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Abstract
Cost-allocation problems in a fixed network are concerned with distributing the costs
for use by a group of clients who cooperate in order to reduce such costs. We work
only with tree networks and we assume that a minimum cost spanning tree network
has already been constructed and now we are interested in the maintenance costs. The
classic problem supposes that each agent stays for the entire time in the same node of
the network. This paper introduces cost-allocation problems in a fixed-tree network
with a set of agents whose activity over the nodes is fuzzy. Agent’s needs to pay for
each period of time may differ. Moreover, the agents do not always remain in the same
node for each period. We propose the extension of a very well-known solution for
these problems: Bird’s rule.

Keywords Cost allocation · Bird’s rule · Fuzzy sets · Networks · Choquet integral ·
Cooperative games

1 Introduction

The cost-allocation problem in a network considers a group of agents where each agent
needs to be connected to a source either directly or via other agents. A feasible network
connects all of these agents to the source and the costs for using all the links in the
network are known. Cooperation of the agents is assumed in order to reduce the cost.
In graph theory, classic algorithms that search for minimum spanning trees enable all
the cheapest trees to be found for the agents. Claus and Kleitman (1973) introduce a

B Andrés Jiménez-Losada
ajlosada@us.es

1 Dpto. Matemática Aplicada II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla,
Sevilla, Spain

2 Dpto. Didáctica de las Matemáticas, Facultad de Ciencias de la Educación, Universidad de Sevilla,
Sevilla, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-021-09375-8&domain=pdf
http://orcid.org/0000-0002-7571-1240


J. R. Fernández et al.

second problemonce aminimumspanning tree is chosen: how to allocate theminimum
cost among the agents. This problem is known as the minimum cost spanning tree
problem. Bird (1976) defined a rule to allocate the cost for this problem. This rule
has been analyzed in several studies in the literature, including axiomatizations and
generalizations (Feltkamp et al. 2000;Dutta and Kar 2004 ; Hougaart et al. 2013).
Numerous rules have been defined for the minimum cost spanning tree problem:
Granot and Huberman (1984), Feltkamp et al. (1994), Kar (2002), Dutta and Kar
2004, Bergantiños and Vidal-Puga (2007), Bogomolnaia et al. (2010), Juarez and
Kumar (2013) or Norde (2019). A related problem introduced in Meggido (1978)
describes the allocation of maintenance and usage costs of a fixed-tree network. This
problem is called fixed tree cost-allocation problem and it has also been studied in
Granot et al. (1996), and Koster et al. (2002) in the context of game theory. Bird’s
rule (Bird 1976; Ertan et al. 2020) is based on a particular solution for each fixed
minimum cost spanning tree of the network and then, it can also be used also for
this problem. Several interesting families of rules that contain Bird’s rule have been
defined. Chun and Lee (2012) introduced sequential contributions rules as a family of
rules following a certain sequential way to determine the payoffs of the agents. In this
context, Bird’s rule is named the sequential full contributions rule. Gellekom (2000)
and Bergantiños and Gómez-Rúa (2010) introduced populations on the nodes in both
problems, by assuming that there is a set of agents in each vertex (this population can
also be empty).

This paper deals with cost-allocation problems in a fixed-tree. We propose a new
generalization of the problem in the following sense. In the classicmodel, it is supposed
that agents stay in the same node for the whole period of use and that these agents are
using the network full time. However, an agent may not use the network all the time or
to use it a third of the time in one node and the rest in another node. For instance, the
clients in an intranet using mobile cloud computing can use applications in different
points of the network. The population set in each vertex is now a fuzzy set. There exist
other kind of solutions to this problem, such as in Dai et al. (2016).

In Sect. 2 several necessary preliminaries regarding fuzzy sets and the Choquet
integral are given. Section 3 is dedicated to introducing cost-allocation problems in a
fixed-tree with populations and a Bird’s rule for these situations is defined. The main
problem is presented in Sect. 4. The position of the agents on the nodes is now variable.
This kind of situation is known as a cost-allocation problem in a fixed-tree with fuzzy
agents. Our objective in the next sections is to define a Bird’s rule as an extension of
the classic rule (Sect. 5) and get an axiomatization of this rule (Sect. 6). Finally we
have a section dedicated to discussion and conclusions.

2 Preliminaries

Let N be a finite set. A fuzzy set (Zadeh 1965) s in N is determined by a membership
function τs : N → [0, 1] where τs(i) is named the membership level of i ∈ N in
s. The family of fuzzy sets in N is denoted as [0, 1]N . Each (crisp) subset S ⊆ N is
also a fuzzy set with membership function eS , eS (i) = 1 if i ∈ S, and is eS (i) = 0
otherwise. Specifically, we denote e∅ = 0. The support of s ∈ [0, 1]N is supp (s) =
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{i ∈ N : τs (i) �= 0} and the image of τ is the set

im(s) = {λ ∈ (0, 1] : ∃ i ∈ N with τs(i) = λ}.

In this paper, the operators ∧,∨ are used as the minimum and the maximum, respec-
tively. For all s1, s2 ∈ [0, 1]N , the standard operations between fuzzy sets become:

s1 ∩ s2 ∈ [0, 1]N with τs1∩s2 = τs1 ∧ τs2 ,

s1 ∪ s2 ∈ [0, 1]N with τs1∪s2(i) = τs1 ∨ τs2 ,

s1 + s2 ∈ [0, 1]N with τs1+s2 = τs1 + τs2

(since this sum is less than or equal 1),

λs1 ∈ [0, 1]N with τλs1 = λτs1 (being λ ∈ [0, 1]).

