is conducted.

4. Materials and Methods

The methodology behind this study is based on the analysis and prediction of the
lead times of the wind turbine tower manufacturing process. Given that this analysis is
structured around machine learning regression models, it must follow the typical steps in a
data analytics pipeline: data gathering and processing; variable selection; model selection;
and regression analysis and results interpretation. In this case, the interpretation of the
results is two-fold: not only will the predictions of the models be analyzed, but also, given
that some of the machine learning models used in this work provide deeper insight into the
underlying patterns of the bending process, a study of the impact of several input factors
on the lead time will be conducted.

In an attempt to provide a framework for the analysis of bending or similar operations
in the wind power manufacturing industry using machine learning models, the method-
ology is first presented in a general manner and then particularized to the case study in
Section 5.

4.1. Data Gathering and Processing

One of the most work-intensive steps of a machine learning-based approach is data
acquisition. In industrial settings, most of the data come from either the company’s
Enterprise Resource Planner (ERP) or from a Manufacturing Execution System (MES).

Once the data are obtained, it is essential to preprocess the database in order to
increase its quality; this implies removing outliers, applying filters (such as normalization)
if necessary, obtaining new compound variables, or discarding unfeasible values with the
help of the domain knowledge.

4.2. Variable Selection

The data utilized for the regression analyses performed in this study can be split
into two categories: input variables and output variables. Input or independent variables
are the factors considered to affect the lead time of the process, which is the output or
dependent variable of the models. Specifically, the dependent variable represents the time
required to process a ferrule in the bending station (measured in hours). It must be noted
that ferrules are the smallest unit involved in the manufacturing process after the bending
operation. Therefore, predicting this lead time allows a more in-depth planning of the
bending operation and, as a result, of the following processes.
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The variables listed below have been suggested as potential determinants of the
bending time after an exploration of the data and interviews with workers of the plant
analyzed later in the case study; these variables have been divided into three categories:
operational variables, technical/product-related variables and experience-related variables.

Operational variables:

• Work shift during which the operation was completed.
• Personnel, i.e., the worker that finalized the operation.
• Machine used for the processing of the part.

Technical/product-related variables:

• Position of the ferrule in the section, starting from the bottom position (1) and increasing.
• Position of the section in the tower. Generally, towers have three sections (bottom, mid

and top). The thickness of the ferrule, measured in millimeters (See Figure 1).
• Length of the plate that is curved into a cylinder, measured in millimeters; this dimen-

sion corresponds to the perimeter of the ferrule base.
• Width of the plate that is curved into a cylinder, measured in millimeters; this magni-

tude corresponds to the height of the ferrule.
• Steel plate yield strength (in N/mm2) for a nominal thickness of 16 mm or less. Yield

strength is one of the most important properties of structural steels.
• Steel plate toughness designation, measured with the Charpy impact test; this test

provides the maximum impact strength absorbed by a notched test steel sample
without fracturing. The test results are usually codified as subgrades [42]: JR, J0, J2,
NL, K2.

• Steel plate normalization, i.e., whether the steel plate that is to be curved into a ferrule
has received a normalization treatment, which consists of heating the material and
allowing it to cool in order to increase the toughness of the steel.
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Experience-related variables:

• Age of the worker completing the operation.
• Experience of the worker at the bending station, that is, the number of years for which

the worker has been developing the bending operation.
• Experience of the worker at the plant/industry, that is, the experience of the worker

not only at the bending station itself, but in the wind turbine manufacturing sector.
• Number of bending operations previously performed by the worker, that is, the

experience of the employee at the bending station measured as the number of bending
operations performed before the analyzed instance.

• Worker frequency at the bending station, which measures the average number of
bending operations performed daily by a worker in a certain period of time. Five
time periods have been considered: the time passed since the worker’s first operation,
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the last 180 days (six months), the last 90 days (three months), the last 60 days (two
months) and the last 30 days (one month).

By simply observing the definition of these input variables, one can expect to find
significant correlations among them. Therefore, a correlation analysis has been performed
in order to determine the optimal set of variables to utilize in the regression.

4.3. Regression Analysis

As stated previously, the main goal of this study is to achieve accurate predictions of
the lead time of the bending process in wind tower manufacturing and to analyze correla-
tions between these completion times and several factors that come into play in this process;
this can be done by building a regression model through machine learning algorithms.

To do so, a Java-based machine learning software called WEKA [43], developed at the
University of Waikato in New Zealand, has been used in its version 3.9.5. WEKA allows us
to efficiently apply some of the most widely used machine learning algorithms in a very
intuitive manner, owing to its graphical user interface. WEKA incorporates the Knowledge
Flow tool, which facilitates the development of flowcharts depicting the machine learning
approach used in the analysis.

The WEKA workbench has been previously used in the wind power research field by
Mansour et al. [44] to predict wind speed in different locations in order to assess their wind
energy productivity; and by Joshuva et al. [45] for the development of a vibration-based
fault classification system for wind turbine blades.

There are three fundamental concepts in a machine learning approach: task, learning
algorithm and model [46]. The task represents the problem that is to be solved through the
approach. The model is the mathematical tool used to perform the task, and it is trained
using a learning algorithm.

