
A Catalogue of Inter-Parameter Dependencies in
RESTful Web APIs

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés

Department of Computer Languages and Systems
Universidad de Sevilla, Spain

{amarlop,sergiosegura,aruiz}@us.es

Abstract Web services often impose dependency constraints that re-
strict the way in which two or more input parameters can be combined
to form valid calls to the service. Unfortunately, current specification
languages for web services like the OpenAPI Specification provide no
support for the formal description of such dependencies, which makes
it hardly possible to automatically discover and interact with services
without human intervention. Researchers and practitioners are openly
requesting support for modelling and validating dependencies among in-
put parameters in web APIs, but this is not possible unless we share a
deep understanding of how dependencies emerge in practice—the aim of
this work. In this paper, we present a thorough study on the presence
of dependency constraints among input parameters in web APIs in in-
dustry. The study is based on a review of more than 2.5K operations
from 40 real-world RESTful APIs from multiple application domains.
Overall, our findings show that input dependencies are the norm, rather
than the exception, with 85% of the reviewed APIs having some kind of
dependency among their input parameters. As the main outcome of our
study, we present a catalogue of seven types of dependencies consistently
found in RESTful web APIs.

Keywords: Web services · constraints · parameter dependencies.

1 Introduction

Web Application Programming Interfaces (APIs) allow systems to interact with
each other over the network, typically using web services [10, 17]. Web APIs
are rapidly proliferating as the cornerstone for software integration enabling
new consumption models such as mobile, social, Internet of Things (IoT), or
cloud applications. Popular API directories such as ProgrammableWeb [14] and
RapidAPI [16] currently index over 21K and 8K web APIs, respectively, from
multiple domains such as shopping, finances, social networks, or telephony.

Modern web APIs typically adhere to the REpresentational State Transfer
(REST) architectural style, being referred to as RESTful web APIs [7]. RESTful
web APIs are decomposed into multiple web services, where each service im-
plements one or more create, read, update, or delete (CRUD) operations over



2 A. Martin-Lopez et al.

a resource (e.g. a tweet in the Twitter API), typically through HTTP inter-
actions. RESTful APIs are commonly described using languages such as the
OpenAPI Specification (OAS) [13], originally created as a part of the Swagger
tool suite [19], or the RESTful API Modeling Language (RAML) [15]. These
languages are designed to provide a structured description of a RESTful web
API that allows both humans and computers to discover and understand the
capabilities of a service without requiring access to the source code or additional
documentation. Once an API is described in an OAS document, for example, the
specification can be used to generate documentation, code (clients and servers),
or even basic automated test cases [19]. In what follows, we will use the terms
RESTful web API, web API, or simply API interchangeably.

Web services often impose dependency constraints that restrict the way in
which two or more input parameters can be combined to form valid calls to
the service, we call these inter-parameter dependencies (or simply dependencies
henceforth). For instance, it is common that the inclusion of a parameter requires
or excludes—and therefore depends on—the use of some other parameter or
group of parameters. As an example, the documentation of the YouTube Data
API states that when using the parameter videoDefinition (e.g. to search
videos in high definition) the type parameter must be set to ‘video’, otherwise
a HTTP 400 code (bad request) is returned. Similarly, the documentation of the
cryptocurrency API Coinbase explains that, when placing a buy order, one, and
only one of the parameters total or amount must be provided.

Current specification languages for RESTful web APIs such as OAS and
RAML provide little or no support at all for describing dependencies among in-
put parameters. Instead, they just encourage to describe such dependencies as a
part of the description of the parameters in natural language, which may result
in ambiguous or incomplete descriptions. For example, the Swagger documenta-
tion states1 “OpenAPI 3.0 does not support parameter dependencies and mutu-
ally exclusive parameters. (...) What you can do is document the restrictions in
the parameter description and define the logic in the 400 Bad Request response”.
The lack of support for dependencies means a strong limitation for current spe-
cification languages, since without a formal description of such constraints is
hardly possible to interact with the services without human intervention. For
example, it would be extremely difficult, possibly infeasible, to automatically
generate test cases for the APIs of YouTube or Coinbase without an explicit and
machine-readable definition of the dependencies mentioned above. The interest
of industry in having support for these types of dependencies is reflected in an
open feature request in OAS entitled “Support interdependencies between query
parameters”, created on June 2015 with the message shown below. At the time
of writing this paper, the request has received over 180 votes, and it has received
43 comments from 25 participants2.