If s ∈ [0, 1]N , then ∨s = ∨{τs(i) : i ∈ N }. If λ ∈ (0, 1] and s ∈ [0, 1]N , then the
λ-cut is the crisp set

[s]λ = {i ∈ N : τs(i) ≥ λ}.

Choquet (1953) introduced capacity as a monotonic set function v : 2N → R

which verifies v(∅) = 0. The Choquet integral with regard to a capacity is used as
a way of measuring the expected utility of a fuzzy event. This integral was extended
in de Waegenaere and Wakker (2001) to include capacities without monotonicity
(non-monotonic capacities). Let v be a non-monotonic capacity, the (signed) Choquet
integral of s ∈ [0, 1]N with regard to v is defined as

∫
s dv =

m∑
k=1

(λk − λk−1)v([s]k),

where im(s) = {λ1 < · · · < λm}, λ0 = 0, and [s]k = [s]λk for each k = 1, ...,m.
The properties of the Choquet integral that will be used include the following.

(1)
∫

S dv = v (S), for all S ⊆ N .

(2)
∫

λs dv = λ

∫
s dv, for all λ ∈ [0, 1] .

(3)
∫
s d

(
v + v′) =

∫
s dv +

∫
s dv′.

(4)
∫
s dv = K (∨s) if v([s]λ) = K for all λ ∈ im(s).

3 Cost-allocation problems in a fixed-tree

A fixed-tree network that connects a set of nodes with a source is assumed. The cost-
allocation problem for this network determines how to allocate the costs for the usage
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Fig. 1 A tree and its partition by
a node
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or for maintenance by a group of clients. These problems commonly identify nodes
and agents, by establishing one agent in each node. Bearing our objective in mind,
however, these problems need to be applied in a wider sense. According to Gellekom
(2000), each node contains a determined population of agents, and some of these
populations can be empty.

We describe first the network. Given a finite set V , we denote LV = {{p, q} :
p, q ∈ V , p �= q} as the set of unordered pairs of different elements in V . A graph
is a pair (V , L) where V is a finite set of nodes and L ⊆ LV is a set of links. A
sequence of k different nodes (p1, ..., pk) is a path in the graph if {pl , pl+1} ∈ L for
l = 1, ..., k − 1. The graph is connected if for all p, q ∈ V with p �= q there is a
path (p1, ..., pk) in which p1 = p and pk = q. We say that (V , L) is cycle-free if, for
every two different connected nodes p, q ∈ N , there is only one path connecting p
and q. A rooted tree (hereinafter, tree) is a connected cycle-free graph with a particular
node θ , known as the source. We represent a tree as the graph g = (V ∪ {θ}, L). The
selection of a source determines a partial ordering over V , where p <g q if p is in the
unique path from θ to q.
With a fixed p ∈ V , we denote V p = {q ∈ V : q ≤g p} and Vp = {q ∈ V : q ≥g p}.
The height of a node p ∈ V in the tree is hg(p) = |V p| − 1. Each link {p, q} ∈ L is
written as pq where p is the lowest node (initial node), and q the highest node (the
end node). Furthermore, link pq is usually identified with its end node as pq = lq
since there is only one link with this condition. If p ∈ V \ {θ}, then gp is the chain up
to p, namely the unique path from θ to p (also a tree), with set the intermediate nodes
V p and the corresponding links. Also gp is the subtree from p, namely that uses all
the nodes in Vp, their corresponding links except l p, and now takes p as its source (see
Fig. 1). Given a node p ∈ V , there is only one node q ∈ V ∪ {θ} satisfying qp ∈ L ,
since g is acyclic.

A cost-allocation problem in a fixed-tree is γ = (N , g, c, d), where N is a finite
set of n agents using a network represented by a tree g, and where c : V → R+ is
a cost function yielding the cost for usage for a certain period of the corresponding
link l p for each node p (different to the source). If |V | = r then d = {S1, ..., Sr } is
a partition of N that determines the position of the agents in the network. Partition d
can be represented by a matrix d = (dpi )r×n where dpi = 1 if i ∈ Sp and dpi = 0
otherwise, and where

∑
p∈V dpi = 1 for all i ∈ N . This kind of matrix is named
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partition matrix of N over V . For each p ∈ V , set Sp is the group of those agents
using p during the period. Set Sp can be empty. If we have only one agent placed in a
vertex p, then this agent must pay the cost for using the corresponding links from the
source to p, that is, the cost is

∑
q∈V p c(q). Given γ = (N , g, c, d) a cost-allocation

problem in a fixed-tree, we denote by V (γ ) = {p ∈ V : Sp �= ∅} and therefore the
cost to allocate is

c(γ ) =
∑

p∈⋃
q∈V (γ ) V

q

c(p).

