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Resumen global

Título: Análisis de los efectos de las perturbaciones en predicciones precisas en órbitas terrestres
bajas.

Resumen: Tras analizar el problema de los dos cuerpos y revisar en profundidad las distintas
perturbaciones a las que están sometidos los satélites, se explica la herramienta Orekit. Esta permite
el cálculo de la órbita de los satélites afectados bajo diferentes tipos de perturbaciones.

Mediante Orekit se realiza un extenso análisis abordando las fuerzas más importantes que pueden
afectar a satélites en LEO y GEO, para posteriormente pasar a analizar datos reales de satélites
proporcionados por la agencia espacial europea en formato OEM.

Con estos datos se diseña un propagador que permita predecir con alta precisión la posición y
velocidad de los satélites Sentinel-1A/B y Sentinel-2A/B y finalmente se extraen las conclusiones y
se proponen futuras mejoras.

Palabras clave: Orekit, Predicción precisa de órbitas, Perturbaciones, Sentinel-1, Sentinel-2,
Orbit Ephemeris Message OEM, Propagador.

Conclusiones: La combinación del modelo atmosférico Harris-Priester y las mareas mejora
para propagaciones con duración menor de 24 horas y mayores de 39 horas las predicciones hechas
por el modelo atmosférico más preciso NRLMSISE-00 sin considerar mareas. La combinación de
los modelos más precisos para diferentes tipos de perturbaciones no siempre da como resultado el
propagador más preciso, por lo que es necesario analizar qué tipo de modelos casan mejor entre sí
para predecir la órbita de los satélites que se están analizando.
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Abstract

The objective of this project is to develop an accurate, efficient propagator for Low Earth Orbit
satellites designed and launched by the European Space Agency. Predicting where an object

will be after several hours since the last time we measured its position is crucial in order to prevent
accidents with other satellites during the time lapse we can not track the satellite’s position and
direction of movement. This need resulted in this project, in which the analysis of different kind of
perturbations is made in order to decide which ones we should take into account and which ones
are disposables.

Perturbations can be understood as the forces that disturb the classical Keplerian orbit of orbiting
objects. The four main forces that must be taken into account are the non-spherical body’s gravity,
the third-body perturbations, the solar-radiation pressure and the atmospheric drag, being the last
one the most important in LEO. Other kind of perturbations, such as tides or the precession of
Earth’s axis, are discussed throughout this project.

To perform the computations to predict the position and velocity of the satellites under study,
the tool Orekit is used. This low-level space dynamic library written in Java can be integrated
into Matlab, and offers a wide scope when studying space dynamics. This tool is the base of this
project, and it is used to analyse the effect that different kind of perturbations have in LEO and GEO
satellites. Since it was released as an open source in 2008, its popularity grew exponentially due to
the precision that this tool allows. In this project its library is presented, as well as the different uses
that this tool can have.

The data of the satellites is provided by ESA in the form of Orbit Ephemeris Messages, which are
used to specify the position and velocity of a single object at one or multiple epochs. The OEMs
format is presented in this project, along with several examples of different versions of the OEMs.

In order to design a precise propagator, a comparison between several perturbation models offered
by Orekit’s library is carried out. These models are compared with one another to decide which one
behaves better when propagating the orbit of the satellites studied.

The propagator designed to propagate the orbits with high precision is presented, along with the
results obtained for the Sentinel-1 and Sentinel-2 classes.

Keywords: Orekit, Precise orbit prediction, Perturbations, Sentinel-1, Sentinel-2, Orbit Ephemeris
Message OEM, Propagator.
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1 Introduction

1.1 Motivation

1.1.1 The urge to predict the future

Humankind has always sought ways to predict the future, both near and far. The desire to know
what will happen in a day, a month, a year or a century is innate to human beings. Will Bitcoin make
me rich next month? When will the next pandemic occur? What external factors will influence my
industries? Where will I be in thirty years?

The desire to know the future is rooted in the human desire for control. Knowing what is going to
happen allows us to act accordingly, to be prepared. The uncertainty of what will be is what scares
most people. Throughout history we have devised many tools to try to predict the future and one of
the most widespread today is the horoscope. This astrological diagram represents the position of
the Sun, Moon, planets, astrological aspects and sensible angles at the time of an event, such as
the time of a person’s birth. Many newspapers and magazines have prediction columns, and the
number of websites that "predict your future" based on the position of the planets when you were
born has grown exponentially. It turns out that there are no scientific studies that have proven the
accuracy of horoscopes, and the methods used to make interpretations are pseudo scientific. In
the modern scientific framework there is no known interaction that could be responsible for the
transmission of the supposed influence between a person and the position of the stars in the sky at
the time of birth. In all tests conducted, maintaining strict methods of inclusion of a control group
and proper blinding between experimenters and subjects, horoscopes have shown no effect beyond
pure chance. Furthermore, some psychological tests have shown that it is possible to construct
personality descriptions and predictions generic enough to simultaneously satisfy most members of
a large audience, known as the Barnum effect [10].

It seems impossible to predict whether you will get married in two years’ time based on your
birthday, but it is possible to predict the future of a satellite, for example. Since the 16th century,
thanks to Kepler, we know that objects move in space in conical orbits. However, these orbits are
not perfect. Due to the effect of external forces, perfect conical orbits degenerate into different kinds
of shapes. Looking into the future is, in a sense, creating a model that accurately predicts what
will happen. Imagine you have a recipe book that tells you what kind of dishes you will get if you
combine certain kinds of ingredients. A perturbation model is our recipe book. It is able to predict
the position and velocity of a satellite at any desired time just by knowing the initial conditions
surrounding the satellite and the forces affecting it. And this is the goal of this project, to design a
propagator that can accurately predict the position of the satellites under study.
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2 Chapter 1. Introduction

Figure 1.1 Geocentric satellites.

1.1.2 Sentinel project

Recently, the European Space Agency ESA developed a series of next-generation observation
missions, which was called the Sentinel programme. The main object of these satellites is to replace
the older Earth observation missions which have retired, such as the ERS and the Envisat missions.
Each of the Sentinel missions focuses on a different aspect of Earth observation: atmospheric, land
and oceanic monitoring.

Sentinel-1 [12]

The Sentinel-1 mission is the European Radar Observatory for the Copernicus joint initiative of
the European Commission (EC) and the European Space Agency (ESA). Copernicus is a European
initiative for the implementation of information services dealing with environment and security. It is
based on observation data received from Earth Observation satellites and ground-based information.

The Sentinel-1 mission includes C-band imaging operating in four exclusive imaging modes
with different resolution (down to 5 m) and coverage (up to 400 km). It provides dual polarisation
capability, very short revisit times and rapid product delivery. For each observation, precise
measurements of spacecraft position and attitude are available.

Synthetic Aperture Radar (SAR) has the advantage of operating at wavelengths not impeded by
cloud cover or a lack of illumination and can acquire data over a site during day or night time under
all weather conditions. Sentinel-1, with its C-SAR instrument, can offer reliable, repeated wide
area monitoring.

The mission is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, sharing
the same orbital plane.

Sentinel-1 is designed to work in a pre-programmed, conflict-free operation mode, imaging all
global landmasses, coastal zones and shipping routes at high resolution and covering the global
ocean with vignettes. This ensures the reliability of service required by operational services and a
consistent long term data archive built for applications based on long time series.
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Figure 1.2 Sentinel-1 [12].

Sentinel-2 [13]

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The full
mission specification of the twin satellites flying in the same orbit but phased at 180°, is designed
to give a high revisit frequency of 5 days at the Equator.

Sentinel-2 carries an optical instrument payload that samples 13 spectral bands: four bands at 10
m, six bands at 20 m and three bands at 60 m spatial resolution. The orbital swath width is 290 km.

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites
placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring
variability in land surface conditions, and its wide swath width (290 km) and high revisit time (10
days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions which
results in 2-3 days at mid-latitudes) will support monitoring of Earth’s surface changes.

The twin satellites of Sentinel-2 provides continuity of SPOT and LANDSAT-type image data,
contribute to ongoing multi spectral observations and benefit Copernicus services and applications
such as land management, agriculture and forestry, disaster control, humanitarian relief operations,
risk mapping and security concerns.
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Figure 1.3 Sentinel-2 [13].

1.2 Objectives of this project

The main objective of this project is to present, develop and analyse a method to predict with high
accuracy the position and velocity of the satellites under study given their initial orbit. In short, to
predict the future. Likewise, it was done with the aim of improving the results obtained in [18]. The
satellite orbit information is provided by ESA in the format of Orbit Ephemeris Messages (OEMs),
and we use this information to compare the prediction made by the propagator and the real data.
This project consists of using Orekit to analyse the best propagator design for our satellites. This
tool, developed in Java, can be implemented in MATLAB to perform the necessary calculations.

For this purpose, an extensive analysis of different types of perturbations is presented, comparing
the effects they have on the orbit of different satellites such as LEO and GEO. In addition, different
types of perturbation models are studied in order to select the ones that best fit our satellites.

1.3 Structure

The structure of this project is defined as follows:
Chapter 2: An introduction to orbital mechanics is given, analysing the two-body problem and

the perturbations that make the orbits differ from this simplified model. In addition, the magnitude
of the four main perturbations is analysed in depth to clarify their importance in the analysis of
geocentric orbits.