“It would be great to be able to specify interdependencies between query
parameters. In my app, some query parameters become “required” only

1 https://swagger.io/docs/specification/describing-parameters/
2 https://github.com/OAI/OpenAPI-Specification/issues/256



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 3

when some other query parameter is present. And when conditionally re-
quired parameters are missing when the conditions are met, the API fails.
Of course I can have the API reply back that some required parameter is
missing, but it would be great to have that built into Swagger.”

This feature request has fostered an interesting discussion where the parti-
cipants have proposed different ways of extending OAS to support dependencies
among input parameters. However, each approach aims to address a particular
type of dependency and thus show a very limited scope. Addressing the problem
of modelling and validating input constraints in web APIs should necessarily
start by understanding how dependencies emerge in practice. Some previous pa-
pers have addressed this challenge, as a part of other contributions, but they
have studied just a few popular APIs and so they have only scratched the sur-
face [12,21] (c.f. Section 5). A systematic and large-scale analysis of the state of
practice is needed in order to answer key questions such as how often dependen-
cies appear in practice or what types of input constraints are found in real-world
web APIs. This is the goal of our work.

In this paper, we present a thorough study on the presence of inter-parameter
dependencies in industrial web APIs. Our study is based on an exhaustive review
of 40 RESTful APIs from multiple application domains carefully selected from
the API repository of ProgrammableWeb [14]. All APIs were carefully reviewed
and classified following a systematic and structured method. Among other res-
ults, we found that 85% of the APIs (34 out of 40) had some kind of dependency
among their input parameters. More specifically, we identified 633 dependencies
in 9.7% of the operations analysed (248 out of 2,557). The identified constraints
are classified into a catalogue of seven types of inter-parameter dependencies in
RESTful web APIs. This catalogue will hopefully serve as a starting point for
future approaches on modelling and analysis of input dependencies in web APIs.

This paper is structured as follows: Section 2 describes the review method
followed. Section 3 presents the results of our study. Section 4 describes some
potential threats to validity and how they were mitigated. Related work is dis-
cussed in Section 5. Finally, Section 6 draws the conclusions and presents future
lines of research.

2 Review method

In what follows, we present the research questions that motivate this study as
well as the process followed for the collection and analysis of the data.

2.1 Research questions

The aim of this paper is to answer the following research questions (RQs):

RQ1: How common are inter-parameter dependencies in web APIs?
We aim to provide an in-depth view of how frequently dependencies appear in
practice, trying to find out whether their presence is correlated to certain charac-
teristics or application domains. Once we confirm the presence of dependencies,
we will try to understand how they look like answering the following question.



4 A. Martin-Lopez et al.

RQ2: What types of inter-parameter dependencies are found in web
APIs? We wish to provide a catalogue of the types of dependencies among
input parameters most commonly found in real-world APIs, which can serve as
a starting point for future proposals for their modelling and analysis.

2.2 Subject APIs and search strategy

The search for real-world APIs was carried out in ProgrammableWeb [14], a
popular and frequently updated online repository with about 21K APIs and
8K mashups at the time of writing this paper. We followed a systematic ap-
proach for the selection of a subset of highly-used yet diverse APIs, as follows.
First, we selected the top 10 most popular APIs in the repository overall. Then,
we selected the 3 top-ranked APIs from the top 10 most popular categories in
ProgrammableWeb, i.e. those with a larger number of indexed APIs. APIs on
each category are ordered according to the number of registered applications
consuming them (mashups). We focused on RESTful APIs only, as the de-facto
standard for web APIs. In particular, we selected APIs reaching level 1 or higher
in the Richardson Maturity Model [17], which ensured a minimal adherence to
the REST architectural style, e.g. using the notion of resources. APIs not follow-
ing the key REST principles and those with poor or no available documentation
were discarded, selecting the next one in the list. Some of the selected APIs were
found in different categories and were included just once, ignoring duplicates.
Table 1 depicts the list of subject APIs analysed in our study, 40 in total. For
each API, the table shows its name, category, number of mashups, number of
operations and percentage of operations containing parameter dependencies. For
the sake of readability, similar categories have been merged into a single one.