A solution for a cost-allocation problem γ in a fixed network is a vector containing the
payment that each agent must make to cover the cost of the problem, namely the vector
is an allocation of c(γ ) among the agents. There are numerous allocation rules giving
a solution for each cost-allocation problem in a fixed tree. Bird (1976) introduced a
rule in the context of the minimum cost spanning tree problems. We define Bird’s rule
for our case in an easy way. If γ = (N , g, c, d) is a cost-allocation problem in a fixed
tree then for each p ∈ V we denote Vmin

p as the minimal nodes in Vp ∩ V (γ ) with
regard to the ordering <γ , and Nmin

p = ∪q∈Vmin
p

Nq . Observe that if p ∈ V (γ ) then

Vmin
p = {p} and Nmin

p = Np, otherwise Vp(γ ) is the set of those nodes closest to p
moving away from p, and Np(γ ) is the set of their populations. The sequential full
contributions rule (Bird’s rule) defines for γ the payment

bi (γ ) =
∑

{p∈V :i∈Nmin
p }

c(p)

|Nmin
p | ,

for all i ∈ N . This rule supposes that the cost of a link is paid by the agents in the
first nodes from p moving away from the source (full contributions). Hence, although
other agents may need this link in more remote nodes (because p lies on in the only
path from θ ) they do not have to pay for using l p.

Example 1 Let γ = (N , g, c, d) with N = {1, 2, 3, 4, 5} and

g = ({p1, p2, p3, p4} ∪ {θ}, {θ p1, p1 p2, p1 p3, p3 p4}) (see Fig. 2).

The distribution of the agents in the nodes is given by the partition matrix d,

d =

⎡
⎢⎢⎣
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1

⎤
⎥⎥⎦ .

The cost function is: c(p1) = 12, c(p2) = 5, c(p3) = 6, c(p4) = 3.
The cost of the problem is c(γ ) = 21. The sequential full contributions rule for this
problem is b(γ ) = (4, 4, 4, 4.5, 4.5).
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Fig. 2 A cost-allocation problem
in a fixed-tree
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Bird (1976) introduced a cooperative game to represent cost allocation problems in
networks. In our case, fixed γ = (N , g, c, d), the γ -game is defined as (N , vγ )where
for each coalition S ⊆ N ,

vγ (S) = c(γS),

with γS = (S, g, c, dS) and (dS
pi )|V |×|S| the submatrix of d taking only the columns

in S.

4 Cost-allocation tree problems with fuzzy agents

Our proposal is now different in the sense that the set of agents construct a minimal
tree network but they ignore how they can use it in each period. We are interested
in allocating the maintenance or usage costs for each period between the agents. We
work with flexible agents in the sense that in the same period they can stay at several
different nodes and they may not be interested in using the network all the time. The
full-time usage of the network in the period is therefore considered as 1. Each billing
period provides information about the usage of each node by the agents. It is supposed
that the order of use of the nodes is of no importance. The population of a vertex is
hence a fuzzy set of N where the membership level of an agent is defined by his time
in the vertex.

Definition 1 A cost-allocation tree problem with fuzzy agents is Γ = (N , g, c, τ )

where:

1) N is a finite set of agents with cardinality n,
2) g = (V ∪ {θ}, L) is a tree representing a network with |V | = r ,
3) c : V → R+ determines the cost of full-time use of the corresponding link of each

node during a period (this cost is independent of the number of users), and
4) τ = {s1, ..., sr } is a family of fuzzy sets of N where τp = τsp is the membership

function of each vertex p. For each i ∈ N ,

∑
p∈V

τp(i) ≤ 1.

The family of cost-allocation tree problems with fuzzy agents is denoted as G.
The fuzzy population sp in a vertex p represents the membership level of the agents

in vertex p, that is, for each i ∈ N , number τp(i), is the possibility of finding i in p.
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Fig. 3 A cost-allocation problem
in a fixed tree with fuzzy agents
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From now on we identify each fuzzy set s with its membership function τs in order to
simplify the notation of the paper. Therefore, we use τ as s if τ = τs .

Example 2 Let us assume three companies N = {1, 2, 3} distributing a certain good
obtained from a single point of production θ through a distribution and storage network
with four nodes (out of this network each distributor then uses a particular network to
reach its customers). Network g = (V ∪ {θ}, L) is defined by V = {p1, p2, p3, p4}
and L = {θ1, 12, 13, 34}. We are interested in how to distribute the maintenance
expenses incurred in the common network during a month (those incurred in the
individual networks would logically be paid by each of the distributors). The usage
costs (maintenance in this case) of the links for a month (full time) are

c(p1) = 12, c(p2) = 5, c(p3) = 6 and c(p4) = 3.

where c(p2) for instance represents the cost for using the corresponding link l p2 . The
fuzzy populations of the vertices with the needs of the agents on the network for this
month are given by τ (1 is full time, i.e., all month),

τp1 = (0.5, 0.3, 0), τp2 = (0, 0.3, 0),

τp3 = (0, 0.3, 1), τp4 = (0.3, 0.1, 0).

So, Distributor 3 uses only one of the nodes to supply its customers while the other
two use several nodes. With this data, we obtain a cost-allocation tree problem with
fuzzy agents, Γ = (N , g, c, τ ).

Agents strive to organize visits to the nodes in order to minimize the usage costs.

Definition 2 Given a cost-allocation tree problem Γ = (N , g, c, τ ) ∈ G, the cost of
the problem is the minimum cost for the use of the network according to τ . This cost
is denoted by c(Γ ).