Regression is one of the most frequently encountered machine learning tasks. In
a regression task, the goal is obtaining a model able to predict a real value based on a
series of factors and their corresponding weights; these weights are determined with a
machine learning algorithm, based on historical data. Therefore, regression is an example
of a predictive (as opposed to descriptive) task, since the aim is ultimately to produce
predictions of unknown instances based on recorded data. It is also a supervised (as
opposed to unsupervised) task since it requires the data to be “labelled”, that is, the
instances must have values of the target variable.

4.3.1. Model Selection

The machine learning model utilized to obtain the prediction can be just as important
as the quality of the training data or the selected variables. Different models behave
in diverse manners regarding training time, test time and, most importantly, predictive
power. In order to find an adequate model for a given task, an initial exploration of the
performance of various algorithms can be carried out using a validation set. Using a
validation set implies dividing the available data set into three: a training set, a validation
set and a hold-out test set; this way, the models can be trained and validated using part of
the data, and their performance is then evaluated using the instances in the test set, which
the model has not “seen”. A widely used 80–20% split is proposed for this work, meaning
that 80% of the instances compose the training and validation set and the remaining 20%
form the test set.

Furthermore, instead of just using one training set and one validation set, a tenfold
cross-validation approach has been followed for the model selection; this entails dividing
the training and validation dataset into ten splits and performing said number of iterations
of the analysis. In each iteration, nine splits are used to train the model and the remaining
one is used as the validation set. For each experiment, a different split is used to evaluate
the trained model, until the ten splits have been used as validation sets; this method is a way
to avoid overestimating the predictive power of a model if a “lucky” training-validation
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split is produced. The described process is repeated ten times with each split, reaching a
total of 100 runs.

The approach, starting from the dataset upload and up to the generation of the results,
has been modeled in the WEKA Knowledge Flow tool, which facilitates the development
of flowcharts depicting the structure and sequence of the machine learning analysis. The
pipeline of the cross-validation analysis is shown in Figure 2.
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An ARFF (a specific format for data input in WEKA) file is first uploaded using the
ArffLoader module. In this case, it contains the training and validation dataset. Next, the
loaded set is processed through a ClassAssigner module, which allows the user to select
which variable of the input data is to be predicted. Consecutively, filters can be utilized
before generating the training and test datasets.

For the cross-validation experiment, a CrossValidationFoldMaker module, which allows
dividing the set into as many equal-sized splits as desired. A tenfold cross-validation
configuration is selected, which feeds the following module with 10 pairs of training-
validation sets.

Each regression algorithm is applied using the corresponding module in the Classifiers
group (regression can be regarded as a classification task in which the target variable is a
real variable). WEKA algorithms provide users with some parametrization options, which
vary depending on the selected model.

The output of this analysis consists of the structure and parameters of the trained
models and the performance evaluation of the model, which are saved as “.txt” files. It
must be noted that, while the model information is directly produced by the classifier object,
a ClassifierPerformanceEvaluator (included in the Evaluation group) must be introduced to
generate the model performance statistics.

The output of the cross-validation process is used to determine the adequate models
for the problem at hand. WEKA provides several measures of the fitness of the model:
correlation coefficient, mean absolute error, root mean squared error, relative absolute
error and root relative squared error. In this work, the metric used to decide between one
algorithm or another is the Root Mean Squared Error (RMSE), mainly because it penalizes
large errors by squaring the difference between the predicted and the actual value. In order
to fulfil the applications discussed previously in this paper, the predictions produced by
the model should particularly be accurate when dealing with extreme values, which can
severely affect production plans if they are not predicted. RMSE is calculated as follows:

RMSE =

√
∑N

i=1|y(i)− ŷ(i)|2

N
(1)

where N is the number of instances in the test set, y(i) is the i-th observation, and ŷ(i) is its
corresponding prediction.



Sustainability 2022, 14, 7779 10 of 25

The tested algorithms have been chosen so as to include different sorts of models: a
multivariate Linear Regression model, two geometrical instance-based models (K-nearest
neighbors, IbK in WEKA; and Support Vector Machines, SMOreg in WEKA), a regression
tree (REPTree), a tree ensemble (Random Forest), a model tree (M5P) and a simple neural
network (Multilayer Perceptron).

4.3.2. Model Implementation

Once a model is selected, its performance can be evaluated in the WEKA workbench
using a test set. Figure 3 depicts the pipeline of the application of a regression algorithm to
a training-test split:
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While they share a similar structure, there are several differences between the cross-
validation pipeline shown in Figure 2 and the one depicted in Figure 3. Firstly, the latter
includes two data sources instead of one: a source for the training set and a different
one for the test set. Both sets are fed to a TargetVariableSelector and then to a training and
test set maker, respectively. The data in the training set are used to learn the parameters
that characterize the regression model. The performance of the trained model is then
evaluated using the test set; this evaluation consists of predicting the target variable values
for the instances in the test set, which have not been used for the training of the model,
and comparing them to the actual values; this is a way to ensure that the model is not
overfitting the training data and can perform accurate predictions of instances with different
characteristics to those used in the learning algorithm. For this experiment, all instances in
the training and validation set are used to train the model, and the remaining 20% of the
total data compose the test set.

Additionally, in this case, aside from the structure and parameters of the trained
models and the performance evaluation of the model, it is interesting to produce the
predictions and errors of the test instances; this is done by adding a PredictionAppender
module that converts the test results to an Excel file.