Figure 1 shows the classification of subject APIs by category and size. As
illustrated, the subject APIs are evenly distributed among 10 different categories
such as communication, social and mapping. Regarding the size, the majority of
reviewed APIs (75%) provide between 1 and 50 operations, with the largest APIs
having up to 305 (DocuSign eSignature) and 492 (Github) operations. Overall,
the selected APIs represent a large, diverse, and realistic dataset.

2.3 Data collection and analysis

We carefully analysed the information available in the official website of the 40
subject APIs to answer our research questions. For each API, we collected the
name, link to the documentation, API version, category, number of mashups
and followers registered in ProgrammableWeb, and total number of operations.
Additionally, for each operation with dependencies, we collected the number
and type of input parameters, type of CRUD operation and inter-parameter
dependencies.

Dependencies were identified in two steps. First, we recorded all the depend-
encies among input parameters found in the documentation of the subject APIs.
It is worth mentioning that every dependency can be represented in multiple
ways, e.g. in conjunctive normal form. At this point, we strove to represent



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 5

Name Category Mashups Operations %Op. with dep.

Google Maps Places Mapping 2,579 7 57.1
Twitter Search Tweets Social 829 3 100
Youtube Media 707 50 34.0
Flickr Media 635 222 13.1
Twilio SMS Communication 361 31 6.5
Last.fm Media 246 58 31.0
Microsoft Bing Maps Mapping 175 51 21.6
Google App Engine Admin Development 124 38 0.0
Foursquare Social 113 40 40.0
DocuSign eSignature Other 98 305 4.6
Amazon S3 Storage 95 94 16.0
GeoNames Reference 90 41 24.4
Bing Web Search Search 67 1 100
Yelp Fusion Reference 61 12 41.7
Indeed Search 48 2 0.0
Paypal Invoicing Financial 39 21 23.8
Google Custom Search Search 39 2 0.0
Google Geocoding Mapping 36 1 100
SoundCloud Media 34 49 2.0
Oodle Other 34 1 100
NationBuilder Social 33 107 5.6
Tumblr Social 26 25 20.0
OpenStreetMap Mapping 23 39 5.1
iTunes Media 22 1 100
Google Fusion Tables Development 20 33 9.1
Tropo Communication 19 25 8.0
Heroku Development 18 262 0.0
MapLarge Mapping 14 31 0.0
Google Drive Storage 13 39 10.3
CrunchBase Reference 11 23 8.7
Github Development 11 492 2.8
Nexmo SMS Communication 10 3 33.3
Stripe Financial 8 220 7.7
Kiva Financial 8 32 0.0
AT&T In-App Messaging Communication 7 11 9.1
PicPlz Media 5 18 61.1
Coinbase Financial 3 43 7.0
Pryv Other 1 25 16.0
QuickBooks Payments Financial 1 20 20.0
Forte (Payments Gateway) Financial 1 79 19.0

Table 1: List of subject APIs

them as they were described in the documentation of the API. This allowed us,
for example, to record the arity of each dependency, i.e. number of paramet-
ers involved in each constraint. In a second step, we studied the shape of all
the dependencies and managed to group them into seven general dependency
types (c.f. Section 3.2). Additionally, we used an online text analysis tool [20] to



6 A. Martin-Lopez et al.

(a) Categories. (b) Number of operations.

Figure 1: Classification of subject APIs by category and size.

identify the linguistic patterns most frequently used for the description of each
type of dependency. The documentation collected from each API was reviewed
by at least two different authors to reduce misunderstanding or missing inform-
ation. The complete dataset used in our study, including all the data collected
from each API, is publicly available in a machine-processable format [5].

3 Results

In this section, we describe the results and how they answer the research ques-
tions. Firstly, we present how frequently inter-parameter dependencies appear
in practice and whether their presence is correlated to certain API characterist-
ics. Secondly, we detail the different types of dependencies found in the subject
APIs.

3.1 Presence of inter-parameter dependencies

This section aims to provide an answer to RQ1 by studying how common inter-
parameter dependencies are in web APIs and where they are typically found.
We identified 633 total dependencies among input parameters in 85% of the
APIs under study (34 out of 40). Specifically, we found dependencies in 9.7% of
the operations analysed (248 out of 2,557). The percentage of operations with
dependencies of each API is shown in the last column of Table 1. This percentage
ranged from less than 5%, in APIs such as Soundcloud and Github, to 100%, in
APIs such as Bing Web Search and Twitter Search Tweets. Figure 2 depicts a
bar graph with the percentage of operations with dependencies on each category.
As illustrated, we found dependencies in all the categories under study, with



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 7

Figure 2: Percentage of operations with dependencies per category.

the percentage of operations with dependencies ranging between 2.1% in the
category development and 22.4% in the category reference. This suggests that
the presence of dependencies in real-world APIs is very common, independently
of their application domain.

