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We use a generalised version of the equation of motion for a thin film of liquid on a
solid, horizontal substrate as a model system to study the formation of singularities in
space dimensions greater than one. Varying both the exponent controlling long-ranged
forces, as well as the exponent of the non-linear mobility we predict the structure of the
pinch-off singularity as the film thickness goes to zero. The spatial stucture of pinch-
off may be either “pointlike” (approaching axisymmetry), or “quasi one-dimensional”,
in which case a one-dimensional singularity is unfolded into two space dimensions. The
scaling of the profile with time may be either strictly self-similar (the “regular” case), or
discretely self-similar and perhaps chaotic (the “irregular” case). We calculate the phase
boundaries between these regimes, and confirm our results by detailed comparisons with
time dependent simulations of the non-linear thin film equation in two space dimensions.

1. Introduction

Most of the past work on singularities has been focused on singularities in one spatial
dimension. For example, in drop pinch-off one is often able to describe the dynamics in
a lubrication-type description, reducing the problem to a single spatial variable z. The
idea of self-similar solutions to this problem is that as the thickness h of the neck goes
to zero, h ∝ t′α scales like a power law of the time distance t′ to the singularity (Eggers
1993). Likewise, the axial size of the singularity is assumed to scale as z ∝ t′β as t′ → 0.

Even in cases where a lubrication-type reduction is not possible, and the flow remains
truly three-dimensional and axisymmetric (Chen & Steen 1997; Day et al. 1998; Cohen
et al. 1999; Zhang & Lister 1999a; Eggers et al. 2020), the free surface shape still remains a
function of one variable alone. Similarly, analytical descriptions of thin film rupture, using
similarity solutions (Zhang & Lister 1999b; Witelski & Bernoff 2000; Craster & Matar
2009), has been confined to the one-dimensional case (i.e. pinch-off along ridges), or
axisymmetric solutions. Indeed, axisymmetric solutions have been observed in numerical
simulations of the thin film equation (Becker et al. 2003; Blossey 2012), even when
starting from initial conditions which are not axisymmetric themselves.

Singular structures, however, appear much more generally in two- and three dimen-
sional fields (Eggers 2018), for example in hydrodynamic turbulence (Frisch 1995), the
Euler equations (Grauer & Sideris 1991), or the non-linear Schrödinger equation (Nore
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et al. 1997). There has been little progress describing these complex, two- or three-
dimensional structures analytically, although there is a general expectation that they
contain self-similar features as well.

There has been some progress to extend the method of similarity solutions to higher
dimensions in some specific cases, for example the porous medium equation Angenent
et al. (2001); Aronson (2016), wave breaking of in a kinematic wave equation (Pomeau
et al. 2008), the relativistic membrane equation (Eggers et al. 2015), in the dispersionless
Kadomtsev-Petviashvili equation (Grava et al. 2016), and the formation of shocks in
the compressible Euler equation (Eggers et al. 2017). Another example is the “natural
focusing” of light (Nye 1999), by which a variety of higher dimensional singularities can
be realised. However, a general general picture of how singularities develop in higher
dimensions is missing.

Another property of complex (turbulent) flows is that they exhibit not a single feature,
such as the motion toward pinch-off at a point, but a superposition of many features in
a fractal arrangement. A possible such mechanism has been suggested for the Euler
equation (Pumir et al. 1992), in which a self-similar solution becomes unstable to
provide the seed for a new self-similar solution, a process which repeats itself on smaller
and smaller scales. An explicit example of such “discrete self-similarity” has first been
described for the formation of a black hole, using the equations of general relativity
(Choptuik 1993). Very recently the same phenomenon has been observed in the pinch-off
of a fluid, whose viscosity is much smaller than the surrounding fluid (Fontelos & Wang
2020).

An analytical framework to understand discrete self-similarity has recently been pro-
posed in a study of the thin film equation, in which the interaction exponent of the
long ranged forces was treated as variable (Dallaston et al. 2018). As the exponent
is lowered, making interactions more long-ranged, the previously self-similar pinch-off
solution becomes unstable, undergoing a Hopf bifurcation, at which a periodic orbit is
born. Such a periodic solution in similarity space corresponds precisely to discrete self-
similarity, where at each cycle a new structure is produced.

In the present paper, we will provide a general framework for how singularities look
like in higher dimensions, starting from the ansatz

h(x, y, t) = t′αH(ξ, η), ξ =
x′

t′β
, η =

y′

t′β
. (1.1)

If we disregard the dependence on y, this is the usual form of a one-dimensional similarity
solution describing for example drop pinch-off, but now we allow another scaling in the
transversal, y-direction. We find that there are two types of solutions. In the first type,
which we call “pointlike”, the scaling is the same in both directions, and β = β. A
particular case are axisymmetric solutions, which have been found to describe many
cases of pinching in the thin film equation (Zhang & Lister 1999b; Witelski & Bernoff
2000).

In the second type of solution, the solution varies much more slowly in the transversal
direction, i.e. β < β. We will see that in that case, the higher dimensional dynamics results
from the unfolding of a one-dimensional singular solution in the sense of catastrophy
theory (Arnold 1984; Nye 1999; Pomeau et al. 2008); these will be called “quasi one-
dimensional solutions”. We will give a general criterion for the appearance of quasi
one-dimensional solutions, separating them from cases where the singularity occurs in
a pointlike fashion. This idea also applies when the one-dimensional solution is no longer
self-similar, but discretely self-similar or even chaotic.

We illustrate our theory using a generalized thin film equation, in which both the
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interaction exponent and the exponent of mobility appear as free parameters. Owing to
the attraction between the top and bottom of the film, starting from a small sinusoidal
perturbation to the film thickness h(x, y, t), h goes to zero in finite time, producing a
singularity in which quantities like the pressure blow up. With our theory, we are able
to delineate the transitions between quasi one-dimensional and pointlike singularities on
the one hand, and simple self-similar solutions and irregular solutions on the other.