5. Results

In this section, the results of the machine learning regression analyses of the case study
are presented and discussed. First, additional context regarding the case study particular
situation is shown first. Next, the results of the model selection step are shown, and the
resulting algorithms are applied to the case study.

5.1. Case Study Description

As previously mentioned, the proposed approach has been tested using the case of a
Spanish wind turbine tower manufacturer. The data were collected from various databases
of the company’s ERP; these different sources were merged so the resulting database would
encompass the variables discussed above. The dataset includes information from the nearly
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900 tower sections manufactured in the plant from March 2018 to February 2021, which are
composed of over 7400 ferrules.

In this case, most of the information regarding lead times and machine use is entered
by the plant workers in the midst of the operation. In order to ensure that the data accurately
depict the functioning of the plant, the dataset has been preprocessed by removing outliers
and infeasible values. Instances that show bending operations performed in less than
20 min or more than 5 h have been eliminated, since they are considered to be errors in the
employees’ recording of the data; these instances represent only 2.23% of the dataset.

With regards to the input variables values, the following aspects must be noted:

• The possible ferrule positions in the records of the plant operation range from the
bottom position (1) to the highest ferrule position recorded (16).

• As mentioned earlier, generally, towers have three sections (bottom, mid and top);
however, the data contain examples of towers with up to six sections.

• The studied plant has three different work shifts: morning, afternoon, or night. Addi-
tionally, it must be noted that employees periodically rotate their assigned shifts. As a
result, the variability introduced by the workers and by the shifts is not expected to
be confounded.

• Eighteen different workers have performed the bending operation during the pe-
riod analyzed.

• There are two bending machines at the plant, of the same model.
• Two values of the steel plate yield strength are found in this study, 355 N/mm2 and

455 N/mm2.
• Regarding the steel plate toughness designation, the subgrades presented in Table 1

have been found in the dataset:
• Table 2 summarizes the distribution of the experience-related variables.
• Table 3 summarizes the distribution of the thickness, length, width and lead time

values of the instances of the dataset. Additionally, a histogram of the lead time
distribution in shown in Figure 4.

Table 1. Charpy impact test subgrades.

Charpy Impact Test

Subgrade Impact Strength (J) Test Temperature (◦C)

JR 27 J 20
J0 27 J 0
J2 27 J −20

NL 27 J −50
K2 40 J −20

Table 2. Experience-related variables distribution.

Variable Minimum Maximum Mean Standard
Deviation

Worker age (in years) 28 57 36.47 6.39
Experience at station (in years) 0 2.88 1.13 0.80
Experience in industry/plant 0 4.458 2.17 1.09

Number of previous bending operations 0 1239 421.83 333.57
Worker frequency—global 0 6.00 1.04 0.46
Worker frequency—180 d 0 1.84 0.98 0.47
Worker frequency—90 d 0 2.34 1.09 0.45
Worker frequency—60 d 0 2.85 1.16 0.49
Worker frequency—30 d 0 3.13 1.28 0.56
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Table 3. Thickness, length, width and lead time variables distribution.

Variable Minimum Maximum Mean Standard Deviation

Thickness (in mm) 11.7 70 25 10.92
Length (in mm) 7324 24,953 13,217.86 2333.61
Width (in mm) 915 3058 2833.93 347.91

Lead time (in hours) 0.334 4.94 1.62 0.56
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Figure 4. Dataset lead time histogram.

Table 3 and Figure 4 provide insight into the lead times of the bending operation. Just
under 75% of the recorded bending operations lasted between one and two hours. Of
the remaining 25%, only 6.63% occur in less than an hour: 18.41% of the operations are
performed in more than two hours, with some lasting up to 5 h; these are the instances
in which the model should prove its predictive power in order to be used as an accurate
forecasting tool for production planning and control. For this reason, as mentioned in
Section 4.3.1, the RMSE metric has been used as the deciding metric in the model selection
step in order to minimize the prediction errors of these extreme values.

The potential correlations between the previously described input factors have been
analyzed. The Pearson correlation coefficients for each pair of numeric variables are shown
in Table 4. Additionally, the correlation between each input variable and the output variable
(bending lead time) is analyzed.

The Pearson correlation coefficients shown in Table 4 are significant, with a 0.05 sig-
nificance level, save for the coefficients written in italics. The coefficients higher than 0.3
(a standard threshold above which a correlation can be considered of moderate strength),
are presented in bold. The correlations between the thickness and length variables and the
thickness and width measures show the highest coefficients amongst the non-experience-
related variables. Particularly, the thickness of the plate appears to be indirectly correlated
with its width (ρ = −0.439). On the other hand, the thickness of the plate is directly corre-
lated with its length (ρ = 0.342). Additionally, the thickness variable is strongly correlated
to two experience-related variables. Thus, for the regression analyses presented later in
this paper, the thickness variable has not been considered in order to avoid misinterpreting
the outputs of the analyses, even if the predictive power of the model could have been
increased with its inclusion.
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Table 4. Pearson correlation coefficients for each pair of numeric variables.

Varia-
bles

Ferrule
Pos.

Thick
ness Length Width Worker

Age

Exp.
(Sta-
tion)

Exp.
(Sec-
tor)

Num-
ber of
Oper-
ations

Global
Freq.

180 d
Freq.

90 d
Freq.

60 d
Freq.

30 d
Freq.