Figure 3a shows the distribution of dependencies by the number of para-
meters of the operation. Overall, we found that operations with dependencies
had between 2 and 221 parameters, 20.1 on average (standard deviation = 21.0,
median = 13). Moreover, most of these operations were read operations (61%),
followed by create (26%), update (13%) and delete operations (less than 1%).
Figure 3b depicts the distribution of dependencies by their arity. The largest
portion of dependencies were binary (86%), followed by those involving three
(10%) or more parameters (4%). In total, arity ranged between 2 and 10, with
dependencies involving 2.2 parameters on average (standard deviation = 0.6,
median = 2). Furthermore, the dependencies mostly involved query parameters
(65%), followed by body (34%), header (3%) and path parameters (1%). Interest-
ingly, we found 22 dependencies that involved more than one type of parameter.
For example, the Bing Web Search API documentation states that, in order to
obtain results in a given language, either the Accept-Language header or the
setLang query parameter must be specified, but not both.

Finally, we investigated whether some of the data could be used as effective
predictors for the amount of dependencies in a web API. To that end, we studied
some potential correlations among the collected data using the R statistical
environment in two steps. First, we checked the normality of the data using the
Shapiro-Wilk test concluding that the data do not follow a normal distribution.
Second, we used the Spearman’s rank order coefficient to assess the relationship
between the variables. In particular, we tried to answer the following questions:

– Are APIs with many operations likely to have a higher percentage of op-
erations with dependencies? No, quite the opposite. Spearman coefficient
reveals a moderate negative correlation (ρ = -0.45, p-value = 0.003), which
indicates that as the number of operations increases, the percentage of op-



8 A. Martin-Lopez et al.

(a) Operation parameters. (b) Dependency arity.

Figure 3: Classification of dependencies by the number of parameters in the op-
eration and their arity.

erations with dependencies decreases, and vice versa. In other words, the
percentage of operations with dependencies tends to be higher in APIs with
fewer operations. This may be explained by the fact that APIs with few
operations often suffer from low cohesion, with a few operations trying to do
too many things through the use of a wide set of parameters and depend-
encies. Conversely, APIs with many operations avoid some dependencies by
distributing the functionality across different related operations.

– Are operations with many parameters likely to have more dependencies? Yes.
Spearman coefficient reveals a moderate positive correlation (ρ = 0.49, p-
value = 2.2 × 10−16), which means that the number of dependencies in
an operation typically increases with the number of input parameters. We
found an exception, however, in those operations receiving complex objects
as input, where the percentage of object properties with dependencies is
usually very low, e.g. a PayPal invoice is composed of 112 JSON properties
with just 2 dependencies among them. We repeated the correlation study
excluding input objects and obtained a Spearman coefficient of 0.67 (p-value
= 2.2 × 10−16), which reflects a stronger positive correlation between the
number of parameters of an operation and the number of dependencies.

3.2 Catalogue of inter-parameter dependencies

In this section, we answer RQ2 by classifying the inter-parameter dependencies
identified into seven general types. We took inspiration in the constraints used to
model dependencies in feature models, in the context of software product lines,



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 9

(a) Dependency types. (b) Occurrences in APIs

Figure 4: Distribution of dependencies by type and percentage of APIs.

where the authors have wide expertise [3], although we propose more intuitive
and self-explanatory names in our work.

Before going in depth into each type of dependency, a number of consid-
erations must be taken into account. First, for the sake of simplicity, depend-
encies are described using single parameters. However, all dependencies can be
generalized to consider groups of parameters using conjunctive and disjunctive
connectors. Second, dependencies can affect not only the presence or absence of
parameters, but also the values that they can take. In what follows, when mak-
ing reference to a parameter being present or being absent, it could also mean a
parameter taking or not taking a given value, respectively. Finally, when intro-
ducing each dependency type we will make reference to Figure 4, which shows
the distribution of dependencies by type (Figure 4a) and the percentage of sub-
ject APIs including occurrences of each dependency type (Figure 4b). Next, we
describe the seven types of dependencies found in our study, including examples.