To compare with theory, we present detailed numerical simulations, using two different
methods, which use local refinement to be able to follow the evolution of the film thickness
through three orders of magnitude, within a fully two-dimensional spatial description.
We detect quasi one-dimensional, pointlike, regular, and irregular behavior, and find
agreement with theoretical predictions for the phase plane. Moreover, we present detailed
comparisons of the film profile between theory and simulation for all the cases considered.

In the next section, we present the generalized thin film equation, and develop the
similarity theory for space dimensions larger than one, including transitions between
regular and irregular behavior. The latter is accomplished by computing bifurcation
curves of the one-dimensional profiles, generalizing the approach of (Dallaston et al.
2018). In the third section, we present the numerical methods used, while the fourth
section contains a detailed comparison between theory and simulation. We conclude with
a discussion and perspectives for the future.

2. Self-similar solutions of the thin film equation

2.1. The generalized thin film equation

The most frequently used version of the thin film equation (Craster & Matar 2009;
Blossey 2012) is that for a layer of viscous liquid on a solid substrate. It describes how
viscous motion is driven by pressure gradients. In the lubrication approximation, in
which the pressure p(x, t) is taken to be constant over the layer, the equation for the film
thickness h(x, t) becomes

ht =
1

3

(
h3px

)
x

= 0. (2.1)

Here subscripts refer to differentiation with respect to the variable. For simplicity, we
restrict ourselves to one dimension, and generalize to higher dimensions later. If the fluid
is allowed to slip over the solid surface, as is the case for entangled polymer solutions
(Blossey 2012), the mobility h3 changes its power to h2.

If it were for surface tension alone, a flat film would be a state of minimum energy, and
the film would relax back to it, even if perturbed. However, for very thin films the top and
bottom of the film often attract one another (Bonn et al. 2009), and pinch-off can occur.
This is modelled by an additional disjoining pressure, and in the case of non-retarded
van der Waals forces (Blossey 2012),

p = −γhxx −
A

6πh3
, (2.2)

where γ is the surface tension, and A > 0 the Hamaker constant. Other exponents for
the van der Waals attraction are are also possible, for example p ∝ h−2 for retarded van
der Waals forces (Blossey 2012).

Without aiming to model a particular system, but noting that exponents may differ
according to experimental circumstances, we now allow the two exponents to vary freely.
We also choose units of h, x, and t such that prefactors become unity, to arrive at the
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equations:

ht − (hnpx)x = 0, p = −hxx +
h−m

m
. (2.3)

The classical case of non-retarded van der Waals forces, and a Newtonian liquid on a solid
surface, corresponds to n = m = 3. Alternatively, this “generalized lubrication equation”
(Eggers & Fontelos 2009; Dallaston et al. 2018) may be written in the compact form

ht +
(
hnhxxx + hn−m−1hx

)
x

= 0. (2.4)

In the case of a two-dimensional film, which is the main subject of this paper, the
lubrication equation ht + ∇ · f = 0 now has the flux f = −hn∇p, and the pressure is
p = −4h + h−m/m. Here we have once more chosen units to normalize coefficients to
unity. Now the generalized lubrication equation (Bertozzi & Pugh 1994) in two or higher
dimensions becomes

ht + ∇ ·
(
hn∇4h+ hn−m−1∇h

)
= 0. (2.5)

Assuming that h(x, t) depends on a single spatial variable, one of course recovers (2.4).

2.2. One dimensional similarity solutions

We begin with the simplest case of a single spatial variable, corresponding to pinch-off
of a one-dimensional ridge. We consider (2.4) and look for similarity solutions of the form

h(x, t) = t′αH(ξ), ξ =
x′

t′β
, (2.6)

where t′ = t0 − t and x′ = x− x0. Inserting this into (2.4), and balancing the powers of
t′ that arise from each of the three terms, we find a unique solution for the exponents in
terms of the parameters n and m:

α =
1

2 + 2m− n, β =
1 +m

4 + 4m− 2n
. (2.7)

Using this values, we obtain an equation for the similarity profile H(ξ):

− αH + βξHξ = −
[
HnHξξξ +Hn−m−1Hξ

]
ξ
. (2.8)

As first found for the drop pinch-off problem (Brenner et al. 1996), and in the case of
(2.8) for n = m = 3, (2.8) has an infinite sequence of solutions, but only one of which, the
“ground state”, is observed in simulation or experiment. This raises the question of the
stability of such solutions, which can be studied by rewriting (2.4) in self-similar form.
This is achieved by the transformation (Giga & Kohn 1985)

h(x, t) = t′αH (ξ, τ) , ξ = x′/t′β , τ = − ln t′, (2.9)

so that the similarity equation becomes

Hτ = αH − βξHξ −
[
HnHξξξ +Hn−m−1Hξ

]
ξ
. (2.10)

The advantage of this “dynamical system” description (Eggers & Fontelos 2015) is that of
(2.6) are now fixed points of (2.10), making stability much easier to study. To investigate
the neighborhood of a similarity solution, (2.10) has to be solved subject to the far-field
condition (Eggers & Fontelos 2015; Witelski & Bernoff 2000)

Hτ =∝ αH − βξHξ, |ξ| → ∞, (2.11)

which ensures matching to a slowly-evolving far-field solution.
Linearising (2.10) around a similarity solution, which satisfies (2.8), stability can be
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assessed within the space of one-dimensional solutions. It is found (Bernoff et al. 1998;
Eggers 2012) that only the ground state is stable, all other solutions have at least one
eigenvalue with a positive real part, in agreement with simulations. This excludes two
positive eigenvalues (Giga & Kohn 1985; Eggers & Fontelos 2015), which are always
present owing to the invariance of the equations under space and time translations.
Namely, a perturbation will produce a shift in t0 and x0, leading to the solution being
driven away from the fixed point, unless t0 and x0 are adjusted to account for this shift.
The corresponding eigenvalues are νT = 1 and νX = β, for the temporal and spatial
shift, respectively.