Chapter 3: The tool used to perform the calculations, Orekit, is presented. A brief review of its
libraries is made and an extensive analysis of the different perturbations described in chapter 2 for
LEO and GEO satellites is carried out.
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Chapter 4: The format of the orbit ephemeris messages is described. A validation and verification
of the designed perturbation model is also performed, concluding with the results obtained for the
Sentinel-1 and Sentinel-2 satellites.

Chapter 5: Conclusions are drawn from the project and future improvements are proposed.





2 Introduction to Orbital Mechanics

In this chapter, the physical and mathematical concepts related to orbital mechanics and the theory
of perturbations are presented.

2.1 The two-body problem

The two-body problem serves as an introduction to the real motion of heavenly bodies, affected
by the gravitational forces exerted by all massive bodies in the universe, solar radiation pressure,
electromagnetic force, atmospheric drag, etc. These forces are ignored in the analysis of the two-body
problem.

2.1.1 Motion equation

First of all, two hypotheses are proposed to study the movement of two massive bodies in space
attracted by the gravitational force:

• The system is isolated from the rest of the universe. The gravitational force is the only force
that affects the two bodies.

• The mass of the two bodies can be considered punctual and located at their respective mass
centres.

The last hypothesis can be substituted with Newton’s shell theorem [5], which is equivalent:
A spherically symmetric body affects external objects gravitationally as though all of its mass

were concentrated at a point at its centre.
The gravitational force wielded on each mass is given by Newton’s gravitational law:

F =
G ·m1 ·m2

r2 , (2.1)

where G is the gravitational constant, m1 and m2 are the masses of the two bodies and r is the
distance between the bodies.

The gravitational force represented in Figure 2.1 in vector form is:

F⃗1 =
G ·m1 ·m2

r2 · r⃗
r
, (2.2)

F⃗2 =−G ·m1 ·m2

r2 · r⃗
r
, (2.3)

where r⃗ = R⃗2 − R⃗1 and r⃗
r is the unit vector. It is worth pointing out that R⃗1 and R⃗2 are defined with

respect to an inertial frame.

7
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Figure 2.1 Gravitational force between two isolated masses.

Introducing Eq. (2.2) and Eq. (2.3) into Newton’s second law, we get

¨⃗R1 =
G ·m2

r2 · r⃗
r
,

¨⃗R2 =−G ·m1

r2 · r⃗
r
.

(2.4)

The equations in system (2.4) involve twelve unknowns and describe the movement of the two
bodies in the inertial frame. To solve the problem, let us define the position of the centre of mass of
the two-body system R⃗CM:

R⃗CM =
m1 · R⃗1 +m2 · R⃗2

m1 +m2
. (2.5)

Differentiating Eq. (2.5) two times with respect to time shows that the mass centre of the system
describes an uniform rectilinear motion:

¨⃗RCM = 0⃗ → R⃗CM = V⃗CM(0) · t + R⃗CM(0). (2.6)

Accordingly, moving the origin of the reference frame to the mass centre results in a new inertial
reference frame (Figure 2.2), where the position of the two bodies is given by

r⃗1 = R⃗1 − R⃗CM =
m2

m1 +m2
(R⃗1 − R⃗2) =− m2

m1 +m2
r⃗, (2.7)

r⃗2 = R⃗2 − R⃗CM =
m1

m1 +m2
(R⃗2 − R⃗1) =

m2

m1 +m2
r⃗. (2.8)
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Figure 2.2 Mass-centre reference frame.

Finally, differentiating r⃗ two times with respect to time results in

¨⃗r = ¨⃗R2 −
¨⃗R1 =−G(m1 +m2)

r⃗
r3 =−µ

r⃗
r3 , (2.9)

where µ = G(m1 +m2) is the standard gravitational parameter of the two masses combined. Note
that if m1 ≫ m2, the two-body problem can be approximated by the one-body problem, being
µ ≃ µ1 = Gm1, r⃗1 ≃ 0⃗ and r⃗2 ≃ r⃗, resulting in the following:

¨⃗r ≃−µ
r⃗
r3 . (2.10)

Performing the appropriate operations [9], the equation that describes the movement of a body
around another more massive object and, hence, the solution to Eq. (2.10), is

r(θ) =
p

1+ ecos(θ)
, (2.11)

where:

• e is the eccentricity, which is the module of Laplace’s vector or eccentricity vector e⃗, that
points towards the conic periapsis, the point of minimal distance between the two bodies. The
different cases of conics are determined by this parameter:

– If e = 0, the conic is a circumference.

– If e ∈ (0,1), the conic is an ellipse.

– If e = 1, the conic is a parabola.

– If e > 1, the conic is a hyperbola.
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• p =
h2

µ
≥ 0 is the conic parameter, with h = |⃗h| being the specific angular momentum. The

situation p = 0 corresponds to degenerate conics.

• θ is the true anomaly, defined as the counterclockwise angle between r⃗ and e⃗.

2.1.2 Orbital elements

To define an orbit in the 3 dimensional space we need 6 parameters called orbital elements, a
plane of reference, which depends on the reference frame used, and a reference point. In orbits
around planets, the plane of reference is the equator of the planet and in heliocentric orbits the
reference plane is the ecliptic. The intersection between the plane of reference and the orbit plane
determines the line of nodes, which is crossed by the orbit at two points: the ascending node �
and the descending node �. Finally, the reference point used in celestial coordinate systems is the
first point of Aries �, which is the direction from Earth to the Sun during the vernal equinox. The
Keplerian orbital elements are as follows:

• a = p
1−e2 is the semi-major axis of the conic. In the parabolic case (e = 1), p is used as long

as a is not defined (a → ∞).

• e is the eccentricity.

• θ is the true anomaly.

• Ω is the longitude of the ascending node �, the counterclockwise angle formed between the
first point of Aries � and the ascending node �.

• ω is the argument of the periapsis, the angle in the direction of motion of the orbiting object
between the node line from the ascending node � and the periapsis.

• i is the inclination, which is the counterclockwise angle between the reference plane and the
orbital plane.

Figure 2.3 Keplerian orbital elements.
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2.2 Perturbations

As mentioned, the two-body model is not realistic. With the hypotheses made in Section 2.1, we
supposed an isolated system, yet there are other forces such as air drag, solar drag, other gravitational
forces, etc. We also assured punctual masses, but the Sun, planets and space vehicles are not perfect
spheres. These discrepancies can be considered using perturbations that take into account the forces
discarded in the two-body problem. These perturbations produce secular variations, constantly
increasing or decreasing the value of an orbital element, and/or periodic variations, making them
oscillate around a mean value. Their effects make the bodies describe non-Keplerian orbits.

The most important perturbations are classified into four main groups:

• Atmospheric drag: The force of the atmosphere acts in the opposite direction of the body’s
trajectory.

• Non-spherical body’s gravity: On account of the non-spherical shape of the central body
(Earth, the Sun, or the body considered), the point-mass model is inaccurate.

• Third-Body perturbations: The Sun, the Moon, and the other planets of the solar system
exert a gravitational force that we did not consider in the two-body problem.

• Solar-Radiation pressure: The incidence of the solar light produces a force due to the
pressure applied on the body.

Table 2.1 Forms of perturbations wielded on each orbital element. P stands for periodic and S for
secular [25].

Non-spherical body’s gravity Third body Atmospheric drag Solar radiationZonal Sect/Tes
a P P P P+S P
e P P P P+S P
i P P P P+S P
Ω P+S P P+S P P+S
ω P+S P P+S P P+S
θ P+S P P+S P P+S

To handle these perturbations, two main models are employed:

• General perturbations model: This model studies the temporal evolution of the orbital ele-
ments. The non-Keplerian orbit is obtained by solving ˙⃗α = F⃗ (⃗α ,⃗γP), where α⃗ = [a,e,i,ω,Ω,θ ]
is the vector of orbital elements, γ⃗P is the perturbations’ vector and F⃗ are the equations that,
along with ˙⃗α , constitute the system of equations that describe the trajectory of the orbiting
object, which is called the planetary equations.

• Special perturbations model: The movement equations are directly used, avoiding the usage
of orbital elements. There are two different approaches for this model:

– Encke’s method: Consists in a direct resolution of the movement equations, including
as many bodies and forces as required. This method is the most used nowadays.

– Cowell’s method: In this method, a correction δ r⃗ is solved over a reference solution of
the two-body problem (2.10) . If the correction grows, it is necessary to recompute the
reference solution. Much less used nowadays.
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In order to study the perturbations, the equation motion deduced in Eq. (2.10) can be modified to
add as many perturbations as we desire in order to apply Encke’s method. This is:

¨⃗r = γ⃗K +
N

∑
i=1

γ⃗Pi
, (2.12)

where γ⃗K =−µ
r⃗
r3 is the acceleration due to the Keplerian force and γ⃗Pi

are the accelerations due
to each perturbations considered in the problem. This allows us to compare the magnitude of the
different perturbations with respect to the Keplerian acceleration and discard the non-relevant ones.