Requires. The presence of a parameter p1 in an API call requires the presence of
another parameter p2, denoted as p1 → p2. As previously mentioned, p1 and p2
can be generalized to groups of parameters and parameters’ assignments, e.g. a∧
b = x→ c∨d. Based on our results, this is the most common type of dependency
in web APIs, representing 35% of all the dependencies identified in our study
(Figure 4a), and being present in 47.5% of the subject APIs (Figure 4b). The
syntactical analysis of API documentations revealed that the most frequently
used linguistic patterns to describe this type of dependencies are “you must also
set X”, “X must also be specified”, “only valid if X is” and “[yes,/required] if
X is specified”. This type of dependency is equivalent to the requires cross-tree
constraint in feature models [3].



10 A. Martin-Lopez et al.

As an example, in the Paypal Invoicing API, when creating a draft in-
voice, if the parameter custom.label is present, then custom.custom amount

becomes required, i.e. custom.label → custom.custom amount. Similarly, in
the YouTube Data API, when searching for videos with a certain definition
(parameter videoDefinition), the type parameter must be set to ‘video’, i.e.
videoDefinition → type=video.

Or. Given a set of parameters p1, p2, . . . , pn, one or more of them must be
included in the API call, denoted as Or(p1, p2, . . . , pn). As illustrated in Figure 4,
this type of dependencies represent only 3% of the dependencies identified in the
subject APIs. Interestingly, however, we found that more than one fourth of
the APIs (27.5%) included some occurrence of this type of dependency, which
suggests that its use is fairly common in practice. Typical syntactic structures
to describe these dependencies are “X or Y must be set” and “required if X is
not provided”. This type of dependency is equivalent to the or relationship in
feature models [3].

As an example, when setting the information of a photo in the Flickr API,
at least one of the parameters title or description must be provided, i.e.
Or(title, description). Similarly, in the DocuSign eSignature API, at least
one of the parameters from date, envelope ids or transaction ids must be
submitted in the API call when retrieving the status of several envelopes, i.e.
Or(from date, envelope ids, transaction ids).

OnlyOne. Given a set of parameters p1, p2, . . . , pn, one, and only one of them
must be included in the API call, denoted as OnlyOne(p1, p2, . . . , pn). As ob-
served in Figure 4, this group of dependencies represent 17% of all the dependen-
cies identified, and they appear in almost half of the APIs under study (47.5%).
Among others, we found that this type of dependency is very common in APIs
from the category media, where a resource can be identified in multiple ways,
e.g. a song can be identified by its name or by its ID, and only one value must
be typically provided. Common syntactic structures for describing this type of
dependencies are “specify one of the following”, “only one of X or Y can be
specified”, “use either X or Y”, “required unless X” and “required if X is not
provided”. This type of dependency is equivalent to the alternative constraint in
feature models [3].

For example, in the Twilio SMS API, when retrieving the messages of a par-
ticular account, either the parameter MessagingServiceSid or the parameter
From must be included, but not both at the same time, i.e. OnlyOne(Messaging-
ServiceSid, From). Similarly, when deleting a picture in the PicPlz API, only
one of the parameters id, longurl id or shorturl id must be submitted in the
API call, i.e. OnlyOne(id, longurl id, shorturl id).

AllOrNone. Given a set of parameters p1, p2, . . . , pn, either all of them are
provided or none of them, denoted as AllOrNone(p1, p2, . . . , pn). Very similarly
to the Or dependency type, only 6% of the dependencies found belong to this
category, nonetheless, they are present in about one third of the APIs under
study (30%). These dependencies are typically described with structures such



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 11

Figure 5: Description of a parameter in the YouTube API that implies multiple
ZeroOrOne dependencies.

as “can only be used in conjunction with”, “required if X is provided” and “(in
conjunction) with X, (...)”.

In the GitHub API, for example, the operation to obtain information about
a user accepts two optional parameters, subject type and subject id, and
they must be used together, i.e. AllOrNone(subject type, subject id). In the
payments API Stripe, when creating a Stock Keeping Unit (a specific version of
a product, used to manage the inventory of a store), if inventory.type is set
to ‘finite’, then inventory.quantity must be present, and vice versa, i.e.
AllOrNone(inventory.type=finite, inventory.quantity).