The stability of (2.8) was first investigated by Witelski & Bernoff (2000) for the case
n = m = 3, ignoring eigenvalues with imaginary part. We will see below that the most
dangerous eigenvalues (those with the largest real part, apart from νT and νX), are in
fact complex. Consistent with other systems, the ground state similarity solution was
found to be stable, all other solutions unstable. This remains to be true if the missing
complex solutions are accounted for (Dallaston et al. 2018). We begin by studying singular
solutions of the one-dimensional equation (2.4) only.

2.3. Regular and irregular motion

In Dallaston et al. (2017), starting from the known solution for n = m = 3, new
solutions were found by numerical continuation, holding the friction exponent fixed at
n = 3, but lowering m from its typical value m = 3, making the interaction more
long-ranged. The stability of this branch of solutions was studied in Dallaston et al.
(2018). Here we extend the analysis of Dallaston et al. (2017, 2018) to the whole interval
1 6 n 6 3, as represented in the phase diagram shown in Fig. 1. We focus on the stability
of the ground state solution H0(ξ), ignoring higher order branches Hi, i > 1, which are
always unstable. In the upper part of the diagram, labelled regular, symmetric, one finds
symmetric (stable) ground state solutions, an example of which is shown in Fig. 2(a), for
n = 3,m = 2, and marked by green star in Fig. 1. These solutions are similar to those
found originally for n = m = 3.

As explained in more detail in Appendix A, we are interested in solutions to the
linearised problem of the form eντP (ξ), subject to the far-field condition (2.11). This
leads to an eigenvalue problem for ν = νR + νI , all of which have a negative real part,
making the fixed point solution H0(ξ) stable; this excludes the trivial eigenvalues νT , νX .

Of particular interest are the eigenvalues with the two largest real parts (both of
which are complex), the larger one of which has a symmetric eigenfunction, the smaller
(more negative) eigenvalue corresponding to an antisymmetric eigenfunction. As m is
lowered from 3, the real parts increase, to produce Hopf bifurcations when νR = 0 at
finite νI 6= 0; this signals the birth of a periodic orbit (Drazin 1992), while the original
fixed point solution H0(ξ) has become unstable. This happens first for the symmetric
eigenfunction at a value ms, and then for the antisymmetric eigenfunction, at ma.

Extending our numerical procedure to search for periodic solutions of (2.10) (see the
Appendix A for details), we can continue the periodic solution branches from the Hopf
bifurfaction, where they are created. The branch originating at the symmetric Hopf
bifurcation creates symmetric periodic solutions, the asymmetric Hopf bifurcation creates
antisymmetric periodic solutions.

The search for Hopf bifurcations of the ground state solution has been carried out for
1 6 n 6 3, which results in bifurcation curves ms(n) and ma(n), which are drawn as
the blue and yellow lines in Fig. 1, respectively. Below the blue line, the symmetric fixed
point solution has become unstable, and one should expect irregular behavior: periodic,
or perhaps even more complicated. As seen in Fig. 1, the symmetric Hopf bifurcation



6

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

m

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

n

regular, asymmetric

irregular

regular, symmetric

Sym. Hopf
Asym. Hopf
Sym. example
Asym. example
Periodic example

Figure 1. Phase diagram of one dimensional singular solutions of (2.4). Below the symmetric
Hopf bifurcation (blue line), regular pinch solutions become unstable, and periodic, or even more
complex dynamics appears. For small values of n below ≈ 1.87, regular, asymmetric solutions
are seen below a Hopf bifurcation in the reverse direction. Examples, seen in Fig. 2 are marked
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Figure 4: Bifurcations in the (n, m) plane, where m̃ = n and ñ = n � m � 1.
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bifurcation on the asymmetric branch.
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Figure 3: The stable asymmetric similarity solution at m̃ = 1.5, ñ = 0.3 (n = 1.5, m = 0.2)

4

(c)

Figure 2. Three examples of similarity solutions, identified by symbols in Fig. 1. (a): a regular,
symmetrix similarity solution for n = 3,m = 2 (green star) (b): a periodic, antisymmetric
solution for n = 3,m = 1.3 (blue star). (c): a regular, asymmetric solution for n = 1.5,m = 0.2
(red star). The periodic solution has a period of T =??, and 5 profiles are shown, with a distance
of ∆τ = ... between them. need T ; symbols and lettering needs to be much bigger; label on y
axis is H. Don’t need titles. put periodic Hmin as inset in (b). make profiles (a),(c) black

line is close to linear, and well described by the equation m = 0.8(n− 1). As a good rule
of thumb, we can therefore say that

m > 0.8(n− 1) : regular dynamics (2.12)

is the condition for a regular fixed-point solution; in the opposite case, irregular behavior
will be seen.

We have not yet fully described the bifurcation structure below the asymmetric Hopf
line, where both symmetric and antisymmetric solutions should be present. However, we
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conclude from full numerical simulations of (2.5) that the asymmetric solution branch is
an attractor. In Fig. 2(b) we show a typical example of such an antisymmetric solution,
which is found by continuing the periodic solution branch from the antisymmetrix Hopf
bifurcation. It corresponds to a solution H(ξ, τ) in similarity space, which is periodic in
τ with period T , after which it returns to the same profile. Thus if profiles are recorded
at discrete times τn = τ0+nT , where n is an integer, one observes a self-similar shrinking
of the solution, hence the name “discrete self-similarity”. In Fig. 2, we show a sequence
of 5 profiles at equal steps of τ , after one returns to the original profile.