ζ (⃗γP ,⃗γK) =
|⃗γP|
|⃗γK |

. (2.13)

Therefore, we can interpret the second term in Eq. (2.12) as the accelerations deviations with
respect to the original two-body problem. It is worth pointing out that from now on we refer to ζ

as both the comparison of acceleration and the comparison of forces, as the mass of the satellite
banishes in the equation.

In the following sections we compare the magnitude of the Keplerian acceleration and the
perturbation acceleration of the four main perturbations mentioned exerted on Low Earth Orbit
LEO (< 7400 km) and geostationary GEO (≃ 42000 km) satellites.

2.2.1 Non-spherical body’s gravity

As long as Earth, the Moon, and the rest of the bodies do not have a perfect spherical shape, the
mass distribution depends on latitude (φ ) and longitude (λ ). Therefore, it is not uniform as we
supposed during the two-body problem analysis.

The advantage of this perturbation is that it is due to gravity, a conservative field. Therefore,
we can characterise it in terms of a potential function. Using spherical coordinates to define this
potential function (U =U(r,φ ,λ ), the Laplace equation results in the following:

1
r2

∂

∂ r

(
r2 ∂U

∂ r

)
+

1
r2 cos(φ)

∂

∂φ

(
cos(φ)

∂U
∂φ

)
+

1
r2 cos2(φ)

∂ 2U
∂λ 2 = 0. (2.14)

The solution for Eq. (2.14) that characterises the non-spherical body’s gravity, deduced in [22],
is given by:

U(r,φ ,λ ) =
µ⊕
r

[
1− R⊕

r

∞

∑
n=2

n

∑
m=0

Jnm · pnm(sin(φ))cos(m(λ −λnm))

]
, (2.15)

where the first term represents the potential of a sphere and the series represent the deviation with
respect to the spherical model, Jnm and λnm are the coefficients associated to the nmth harmonic and
pnm(x) are the Legendre polynomials [25] of degree n and order m.

The trigonometric argument of the Legendre polynomials in Eq. (2.15) constitutes surface spher-
ical harmonics, for they are periodic on the surface of an unit sphere. These spherical harmonics
can be classified in three groups:

• Zonal Harmonics: They are defined by zeroth order (m= 0). This implies that the dependence
of the potential on longitude (λ ) vanishes and the field is symmetrical about the polar axis,
appearing n+1 horizontal zones dividing Earth. J2 is, by far, the strongest perturbation due
to Earth’s shape.

• Sectorial Harmonics: They occur when the degree is equal to the order of the harmonic
(n = m). When this happens, the polynomials are zero at the poles and Earth is divided into
2n meridians sectors.



2.2 Perturbations 13

• Tesseral Harmonics: For cases in which n ̸= m ̸= 0, the tesseral harmonics attempt to model
specific regions of Earth that depart from a perfect sphere.

Figure 2.4 Zonal Harmonics. The shading indicates regions of additional mass and the numbers
link regions between the views [22].

Figure 2.5 Sectorial Harmonics. They take into account the extra mass distribution in longitudinal
regions [22].

Figure 2.6 Tesseral Harmonics, which are dependent on latitude and longitude [22].
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The precision of non-spherical body’s gravity depends on how many harmonics are taken into
study, increasing along with the computation complexity and time required to evaluate this force.

In order to perform the comparison between the Keplerian force and the perturbation force that
arises from the non-spherical mass distribution of Earth, we use γ⃗ = ∇U .

Redefining Eq. (2.15) as

U(r,φ ,λ ) =
µ⊕
r

−µ⊕
R⊕
r2

∞

∑
n=2

n

∑
m=0

Jnm · pnm(sin(φ))cos(m(λ −λnm)) =U⊕
K +Uharm

P (2.16)

we have that:

γ⃗ = γ⃗
⊕

K + γ⃗ harm
P . (2.17)

Notice that γ⃗ harm
P includes all the accelerations due to non-spherical body perturbations, which

can be reviewed in [22]. On the other hand, γ⃗
⊕

K =−µ⊕
r⃗
r3 represents the acceleration due to the

Keplerian force.
The most important non-spherical perturbation is the one due to the zonal harmonic J2, as we

mentioned before. Its magnitude, compared with the Keplerian force, is ζ (⃗γ ⊕
K , γ⃗ J2

P ) = 10−3 for
LEO and ζ (⃗γ ⊕

K , γ⃗ J2
P ) = 10−6 for GEO. It is, by far, the strongest perturbation affecting LEO objects

and it has the same magnitude as the Sun and the Moon third-body perturbations in GEO altitudes.
The next two strongest harmonics, J22 and J3, are 1000 times weaker than J2.

2.2.2 Atmospheric drag

Atmospheric drag strongly influences the motion of a satellite near Earth. During the last
revolutions of the satellite’s life, drag effects can be even greater than those from Earth’s oblateness.

The acceleration due to drag is given by:

γ⃗
drag

P =−1
2

CDS
m

ρv2
rel

v⃗rel

|⃗vrel|
, (2.18)

being CD the drag coefficient, S the surface of the object, m its mass, ρ the density of the air at the
specific altitude of the satellite and vrel the relative velocity of the object with respect to the air.

The most difficult perturbation to model is, by far, the atmospheric drag. It is due to the difficult to
determine the density of the air at the altitude the satellite is in each period of time. Several models
can be used to characterise density: from static models, where we assume that all the atmospheric
parameters remain constant, to time-varying models, as we consider more and more real-world
effects, such as diurnal variations, 27-days solar-rotation cycle, 11-year cycle of Sun spots, rotating
atmosphere, winds, electromagnetic field, magnetic-storms variations, etc [22].

As we consider more and more real-world effects, more and more problems appear, as density,
which varies enormously depending on the day, latitude and longitude, depends on varying parame-
ters such as sunlight, winds, tides, etc. This summarises the complexity of accurately modelling the
atmosphere and, thus, the atmospheric drag.

Nevertheless, there are many atmospheric models that allow the user to study this perturbation
with higher or lower precision depending on the model used. In this project we present five of the
most commonly used:

• Exponential Model
This static model is the simplest of the five models described in this project, as it assumes



2.2 Perturbations 15

that the density decays exponentially with respect to altitude and a spherical symmetry of
particles. Thus, the density is given by:

ρ(h) = ρ0 exp
(
−h−h0

H

)
, (2.19)

where ρ0 is the density of reference (typically at sea level), h is the altitude, h0 is the altitude
of reference (typically sea level) and H is the scale height.

• International Standard Atmosphere (ISA)
In this model, which is static, it is assumed that density decays as an power function of
temperature, which varies linearly with respect to altitude. The parameters depend on the
layer of the atmosphere from which we want to evaluate the density. This is:

ρ(h) = ρ0

(
1+

α(h0)(h−h0)

T0

)−
(

g
Rgα(h0 )

+1
)

(2.20)

where h0 is the altitude of reference depending on the layer of the atmosphere, α(h0) is the
termical gradient of the air at h0, T0 is the temperature of reference at h0, ρ0 is the density of
reference at h0, Rg = 287.05 J/(kgK) is the air constant and g = 9.80665 m/s2 is the gravity
of Earth, which is assumed to remain constant in this model.

• Harris-Priester
This model is static, but takes into account several tables to measure the density variations
that we may observe during the solar cycle. From these tables, this model interpolates the
densities values to determine at a specific time and determines the physical properties of the
upper atmosphere by averaging several of the predominant variations mentioned before. This
model is widely recommended for comparing propagation algorithms, as it provides accurate
results and is computationally efficient. This model is presented in detail in [17].

• NRLMSISE-00
The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere
(NRLMSISE-00) [21], which is extremely popular for all applications, computes the neutral
atmosphere empirical model from the surface to lower exosphere (0 to 1000 km) and provides
the exospheric temperature above satellite’s altitude, local temperature at satellite’s altitude,
density at satellite’s altitude and partial densities at satellite’s altitude for He, H, N, O, Ar, N2,
O2 and anomalous oxygen. This model needs geographical and time information to compute
general values, but also needs space weather data, such as mean and daily solar flux and
geomagnetic indices.

• Jacchia-Bowman 2008
Jacchia’s models are widely used in military operations and some analyses for astrodynamics.
In 2008, Bowman et al. [6] published an empirical model based on Jacchia’s diffusion
equations that computes the solar indices used for the solar irradiation from on-orbit sensor
data. This model is the most recent of the five exposed in this section and, as a result, the
use of new global exospheric temperature equations based on EUV and FUV solar indices
significantly improves density modeling, especially at solar minimum times. In addition,
in the authors’ words, “density standard deviation errors during non-storm periods have
been reduced by over 5% from Jacchia 70 and NRLMSIS models", the previous versions of
Jacchia-Bowman and NRLMSISE-00.

To compare the Keplerian force with the drag in LEO, we consider some typical values for the
terms appearing in Eq. (2.18) for a satellite with solar panels. Let CD = 1.5, S = 7 m2, m = 1800 kg,
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ρ = 10−13 kg/m3 and vrel = 7.55 km/s. We have assumed an altitude of 600 km, calm atmosphere
and circular orbit. With this, the comparison of the forces is ζ (⃗γ ⊕

K , γ⃗ drag
P ) = 10−6. Nevertheless, it

is the most important perturbation in LEO because it makes the orbit decay by slowing the satellite.