ZeroOrOne. Given a set of parameters p1, p2, . . . , pn, zero or one can be present
in the API call, denoted as ZeroOrOne(p1, p2, . . . , pn). Figure 4 reveals that this
type of dependency is common both in terms of the number of occurrences (18%
of the total) and the number of APIs including it (47.5%). Commonly used
linguistic patterns for describing this type of dependency are “not supported for
use in conjunction with”, “cannot be combined with”, “if X is set, the only other
supported parameters are” and “mutually exclusive with X”.

Interestingly, about one third of the occurrences of this dependency type
were found in YouTube, where filtering by a video ID in the search operation
restricts the allowed parameters it can be combined with to only 8, as shown
in Figure 5. Since the operation accepts other 22 optional parameters, they are
related to the video ID parameter by means of ZeroOrOne dependencies, e.g.
ZeroOrOne(relatedToVideoId, topicId). Other examples of this dependency
type include those where the use of a parameter restricts the allowed values
of another parameter, like in the Google Maps API: when searching for places
nearby, if radius is present, then rankby cannot be set to ‘distance’, i.e.
ZeroOrOne(radius, rankby=distance).

Arithmetic/Relational. Given a set of parameters p1, p2, . . . , pn, they are re-
lated by means of arithmetic and/or relational constraints, e.g. p1 + p2 > p3.
As shown in Figure 4, this type of dependency is the most recurrent across the
subject APIs, being present in half of them. Moreover, 17% of the dependencies
found are of this type. These dependencies are typically implicit by the meaning



12 A. Martin-Lopez et al.

Figure 6: Complex dependency present in the GET /venues/search operation of
the Foursquare API.

of the parameters. For example, in a hotel booking, the checkout date should
be later than the checkin date.

As an example, in the GeoNames API, when retrieving information about
cities, the north parameter must be greater than the south parameter for the
API to return meaningful results, i.e. north > south (north, east, south and
west are the coordinates of a bounding box conforming the search area). In the
payments API Forte, when creating a merchant application, this can be owned
by several businesses, in which case the sum of the percentages cannot be greater
than 100, i.e. owner.percentage + owner2.percentage + owner3.percentage

+ owner4.percentage <= 100.

Complex. These dependencies involve two or more of the types of constraints
previously presented. Based on our results, they are typically formed by a com-
bination of Requires and OnlyOne dependencies. As illustrated in Figure 4, we
found 4% of complex dependencies, being present in 7.5% of the subject APIs.

For example, in the Tumblr API, when creating a new post, if the type

parameter is set to ‘video’, then either embed or data must be specified, but not
both, i.e. type=video → OnlyOne(embed, data). Figure 6 shows an extract of
the documentation of the search operation in the Foursquare API. As illustrated,
if intent is set to ‘browse’, then either ll and radius are present or sw and
ne are present, i.e. intent=browse → OnlyOne((ll ∧ radius), (sw ∧ ne)).

4 Threats to validity

The factors that could have influenced our study and how these were mitigated
are summarised in the following internal and external validity threats.

Internal validity. This concerns any factor that might introduce bias. The
main source of bias is the subjective and manual review process conducted for
identifying dependencies among input parameters in the online documentation
of the subject APIs. It is possible that we missed some dependencies or that
we misclassified some of them. To mitigate this threat, the documentation of
each API was carefully checked several times recording all the relevant data
for its later analysis, and also to enable replicability. This was an extremely
time-consuming process, but it was somehow alleviated by the familiarity of the
authors with web APIs—all the authors have years of experience in the develop-
ment of service-oriented systems for teaching, research and industrial purposes.



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 13

The impact of possible mistakes was also minimised by the large number of APIs
reviewed (40 APIs and 2,557 operations), which makes us remain confident of
the overall accuracy of the results.

External validity. Threats to external validity relate to the degree to which we
can generalise from the experiments. Our study is based on a subset of RESTful
web APIs, and thus our results could not generalise to other APIs. To minimise
this threat, we systematically selected a large set of real-world APIs from mul-
tiple application domains. This set includes some of the most popular APIs in
the world with millions of users worldwide.