The difference between a fixed point solution and a periodic solution is illustrated in
Fig. 3, where direct numerical simulations of the one-dimensional thin film equation (2.4)
are shown. On the left, we show the regular case: the same symmetric profile appears on
smaller and smaller scales. On the right, we show the irregular case of a periodic orbit
(discrete self-similarity). The profile undergoes a series from instabilities, continually
changing the profile, but repeating the same sequence after a period T in logarithmic
time.

In Dallaston et al. (2018) it is shown with the example of n = 3,m = 1, that
solutions can also become non-periodic. While in the discretely self-similar case the profile
continually undergoes the same sequence of instabilities, in the non-periodic case new
strctures are always created. While the periodic case can be seen as creating a simple
fractal, where the same pattern appears on smaller and smaller scales, the non-periodic
case corresponds to a multifractal. Apart from some specific examples, we have not yet
delineated regions of more complicated behavior in the phase diagram.

However, as seen in Fig. 1, not all solutions below the blue bifurcation line are irregular.
For n . 1.87, below the red bifurcation line, fixed point solutions become once more
stable, but are now asymmetric, an example of which is shown in Fig. 2(c). As detailed
in Appendix A, these solutions were found from a continuation procedure from the
original symmetric ground state solution. Beyond the symmetric and asymmetric Hopf
bifurcations, a pitchfork bifurcation leads to a pair of unstable, asymmetric solutions with
complex eigenvalue; the asymmetric pair is the mirror image of one another. Continuing
this branch, the real part of the eigenvalue eventually goes through zero and becomes
negative in another Hopf bifurcation, but going in the opposite direction, and producing
a stable, asymmetric solution.
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2.4. Higher dimensional solutions

We now come to the main aim of this paper, which is to understand the structure of
solutions in two and higher dimensions, using the general ansatz (1.1). We first analyze
the the case of β = β, leading point-like solutions. Then we analyze the case β < β,
which results in quasi one-dimensional solutions.

2.4.1. Pointlike solutions

Inserting (1.1) with β = β into the generalized thin film equation (2.5), we obtain the
similarity solution

− αH + βξHξ + βηHη = −∇ ·
(
hn∇4h+ hn−m−1∇h

)
, (2.13)

where ∇ = (∂ξ, ∂η), and 4 = ∂2ξ +∂2η . In view of spatial isotropy, one expects solutions of
(2.13) to be axisymmetric (Zhang & Lister 1999b; Witelski & Bernoff 2000). The scaling
of the exponents (2.7) is the same as in the one-dimensional case. Looking for radially
symmetric solutions

h(x, y, t) = t′αH(ζ), ζ = r/t′β , (2.14)

one finds in two dimensions:

− αH + βζH ′ +
1

ζ

[
ζHn

(
(ζH ′)

′

ζ

)′
+Hn−m−1H ′

]′
= 0. (2.15)

Solutions to (2.15) have been computed for n = m = 3 (Zhang & Lister 1999b), and have
been found to be stable to radial as well as non-axisymmetric perturbations (Witelski &
Bernoff 2000). However, the stability analysis again excluded complex eigenvalues. We
will see below that axisymmetric solutions are in fact stable only for a range of n,m
values.

It is worth noting that pointwise similarity solutions are not necessarily axisymmetric.
An example are optical caustics, which are described by the eikonal equation (Nye 1999).
In that case, radially symmetric solutions would correspond to perfect focusing, and
would be the least generic situation. Instead, the most stable solutions, which take the
fewest number of adjustable parameters to find, are the elliptic and hyperbolic umbilic.
They can be found by solving the analogue of (2.15) for the eikonal equation (Eggers
2020).

2.4.2. Quasi one-dimensional solutions

The other possible solution of the form (1.1) is the case β < β, which means that
the solution is varying slowly in the transversal direction; the direction in which the
solution is most singular (largest derivatives), we choose as the x-direction. We have
investigated solutions of this type previously in the case of the eikonal equation (Eggers
et al. 2015), the dispersionless Kadomtsev-Petviashvili equation (Grava et al. 2016), and
shock formation in the compressible Euler equation (Eggers et al. 2017). Here we point
out the generality of the approach, which is independent of the particular structure of
the equation, and apply it to the generalized thin film equation.

Owing to the slow variation in the y direction, we can look at the solution as a
superposition of one-dimensional solutions (2.6). Since the eigenvalue νT is usually the
most singular one, we consider a corresponding shift in the singularity time of the one-
dimensional solution. As y is varied, the singular time tc(y) effectively varies (Pomeau
et al. 2008; Grava et al. 2016). Setting the origin of the transversal variable such that
the singularity occurs for y = 0 first, and expanding, we have

tc = t0 + ay2 +O(y3);
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we must have a > 0 so that always tc > t0. For the same reason, there can be no linear
term. Replacing t′ in (2.6) by tc−t = t′+ay2+O(y3) implies the scaling y2 ∝ t′, and thus
β = 1/2. The singularity proceeds in the x-direction, but is “unfolded” in the transversal
(y) direction, a situation well understood in the case of the eikonal equation (Nye 1999;
Eggers et al. 2015). The similarity equation of the thin film problem then becomes

− αH + βξHξ +
η

2
Hη = −

[
HnHξξξ +Hn−m−1Hξ

]
ξ
. (2.16)

Note
that in order for (2.16) to be self-consistent, we must have β > 1/2. In that case

the x-derivatives on the right hand side of (2.5) dominate over the y-derivatives, and
the right-hand-side only contains ξ-derivatives. Combining the condition β > 1/2 for a
quasi-one-dimensional singularity with the formula for β, one obtains

n > 1 +m, quasi-one-dimensional (2.17)

as a necessary condition for a quasi one-dimensional singularity. The same stability
boundary is obtained by considering a small y-dependent perturbation to a one-
dimensional solution (Witelski & Bernoff 2000), realising that after a shift in the
y-direction, it is enough to consider quadratic perturbations to leading order.