2.2.3 Third-Body perturbations

In the two-body problem we isolated the system and supposed there was just two bodies. However,
in the solar system there are thousands of object which perturb the orbit of the satellite. Depending
on the mass and proximity of these objects to the system under study, the force caused is greater or
lesser.

Suppose an orbiting object around Earth, affected by the gravitational force of Earth and the
Moon.

Figure 2.7 Object orbiting Earth affected by the Moon [25].

In this problem, the motion equation written in the inertial reference system centred in CM⊕$ is:

¨⃗rIN =−µ⊕
r⃗
r3 +µ$

r⃗$− r⃗∣∣⃗r$− r⃗
∣∣3 , (2.21)

where r⃗$ = r⃗2 − r⃗1. We also have that r⃗1 and r⃗2 satisfy

m⊕⃗r1 +m$⃗r2 = 0⃗ (2.22)

and that the motion equation of the Moon is

¨⃗r$ =−
G(m⊕+m$)⃗r$

r3
$

. (2.23)

Combining Eq. (2.22) and Eq. (2.23), we get

¨⃗r1 =
µ$⃗r$

r3
$

. (2.24)

Finally, as r⃗IN = r⃗+ r⃗1, the following result emerges:

¨⃗r =−µ⊕
r⃗
r3 +µ$

r⃗$− r⃗∣∣⃗r$− r⃗
∣∣3 − µ$⃗r$

r3
$

= γ⃗K + γ⃗P, (2.25)
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where γ⃗K =−µ⊕
r⃗
r3 is the Keplerian acceleration and γ⃗P = µ$

r⃗$− r⃗∣∣⃗r$− r⃗
∣∣3 − µ$⃗r$

r3
$

is the acceleration

due to the third body.
Linearising γ⃗P, we get that the perturbation acceleration can be estimated as:

γ⃗P ≃
µ$
r3
$

[
3⃗r$

r⃗$ · r⃗
r2
$

− r⃗

]
∼ µ$

r
r3
$
. (2.26)

Note that in this analysis we used a system formed by Earth and the Moon, but these accelerations
and equations can be generalised for any system by substituting in γ⃗K the gravitational parameter
of the main body and in γ⃗P the gravitational parameter of the perturbing body and its reference
vector. Hence, we can compare the third-body perturbation with the Keplerian acceleration using
Eq. (2.13). This results in:

ζ (⃗γP ,⃗γK) =
|⃗γP|
|⃗γK |

∼ µP

µS

(
r
rP

)3

, (2.27)

where µS is the standard gravitational parameter of the main body of the system (the main body
being the one around the object of study orbits), µP is the standard gravitational parameter of the
perturbing third-body, r is the distance from the main body to the orbiting object and rP is the
distance between the main body and the third-body. This equation provides an estimation of the
magnitude of the third-body perturbation acceleration and allows us to decide which solar system
objects take into account.

Observing Eq. (2.27) we deduce that only objects with enough mass or close to Earth produce
the greatest third-body perturbations. To verify these conclusions, the following table presents the
comparison between the forces exerted by Earth, the Moon and the solar system main objects to
LEO and GEO satellites:

Table 2.2 Comparison between the forces exerted by the Moon and the main solar system objects
and the force Earth produces on LEO and GEO satellites.

Satellite Sun Moon Mercury Venus Mars Jupiter Saturn Uranus Neptune Pluto
LEO 10−8 10−7 10−13 10−11 10−15 10−13 10−14 10−16 10−17 10−21

GEO 10−5 10−5 10−11 10−8 10−12 10−10 10−12 10−14 10−15 10−18

Based on these results, we can conclude that the most important third-body perturbations are the
ones due to the Sun and the Moon, which is what we expected in geocentric orbits. The combination
of these perturbations is usually called Luni-Solar perturbation. The addition of other planets’
perturbations is not relevant, as their forces are 3 or more orders of magnitude below the ones
exerted by the Sun and the Moon.

2.2.4 Solar-Radiation pressure

The incidence of sunlight on the surface of any body produces a mechanical effect called solar-
radiation pressure (SRP). It is, like drag, a non conservative perturbation. However, it becomes
more pronounced at higher altitudes.

As well as modelling drag was tremendously difficult due to the constant variations in the
atmosphere, the difficulty in modelling SRP lies on modelling accurately solar cycles and variations.
Solar storms produce an increase in this effect. To characterise this force we also need the apparent
size of the satellite that faces the Sun in each moment, since the area exposed to the Sun depends
on the attitude of the satellite. This means that the pressure distribution is directly based upon the
satellite’s shape, composition and orientation with respect to the Sun. Apart from this considerations,
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the Sun position and the amount of sunlight affecting the satellite are crucial in determining this
perturbation effect.

The acceleration due to SRP can be estimated as follows [22]:

γ⃗ SRP
P ≃−

I(1+ ε)SSRP cos(ϕ⊙)

mc
e⃗⊙, (2.28)

where I is the solar radiation flux, SSRP is the exposed surface of the satellite, ε is the reflectivity
coefficient (1 if the body is completely reflective, 0 if it is a black-body and -1 if it is transparent), m
is the mass of the satellite, c is the light speed, ϕ⊙ is the angle of incidence of the sunlight and e⃗⊙
is a unit vector that points towards the Sun from the satellite.

In addition to Eq. (2.28), a similar magnitude acceleration due to reflection occurs in every single
surface exposed to sunlight and we must take into account the albedo of Earth too, the solar radiation
reflected from Earth back onto the satellite. The amount of sunlight reflected due to the albedo is
about 30%.

We compare γ⃗K with γ⃗ SRP
P using typical values for LEO and GEO. Considering I = 1367 W/m2,

SSRP = 3 m2, ε = 0.2, ϕ⊙ = 0º, c = 299792458 m/s, mLEO = 2100 kg and mGEO = 900 kg, we get
ζLEO(⃗γ

⊕
K , γ⃗ SRP

P ) = 10−7 and ζGEO(⃗γ
⊕

K , γ⃗ SRP
P ) = 10−5.

2.2.5 Other effects

We modelled and studied the four main perturbations affecting geocentric satellites. However,
many other effects affect them. Here we present the main ones:

• Tides: Solid-Earth tides or Ocean tides have only recently been studied thanks to the advances
in computation and observation processes. These gravitational perturbations are caused by an
external body. In the case of Earth, the Moon and the Sun affect Earth oblateness periodically.
It is usual to model the tidal potential produced on Earth as a harmonic expression, similar as
the one described in Eq. (2.15).

• Precession of Earth’s axis: This is the change in orientation of the rotation axis of Earth
due to the Sun gravitational attraction, the inclination of the ecliptic and Earth’s aspherical
shape. It has a period of 26000 years approximately.

• Nutation of Earth’s axis: It is a swaying motion in the axis of rotation of the Earth, caused
by the Moon gravitational attraction. Its period is around 18.6 years and it slightly affects the
inclination of the ecliptic.

• Apparent Polar Wander: This phenomenon is the perceived movement of the Earth’s paleo-
magnetic poles relative to a continent while regarding the continent being studied as a fixed
in position. It produces a displacement of the pole of metres. It is caused by the movements
in Earth’s mantle and crust and the redistribution of the water bodies at the surface.

• Magnetic Field Effects: The force exerted by Earth’s magnetic field on the satellites orbiting
around, which is given by Maxwell’s equations.

• South Atlantic Anomaly: This region of the Van Allen belts extends to Earth surface and is
a dip centred over South America and the South Atlantic.

These effects are analysed in detail in [24] and [22]. Note that we did not mention thrust, as we
know when the satellites perform a manoeuvre and the amount of velocity they gain due to this
manoeuvre.
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Figure 2.8 Precession and nutation of Earth’s axis [22].

In order to obtain a high accuracy model that propagates the orbit of the satellites under study we
should take into account as many perturbations as possible. The precession of Earth’s axis and the
nutation of Earth’s axis affect the reference system used to determine the satellites’ orbit. These
movements produce errors of dozens of metres if they are not considered. Fortunately, Orekit (the
library described in Chapter 3 used in this project to propagate the orbits) considers these effects
when propagating orbits. On the other hand, the position of the pole and Earth’s axis must be taken
into account when considering the nonspherical body’s gravity. Thus, the apparent polar wander
and the precession and nutation of Earth’s axis are effects that we need to consider when precisely
studying the orbit of geocentric satellites. Conversely, the South Atlantic Anomaly is just a region
of radiation that we shall take into account when designing missions in order to avoid the effects of
cosmic radiation and does not cause a significant variation. The two effects left (tides and magnetic
field effects) are perturbations that we shall consider during the design of the propagator in Section
4.2, but as Orekit has not got any electromagnetic force model, we only study tides.





3 Introduction to Orekit

Orekit [14] is a low-level space dynamics library written in Java. It has gained widespread
recognition since it was released under an open source license in 2008. In this chapter, this tool is
introduced, since it is used to perform all computational analyses throughout this thesis.

3.1 About Orekit

Orekit is a space flight dynamics library developed since 2002 by CS Group, and since 2008 the
tool is freely available as an open source product under the terms of the business-friendly Apache
V2.0 licence. This library aims at providing accurate and efficient low-level components in space
flight dynamics applications and it is designed to be easily used in very different contexts, from
quick studies up to critical operations. It is a pure Java library that depends only on the Java Standard
Edition version 8 (or above) and Hipparchus version 2.0 (or above) libraries at run-time. Hipparchus
is a library of lightweight, self-contained mathematics and statistics components addressing the
most common problems not available in the Java Standard Edition. Orekit is used, among others,
by:

• Airbus Defence and Space in Quartz.