Lead
Time

Section
pos. −0.108 0.240 0.184 0.152 −0.031 0.235 0.181 0.251 0.092 0.102 0.043 0.016 0.013 0.074

Ferrule
pos. - −0.232 −0.141 0.043 −0.019 −0.066 −0.044 −0.049 0.055 0.013 0.010 0.021 0.019 0.021

Thickness - - 0.342 −0.439 −0.066 0.390 −0.281 0.375 −0.084 0.064 0.004 0.036 −0.044 0.135
Length - - - −0.096 −0.073 0.277 −0.214 0.277 0.055 0.166 0.048 −0.011 −0.042 0.103
Width - - - - 0.023 −0.033 −0.025 −0.033 0.055 0.018 0.022 0.023 0.017 0.010

Worker
age - - - - - −0.157 0.035 −0.121 0.027 0.030 −0.023 −0.005 0.021 0.001

Exp.
(station) - - - - - - 0.740 0.977 −0.070 0.672 0.478 0.319 0.159 0.040

Exp.
(sector) - - - - - - - 0.746 0.079 0.534 0.412 0.332 0.251 −0.107

Number
of Opera-

tions
- - - - - - - - 0.066 0.709 0.517 0.367 0.216 0.061

Global
freq. - - - - - - - - - 0.099 0.198 0.292 0.380 0.021

180 d
freq. - - - - - - - - - - 0.840 0.675 0.452 0.073

90 d freq. - - - - - - - - - - - 0.894 0.654 −0.002
60 d freq. - - - - - - - - - - - - 0.812 −0.050
30 d freq. - - - - - - - - - - - - - −0.090

Regarding the experience-related variables, Table 4 shows considerably high values
of the pairwise correlation coefficients; this was to be expected, given the definition of the
variables, but should be taken into account in the design of the regression experiments.
Thus, the following variables have also been discarded from the analyses: experience at
the station, number of operations, global frequency, frequency in the previous 180 days,
frequency in the previous 90 days and frequency in the previous 60 days.

Based on the results of this preliminary correlation analysis, two sets of input variables
are considered for the regression analyses:

• Without experience variables: includes the section position, ferrule position, length,
width, shift, personnel, machine, yield strength, toughness and normalization variables.

• With experience variables: includes the same variables as the previous set, plus the
worker age, experience in the sector/plant and 30-day frequency variables.

Neither of the two variable configurations present conflicts regarding correlation: the
correlation coefficients of all the pairs of input variables in each set are under 0.3.

5.2. Model Selection Results

As explained above, the selection of the applied models has been carried out based
on the results of a cross-validation experiment; these results have been evaluated using
the following metrics: correlation coefficient between predicted and actual values; mean
absolute error; root mean squared error; relative absolute error; and training and evaluation
runtime. As specified, minimizing the RMSE metric is selected as the decision criterion.
The results of the cross-validation test are shown in Table 5: the average values of the
metrics and their standard deviation (in brackets) across the hundred iterations are shown
for each algorithm.
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Table 5. Cross-validation results.

Algorithm Variable Set Correlation
Coefficient

Mean
Absolute Error

Root Mean
Squared Error

Relative
Absolute Error

Training
Time

Testing
Time

M5P

w/o
Experience

0.3915
(0.0365) 0.3611 (0.0144) 0.5166 (0.0265) 88.4095 (1.9483) 0.3063

(0.0272)
0.0004

(0.0005)

w/Experience 0.4600
(0.0437) 0.3470 (0.0141) 0.4987 (0.0268) 84.9607 (2.5687) 0.3616

(0.0089)
0.0003

(0.0005)

K-nearest
neighbors

(IbK)

w/o
Experience

0.2701
(0.0429) 0.4404 (0.0177) 0.6336 (0.0310) 107.8816

(4.3267)
0.0003

(0.0004)
0.1036

(0.0093)

w/Experience 0.3025
(0.0412) 0.4502 (0.0181) 0.6536 (0.0297) 110.2860

(4.5027)
0.0003

(0.0005)
0.0908

(0.0087)

REPTree

w/o
Experience

0.3856
(0.0372) 0.3653 (0.0140) 0.5234 (0.0248) 89.4346 (2.2966) 0.0146

(0.0069)
0.0001

(0.0003)

w/Experience 0.4468
(0.0435) 0.3497 (0.0143) 0.5062 (0.0262) 85.6314 (2.5570) 0.0149

(0.0014)
0.0001

(0.0003)

Linear
Regression

w/o
Experience

0.3439
(0.0358) 0.3693 (0.0136) 0.5267 (0.0259) 90.4232 (1.6455) 0.0268

(0.0042)
0.0003

(0.0005)

w/Experience 0.3975
(0.0393) 0.3606 (0.0140) 0.5148 (0.0262) 88.2896 (1.9916) 0.0285

(0.0194)
0.0005

(0.0006)

SVM
(SMOreg)

w/o
Experience

0.3377
(0.0357) 0.3593 (0.0148) 0.5343 (0.0277) 87.9632 (1.8150) 49.8787

(3.4219)
0.0004

(0.0005)

w/Experience 0.3837
(0.0393) 0.3513 (0.0153) 0.5246 (0.0282) 86.0024 (2.1449) 52.8269

(2.2717)
0.0005

(0.0007)