With the above insight, we use (2.16) directly to find the most general unfolding of a
one-dimensional solution H(1)(ξ) of (2.8), it is easy to check that

H(ξ, η) =
(
1 +Aη2

)α
H(1)

(
ξ +Bη2β

(1 +Aη2)
β

)
(2.18)

is a solution of (2.16) for arbitrary constants A,B. They are adjustable parameters,
which depend on initial conditions.

In fact, (2.18) can be understood from noticing that since H1(ξ) does not contain any
free parameters, the only way a dependence on y can come in is through t0(y) and x0(y).
Then to leading order tc − t = t′ +Ay2 = t′(1 +Aη2). Further, we expand

x− xc = x′ −
∞∑
i=1

biy
i,

so that

x− xc
t′β

= ξ −
∞∑
i=1

biη
it′i/2−β .

This only leads to a finite result if 2β is an integer, so that in fact the contribution Bη2β

in (2.18) is regular. All coefficients bi with i/2−β < 0 must vanish (otherwise they would
blow up), and so the leading contribution is that of (2.18).

The form of the solution (2.18) is a general feature, independent of the structure of the
equation. In the case of additional symmetries, it might even have a more general form.
For example, considering the cusp singularity (Nye 1999) of the eikonal equation, and
using the equivalent of (2.18), one finds a solution with three independent parameters.
Only after invoking an additional invariance of the eikonal equation, does one recover
the required four parameters.

In the time-dependent case, important for describing the irregular behavior discussed
in Subsection 2.3, the equation extending (2.16) is

Hτ = αH − βξHξ −
η

2
Hη −

[
Hn

(
Hξξ −

1

mHm

)
ξ

]
ξ

; (2.19)
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Figure 4. Phase plane of the two-dimensional singularities of (2.5). The blue solid line is the
border (2.12) between regular and complex behavior, the blue dashed line is the border (2.17)
between pointlike and quasi-1D behavior. For smaller values of m, and n . 1.87, there is a
return to regular behavior. The symbols correspond to numerical simulations of (2.5) with
initial condition (3.1).

now if H(1)(ξ, τ) is a solution of (2.10),

H(ξ, η) =
(
1 +Aη2

)α
H(1)

(
ξ +Bη2β

(1 +Aη2)
β
,

τ

1 +Aη2

)
(2.20)

solves (2.19). Note that depending on y, the solution is found in different phases of the
evolution. In the case of a non-periodic solution, this will be even more complicated.

3. Numerics of the thin film equation

In the light of the above discussion, we want to explore numerical solutions of (2.5),
to see whether one can identify the types of solutions described above, and find the
transitions between them. Namely, transitions between quasi 1D and pointlike solutions,
and between regular and irregular solutions, as the exponents n,m are varied. For
simplicity we impose periodic boundary conditions on (x, y) ∈ [0, 1] × [0, 1]. As initial
conditions we choose

h0(x, y) = href [1− ε1 cos 2π(x− 1/2)] [1− ε2 cos 2π(y − 1/2)] , (3.1)

which helps explore transitions between one and two dimensions. If ε2 = 0, there is no
y-dependence, and solutions are strictly one-dimensional. If on the other hand ε1 = ε2,
there is a single minimum at the center (x, y) = (1/2, 1/2) of the domain, around which
the profile is approximately axisymmetric. The amplitude href was chosen such that a
flat profile is linearly unstable.

In view of the demands on the spatial resolution in two dimensions, two different
numerical codes have been used in this work, using different schemes for the adaptive
regridding. The first one, implemented on MATLAB c©, is based on the work of Herrada
& Montanero (2016), while the second is constructed on the platform Basilisk (Popinet
2015).
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Figure 5. An example of a non uniform mesh created in the late stages of a simulations, with
the minimum of h at (0.5, 0.5).

3.1. Fully implicit finite difference method

In this scheme we have taken advantage of the symmetric of the problem to simulate
just a quarter of the domain: [0.5] × [0.5]. The two-dimensional generalized thin film
equation (2.5) leads to a nonlinear equation for h:

ht = hn[hyyyy + 2hxxyy + hxxxx + (hyy + hxx)/hm+1 − (h2y + h2x)(m+ 1)/hm+2

+ hyh
n−1n(hyyy + hxxy + hy/h

m+1) + hxh
n−1n(hyyx + hxxx + hx/h

m+1)]. (3.2)

The time derivative is discretized using second order backward differences while sec-
ond order central differences were employed to discretize the spatial derivatives. The
method is fully implicit; to solve the nonlinear system resulting from the discretization,
a NewtonRaphson technique was used, where the required Jacobian matrix is obtained
by combining analytical functions and collocation matrices (see Herrada & Montanero
(2016) for further details). This allows to take advantage of the sparsity of the resulting
matrix, to reduce the computational time to invert it.

A variable time step dt, based on the change in the minimum of h, was used for the
time integration. The minima hmin and hmin1

at the current and previous time steps,
respectively, as well as the last time step, dt1, are used to set

dttry = (αhmin − hmin1)/(hmin − hmin1)dt1 − dt1.
Here α is a parameter to control the variation of the time step. The step dtry is used
when the solution approaches the singularity, while a fixed time step dtfixed is used at the
beginning of the simulation. To that end, the time step was set as dt = min(dttry, dtfixed).
Most of the simulations where carried out with α = 0.9 and dtfixed = 0.001.