• U.S. Naval Research Laboratory.

• Swedish Space Corporation.

• Thales Alenia Space.

• Centre National d’Études Spatiales.

• European Space Agency.

These organisations also contribute or have contributed to the development of Orekit library.
As a library, Orekit provides basic elements (orbits, dates, attitude, frames, etc) and various

algorithms to handle them (conversions, propagations, pointing, etc). It features all classical concepts
needed for space flight dynamics and it offers an extensive support for each concept. The main
driving goals for the development of Orekit are validation, robustness, maintainability and efficiency.

3.2 Orekit features

3.2.1 Time

The Time package is an independent package providing classes to handle epochs and time scales,
and to compare instants. The principal class is AbsoluteTime, which represents an unique instant in

21
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time, so as to be able to locate it with respect to the many different time scales. The Time package
provides high accuracy absolute dates, time scales, transparent handling of leap seconds and support
for CCSDS time code standards. [3].

There are several time scales that Orekit provides in the TimeScalesFactory class:

• International Atomic Time TAI: the most accurate and regular time scale that can be used
at the surface of Earth.

• Terrestrial Time TT: it is the successor of Ephemeris Time TE. By convention,
T T = TAI +32.184 s.

• Universal Time 1 UT1: it is a time scale directly linked to the actual rotation of Earth. It is
an irregular scale, reflecting Earth’s irregular rotation rate.

• Universal Time Coordinate UTC: it is the primary time standard by which the world regulates
clocks and times. It is mainly related to TAI, but some step adjustments are introduced from
time to time to keep into account Earth rotation irregularities and to prevent the legal time
from drifting with respect to day and night. The offset between UT1 and UTCScale is found
in the Earth Orientation Parameters published by IERS.

• Greenwich Mean Sidereal Time scale GMST: it is the hour angle between the meridian of
Greenwich and mean equinox of date at 0 h UT1.

• Geocentric Coordinate Time TCG: coordinate time at the centre of mass of Earth. This
time scale depends linearly on TTScale (and, hence, on TAI).

• Barycentric Dynamical Time TDB: time used to compute ephemerides in the solar system.
This time is offset with respect to TT by small relativistic corrections due to Earth’s motion.

• Barycentric Coordinate Time TCB: coordinate time used for computations in the solar
system. This time scale depends linearly on TDBScale.

• Global Positioning System reference scale TGPS: this scale was equal to UTC at the start
of the GPS epoch when UTC was 19 seconds behind TAI, and has stayed parallel to TAI
since then. By convention, T GPS = TAI −19 s.

• Galileo System reference scale TGS: this scale is equal to UTC + 13 s at Galileo epoch
(1999-08-22T00:00Z). Galileo System Time and GPS time are very close scales. Without
errors, they should be identical. The offset between these two scales is the GGTO, which
depends on the clocks used to realise the time scales. It is of the order of a few nanoseconds.

• GLONASS System reference scale GLONASS: this scale is equal to UTC + 3 h at any time.
GLONASS System Time does not include leap seconds just at UTC scale.

• Quasi-Zenit reference scale QZSS: it is very close to GPS scale. The same difference with
GPS as Galileo.

3.2.2 Frames

The Frames package provides classes to handle frames and transforms between them. All frames
are organised as a tree with a single root, being the relationship between elements the transform that
links one to another. Each frame is defined by a single TransformProvider linking it to one specific
frame: its parent frame. This defining transform provider may give either fixed or time-dependent
transforms. As an example, Earth related frame ITRF depends on time due to precession/nutation,
Earth’s rotation and pole motion. The predefined root frame is the only one with no parent frames.
For each pair of frames, there is one single shortest path from one frame to the other one.
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Figure 3.1 Frame transformation tree.

To transform between two frames, the Transform class is used. It can convert position, directions
and velocities from one frame to another, including velocity composition effects. Transforms
are used to define the relationship from a parent to a child frame and to merge all individual
transforms encountered while walking the tree from one frame to any other one, however far away
they are from each other. The transform between any two frames is computed by merging individual
transforms while walking the shortest past between them. The walking/merging operations are
handled transparently by the library. Users only need to select the frames, provide the date and ask
for the transform, without knowing how the frames are related to each other.

For studies in Earth, Orekit provides predefined reference frames that the user can implement in
their studies. For most purposes, the recommended frames are the International Terrestial Reference
Frame (ITRF) for terrestial frame and Geocentric Celestial Reference Frame (GCRF) for celestial
frame. In summary, Orekit implements the following Earth’s frames:

• those related to the Non-Rotating Origin: GCRF, CIRF, TIRF and ITRF for all precession
and nutation models from IERS 1996, IERS 2003 and IERS 2010.

• those related to the Equinox-based origin: MOD, TOD, GTOD and equinox-based ITRF for
all precession and nutation models from IERS 1996, IERS 2003, IERS 2010 and Veis 1950.

One predefined set corresponds to the frames from the IERS conventions (2010). This set defines
the GCRF reference frame on the celestial (i.e. inertial) side, the ITRF on the terrestrial side and
several intermediate frames between them. Several versions of ITRF have been defined. Orekit
supports several of them thanks to Helmert transformations [26].

The two big frames groups defined above are based on IERS definitions [20]:

• Based on Celestial Intermediate Origin CIO:
– Geocentric Celestial Reference Frame GCRF.

– Celestial Intermediate Reference Frame CIRF 2000.

– Terrestrial Intermediate Reference Frame TIRF 2000 (with or without tides).

– International Terrestrial Reference Frame ITRF 2005 (with or without tides).

• Based on Equinox:
– Geocentric Celestial Reference Frame GCRF.

– J2000 EME2000.

– Mean equator Of Data MOD (with or without EOP correction).

– True equator Of Data TOD (with or without EOP correction).
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– Greenwich True Of Date GTOD (with or without EOP correction).

– Veis 1950.

– equinox-based ITRF.

The transformations between each of the frames defined above are represented in Figure 3.2 and.

Figure 3.2 CIO-based transformations.

Figure 3.3 Equinox-based transformations.

In the first group, tidal effects are also taken into account on Earth rotation angle and on pole
motion. The 71-term model from IERS is used. Since this model is also computing intensive, a
caching/interpolation algorithm is also used to avoid a massive effect on performance. The trade-off
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selected for Orekit implementation is to use 8 points separated by 3/32 day (135 minutes) each. The
resulting maximal interpolation error is about 3 micro-arcseconds. The penalty to use tidal effects
is therefore limited to slightly more than 20%, to be compared with the 550% penalty without this
mechanism.

All celestial bodies are linked to their own body-centered inertial frame, just as Earth is linked to
EME2000 and GCRF. Since Orekit provides implementations of the main solar system celestial
bodies, it also provides body-centered frames for these bodies, one inertially oriented and one body
oriented. The orientations of these frames are compliant with IAU poles and prime meridians
definitions. The predefined frames are the Sun, the Moon, the eight planets and the Pluto dwarf
planet. In addition to these real bodies, two points are supported for convenience as if they were real
bodies: the solar system barycenter and the Earth-Moon barycenter; in these cases, the associated
frames are aligned with EME2000. One important case is the solar system barycenter, as its
associated frame is the ICRF. The frame list is the following:

• Geocentric Celestial Reference Frame GCRF.
• J2000 EME 2000.
• Moon-centered.
• Earth-Moon barycenter.
• Solar system barycenter.
• Object-centered (Sun-centered, Mercury-centered, etc).

The topocentric frame model (Figures 3.4 and 3.5) allows defining the frame associated with any
position at the surface of a body shape, which itself is referenced to a frame, typically ITRF for
Earth. The frame is defined with the following canonical axes:

• Zenith direction (Z) is defined as the normal to local horizontal plane.
• North direction (Y) is defined in the horizontal plane (normal to zenith direction) and following

the local meridian.
• East direction (X) is defined in the horizontal plane, in order to complete the direct triangle

(East, North, zenith).

Figure 3.4 Topocentric frame.
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Figure 3.5 Object view of topocentric frame.

3.2.3 Forces

Orekit provides an extensive package to model forces. These forces are defined by the user, in
order to implement them automatically by Orekit in the numerical propagator selected.

Objects that implement the force model interface are intended to be added to a numerical propa-
gator before the propagation starts. The propagator calls at each step the force model contribution
computation method, to be added to its time derivative equations. The force model instance extracts
all the state data it needs (date, position, velocity, frame, attitude, mass) from the SpacecraftState
parameter. From these state data, it computes the perturbing acceleration. It then adds this ac-
celeration to the second parameter which takes this contribution into account and uses the Gauss
equations to evaluate its impact on the global state derivative. Force models that create discontinuous
acceleration patterns (typically for manoeuvres start/stop or solar eclipses entry/exit) must provide
one or more events detectors to the propagator thanks to their getEventsDetectors() method. This
method is called once just before propagation starts. The events states are checked by the propagator
to ensure accurate propagation and proper events handling.