Random
Forest

w/o
Experience

0.3566
(0.0366) 0.3860 (0.0146) 0.5513 (0.0255) 94.5422 (3.0341) 1.0257

(0.0665)
0.0283

(0.0070)

w/Experience 0.4500
(0.0382) 0.3598 (0.0140) 0.5152 (0.0252) 88.1021 (2.8555) 0.1163

(0.0196)
0.0034

(0.0012)

Multilayer
Perceptron

(Neural
network)

w/o
Experience

0.4060
(0.0209) 0.3813 (0.0401) 0.5366 (0.0254) 93.2534 (8.4230) 72.8065

(0.5206)
0.0015

(0.0047)

w/Experience 0.4740
(0.0437) 0.3496 (0.0187) 0.5013 (0.0267) 85.5503 (3.0486) 205.4821

(3.3804)
0.0093

(0.0080)

Table 5 offers a clear conclusion regarding the performance with the two sets of input
variables: the inclusion of the experience variables significantly increases the predictive
power of the models. The average improvement in the correlation coefficient amounts
to 6.04%. Additionally, the M5P algorithm proves to be the dominant method in all
of the predictive metrics for the sets with the experience-related variables, except for
the correlation coefficient. In particular, the M5P model reaches a correlation coefficient
between the predicted and actual values of 39.15% and 46% without and with the experience
variables, respectively. It must be noted that the Multilayer Perceptron Neural Network
obtains a higher correlation coefficient than the M5P model in both cases, with correlation
coefficients of 40.6% and 47.4%. In any case, in line with the decision criteria outlined
previously, the M5P algorithm presents the lowest RMSE amongst all the models, using the
datasets with and without the experience-related variables (0.4987 and 0.5166, respectively).

As a result of this cross-validation study, two machine learning algorithms are used
for the regression task suggested in this work: a multivariate Linear Regression algorithm
and the M5P method, developed by Wang and Witten [47] and based on the work by
Quinlan [48], which combines decision trees with Linear Regression models. On the one
hand, the M5P method shows the lowest RMSE of the tested model and, thus, can be
expected to produce a lesser degree of large errors; this indicates that the model might
perform better with extreme values.
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On the other hand, interpreting the results of a model tree is not an easy task, given
the multitude of decisions at the nodes and of models at the leaves. Therefore, and since
its metrics are not excessively distant from the M5P algorithm metrics, the multivariate
Linear Regression model has also been selected to ease the interpretation of the results.
The Linear Regression algorithm is a fast method for obtaining models without extensive
parametrizations that can produce accurate predictions.

5.3. Model Implementation Results

As explained in the previous section, the Linear Regression and M5P algorithms have
been chosen for this study. The models are now tested using an 80/20 training-test split, as
stated in the methodology section. In this case, there are over 1450 operations in the hold-
out test set; these experiments have been conducted for the input variables set including
the experience variables, and without them.

The Linear Regression algorithm is applied by selecting the LinearRegression module
found in the Classifiers group. The WEKA workbench offers some parametrization options:
the algorithm has been set to eliminate collinear attributes and to perform a selection, using
the M5 method, of the attributes that are to be considered in the regression model.

Next, the M5P method has also been applied to the 80/20 split; this can be done
in the Knowledge Flow models by substituting the LinearRegression module for the M5P
module. The M5P algorithm constructs a decision tree where the leaves correspond to a set
of Linear Regression models, also known as a model tree; this tree is capable of dealing with
numeric attributes both on its decision nodes and on its leaves, thus using the traditional
decision-model structure of classification algorithms but allowing numeric attributes to be
predicted as the target variable, as required in a regression task. The model tree created by
the M5P algorithm divides the dataset using a splitting method that minimizes the variation
between the instances allocated to the same subset. Each leaf of the tree contains a Linear
Regression model that uses the data in its subset to predict the target variable value for the
evaluated instances that reach said leaf after going through the tree’s decision nodes; the
algorithm also includes a pruning method that simplifies the branches of the decision tree
as long as the expected adjusted error at the resulting leaves decreases. When an instance
is fed to the trained model, it arrives at one of the tree’s leaves through attribute-based
decisions at the tree’s nodes. Once there, the value of the target variable is predicted
utilizing the corresponding leaf’s Linear Regression model.

The main performance statistics for the multivariate Linear Regression and M5P
models are presented in Table 6. Additionally, the predictions of the test set have been
examined and the percentages of instances for which the models have produced predictions
deviating in less than 10, 15 and 30 min are included.

Table 6. Evaluation of the performance of the models.

% of Accurate Predictions

Experiment Input
Variables Set

Correlation
Coefficient

Mean Abs.
Error (h)

Root Mean
Squared Error

Relative Abs.
Error (%)

Error below
10′ (%)

Error below
15′ (%)

Error below
30′ (%)

Linear
Regression

w/o Experi-
ence 0.3365 0.3685 0.5262 90.31 31.91 47.11 76.89

Linear
Regression w Experience 0.3413 0.3681 0.5254 90.12 32.67 47.52 76.82

M5P w/o Experi-
ence 0.3952 0.3619 0.5145 88.66 34.86 49.31 75.92

M5P w Experience 0.4992 0.3363 0.4848 82.38 36.86 50.07 80.54

Overall, the results show a better performance of the M5P method over the Linear
Regression model, as expected in view of the cross-validation results. There are moderate
correlations between the predicted and actual times for both methods and datasets, with
the M5P coefficients being higher. The mean absolute error of the predictions is less than a
minute lower for the M5P method than for the Linear Regression model when using the
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dataset without the experience-related variables. The inclusion of the experience-related
variables does not cause a significant improvement in any of the metrics for the experiments
carried out using the Linear Regression Model; however, the results show an increase of
10 percentage points of the correlation coefficient when adding the experience-related
variables to the M5P model. Similarly, the mean absolute error is reduced in over 1.5 min if
the complete dataset is used.