All simulations where started with an uniform grid with a grid size ∆x = ∆y =
0.002. Once the solution approaches the singulary, the mesh is automatically adapted to
concentrait points around the coordinates, (xmin, ymin), where h reaches its minimum
value. Near this point a uniform grid with spacing ∆x = ∆y = ∆min is used. Starting
at this point and after each N steps, the grid size was doubled in each direction. The
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simulations were carried out with ∆min = 5 10−5 and N = 40. Fig. 5 shows an example
of the mesh generated using this procedure.

3.2. Basilisk library

Alternatively, the nonlinear system of equations is solved with the Newton-Raphson
scheme implemented in the free C-language library Basilisk (Popinet 2015). This allows us
to make use of the sophisticated adaptive grid refinement schemes available for Basilisk,
and to control the discretization error directly. Basilisk provides tools for the numerical
solution of PDE’s, discretized spatially with adaptive Cartesian meshes. Here, starting
from a trial solution (p∗, h∗), we iteratively solve the linear system

p+ hxx + hyy = 0 ,

(αpx)x + (αpy)y + (βhx)x + (βhy)y + (γxh)x + (γyh)y = ht + (γxh
∗)x + (γyh

∗)y ,
(3.3)

with

α = (h∗)n, β = −(h∗)n−m−1 and γx,y = n(h∗)n−1p∗x,y − (n−m− 1)(h∗)n−m−2h∗x,y

up to the convergence, using a multigrid method. Here p = p∗+δp and h = h∗+δh, with
(p, h) the converged solution, and (δp, δh) a small correction. Convergence is checked by
monitoring δh a posteriori.

Spatial derivatives are discretized using second order differences, while the time deriva-
tive has been discretized using first or second order backward differences; no significant
difference was found between both time time discretization methods. The timestep has
been set according to two different strategies; it is either set proportional to the minimum
height, or by estimating the time truncation error, calculated by comparing the solution
obtained with second and first order time derivatives. The equations are very stiff, and
prone to numerical divergence if the timestep is not small enough. Therefore, both
strategies require some fine tuning of parameters, in order to approach the singularities
as closely as possible. The spatial discretization is adapted automatically by monitoring
the inverse of the height field, hi = 1/h. In the vicinity of the singularities grid as small
as ∆x = ∆y = 3 · 10−5 is used while the grid size grows up ∆x = ∆y = 7.8 · 10−3 far
away of the singularities.

4. Comparison of theory and simulation

We are now able to compare our theoretical predictions of Fig. 4 to numerical simula-
tions. Owing to the adaptive capabilities of both of our numerical codes, we are able to
follow the dynamics through almost five orders of magnitude in scale check. This allows
us to identify the self-similar structure, and classify the type of singularity according to
our theoretical description. Both of our numerical codes provided consistent results.

The symbols in the phase plane of Fig. 4 correspond to simulations at set parameter
pairs (n,m), and are seen to agree nicely with theoretical predictions. The classification
of the dynamics is based on the identification of the theoretically predicted structure.
This is either the pointlike solution (2.14), or the quasi one-dimensional solution (2.18)
in the regular, fixed-point case, or (2.20) in the irregular, time-dependent case. We will
now go over a few representative cases, for which we present a detailed comparison.

The case of Fig. 6 is in the pointlike (axisymmetric) regime, shown as the black circle
at n = 2,m = 1.5 in the phase diagram. As seen on the left of Fig. 6, although the initial
condition is not axisymmetric, the solution converges to a point, with radial symmetry.
To demonstrate this more clearly, we demonstrate collapse of the profiles in the x and y
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Figure 6. Simulation of (2.5) with n = 2,m = 1.5, and initial condition (3.1), using
ε1 = 0.05, ε2 = 0.03, and href = 0.2. On the left, a perspective plot of 1/h demonstrates
the pointlike character. On the right, cuts in the x and y directions are shown at the top and
bottom, respectively, for the values of τ = − ln t′ shown. Profiles are collapsed according to
(2.14), and agree with a solution of (2.15) (symbols), demonstrating axisymmetry.

Figure 7. Simulation of (2.5) with n = 1.5,m = 0.2, and initial condition (3.1), using
ε1 = 0.05, ε2 = 0.03, and href = 0.04. A quasi one-dimensional, regular singularity is observed.
On the left, a plot of 1/h with two qusi-1D peaks; on the top right, a collapse of the profiles
using (1.1), compared to (2.18). Lower left, transversal collapse using (4.1).

directions on the right. Cuts in both directions are rescaled according to (2.14). In both
cases one observes very good collapse, and very good agreement with the solution to the
axisymmetric similarity equation (2.15). We find the same point-like behavior for all the
cases above the blue dashed line.

Next we look at a quasi one-dimensional case, shown in Fig. 7. Choosing n = 2, m = 0.5
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Figure 8. Simulation of (2.5) with n = 3,m = 1.3, and initial condition (3.1), using
ε1 = 0.05, ε2 = 0.03, href = 0.1. A quasi one-dimensional, irregular singularity results. On
the left a perspective plot of 1/h. Along the one-dimensional front, one onserves a sequence of
instabilities. On the right, a contour plot of one of the peaks of 1/h shows the irregularity of
the profile.

(black cross in the phase diagram), we begin with the simpler case of regular fixed point
dynamics, found underneath the orange curve, which marks the reverse Hopf bifurcation;
the one-dimensional profiles are highly asymmetric, as shown in Fig. 2(c). On the left
of Fig. 7, we once more plot 1/h over the (x, y)-plane, and indicate contours by color.
Owing to the periodicity of the initial condition, we now see two equal peaks, which are
extremely anisotropic. Looking at the front and back of the peak, one appreciates the
asymmetry of the profile in the x-direction. In the y-direction, on the other hand, the
solution is unfolded: the peak is highest along the centerline y = 0.5, and with increasing
|y − 0.5|, one sees the singularity at earlier stages of its evolution.