The force models implemented are as follows:

• Atmospheric drag forces, taking into account the attitude if the shape of the spacecraft is
defined.

• Central gravity forces, including time-dependent parts (linear trends and pulsation at several
different periods).

• Third body gravity force. Data for all solar system bodies is available, based on JPL DE
ephemerides or IMCCE INPOP ephemerides.

• Solar radiation pressure force, taking into account force reduction in penumbra and no force
at all during complete eclipse, and taking attitude into account if spacecraft shape is defined.

• Solid tides, with or without solid pole tide.

• Ocean tides, with or without ocean pole tide.

• Post-Newtonian correction due to general relativity.
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• Forces induced by manoeuvres. At present, only constant thrust manoeuvres are implemented,
with the possibility to define an impulse manoeuvre, thanks to the event detector mechanism.

3.2.4 Attitudes

Some force models, such as the atmospheric drag for manoeuvres, need the spacecraft orientation
in an inertial frame. Orekit uses a simple container for Attitude, which includes both the geometric
part (i.e. rotation) and the kinematic part (i.e. the instant spin axis). The components held by this
container allow to convert vectors from inertial frame to spacecraft frame along with their derivatives.
This container is similar in spirit to the various extensions of the abstract Orbit class: it represents
a state at a specific instant. In order to represent attitude evolution in time, the AttitudeProvider
interface is available. At a higher level, attitude laws defined by a ground pointing law are also
available. This corresponds to a real situation where satellite attitude law is defined in order to
perform a mission, i.e. pointing a specified point/area. All these laws are collected under an abstract
class called GroundPointing. Finally, there exist attitude laws that wrap a “base” attitude law, and
add to this base attitude law a complementary rotation in order to fulfil specific mission constraints.

Nevertheless, in this project the orientation of satellites is not available, so the description of the
different attitude providers that Orekit implement is omitted.

3.2.5 Orbits

This package is the basis for all of the other space mechanics tools. It provides an abstract class,
Orbit, extended in four different ways corresponding to the different possible representations of
orbital parameters. Since version 3.0, Keplerian, circular, equinoctial and Cartesian representations
are supported. For orbit evolution computation, this package is not sufficient. There is a need to
include notions of dynamics, forces models, propagation algorithms, etc. The entry point for this is
the Propagator interface.

Available orbit representations are:

• Classical elliptical Keplerian orbit. This representation is the most well known, being the one
used in this project to present the final results of the analyses. They are given by:

– a: semi-major axis [m].

– e: eccentricity [∼].

– i: inclination [rad].

– ω: perigee argument [rad].

– Ω: right ascension of the ascending node [rad].

– θ , M or E: true anomaly, mean anomaly or eccentric anomaly [rad].

• Circular orbit, used to represent almost circular orbit, i.e orbit with low eccentricity, charac-
terised by:

– a: semi-major axis [m].

– ex = e · cos(ω): X component of the eccentricity vector [∼].

– ey = e · sin(ω): Y component of the eccentricity vector [∼].

– i: inclination [rad].

– Ω: right ascension of the ascending node [rad].

– uθ = ω +θ , uM = ω +M or uE = ω +E [rad].
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• Equinoctial orbit. This kind of orbital elements can represent every type of orbit and, as they
do not have any singularities, they are used in this project to compute the orbits because of
their reliability. They are given by:

– a: semi-major axis [m].

– ex = e · cos(ω +Ω): X component of the eccentricity vector [∼].

– ey = e · sin(ω +Ω): Y component of the eccentricity vector [∼].

– hx = tan(i/2) · cos(Ω): X component of the specific relative angular momentum vector
[∼].

– hy = tan(i/2) · sin(Ω): Y component of the specific relative angular momentum vector
[∼].

– λθ = ω +Ω+ θ , λM = ω +Ω+M or λE = ω +Ω+E: respectively true longitude
argument, mean longitude argument or eccentric longitude argument [rad].

• Cartesian orbit, associated to its frame definition.
– (X, Y, Z): position vector of the point in the given frame [m].

– (Vx, Vy, Vz): velocity vector of the point in the given frame [m/s].

Note that Two-Lines Elements are not considered an orbit representation here. This is because TLE
are, in fact, a merge between orbital state and a propagation model. The state is only meaningful
with respect to the associated SGP4/SDP4 propagation model, and cannot be used in any other
model.

3.2.6 Two-Line Elements

TLE [23] orbits are supplied in two-line element format, then converted into an internal format
for easier retrieval and future extrapolation. They can not be directly used as they are average orbital
elements and they have to be transformed into traditional elements. All the values provided by a TLE
only make sense when translated by the corresponding propagator. Even when no extrapolation in
time is needed, state information (position and velocity coordinates) can only be computed through
the propagator. Untreated values like inclination, RAAN, mean Motion, etc, can not be used by
themselves without loss of precision. The implemented TLE model conforms to new 2006 corrected
model.

The definition of each field in TLE is available in [8].

3.2.7 Bodies

The position of celestial bodies is represented by the CelestialBody interface. This interface
provides the methods needed to either consider the body as an external one for its gravity or lighting
influence on spacecraft (typically in perturbing force computations) or as an internal one with its
own frame. By default, the CelestialBodyFactory retrieves positions and velocities from binary
ephemerides files compatible with the JPL DE formats like DE 405, DE 406, DE 423, etc, as well
as the IMCCE Inpop ephemerides which share a similar format. This default handling can be
overridden by defining a user-specific loader for JPL ephemerides. The shape of celestial bodies is
represented by the BodyShape interface.

3.2.8 Propagation

Propagation is the prediction of the evolution of a system from an initial state. In Orekit, this initial
state is represented by a SpacecraftState, which is a simple container for all needed information :
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orbit, mass, kinematics, attitude, date, frame, and which can also hold any number user-defined
additional data like battery status or operating mode for example.

Depending on the needs of the calling application, all propagators can be used in different modes:

• Slave mode: this mode is used when the user wants to completely drive evolution of time
with his own loop. The (slave) propagator is passive: it computes this result and returns it
to the calling (master) application, without any intermediate feedback. Users often use this
mode in loops, each target propagation time representing the next small time step. In that case
the events detection is made but the step handler does nothing, actions are managed directly
by the calling application.

• Master mode: this mode is used when the user needs to have some custom function called
at the end of each finalised step during integration. The (master) propagator is active: the
integration loop calls the (slave) application callback methods at each finalised step, through
the step handler. Users often use this mode with only a single call to propagation with the
target propagation time representing the end-end date.

• Ephemeris generation mode: this mode is used when the user needs random access to the
orbit state at any time between the initial and target times, and in no sequential order. A
typical example is the implementation of search and iterative algorithms that may navigate
forward and backward inside the propagation range before finding their result.
Be aware that this mode cannot support events that modify spacecraft initial state. It should
also be noted that since this mode stores all intermediate results, it may be memory intensive
for long integration ranges and high precision short time steps.

The recommended mode by Orekit is the master mode. It is very simple to use and allows the user
to get rid of concerns about synchronising force models, file output or discrete events. All these
parts are handled separately in different user code parts, and Orekit takes care of all management.

All propagators, including analytical ones, support discrete events handling during propagation,
as we mentioned in Section 3.2.3. This feature is activated by registering events detectors as defined
by the EventDetector interface to the propagator, each EventDetector being associated with an
EventHandler that will be triggered automatically at event occurrence. At each propagation step, the
propagator checks the registered events detectors for the occurrence of some event. If an event occurs,
then the corresponding action is triggered, which can notify the propagator to resume propagation
(possibly with an updated state) or to stop propagation. Users can define their own events, typically
by extending the AbstractDetector abstract class. There are also several predefined events detectors
already available, amongst which DateDetector, ElevationDetector, ElevationExtremumDetector,
AltitudeDetector, EclipseDetector, FieldOfViewDetector, NodeDetector, etc. We do not describe
all of them as we do not use other than the EclipseDetector. This event detector is triggered when
some body enters or exits the umbra or the penumbra of another occulting body.

Orekit provides several kind of propagators. We focus in three main groups: analytical, semi-
analytical and numerical propagators.

• Analytical propagation
– Keplerian propagation [9]: based on Keplerian motion. It depends only on µ . This

model propagates the orbit assuming there are not perturbations acting, so the orbit is
perfectly Keplerian.

– Eckstein-Hechler propagation [11]: this model is suited for near circular orbits (e < 0.1,
with poor accuracy between 0.005 and 0.1) and inclination neither equatorial (direct
or retrograde) nor critical (direct or retrograde). It considers J2 to J6 potential zonal
coefficients [9], and uses mean parameters to compute the new position.
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– SGP4/SDP4 propagation [15]: this analytical model is dedicated to Two-Line Elements
(TLE) propagation. The SGP4 and SDP4 models were published along with sample
code in FORTRAN IV in 1988 with refinements over the original model to handle the
larger number of objects in orbit since. The SGP4 model has an error ∼ 1 km at epoch
and grows at ∼ 1−3 km per day. Deep space model SDP4 uses only “simplified drag”
equations.

– Global Navigation satellite system GNSS: Orekit implements the propagators for GPS,
QZSS, Galileo, GLONASS, Beidou, IRNSS and SBAS.