Let Γ = (N , g, c, τ ) ∈ G. We introduce tree g by the adjacency matrix of g,
eg = (egpq)(r+1)×r where e

g
pq = 1 if pq ∈ L , and egpq = 0 otherwise. The first row is

for θ , observe that there are not links with end node θ and therefore no new column
needs to be added. The fuzzy population τ can also be introduced by a matrix τr×n

with τpi = τp(i). Observe that agents can organize their needs for a period in any
way. Each option determines a partition by levels of matrix τ . A partition by levels of
τ is a finite set of pairs (λk, dk)

z
k=1 where λk ∈ (0, 1], and dk is a partition matrix of
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a subset Nk of N over V , that satisfies

z∑
k=1

λkdk = τ.

Numbers λk represent those moments when certain agents decide to change their
positions in the tree. Each dk is identified with a cost-allocation tree problem γk =
(Nk, g, c, dk) valid for a time of λk . The cost of the problemΓ is actually theminimum
cost among all of the feasible partitions by levels,

c(Γ ) = min

{
z∑

k=1

λkc(γk) :
z∑

k=1

λkdk = τ

}
.

We will prove in Proposition 1 that algorithm given below obtains the worth of c(Γ )

as a dynamical optimization problem.

Algorithm TIME
Input: (N , g, c, τ ) Output: c(Γ )

c(Γ ) = 0
While V �= ∅,
Take p ∈ V such that

∑
q∈V egpq = 0

tp = ∨i∈N τpi
c(Γ ) = c(Γ ) + tpc(p)
Let q ∈ V with egqp = 1, do

τqi = τqi + τpi for all i ∈ N
V = V \ {p}

Example 3 We apply TIME to the cost-allocation tree problem with fuzzy agents in
Example 2. N , V , c were defined in the above example. The adjacency matrix eg and
function τ are introduced as

eg =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦ , τ =

⎡
⎢⎢⎣
0.5 0.3 0
0 0.3 0
0 0.3 1
0.3 0.1 0

⎤
⎥⎥⎦ .

Nodes p that satisfy
∑

q∈V egpq = 0 are the leaves of the tree, in our case p is p2 or
p4. Suppose we choose p = p4, then tp4 = 0.3 and v(Γ ) = 0.3 · 3 = 0.9. The only
node with egqp4 = 1 is q = p3, and therefore row p3 in matrix τ is modified as

τp3 = (0, 0.3, 1) + (0.3, 0.1, 0) = (0.3, 0.4, 1).
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Table 1 TIME algorithm Step p tp c(Γ ) τ V

1 p4 0.3 0.9 τp3 = (0.3, 0.4, 1) {p1, p2, p3}
2 p2 0.3 2.4 τp1 = (0.5, 0.6, 0) {p1, p3}
3 p3 1 8.4 τp1 = (0.8, 1, 1) {p1}
4 p1 1 20.4 ∅

We alsomodify set V as V = {p1, p2, p3} before the next step is begun. The following
table shows the different steps of the algorithm, whereby in each row we can observe:
the chosen node, the cost of the problem and how τ and V change. We obtain c(Γ ) =
20.4 as result.

During the algorithm process, matrix τ changes. The last matrix τ with all these
changes provides information about the use that each agent of each node to connect
with the source.

Definition 3 Let Γ = (N , g, c, τ ) ∈ G. The usage matrix of the problem is
(
τ usepi

)
r×n

where

τ usepi =
∑
q∈Vp

τqi .

The element τ usepi shows the time that agent i needs node p in order to connect to the
source.

In Example 2 we first construct the usage matrix

τ use =

⎡
⎢⎢⎣
0.8 1 1
0 0.3 0
0.3 0.4 1
0.3 0.1 0

⎤
⎥⎥⎦ ,

which is the last one in the algorithm (see Table 1). So, agent 2 needs link l p3 at level
0.4.

Remark 1 Theoretically, the result of TIME is the same if we first add all the rows of
the nodes in gp, to each row p in τ namely if we first construct τ use it is not to change
τ in each step. In order to look for these subtrees, a similar process is needed, and
hence this option is not better numerically.

Proposition 1 Let Γ = (N , g, c, τ ) ∈ G. Algorithm TIME obtains the minimum cost
for usage of the network according to τ .

Proof Clearly if there is only one node in V then TIME is efficient. Suppose it is true
that the algorithm is efficient with |V | = m − 1 and we prove the result for |V | = m.
Let p ∈ V be a leaf (a node with maximal height in the tree). The link corresponding
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Fig. 4 The chain of moves from
a node
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to this leaf must be used for at least the maximum time in τp. This means that all the
agents in the support of τp must use the node while those with maximum time use
it. Therefore, c(p)max{τpi : i ∈ N } is the minimal cost for using p. However, each
time that an agent uses p, this agent must also use q with l p = qp, and then this time
is added to that node. We can delete node p. Using the induction hypothesis we get
the result. ��

5 The fuzzy sequential full contributions rule

We follow Bird (1976) to define an allocation rule for cost-allocation problems with
fuzzy agents in a fixed-tree with the same philosophy: if agents and nodes are iden-
tified in a tree network then each agent pays only for his corresponding link (the
corresponding link of his node). In the model considered in Sect. 3, the sequential full
contributions rule translates this payer role for each node to the minimal non-empty
nodes moving away from that node. Observe that, given a fixed node, the agents in
nodes that remain at a great distance from the minimal nodes “cop out” of paying
for its use. When we have fuzzy agents in each node, agents have different needs.
Let Γ = (N , g, c, τ ) be a cost-allocation problem with fuzzy agents in a fixed-tree.
Suppose p ∈ V with row τp �= 0. Following Bird’s idea, while agents use the cor-
responding link l p they have to pay and therefore we look for the minimum level in
sp and all the agents in the support of the fuzzy set must pay for this time. Then we
find the next moment in sp and agents in the support of the cut for this level pay for
the differential time. Hence we are describing a Choquet integral (see Sect. 2). The
question is what happens with the rest of agents in the support of τp while this node is
being paid. They can take this time to stay in other nodes in Vp. We propose carrying
out these moves by the following method: agents run away from the node covering
their times in each height. Returning to Example 2 and take node p = p1. We consider
graph gp1 and join nodes with the same height as in Fig. 4. This graph is denoted by
g∗
p1 (we call it chain of moves).
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We transform τ only to allocate the cost of link l p1 into the matrix

τ p1 =
⎡
⎣0.5 0.3 0

0 0.6 1
0.3 0.1 0

⎤
⎦

representing the projection of τ to the chain of p1. For 0.3, node p1 is inhabited by
agents {1, 2}; following Bird, 0.15 of c(p1) = 12 must therefore be paid by each of
these players. Subsequently, only agent 1 stays at vertex p1. In this time, agent 3 uses
any node in the following height (node 2 or 3) and he does not have to pay for node
p1. At level 0.3, agent 2 changes his position and is now in any node in the second
height, as is agent 3. So, the only inhabitant in node p1 is agent 1, who must pay for
the link for 0.5 − 0.3 = 0.2 time. Meanwhile agents 2 and 3 use nodes in the second
height and the next height if necessary. Hence, agent 1 pays for 0.35 time and agent 2
for 0.15. In this first step, we change matrix τ p1

τ p1 =
⎡
⎣ 0 0 0

0 0.4 0.5
0.3 0.1 0

⎤
⎦ .

Now Vmin
p (this set was defined in the crisp case, it is analogous with fuzzy agents)

are in the second height and the corresponding agents must pay forvertices {p2, p3}.
Hence, they can be studied as only one vertex (see Fig. 4) and any option can therefore
be used to delete time in the same height. The process is repeated. Coalition {2, 3} pays
until 0.4 and then 2 moves to the third height. Agent 1 is now in the last height and
spends his needs of l p1 in that height. Agent 1 then pays no more. After 0.4 the only
inhabitant in the second height is agent 3, who pays for the use of l p1 with coefficient
0.1. Agent 2 now uses the last height and then no longer has to pay for l p1 . We obtain

τ p1 =
⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ .

To the above payments, 0.2 is added to agent 2 and 0.3 to agent 3. Agents have
to pay for this node c(p1) · max{τ use1i } = 12 and this payment is allocated as 12 ·
(0.35, 0.35, 0.3) = (4.2, 4.2, 3.6). The process is repeated with each node. The idea
can be formalized.

First, we formalize the concept of chain of moves in a node.

Definition 4 Let Γ = (N , g, c, τ ) ∈ G. Let p ∈ V and h p = ∨{hgp (q) : q ∈ Vp}.
The projection by heights in p is a new tree g∗

p (a chain) formed from gp with only
one node qh for each h = 0, ..., h p and links qh−1qh with h = 1, ..., h p . The chain of
moves from p is the matrix τ p defined as τ p = (τ

p
qhi

)(h p+1)×n with

τ
p
qh =

∑
{q∈Vp :hgp (q)=h}

τq .
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Second we introduce the capacity to allocate the payment equitably.

Definition 5 Let N be a finite set. For each agent i ∈ N , the equality capacity is
vi : 2N → R with

vi (S) =
⎧⎨
⎩

1

|S| , if i ∈ S

0, otherwise.

Finally, an algorithm is introduced to decrease time in a tree from a node. We
consider t = (ti )i∈N ∈ [0, 1]N as a vector with the time that can be reduced for each
agent.

Algorithm WALK
Input: (N , g, τ, t, p) Output: τ

S = {i ∈ N : τpi �= ∨τp}
τpi = τpi ∧ (∨τp − ti ) ∀i ∈ N
h = hg(p)
While S �= ∅ do
h = h + 1
V ′ = {q ∈ Vp : hg(q) = h}
While V ′ �= ∅ do
Take q ∈ V ′
For all i ∈ S do

τqi = (τqi − ti ) ∨ 0
if ti > τqi do
ti = ti − τqi

else S = S \ {i}
V ′ = V ′ \ {q}

A Bird’s rule for fuzzy agents is designed using capacities vi for the agents, the
algorithm WALK, and the chains of moves.