On the right the structure of the singularity, as described by (2.18), is analyzed more
quantitatively. In the generic case of 2β not being an integer (β = 3/4 in the example),
we have B = 0, and it remains to calculate A. To that end, we calculate the minimum

H
(1)
min of the one-dimensional similarity profile by solving the one-dimensional similarity

equation (2.8). This is the cyan curve on the top right of Fig. 7. Now we calculate the
minimum of h for different values of y. From (2.18) it follows that(

hmin(y)

H
(min)
1 t′α

)1/α

− 1 = Aη2, (4.1)

and so A is found from plotting the left hand side as a function of η. This is shown on
the lower right of Fig. 7, showing a collapse for different values of τ ; from a fit to the
quadratic profiles we find A = 0.3. Now we can test for the collapse of the whole profile
using (2.18), as shown on the upper half on the right of Fig. 7. Once again, there is a
good collapse and agreement with the self-similar solution.

Finally, we study a irregular, complex case, for which the dynamics is always quasi
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Figure 9. A quantitative test of (2.20), valid for the dynamical case. Parameters are the
same as in Fig. 8. The one-dimensional, periodic profile is shown in Fig. 2(c). On the left,
we plot the minimum of t′−αh, along the centerline y = 0 of the profile, compared with the
theoretical prediction, with T =??. On the right, the profile along the centerline is compared
to the theoretical prediction. can we that as a function of y, similar to Fig. 7 ? what is href?,
should be − ln t′ on x-axis. Show two periods. Get rid of titles. is it ε2 = 0.3. make symbols
bigger. make colors easier to distinguish

one-dimensional, since the blue Hopf bifurcation line lies underneath the dashed line,
below which we observe quasi one-dimensional behavior. An example of a simulation of
(2.5) is shown in Fig. 8, where n = 3 and m = 1.2, so according to (2.12), we are in in
irregular regime. On the left hand side, we show a perspective plot of 1/h, and emphasize
contour lines using a color code. While the peaks are smooth in the regular case, seen on
the left of Fig. 7, they are now broken up into many smaller peaks, producing a spatially
“spotty” behavior. In the x-direction, one observes the result of multiple instabilities,
as seen on the right of Fig. 3 for the one-dimensional case. In addition, as y is detuned
from 0.5, this irregular behavior is seen in different phases of its evolution, producing the
hierarchy of peaks seen in Fig. 8. To emphasize the resulting spatial “spottiness”, on the
right of Fig. 8 we also represent 1/h as a color plot in the plane.

In Fig. 9, we test the expected form (2.20) more quantiatively. The one-dimensional
periodic orbit, calculated from (2.10), was shown in Fig. 2(c). In our two-dimensional
simulation, h has been rescaled according to (1.1), in order to obtain the self-similar
profile. On the left, we show the overall minimum of the profile, which should vary
periodically, with period T =?. The theoretical prediction is shown as the blue curve on
the left of Fig. 9, which agrees very well with the numerical simulation for two periods,
until we run out of numerical resolution.

To test the shape of the entire profile in its time evolution, we consider a cut through
the profile at y = 0, rescaled according to (1.1). For simplicity, we record the shape of
the profile when Hmin is maximal and minimal, corresponding to the local maximum
and minimum during the oscillation seen on the left of Fig. 9. The profile from a full
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Figure 10. Simulation of (2.5) with n = 3,m = 1, and initial condition (3.1), using
ε1 = 0.05, ε2 = 0.03. We show a color plot of 1/h. to do.

numerical simulation of (2.5) thus obtained (solid lines), is compared to the theoretical
profiles on the right; very good agreement is found.

5. Discussion

In this paper we have pointed out generic structures of singularities in more than
one dimension. The flexibility of the generalized thin film equation is useful to test
many different scenarios using just one equation, but the features of higher dimensional
singularities we observed here should carry over to many other equations as well. As
examples of other systems we have mentioned the porous medium equation, the eikonal
equation, and the compressible Euler equation.

When the interaction exponent m is large, interactions are very localized, and pinching
occurs in a localized or “pointlike” fashion, as had been observed previously. More
complicated dynamics occurs if the interaction becomes more long-ranged, as m becomes
smaller. First, the higher dimensional dynamics becomes an unfolding of one-dimensional
dynamics, making it a superposition showing the singularity in all its phases. Second, the
underlying one-dimensional singularity may become irregular, producing new structures
as smaller and smaller scales are reached.

We hope that a combination of both effects may contribute to the understanding of
turbulent fields, which are characterized by complexity both in scale and in space. As
an illustration, in Fig. 10 we show a snapshot of 1/h for a simulation of (2.5) with
n = 3,m = 1. In that case, the one-dimensional dynamics is no longer merely periodic,
but new structures keep being generated as one evolves toward scales. Owing to the
mechanism of unfolding, these new structures are translated into space, producing a
spatially complex picture. In Fig. 10 we show a larger spatial region, incompassing several
periods of the initial perturbation. Since the evolution depends sentively on the initial
condition, slight changes in the initial condition translate into non-periodic behavior on
the small scale.
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Appendix A. Similarity solutions and their stability

Here we apply the methods devloped in Dallaston et al. (2017, 2018) to a range of
n-values. Going beyond the original papers, we use a new method to compute periodic
solutions directly, and find a novel branch of asymmetric solutions. The computations
are performed in the numerical continuation software AUTO07-P.

We implement our search for solutions using two different approaches: In the first
method, used in Dallaston et al. (2018, 2017), we solve the linearized problem. We code
explicitly the fourth order ODE (2.8) for the similarity profiles, as well as the ODE for
the eigenfunctions, as a system of first order ODEs. This method is highly accurate and
efficient, as AUTO’s accurate collocation method is used to compute the derivatives in
ξ.