The relative absolute error represents the percentage error reduction of applying each
method compared to predicting the lead time of every test instance as the mean lead time
of the complete training dataset. Without the experience-related variables, the Linear
Regression approach shows a 9.09% error reduction, while this value increases to 12.39% in
the case of the M5P method. By adding the experience-related variables, these values are
augmented to 11.3% and 17.62%, respectively.

Additionally, the M5P algorithm produces a higher percentage of “accurate” predic-
tions than the Linear Regression approach in any of the proposed thresholds (10, 15, or
30 min). Once again, the use of the M5P method with the experience-related variables
shows the highest accuracy in any of the thresholds. Nevertheless, it must be noted that the
accuracy of each experiment can see changes in each threshold: for example, the M5P model
without experience-related variables produces more accurate predictions with a margin
of error of 10 and 15 min than the Linear Regression approach with any of the datasets;
however, the latter proves more accurate than the former if the threshold is increased to
30 min.

Finally, the RMSE value is lower for the M5P model than for the multivariate Linear
Regression model, as expected given the cross-validation results, in the comparison with
both datasets; this suggests that the M5P produces fewer large errors than the Linear
Regression model, which was the main goal of the regression analysis. To delve deeper
into the fitness of each model, the predicted and actual values of each experiment have
been plotted in Figure 5 (Linear Regression without experience-related variables), 6 (Linear
Regression with experience-related variables), 7 (M5P without experience-related variables),
and 8 (M5P with experience-related variables). The graphs plot the actual lead time values
of the observation in the x-axis, while the corresponding predicted values are shown in the
y-axis. The orange dashed line represents the line with slope 1, that is, where the perfect
predictions would be located. The blue dotted line represents a linear trendline of the
observations, showing the tendency of the predictions as the actual values change. By
observing Figures 5 and 6, just small changes can be found between the Linear Regression
approach without the experience variables and with them.

Figure 7 shows that the trend of the predictions moves closer to the line with slope 1,
which, while not necessarily indicating a smaller error, suggests a better performance of the
M5P model without experience-related variables. Furthermore, Figure 8 reveals that the
predictions of the M5P model without experience-related variables seem to be even more
accurate, as indicated by the results shown in Table 6.

Figures 5–7 suggest that the corresponding models tend to underestimate the predicted
values of the bending lead time as it increases; this can be observed in the right-most points,
which are further away from the line with slope 1 than those with lower actual values. For
lead times over three hours, the models’ predictions are significantly inferior to the actual
values, with over two hours of difference in the most extreme cases; this effect seems to
be diminished in Figure 8, corresponding to the M5P model without experience-related
variables. To further analyze the behavior of the models with this sort of instances, Table 7
shows the percentage of instances exceeding 2 hours in actual lead time, for which its
predictions differ in less than 10, 15 and 30 min of the actual value, respectively. There are
252 of the 1454 instances in the hold-out test set that present an actual lead time longer than
two hours.
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Once again, the M5P model with the experience variables shows superior performance
when predicting the lead times of the extreme values; these results are encouraging, given
that 41% of the instances over two hours can be predicted with less than 30 min of error. It
must be remembered that almost 75% of the instances in the entire dataset range between
1 and 2 h, and thus the model should be able to predict the lead time for such instances
with high accuracy; however, the critical aspect of the analysis is that the models accurately
forecast the lead times for the more “uncommon” instances. Figure 9 shows a plot of the
predicted and actual values for the M5P model with experience-related variables for the
instances with an actual lead time over 2 h.
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Table 7. Evaluation of the performance of the models on instances of more than two hours.

% of Accurate Predictions for Instances over Two Hours

Experiment Input Variables Set Error below 10′ (%) Error below 15′ (%) Error below 30′ (%)

Linear Regression w/o Experience 1.19 5.16 30.56
Linear Regression w Experience 1.98 5.56 32.14

M5P w/o Experience 3.97 10.71 34.92
M5P w Experience 9.52 14.29 41.27
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After examining the performance of the models, the results of multivariate Linear Re-
gression analysis with experience-related variables are interpreted, focusing on new-found
correlations between input variables and lead time. Table 8 shows the coefficients deter-
mined for each variable in this experiment, as well as their standard error and significance.
WEKA does not provide the p-values, but it performs a two-tailed Student’s t-test. The
t-statistic values can be then converted into the significance p-values.

It must be noted that there are both numeric and nominal input variables considered
in the Linear Regression model. Coefficients for numeric variables represent the estimated
growth in lead times when said numeric variable increases its value in one unit; however,
when dealing with nominal variables, there is a coefficient for every level of the variable.
For example, regarding the shift variable, which contains three levels (corresponding to
the morning, afternoon, and night shifts), two resulting coefficients can be expected. If
the night shift is taken as a reference, the coefficient for the morning shift level represents
the expected variation in lead time for a morning-shift operation compared to when the
instance corresponds to the night shift. Similarly, the model should produce a coefficient
for the afternoon shift; however, the algorithm autonomously selects a reference level, and
if the difference between the reference and a certain level is not significant, it does not
produce its coefficient.