5 Related work

Two related papers have addressed the issue of parameter dependencies in con-
temporary web APIs. Wu et al. [21] presented an approach for the automated
inference of parameter dependencies in web services. As a part of their work,
they studied four popular RESTful web APIs and classified the dependencies
found into six types, four of which are specific instances of the Requires depend-
ency presented in our work. Oostvogels et al. [12] proposed a Domain-Specific
Language (DSL) for the description of inter-parameter constraints in OAS. They
first classified the dependencies typically found in web services into three types:
exclusive (called OnlyOne in our work), dependent (Requires in our work), and
group constraints (AllOrNone in our paper). Then, they looked for instances of
those types of dependencies in the documentation of six popular APIs by search-
ing for specific keywords such as “either” or “one of”. Compared to theirs, our
work presents a much larger and systematic study: we have manually reviewed
40 APIs from different domains, whereas they have jointly studied 7 “popular”
APIs. As a result, the conclusions drawn from our investigation differ sharply
from those derived from their papers. Among other differences, we identified a
richer set of dependencies (e.g. Oostvogels et al. [12] identified three out of the
seven types of dependencies found in our work), and collected a much larger
amount of data (e.g. Oostvogels et al. [12] found 19 dependencies in YouTube
while we found 82). Consequently, the general trends observed in our paper also
differ, e.g. Wu et al. [21] found that an average of 21.9% of service operations
had dependency constraints, while in our study that percentage is 9.7%. As a
further difference, our work comprises a much more thorough analysis of depend-
encies including aspects such as their arity, frequently used linguistic patterns
and correlations. Overall, however, the three papers complement each other and
support the need for supporting inter-parameter dependencies in web APIs.

Several authors have addressed the problem of input dependencies in web
services using the Web Services Description Language (WSDL). Xu et al. [22]
analysed multiple service specifications to extract different types of constraints
that enable syntax, workflow and semantic testing. One type of constraint they
were able to infer is inter-parameter dependencies, but no details were given
regarding their type and number of occurrences. Cacciagrano et al. [4] identified



14 A. Martin-Lopez et al.

three types of constraints present in input parameters that hinder the auto-
mated invocation of services, one of them being inter-parameter dependencies
(e.g. the value of a parameter being conditioned to the value of some other),
and proposed an XML-based framework for their formalisation. Gao et al. [9]
integrated information about parameters, error messages and testing results to
infer data preconditions on web APIs that sometimes are not correctly specified
in their documentation. They studied two web services and identified constraints
involving one parameter (e.g. an integer that must be lower than certain value)
or several parameters (e.g. two parameters that cannot be used together). Com-
pared to them, our work is the first systematic and large-scale study of input
constraints in modern web APIs, including a catalogue of the types of constraints
most commonly found in practice.

Finally, our work is related to testing approaches for web services where de-
pendency management is a key point to generate valid test cases. Recent contri-
butions on testing of RESTful services [1,2,6,18] have succeeded to automatically
generate test cases to some extent, however, none of them support the automated
management of dependencies among input parameters. What is more, checking
the existence of inter-parameter dependencies could be considered a black-box
test coverage criterion to fulfil when testing RESTful APIs [11]. This would, in
turn, enable the automatic generation of more thorough test suites. This paper
takes a step further to address these challenges.

6 Conclusions and future work

In this paper, we reviewed the state of practice on the existence of inter-parameter
dependencies in RESTful web APIs. To the best of our knowledge, this is the
first systematic study on the topic, and the largest one, with 40 real-world APIs
and more than 2.5K operations reviewed. Our results show that dependencies
are extremely common and pervasive—they appear in 85% of the APIs under
study across all application domains and types of operations. The collected data
helped us to characterise dependencies identifying their most common shape—
dependencies in read operations involving two query parameters—, but also ex-
ceptional cases such as dependencies involving up to 10 parameters and depend-
encies among different types of parameters, e.g. header and body parameters.
We also identified some correlations pointing at the number of operations and
the number of parameters as helpful estimators of the amount of dependencies
in a web API. As the main result of our study, we present a catalogue of seven
types of inter-parameter dependencies consistently found in all the subject APIs.
We trust that the results of this study will provide the basis for future research
contributions on modelling and analysis of input constraints in web APIs, en-
abling a more precise description of their capabilities and opening a new range of
possibilities in terms of automation in areas such as code generation and testing.