In the second method, we solve the nonlinear dynamical equation (2.10) in scaled
form. It is discretised in ξ using finite differences, and coded into AUTO. This method
is advantageous in that we now compute stability in a natural way from the Jacobian
of the system, and can explicitly compute branches of periodic (i.e. discrete self-similar)
solutions. However, this method is not as efficient, as AUTO is not designed to exploit
the sparse/banded Jacobian structure that arises in discretised PDEs, and we have not
been able to explore the complete structure of periodic solution branches.

A.1. Computation of solution branches by numerical continuation

In this appendix, we introduce the notation n = n −m − 1 for brevity. Rearranging
(2.8) for the fourth derivative, we obtain

H(iv) = H−n(αH − βξH ′)− nH−1H ′H ′′′ −Hn−nH ′′ − nHn−n−1H ′2 + δξe−ξ
2

, (A 1)

where δ is the strength of an added symmetry breaking term, which later will be taken
to zero.

To find the first two branches H0 and H1 of symmetric solutions, we put δ = 0, and
use the first method, starting from the known van der Waals solution at n = 3, n =
−1 (Zhang & Lister 1999a; Witelski & Bernoff 1999)). These branches (shown in blue
in Fig. 11(a),(c)) are continued by varying n, until they merge at a fold singularity
(Dallaston et al. 2018, 2017), marked by a circle. These branches are then continued to
all 1 6 n 6 3. The cases n = 3 and n = 1.5 are shown in Fig. 11(a) and (c), respectively.
By varying n, the fold singularity traces out a line in the (n, n) plane, shown as the
purple line in Fig. 12.

The symmetry breaking term with δ > 0 is introduced to find asymmetric solutions.
When n is decreased, the H0 solution branch passes through a pitchfork bifurcation, at
which an asymmetric branch originates, which consists of pairs of solutions, one a mirror
image of the other. Once on the asymmetric branch, δ can be taken to zero again, and the
solution branch traced out by varying ñ, shown as the orange branch in Fig. 11(a),(c)).
This can once more be continued to all 1 6 n 6 3, exhibiting the same structure; the
pitchfork bifurcation is shown as the green line in Fig. 12.

A.2. Stability and Hopf Bifurcations

Using the first, linear method, the stability of similarity solutions is determined
by solving the coupled system of equations for the eigenfunctions, as well as for the
similarity profiles. The real and imaginary parts of the eigenvalue are used as continuation
parameters. This approach was performed in Dallaston et al. (2018), where the Hopf
bifurcations that leads to discrete self-similarity was first computed.

There are two Hopf bifurcations, as seen in Fig. 11(a),(c)): as n is increased, first one
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Figure 11. Solution branches for n = 3 and 1.5, represented by the minimum value Hmin of the
similarity profile, as function of n (left). On the right, the corresponding real part of the largest
nontrivial eigenvalue νR against n. For n = 1.5, a Hopf bifurcation is observed on the asymmetric
branch (red star) need new symbol, leading to stable, asymmetric similarity solutions for values
of n greater than this point. use different symbols for b/w?

encounters the ‘symmetric’ Hopf bifurcation (blue star), with eigenfunction satisfying
w(−ξ) = w(ξ), and then an ‘antisymmetric’ Hopf bifurcation (red plus) with eigenfunc-
tion satisfying w(−ξ) = −w(ξ). As a function of n, the symmetric and antisymmetric
Hopf bifurcation lines are shown in Fig. 12 in blue and red, respectively.

The ground state solution H0 is stable until the largest non-trivial eigenvalue becomes
positive, at the symmetric Hopf bifurcation. We use the numerical computation of the
trivial eigenvalues νT , νX as a check on the accuracy of the numerics, which becomes
increasingly sensitive for the highly asymmetric solutions. All solution branches here are
terminated when νT is more than 0.01 different to the expected value of unity.

The fold bifurcation, at wich the H0 and H1 connect, is marked by a circle. The
pitchfork bifurcation, where the asymmetric branch originates (found using the symmetry
breaking term), is marked by a cross. We also compute the complex eigenvalues of the
asymmetric branch, the largest real part νR of which is shown on the right of Fig. 11 for
n = 3 and n = 1.5. For n = 3, νR always remains positive, making the corresponding
asymmetric branch unstable. For n = 1.5, on the other hand, νR passes through zero at
n = 0.3check (red square), where another Hopf bifurcation occurs, which restabilises the
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Figure 13. The imaginary part of the eigenvalue at the Hopf bifurcation on the asymmetric
branch.

asymmetric branch as n increases. By numerical continuation we trace out the location
of this new Hopf bifurcation in the n, n plane , thus finding a region in which stable
asymmetric similarity solutions exist (orange line in Fig. 12).

This curve has a turning point at m̃ . 1.87, indicating a maximum value of n for
which stable asymmetric similarity solutions exist. As n increases further, the imaginary
part of the eigenvalue grows large, as seen in Fig. 13. It is not clear if there is another
bifurcation at this point, or if the limits of the numerical scheme prevent the curve from
being computed further.

A.3. Computation of periodic orbits

Periodic branches may be computed by using the second, nonlinear method, that
is, explicitly coding the finite-difference discretised version of the PDE. In this case
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we restrict ourselves to m̃ = 3 and focus on the branch of solutions leading off the
antisymmetric Hopf bifurcation, as seen in Fig. 11(a).

Using 1241 points and a domain size of L = 20, the two Hopf bifurcations on the ground
state solution branch are found to good accuracy. Then continuing off the antisymmetric
Hopf bifurcation, we find a branch of periodic solutions for decreasing n. A representative
solution is plotted for n = 3, n = 0.7 in Fig. 2(b). In each period, the value of Hmin(τ)
has two minima and two maxima (see inset), as the solution alternates between creating
a large undulation to the left and to the right.
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