Definition 6 Let Γ = (N , g, c, τ ) ∈ G be a cost-allocation tree problem with fuzzy
agents. The fuzzy sequential full contributions rule of Γ is defined as

β(Γ ) =
∑
p∈V

c(p)β p,

where β p = (β
p
i )i∈N is the result of the following algorithm
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Algorithm BIRD
Input: g∗

p, τ
p Output: β p

β p = 0
From h = 0 to h = h p
For each i ∈ N do

β
p
i = β

p
i +

∫
τ
p
qh dvi

ti = ∨τ
p
qh − τ

p
qh i

, t = (ti )i∈N
WALK(N , g∗

p, τ
p, t, qh)

if
∑

i∈N β
p
i = ∨τusep then STOP

Table 2 BIRD algorithm over
node p1

node q q0 q1
∫

τ
p1
q dvi (0.35, 0.15, 0) (0, 0.2, 0.3)

β p1 (0.35, 0.15, 0) (0.35, 0.35, 0.3)

t (0, 0.2, 0.5) (0.5, 0.1, 0)

τ p1

⎡
⎣ 0 0 0

0 0.4 0.5
0.3 0.1 0

⎤
⎦

⎡
⎣ 0 0 0
0 0 0
0 0 0

⎤
⎦

Example 4 We revisit our example in Fig. 3. Remember that TIME determined that
agents will pay c(Γ ) = 20.4 at the end of the first month. We apply BIRD to each
node. For p1, we previously obtained τ p1 with h p1 = 2 and ∨τ usep1 = 1.

τ p1 =
⎡
⎣0.5 0.3 0

0 0.6 1
0.3 0.1 0

⎤
⎦ .

Table 2 shows how the algorithm works over node p1. Node q3 is not used in the chain
of moves of this node because when we arrive at node q1 we obtain

∑
i∈N β

p1
i = 1.

For nodes p2 and p4 (the leaves), the algorithm uses only one node and it
only consists of the application of the Choquet integral, β p2 = (0, 0.3, 0), β p4 =
(0.25, 0.05, 0). Finally, we apply algorithm BIRD over node p3: in this case h p3 = 2,
∨τ usep3 = 1 and

τ p3 =
[

0 0.3 1
0.3 0.1 0

]
.

For the first node of the chain of moves we get β p3 = (0, 0.15, 0.85) and then we
have finished. The fuzzy sequential full contributions rule is

β(Γ ) = 12(0.35, 0.35, 0.3) + 5(0, 0.3, 0) + 6(0, 0.15, 0.85)

+3(0.25, 0.05, 0) = (4.95, 6.75, 8.7).
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So, returning to the example of the distribution companies, the above vector indicates
how much each of them must pay for the maintenance expenses incurred during the
month.

6 Axiomatization of the rule

In this section,we introduce several properties of the fuzzy sequential full contributions
rule. These properties will be used as axioms to determine the rule.

Let f be a rule for cost-allocation tree problems with fuzzy agents, namely a func-
tion that obtains a payoff vector f (Γ ) ∈ R

N for each Γ = (N , g, c, τ ). Obviously,
we are searching for an allocation of the cost of the problem.
Efficiency. Rule f satisfies efficiency if, for all Γ ∈ G, it holds

∑
i∈N

fi (Γ ) = c(Γ ).

A node p ∈ V is called non-free in Γ if
∑

q∈V p c(q) > 0, namely not all the links
in the path from the root to p have no cost. An agent i ∈ N is a null agent in Γ if
τpi = 0 for all non-free node p. Null agents pay nothing.
Null agent. If i ∈ N is a null agent in Γ = (N , g, c, τ ) then fi (Γ ) = 0.

If two agents have the same needs in all of the non-free nodes of the tree, then we
can suppose that they should pay the same quantity.
Equal treatment. If i, j ∈ N satisfy τpi = τpj for every non-free node p ∈ V in a
problem Γ = (N , g, c, τ ) then fi (Γ ) = f j (Γ ).
The following property implies good mathematical condition. Additivity implies a
differentiated treatment for each problem even if the agents, the tree, and their needs
are the same.
Additivity. For all Γ , Γ ′ ∈ G with Γ = (N , g, c, τ ) and Γ ′ = (N , g, c′, τ )

f (Γ ) + f (Γ ′) = f (Γ + Γ ′)

where Γ + Γ ′ = (N , g, c + c′, τ ).
The contraction property in cost problems in trees describes when it is possible to
contract a link by adding information from the last node to the first node. Let Γ =
(N , g, c, τ ) ∈ G. Suppose that p ∈ V with c(p) �= 0 and τp = 0 satisfies c(q) = 0 if
q <g p or hgp (q) = 1: that is, it is a minimal non-null node (with non-empty support
in τ ) in the tree and its nearest nodes are null. In this situation the elimination of the
nodes is possible in the first height from p by contraction; we call a node under these
conditions as node in a contraction situation. If p is a node in a contraction situation,
then we denote Γ ′ = (N , g′, c′, τ ′) such that

* V ′ = V \ {q ∈ V : hgp (q) = 1}
* L ′ = L \ {pq : hgp (q) = 1} ∪ {pq : hgp (q) = 2}
* c′(q) = c(q) for all q ∈ V ′
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Fig. 5 Height contraction
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τ(p7)

0

τ(p4) + τ(p5)

Γ′

* τ ′
q = τq for all q ∈ V ′ \ {p}, and

τ ′
p =

∑
{q∈V :hgp (q)=1}

τq .