– Differential effects adapter: this model is used to add to an underlying propagator
some effects it does not take into account. A typical example is to add small station-
keeping manoeuvres to a pre-computed ephemeris or reference orbit which does not
take these manoeuvres into account. The additive manoeuvres can take both the direct
effect (Keplerian part) and the induced effect due, for example, to J2, which changes
ascending node rate when a manoeuvre changed inclination or semi-major axis of a
Sun-Synchronous satellite.

• Semi-analytical propagation: It is an intermediate between analytical and numerical propa-
gation. It retains the best of both worlds, speed from analytical models and accuracy from
numerical models. Semi-analytical propagation is implemented using Draper Semi-analytical
Satellite Theory (DSST) [7].

• Numerical propagation: The numerical propagation allows the user to include as many
perturbations as required. The available ones are:

– central attraction.

– gravity models including time-dependent like trends and pulsations (automatic reading
of ICGEM (new Eigen models), SHM (old Eigen models), EGM and GRGS gravity
field files formats, even compressed).

– atmospheric drag.

– third body attraction (with data for the Sun, Moon and all solar systems planets).

– radiation pressure with eclipses.

– solid tides, with or without solid pole tide.

– ocean tides, with or without ocean pole tide.

– Earth’s albedo and infrared.

– empirical accelerations to account for the unmodeled forces.

– general relativity (including Lense-Thirring [2] and De Sitter corrections).

– multiple manoeuvres.

– state of the art ODE integrators (adaptive stepsize with error control, continuous output,
switching functions, G-stop, step normalization, etc).

– computation of Jacobians with respect to orbital parameters and selected force models
parameters.

– serialisation mechanism to store complete results on persistent storage for later use.

– propagation in non-inertial frames (e.g. for Lagrange point halo orbits).
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3.3 Introductory examples

In this section we apply the concepts described in Section 3.2 to several cases, studying the effect
of different kind of perturbations in the orbit of satellites around Earth. The inertial frame used is
the J2000 and the initial date considered is 01-01-2021 at 12:00:00 UTC.

3.3.1 Geostationary satellite affected by the Sun and the Moon

A Geostationary satellite’s orbit is a circular orbit designed to match Earth’s rotation period on
its axis (23 hours, 56 minutes and 4 seconds) and to have zero inclination (the orbital plane is the
equator plane). The orbit must have a specific semi-major axis, near zero eccentricity and near zero
inclination. As described in Section 3.2.5, for an almost circular orbit with almost null inclination
the equinoctial elements are used to avoid θ , ω and Ω being not well defined.

The orbit is propagated during an 80-year period. The equinoctial elements are a = 42164.14 km,
ex = 7.0711 ·10−5, ey =−7.0711 ·10−5, hx = hy = 0 and λθ = 315◦ (λθ arbitrarily chosen).

The variation of its Keplerian elements are shown in the following figures, being a0 = 42164.14 km,
e0 = 0.0001 and i0 = 0◦.

Figure 3.6 Variation of the semi-major axis of a GEO due to Luni-Solar perturbation.
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Figure 3.7 Variation of the eccentricity of a GEO due to Luni-Solar perturbation.

Figure 3.8 Variation of the inclination angle of a GEO due to Luni-Solar perturbation.

Note that, as mentioned in Table 2.1, third body perturbations for a, e and i are periodic. Never-
theless, due to the low magnitude of Luni-Solar perturbation, inclination angle tends to increase
during the whole study, reaching at the eightieth year its maximum value. Thus, the period of the
inclination in GEO for Luni-Solar perturbation is 320 years. This period is even longer in LEO,
due to the reduction of Luni-Solar acceleration with respect to the Keplerian acceleration, as we
discussed in 2.2.3. The long period in the variation of the inclination (as well as of the eccentricity)
is, as mentioned in [22], due to the 18.6-year rotation of the Moon’s orbital plane about the ecliptic,
which is the same effect that produces the nutation of Earth’s axis. As the time required to perform
these computations is extreme (10 hours to compute the 80-year variations of this GEO), in the
following examples we show the variations during shorter periods of time.

To see how strong this perturbation is in the short term, we present a shorter analysis (30 days) in
the following figures of the same satellite.
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Figure 3.9 Shorter analysis of the variation of the semi-major axis of a GEO due to Luni-Solar
perturbation.

Figure 3.10 Shorter analysis of the variation of the eccentricity of a GEO due to Luni-Solar pertur-
bation.
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Figure 3.11 Shorter analysis of the variation of the inclination angle of a GEO due to Luni-Solar
perturbation.

As we can observe, the Luni-Solar perturbation can deviate a GEO orbit dozens of metres in just
a few days. Thus, considering this kind of perturbation is essential to precisely predict where a
satellite will be after a few hours or days.

3.3.2 Low Earth Orbit satellite affected by the Sun and the Moon

In this case, a LEO satellite is studied, taking into account the Luni-Solar perturbation in a 30-year
period. The Keplerian initial elements of the chosen satellite are a = 6878.14 km, e = 0.01, i = 20◦,
ω = 90◦ and Ω = 45◦.

The results are presented in the following figures:

Figure 3.12 Variation of the semi-major axis of a LEO due to Luni-Solar perturbation.
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Figure 3.13 Variation of the eccentricity of a LEO due to Luni-Solar perturbation.

Figure 3.14 Variation of the inclination of a LEO due to Luni-Solar perturbation.
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Figure 3.15 Variation of the argument of the perigee of a LEO due to Luni-Solar perturbation.

Figure 3.16 Variation of the RAAN of a LEO due to Luni-Solar perturbation.

As predicted in Table 2.1, ω and Ω variations due to third-body perturbations are a combination
of secular and periodic variations. On the other hand, we clearly see that eccentricity and inclination
tend to increase during the 30-year period as their period is longer than the time simulated. This is,
as we mentioned in Section 3.3.1, due to the motions of the Moon’s perigee.

It is interesting to compare the deviations of the orbital elements due to the Luni-Solar perturbation
when we vary the inclination of the orbit. Therefore, the following figures are presented to compare,
in the short term (30 days), how inclination affects.
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Figure 3.17 Variation of the semi-major axis of a LEO due to Luni-Solar perturbation for different
inclinations.

Figure 3.18 Variation of the eccentricity of a LEO due to Luni-Solar perturbation for different
inclinations.
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Figure 3.19 Variation of the argument of the perigee of a LEO due to Luni-Solar perturbation for
different inclinations.

Figure 3.20 Variation of the RAAN of a LEO due to Luni-Solar perturbation for different inclina-
tions.

These results show how influential the inclination of the orbit is in the variations of the orbital
elements.
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3.3.3 GEO satellite affected by J2 perturbation

In this section we bring under study J2 perturbation affecting a GEO in a 30-year period. We will
consider the same GEO as in Section 3.3.1. The variations due to J2 are presented in the figures
below.

Figure 3.21 Variation of the semi-major axis of a GEO due to J2 perturbation.

Figure 3.22 Variation of the eccentricity of a GEO due to J2 perturbation.
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Figure 3.23 Variation of the inclination of a GEO due to J2 perturbation.

As we expected, the variations of a, e and i are periodic. However, as for the Luni-Solar perturba-
tion, the inclination has a period of more than 30 years. As described in [22], long-periodic effects
from zonal harmonics have a fundamental period of 2π/ω̇ , depending ω̇ on the inclination:

ω̇ =
3nR2

⊕J2

4p2

{
4−5sin2(i)

}
. (3.1)

As we did for the Luni-Solar perturbation, we present a shorter analysis of 30 days to see the
influence of the J2 in short propagations.

Figure 3.24 Shorter analysis of the variation of the semi-major axis of a GEO due to J2 perturbation.
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Figure 3.25 Shorter analysis of the variation of the eccentricity of a GEO due to J2 perturbation.

Figure 3.26 Shorter analysis of the variation of the inclination angle of a GEO due to J2 perturbation.

3.3.4 Low Earth Orbit satellite affected by J2 perturbation

In this case, a LEO satellite affected by J2 perturbation is studied in a 30-year period. The
Keplerian initial elements of the chosen satellite are a = 6878.14 km, e = 0.01, i = 20◦, ω = 90◦

and Ω = 45◦ (the same as the previous LEO studied).
The results are presented in the following figures:
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Figure 3.27 Variation of the semi-major axis of a LEO due to J2 perturbation.

Figure 3.28 Variation of the eccentricity of a LEO due to J2 perturbation.
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Figure 3.29 Variation of the inclination of a LEO due to J2 perturbation.

Figure 3.30 Variation of the argument of the perigee of a LEO due to J2 perturbation.
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Figure 3.31 Variation of the RAAN of a LEO due to J2 perturbation.

This case of study shows another kind of period appearing due to the zonal harmonics. The
long periodic/short periodic beat period [22] is caused by the interactions of short-periodic and
long-periodic variations, creating a high-frequency oscillations with an amplitude that oscillates at
the long-periodic frequency. This is the case of the inclination, which tends to increase its amplitude
during the hole study as the long-periodic frequency is greater than the 30-year period studied. This
effect is shown in Figure 3.32.

Figure 3.32 Long periodic/short periodic beat period from zonal harmonics [22].