The results shown in Table 8 provide interesting insight into the bending operation
studied. Firstly, it must be noted that the variables included in the table are the ones
chosen in the M5-based feature selection filter ran before executing the Linear Regression
algorithm. The rest of the variables have not been found to provide additional information
for the lead time prediction (save for the personnel variable, which will be discussed next).
In particular, such input variables are the width, steel yield strength, steel normalization
and worker age variables.
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Table 8. Multivariate Linear Regression model coefficients and statistics.

Variable Type Level Coefficient SE T-Statistic p-Value

Intercept - - 0.985610 0.074708 13.1929 >0.0001
Shift Nominal M 0.026372 0.014198 1.8574 0.0633

Machine Nominal A 0.146304 0.017338 8.4382 >0.0001

Toughness
Nominal K2, J2, NL −0.054601 0.167111 −0.3267 0.7438
Nominal J2, NL 0.078347 0.169700 0.4617 0.6443
Nominal NL 0.615679 0.236723 2.6008 0.0093

Length Numeric - 0.000018 0.000004 4.7167 >0.0001
Ferrule pos. Numeric - 0.012061 0.002465 4.8923 >0.0001
Section pos. Numeric - 0.033489 0.005823 5.7517 >0.0001
Exp. (sector) Numeric - −0.036360 0.012205 −2.9790 0.0029

30d freq. Numeric - −0.046213 0.013841 −3.3389 0.0009

Secondly, it can be seen that most of the variable coefficients are significant at a
0.01 significance level; however, there are two exceptions: the shift variable coefficient,
adding 0.0264 expected hours (less than two minutes) when the operation is performed
in the morning shift, is only significant at a 0.1 level. Additionally, the toughness variable
only has a level that is predicted to add a significant deviation, the NL toughness subgrade.

The intercept is a constant value that represents the estimated time when all the
nominal variables are at their reference levels and the numeric variables are 0; this value is
not of interest for this interpretation, since there are no plates with null length, width, or
thickness, for example.

Regarding the nominal variables, the most noteworthy effects are those of the machine
variable and, particularly, of the steel plate toughness variable. The operations performed
in the bending station A are expected to take nearly 9 min more than those performed on
station B. Furthermore, the steel plates with a toughness subgrade NL (the second toughest
of the plates encountered in the dataset) are estimated to take 37 min longer than those
with the lower subgrades JR and J0; these are significant time increases, especially when
the mean bending time of all the operations in the dataset is of 1.62 h (97 min).

Regarding the numeric variables, the coefficients show slight increases as both the
position of the section in the tower and the position of the ferrule in the section rise; this
increase amounts to 11 min when comparing the lowest position of a ferrule (1) to the
highest (16), and to 10 min when comparing ferrules from the bottom section to ferrules in
the highest top section produced in the analyzed timespan (6).

As opposed to what was a priori expected, the length of the plate does not have a
remarkable effect on the lead time of the process. The expected lead time increase per
meter of length is only 1.08 min. The difference between processing the longest (24.953 m)
and shortest (7.324 m) plates in the records is expected to be 19 min. It must be kept in
mind that the steel plates are inserted through the bending machine rolls lengthwise and,
therefore, it could be anticipated that a longer plate would take significantly more time to
be bent, but the results suggest otherwise.

Regarding the experience variables, it can be seen that the age of the workers has been
discarded from the model by the feature selection filter; however, the experience at the
sector and the frequency at the station in the last 30 days pose significant effects on the
bending lead time. For example, a worker with 4 and a half years of experience in the
sector (the maximum value observed in the dataset) is expected to employ 9.8 min less to
perform a bending operation than one with no experience, ceteris paribus. Furthermore, a
worker that has performed 3.13 daily bending operations on average during the previous
30 days is predicted to take 8.7 min less to carry out a bending task than an employee with
no operations performed in the previous 30 days, ceteris paribus.

It can be observed that the personnel variable has not been included in Table 8, for
the sake of conciseness. Conversely, the aggregate coefficients of each of the levels of the
personnel variable are shown in Table 9. There are 18 levels for the variable, representing
each employee that has performed the bending operation in the recorded timespan: two
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of those workers are taken as the reference level (Q and R). Another two (A and B) are
expected to perform the bending operations in nearly five fewer minutes than workers Q
and R. The remaining 14 employees are estimated to produce an increase in the operation
time ranging from 8 min up to 69 min over the expected bending time for employees Q
and R. In fact, the highest difference found in expected lead time (O and P vs. A and B)
amounts to 74 min, 76.19% of the average bending lead time, a testament to the relevance
of personnel for the prediction of the bending lead time.

Table 9. Aggregate Linear Regression coefficients for each level of the personnel variable.

Employee Aggregate Coefficient

A, B −0.080487
C 0.175264
D 0.134637

E, F 0.19485
G 0.252704

H, I 0.319486
J 0.431811

K, L 0.338771
M, N 0.493093
O, P 1.153838
Q, R Reference

6. Discussion

The results presented in Section 5 show that the bending operation produces a signifi-
cant time variability, which is somewhat expected due to it being a non-automated process,
the outcome and duration of which are undoubtedly influenced by the employees’ actions.