Several challenges remain for future work. On the one hand, it would be de-
sirable to perform an empirical study assessing the validity of the conclusions
drawn from our investigation. On the other hand, the results of our study set



A Catalogue of Inter-Parameter Dependencies in RESTful Web APIs 15

the ground for approaches for modelling dependencies among input parameters
in web APIs. Such proposals should ultimately reach industrial standards, as in
the case of tools such as SLA4OAI [8], an OAS extension to model and man-
age Service Level Agreements (SLAs) in APIs. Our work enables the creation of
multiple tools of this kind, namely: a DSL for the description of dependencies; a
documentation analyser for the automatic inference of inter-parameter depend-
encies based on the linguistic patterns found; a tool for the automatic detection
of dependencies at run-time; and a dependency analyser for the discovery of
inconsistencies between multiple dependency constraints, e.g. a dead parameter
that can never be selected.

Acknowledgements

This work has been partially supported by the European Commission (FEDER)
and Spanish Government under projects BELI (TIN2015-70560-R) and HOR-
ATIO (RTI2018-101204-B-C21), and the FPU scholarship program, granted by
the Spanish Ministry of Education and Vocational Training (FPU17/04077). We
would also like to thank Enrique Barba Roque and Julián Gómez Rodŕıguez for
their help in analysing the documentation of some of the APIs considered for
this study.

References

1. Arcuri, A.: RESTful API Automated Test Case Generation with EvoMaster. ACM
Trans. on Software Engineering and Methodology 28(1), 3 (2019)

2. Atlidakis, V., Godefroid, P., Polishchuk, M.: REST-ler: Automatic Intelligent
REST API Fuzzing. Tech. rep. (April 2018)

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: A Literature Review. Information Systems 35(6), 615 – 636 (2010)

4. Cacciagrano, D., Corradini, F., Culmone, R., Vito, L.: Dynamic Constraint-based
Invocation of Web Services. In: 3rd Intern. Workshop on Web Services and Formal
Methods. pp. 138–147 (2006)

5. Inter-Parameter Dependencies in RESTful APIs [Dataset] (2019), https://bit.
ly/2wvv1m1

6. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic Generation of Test Cases
for REST APIs: A Specification-Based Approach. In: IEEE 22nd Intern. Enterprise
Distributed Object Computing Conference. pp. 181–190 (2018)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis (2000)

8. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortés, A.: Automating SLA-Driven API
Development with SLA4OAI. In: Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19) (2019)

9. Gao, C., Wei, J., Zhong, H., Huang, T.: Inferring Data Contract for Web-based
API. In: IEEE Intern. Conference on Web Services. pp. 65–72 (2014)

10. Jacobson, D., Brail, G., Woods, D.: APIs: A Strategy Guide. O’Reilly Media, Inc.
(2011)



16 A. Martin-Lopez et al.

11. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test Coverage Criteria for RESTful
Web APIs. In: Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (A-TEST ’19) (2019)

12. Oostvogels, N., De Koster, J., De Meuter, W.: Inter-parameter Constraints in Con-
temporary Web APIs. In: 17th Intern. Conference on Web Engineering. pp. 323–335
(2017)

13. OpenAPI Specification, https://github.com/OAI/OpenAPI-Specification, ac-
cessed March 2019

14. ProgrammableWeb API Directory, http://www.programmableweb.com/, accessed
March 2019

15. RESTful API Modeling Language (RAML), http://raml.org/, accessed March
2019

16. RapidAPI API Directory, https://rapidapi.com, accessed March 2019
17. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media, Inc.

(2013)
18. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic Testing of REST-

ful Web APIs. IEEE Trans. on Software Engineering 44(11), 1083–1099 (2018)
19. Swagger, http://swagger.io/, accessed March 2019
20. Text Analyzer - Text analysis Tool, https://www.online-utility.org/text/

analyzer.jsp, accessed April 2019
21. Wu, Q., Wu, L., Liang, G., Wang, Q., Xie, T., Mei, H.: Inferring Dependency

Constraints on Parameters for Web Services. In: Proceedings of the 22nd Intern.
Conference on World Wide Web. pp. 1421–1432 (2013)

22. Xu, L., Yuan, Q., Wu, J., Liu, C.: Ontology-based Web Service Robustness Test
Generation. In: IEEE Intern. Symp. on Web Systems Evolution. pp. 59–68 (2009)