This notation may be cumbersome but the concept can be viewed in a simple way with
a diagram, see Fig. 5.
Height contraction. Following the above notation, for all Γ = (N , g, c, τ ) ∈ G and
p ∈ V in a contraction situation, it holds f (Γ ) = f (Γ ′).
The last axiom is based on a known property of Bird’s rule: consistency in the first
node (Chun and Lee 2012). However, in our case, the first node is considered to be
the first step of payoff. We assume a problem Γ = (N , g, c, τ ) with only one node p
satisfying c(p) �= 0. Let im(τp) = {λ1 < ... < λm} and M(p) = {i ∈ N : τpi = λm}.
We now introduce the following two new problems: Γ node p = (N , g, c, τ node p) and
Γ step 1 = (N , g, c, τ step 1), where

* τ
node p
pi = λm − λm−1 if i ∈ M(p) and τ

node p
qi = 0 otherwise.

* τ step 1 = W ALK (N , g, τ, t, p) with ti = λm − λm−1 for all i ∈ N .

Observe the new problems after the first step in the next example. Figure 6 has a unique
node p1 with non-null cost.

Consistency dictates that, in the example, 0.2 of c(p1) must be paid only by agent
1.
Consistency in the first step Let Γ = (N , g, c, τ ) ∈ G with only one non-null cost
c(p). Following the above notation,

f (Γ ) = f (Γ node p) + f (Γ step 1).

We now prove that our rule satisfies all the properties.

Theorem 1 The fuzzy sequential full contribution rule satisfies efficiency, null agent
property, equal treatment property, additivity, height contraction and consistency in
the first step.
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Fig. 6 Two new problems in
consistency
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Proof Let Γ = (N , g, c, τ ) ∈ G be a cost-allocation tree problem with fuzzy agents.
Efficiency.We know from TIME that

c(Γ ) =
∑
p∈V

∨τ usep c(p).

It is sufficient to test that
∑

i∈N β
p
i = ∨τ usep . From Definition 3, we obtain

∨τ usep = ∨
⎛
⎝

h p∑
h=0

τ
p
qh

⎞
⎠

for matrix τ p at the beginning of algorithm BIRD. We denote τ p(h) as the matrix τ p

at the end of step h. Following BIRD, we have

∨τ usep =
h p∑
h=0

∨τ
p
qh (h).

Observe that
∑

i∈N vi (S) = 1 for every coalition S ⊆ N from Definition 5. Hence,
for each h we have

∑
i∈N

∫
τ
p
qh (h) dvi =

∫
τ
p
qh (h) d

∑
i∈N

vi = ∨τ
p
qh (h).

Hence

∑
i∈N

β
p
i =

∑
i∈N

hp∑
h=1

∫
τ
p
qh (h) dvi =

h p∑
h=1

∑
i∈N

∫
τ
p
qh (h) dvi

=
h p∑
h=1

∨τ
p
qh (h) = ∨τ usep .
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Null agent. If i ∈ N is a null agent, then β
p
i = 0 for all non-free nodes.

Equal treatment. Obviously if τpi = τpj for every non-free node p ∈ V then
β
p
i = β

p
j and then βi (Γ ) = β j (Γ ).

Additivity. The calculation of β
p
i does not depend on the cost function c and hence

β is a linear function over c.
Height contraction. Let p ∈ V be a node in a contraction situation. It is not
necessary to apply BIRD to nodes without cost (null cost), thus nodes in the family
{q ∈ V : hgp (q) = 1} appear only in the calculation of β p. If we consider Γ and Γ ′
then vectors βq are the same in both problems if q �= p. For our node p, the chain of
moves in Γ ′ contains one height less, q1 in the chain of moves in Γ . Algorithm BIRD
works in same way after the first step in Γ ′ and the second step in Γ . We test that the
first two steps in BIRD for Γ obtain the same vector β p as does the first step for Γ ′.
We apply algorithm BIRD over Γ . In the chain of moves of p, as τp = 0, then the first
step in BIRD obtains β p = 0. In the second step, all the nodes in the above family are
taken as only one q1 with

τ
p
q1 =

∑
{q∈V :hgp (q)=1}

τq .

So, after two steps the result for β p in BIRD is

β
p
i =

∫
τ
p
q1 dvi .

Suppose now Γ ′. The first step of BIRD obtains

β
p
i =

∫
τ ′
p dvi =

∫ ∑
{q∈V :hgp (q)=1}

τq dvi .

Consistency in the first step. We assume that we have only one node p with
c(p) �= 0. Only one vector β p is non-null. We denote the corresponding β p in the
algorithm BIRD for Γ , Γ node p, Γ step 1 as β p, β p(node), β p(step). Let im(τp) =
{λ1 < · · · < λm} (and also consider λ0 = 0). In the first step of BIRD we get

β
p
i =

∫
τp dvi

=

⎧⎪⎪⎨
⎪⎪⎩

(λm − λm−1)
1

|M(p)|
+∑m−1

k=1 (λk − λk−1)vi ([τp]k), if i ∈ M(p)∑m−1
k=1 (λk − λk−1)vi ([τp]k), otherwise.
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Observe that the first step of BIRD for Γ node p gives

β
p
i (node) =

∫
τ
node p
p dvi

=
⎧⎨
⎩

(λm − λm−1)
1

|M(p)| , if i ∈ M(p)

0, otherwise.

Following WALK, we obtain

τ
step 1
pi = τpi ∧ λm−1 =

{
λm−1, if i ∈ M(p)
τpi , otherwise.