However, certain factors’ influences, or lack thereof, must be discussed using the
results of the Linear Regression approach. Surprisingly, the dimensional variables do not
have a particularly strong effect on the lead time of the bending process. Even if width
can understandably, given the configuration of the process, be a non-factor, it was a priori
expected that the length of the plate would have a significantly higher effect on the duration
of the process, but the results prove otherwise.

While the shift in which the process was completed, the machine used, and the position
of the section, and the ferrule do have a significant yet slight effect on the lead time, the
most noteworthy factors are the steel toughness and the personnel. The analysis shows a
near 40-minute expected increase in the bending operation when one of the toughest steels,
with subgrade NL, is processed.

The variability introduced by personnel is even greater, with 2 of the 18 workers
being expected to increase the lead time of the bending operation, which takes an aver-
age of 97 min, by 74 min; this suggests the need for more in-depth analysis and for the
standardization of the bending process in the plant.

Overall, the machine learning algorithms show moderate predictive power, which can
be considered useful in an industrial setting such as the one in which this work is based.
The proposed models will predict the lead time with less than a 10-min error in 31.9–36.9%
of the occasions, which can serve as a somewhat solid base for the planning of the bending
process and for the detection of production anomalies. Additionally, while the use of the
multivariate Linear Regression algorithm proves useful to analyze the effects of each input
variable, the performance of the M5P method is clearly superior to that of the former. The
fact that both analyses require relatively low and similar runtimes justifies the use of the
superior approach: the M5P method.

The performance of the M5P model proposed is especially interesting when dealing
with instances containing extreme lead time values, over 2 h, which are uncommon but
have a very negative effect on the manufacturing process planning and control if not
detected preemptively. The model is able to predict 41.3% of these instances with an error
of less than 30 min, and 14.3% of them with under 15 min of error.
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The effect of the inclusion of the experience-related variables is of particular interest.
As expected, as the experience of the workers in the plant or sector increases, so does their
time-wise efficiency while performing the bending operation. Similarly, if a worker has had
short-term experience with the bending process, he is expected to carry it out in shorter
lead times. While the Linear Regression coefficients of these variables do not denote a
higher effect of these input variables over the previously described ones, the improvement
of the predictive power of the models with the inclusion of the workers’ ages, experience
at the plant/sector and 30-day frequency is noteworthy, particularly in the case of the
M5P method.

7. Conclusions

In this work, the lead time of the bending process in a wind tower manufacturing plant
is analyzed. Two machine learning models have been applied to the dataset corresponding
to a real-world case study. One of them, the M5P model, maximizes the accuracy of the lead
time predictions, based on a preliminary cross-validation-based model selection process.
On the other hand, the Multivariate Linear Regression model serves as a basis to analyze
the effect of each input variable in the prediction.

While the prediction results produced by the models could not be considered sufficient
in other applications, they must be put into context: the lead time variability, the quality
of the data, and the non-automated nature of the process hinder the predictive power of
the proposed machine learning models. Nevertheless, these predictions are useful for the
wind turbine tower manufacturing industry, characterized by its high competitiveness.
Aside from the potential applications of the improved predictions already discussed in
the article, anomaly detection and production planning and control, there are plenty of
other uses of the approach presented in the paper: wind farm projects are usually awarded
on a competitive basis among a small number of manufacturing companies. As a result,
the selling price of the tower must be accurately specified: a high bid would exclude the
company from the tender, and a low bid would jeopardize the economic viability of the
production. There are two fundamental aspects of cost estimation that can be improved
through the lead time prediction: a better estimation of personnel costs (which account for
approximately 30% of the total production costs in this industry) and improved forecasting
of the supplies and consumables used during production, as well as of the storage costs.

Moreover, as discussed throughout the text, this approach does not only provide value
from a predictive point of view, but also from the perspective of a continual improvement
process. The findings of this work allow identifying areas of improvement that would
in turn increase the reliability of future predictions, such as employee training and stan-
dardization; it also provides, given the results of the inclusion of the experience-related
variables, additional implications for the hiring, training, and scheduling fronts. First of all,
the results show that employees that have already had experience at the plant or the sector
are expected to be more efficient in the bending operation from a lead-time standpoint.
Training and practice in the process may also increase the performance of the workers, as
they accumulate experience at the bending station. Regarding manpower scheduling, the
findings highlight the necessity to consider the short-term experience of the workers at the
station as a means of improving their performance.

This study presents some limitations. Firstly, the size of the dataset is relatively small
for a machine learning analysis. The addition of further instances could help strengthen
the claims made throughout this article; it could also favor the use of more advanced
techniques such as the Neural Networks, which have been proven to produce remarkable
results when the dataset is large enough. An exhaustive hyperparameter tuning process
has been conducted in order to optimize the performance of the Multilayer Perceptron
Neural Network; however, it is believed that the limited size of the dataset has favored the
performance of the M5P model over the former. Additionally, having wider ranges in the
experience-related input variables could have helped to further analyze the effect of age and
experience on the performance of workers. The minimum and maximum workers’ ages in
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the current dataset are of 28 and 57 years, respectively. Having data on workers at even later
stages could have been of interest and help obtain significant effects of age, particularly as
governments in western countries have increased the retirement age in recent years (and
are planning to extend it even further) given the World’s population aging.
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