Therefore, the first step of BIRD in Γ step 1 obtains, for all agent i ,

β
p
i (step) =

∫
τ
step 1
p dvi =

m−1∑
k=1

(λk − λk−1)vi ([τp]k).

Hence we have

β p = β p(node) + β p(step).

Moreover, the action of WALK for the other nodes in the chain of moves of p in Γ

corresponds to the composition of WALK over τ with ti = λm − λm−1 and WALK
over τ step 1. Observe that WALK does not affect τ node p. ��

Now we prove that there is only one rule that satisfies these properties.

Theorem 2 The only rule for cost-allocation tree problems with fuzzy agents that
satisfies efficiency, null agent property, equal treatment property, additivity, height
contraction and consistency in the first step is the fuzzy sequential full contributions
rule.

Proof We take f as a rule for cost allocation tree problems with fuzzy agents satisying
all the axioms. Using additivity we can reduce the problem to Γ = (N , g, c, τ ) with
only one node p ∈ V with c(p) �= 0. In this case the set of non-free nodes of the
problem is Vp.

Suppose first that p is a leaf in the tree, namely Vp = {p}. In fact, p is the only non-
free node. If τp = 0, then we apply the null agent property, obtaining only one payoff
for each agent, f (Γ ) = 0. Consider then τp �= 0. Let im(τp) = {λ1 < ... < λm}
and λ0 = 0. Using consistency in the first step we get two new problems from Γ .
One problem is Γ node p. We have two kinds of agents: those i ∈ N with τ

node p
pi =

λm−λm−1, forwhichwe denote the set as N+, and those i ∈ N with τ
node p
pi = 0. From

the null agent property, the second family satisfy fi (Γ node p) = 0. Agents i, j ∈ N+
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in the first family verify τ
node p
pi = τ

node p
pj , hence fi (Γ node p) = f j (Γ node p) = K .

From the efficiency we obtain

∑
i∈N

fi (Γ
node p) =

∑
i∈N+

fi (Γ
node p) = |N+|K = c(Γ node p).

There is therefore a unique payoff for each agent in Γ node p. The other problem is
Γ step 1. Observe that now im(τ

step 1
p ) = {λ1 < ... < λm−1}. The application of

consistency can be sequentially repeated, obtaining always one problemwith a unique
solution and another one with one element fewer in the image of row p. When we
reach τ step 1 with |im(τ

step 1
p )| = 1 we get the uniqueness by again using the null

agent property, the equal treatment property and efficiency.
Finally, suppose that p is not a leaf, i.e. |Vp| > 1. We apply consistency as before

but with an additional application until τ
step 1
p = 0. The solution again is unique for

all τ node p got in the process. We now apply height contraction because p is in state of
contraction, and the payoffs are the same if we take τ ′ (see definition of contraction).
In τ ′ we have deleted one height from p. If the idea is repeated several times, then
we obtain a problem where p is a leaf and therefore the uniqueness follows as in the
above situation. ��

7 Discussion and conclusions

In this paper we have presented a new problem related to the maintenance of a network
used by several agents. Once a minimum cost tree network is constructed the problem
to be solved is how to distribute the costs due to the use of the network among the users.
The classical form problem has been posed with a fixed population of agents at each
node of the tree, Granot et al. (1996) assumed that there was a single player at each
vertex while ? introduced the idea that at a vertex there may be a certain population. In
reality, the incorporation of more than one agent in a node does not mean an important
variation in the model, but this second version also allowed the appearance of vertices
without population, which modified the formulation of the distribution rules and their
axiomatizations. Our model generalizes both (an empty p node means in our case
to take the fuzzy set with membership function τp = 0) but also allows to analyze
situations where agents have interests distributed over the set of nodes during the
maintenance billing time. The construction of Bird’s rule for this case is a sample of
how to approach the elaboration of partitioning solutions for these situations and the
complications they entail from the algorithmic and axiomatic point of view.

The situation we have posed is restricted to considering known fixed costs per full-
time billing period and assuming that the costs of any percentage of different usage
have a proportional cost. Therefore such cost can be generalized either by an increasing
cost function over the interval [0, 1] or even with a fuzzy-valued cost function.

As mentioned above, the article focuses on maintenance costs once the tree is
already built. An interesting problem that opens up in the future is to pose the same
situation of agents with distributed interests in the vertices for the previous elaboration
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of the network, i.e. a new version of the problem of sharing the costs of elaborating a
minimum-cost spanning tree. The problem of finding a minimum cost spanning tree
has been studied with fuzzy costs in Janiak and Kasperski (2008); Zhou et al. (2016)
or Dehpande and Chaudhari (2020) while the distribution of the costs of such a tree
by cooperative game theory has been addressed (with interval payments) by Moretti
et al. (2011). The situation that may arise in view of the article is obviously not the
same. In fact, it would not change the first step, i.e. finding a minimum cost tree to
build the network. But the formulation of the cost sharing rule should be modified,
since in this case the object represented by a fuzzy set is not the cost, but the situation
of the agents.

The model can also be exported to problems not necessarily related to networks,
such as the minimum cost consensus model (Gong et al. 2021). This article gives as
an example the problem of finding a fair charge between coal companies and the State
for the cost of ecological damage. Consideration could be given to taking into account
as real agents the investors behind the companies, among whom there may be some
with stakes in several of them.
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