To deepen this analysis we present the same study we did for the Luni-Solar perturbation affect-
ing LEO satellites, This is, varying the inclination of the orbit to see its influence in short-term
propagations (30 days).
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Figure 3.33 Variation of the semi-major axis of a LEO due to J2 perturbation for different inclina-
tions.

Figure 3.34 Variation of the argument of the perigee of a LEO due to J2 perturbation for different
inclinations.
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Figure 3.35 Variation of the RAAN of a LEO due to J2 perturbation for different inclinations.

We see that reducing the inclination of the orbit increase the variation rate of ω and Ω, but
reduces the variations in the semi-major axis.

3.3.5 Low Earth Orbit satellite affected by atmospheric drag

A LEO satellite affected by atmospheric drag is taken into consideration in a 30-day period. The
initial Keplerian elements of the chosen satellite are a = 6778.14 km, e = 0.01, i = 20◦, ω = 90◦

and Ω = 45◦, having reduced 100 km the semi-major axis with respect to previous LEO in order to
increase the atmospheric drag effect.

The results are presented in the following figures:

Figure 3.36 Variation of the semi-major axis of a LEO due to atmospheric drag.
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Figure 3.37 Variation of the eccentricity of a LEO due to atmospheric drag.

Figure 3.38 Variation of the inclination of a LEO due to atmospheric drag.
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Figure 3.39 Variation of the argument of the perigee of a LEO due to atmospheric drag.

Figure 3.40 Variation of the RAAN of a LEO due to atmospheric drag.

Due to the short simulation time (the satellite collides with Earth’s surface), ω and Ω just increase.
Nevertheless, as predicted in Table 2.1, their variations due to atmospheric drag are periodic. On
the other hand, we clearly see that a, e and i tend to decrease during the whole simulation until the
satellite collides with Earth.

It is truly interesting to study how atmospheric drag grows exponentially the closer the satellite is
to Earth. The following analysis is presented, showing the variation of the orbital elements of a
satellite affected by atmospheric drag for different altitudes during 10 days.
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Figure 3.41 Influence of altitude in the variation of the semi-major axis of a LEO due to atmospheric
drag.

Figure 3.42 Influence of altitude in the variation of the eccentricity of a LEO due to atmospheric
drag.
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Figure 3.43 Influence of altitude in the variation of the inclination of a LEO due to atmospheric
drag.

Figure 3.44 Influence of altitude in the variation of the argument of the perigee of a LEO due to
atmospheric drag.
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Figure 3.45 Influence of altitude in the variation of the RAAN of a LEO due to atmospheric drag.

As we might expect, the effects due to the atmospheric drag grow as we are closer to Earth.

3.3.6 GEO satellite affected by solar radiation pressure

In this section we bring under study solar-radiation pressure affecting a GEO in a one-year period.
We will consider the same GEO as in Section 3.3.1. The variations are presented in the figures
below.

Figure 3.46 Variation of the semi-major axis of a GEO due to solar radiation pressure.
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Figure 3.47 Variation of the eccentricity of a GEO due to solar radiation pressure.

Figure 3.48 Variation of the inclination of a GEO due to solar radiation pressure.

The satellite’s orbital elements variations behave as predicted in Table 2.1: periodic in a, e and
i, with a period shorter than or equal to the simulation time. This is not the case for all satellites
affected by solar radiation pressure. The period of the variations can be as long as a year due to the
annual motion of Earth about the Sun, but become more complex if the satellite passes through
Earth’s shadow [22].
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3.3.7 LEO satellite affected by solar radiation pressure

In this section we analyse the effect of solar pressure radiation on a LEO in a one-year period. We
will consider the same LEO as in Section 3.3.2. The variations are presented in the figures below.

Figure 3.49 Variation of the semi-major axis of a LEO due to solar radiation pressure.

Figure 3.50 Variation of the eccentricity of a LEO due to solar radiation pressure.
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Figure 3.51 Variation of the inclination of a LEO due to solar radiation pressure.

Figure 3.52 Variation of the argument of the perigee of a LEO due to solar radiation pressure.
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Figure 3.53 Variation of the RAAN of a LEO due to solar radiation pressure.

As we discussed in the previous example, the periods are hard to determine when the satellite
passes through Earth’s shadow. Therefore, in this case of study the period for i and Ω are longer
than a year.





4 Precise analysis and characterisation
of real satellites in Low Earth Orbits

As mentioned in the introduction, the main objective of this project is to use the radar data available
to design a propagation model that recreates the satellites orbits with the minimum error possible.
The radar data is provided by the European Space Agency (ESA) and is private. Consequently, it is
not shown in this project in order to preserve its privacy.

4.1 Orbit ephemeris message (OEM)

In this section we describe the data format used by ESA in order to store the satellites’ character-
istics, such as position, velocity, epoch, etc. This data format is extensively explained in [4], which
is used in this project to present OEM’s format.

An OEM is used to specify the position and velocity of a single object at one or multiple epochs
within a specified time range. They permit exchange of information, which may be used for pre-
flight planning for tracking or navigation support, scheduling tracking support, performing orbit
comparisons, performing orbit conjunction studies, etc. OEMs are prepared to perform exchanges
of data between computers (automated interaction). They also allow for dynamic modelling of any
number of gravitational and non-gravitational accelerations and require interpolation to interpret the
position and velocity at times different from the tabular epochs. OEMs can also contain a covariance
matrix, which is optional, that provides an estimation of the uncertainty of the orbit solution used to
generate states in the ephemeris.

The OEM shall be a plain text file consisting of orbit data for a single object. It shall be easily
readable by both humans and computers. The OEM file-naming scheme should be agreed on a
case-by-case basis between the participants, typically using an Interface Control Document (ICD).
The method for exchanging OEMs should be decided on a case-by-case basis by the participants
and documented in an ICD.

The OEM shall be represented as a combination of the following:

• a header.

• metadata (data about the data).

• ephemeris data.

• optional covariance matrix data.

• optional explanatory information.

57
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Table 4.1 OEM Layout.

Required sections

Header
Metadata

Ephemeris Data
(Appropriate comments should also be included)

Allowable repetitions of sections

Covariance Matrix (optional)
Metadata

Ephemeris Data
Covariance Matrix (optional)

Metadata
Ephemeris Data

Covariance Matrix (optional)
Metadata

Ephemeris Data
...

(Appropriate comments should also be included)

4.1.1 OEM Header

The header of each OEM assignments are shown in Table 4.2, which specifies:

• the keyword to be used. There are four possible keywords: CCSDS_OEM_VERS, COM-
MENT, CREATION_DATE and ORIGINATOR.

• a short description of the item.

• examples of allowed values.

• whether the item is obligatory or optional.

Table 4.2 OEM Header.

Keyword Description Examples Obligatory

CCSDS_OEM_VERS

Format version in the form of ‘x.y’.

2.0 Yes‘y’ is incremented for corrections and
minor changes, and ‘x’ is incremented

for major changes.
COMMENT Comments COMMENT No

CREATION_DATE File creation date and 2020-09-04T12:47:03 Yestime in UTC. 2004-123T03:15:21

ORIGINATOR Creating agency or operator. CNES, GSFC, GSOC YesThe country of origin should also be provided. INMARSAT/UK

OEM Metadata

In OEM format, a single metadata group shall precede ephemeris data block and before each
metadata group the string META_START shall appear on a separate line. After each metadata
group, the string META_STOP shall appear on a separate line. The available metadata is shown in
Table 4.3.
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Table 4.3 OEM Metadata.

Keyword Description Examples Required

META_START Keyword used to delineate the n/a Yesstart of a metadata block.
COMMENT Comments COMMENT No

OBJECT_NAME Name of the object. It is recommended to STS 106 Yesuse names from SPACEWARN Bulletin [19]. Sentinel-1A

OBJECT_ID

Object identifier. Recommended values 2000-052A

Yes

have the format YYYY-NNNP{PP}. 2014-016A
YYYY = Year of launch. 2000-053A

NNN = Serial number of launch. 1996-008A
P{PP} = At least one letter of the part 1996-068A

brought into space. 1994-041A

CENTER_NAME Origin of reference frame, which EARTH, MOON, SUN Yesmay be a natural solar system body. EARTH BARYCENTER

REF_FRAME Name of the reference frame in ITRF-93, EME2000 Yeswhich the ephemeris are given. ITRF2000, TDR
REF_FRAME_EPOCH Epoch of reference frame. 2001-11-06T11:13:21:04 No

TIME_SYSTEM Time system used for metadata, ephemeris UTC, TAI, TT Yesdata and covariance data. GPS, TDB, TCB

START_TIME
Start of total time span covered in 1996-277T07:22:54

Yesephemeris and covariance data following this 1990-01-01T17:02:32
metadata block. 2001-04-03T04:00:00

STOP_TIME
End of total time span covered in 2022-001T11:22:04

Yesephemeris and covariance data preceding this 1999-06-10T10:22:00
metadata block. 2004-07-21T12:30:00

INTERPOLATION Recommended interpolation method. Hermite, Linear, Lagrange No
INTERPOLATION_ Recommended interpolation degree. 5, 1, 2 NoDEGREE

META Keyword used to delineate the n/a Yesend of a metadata block.

It is worth noting that there could also be two extra keywords in the OEM metadata: USEABLE_-
TIME_START and USEABLE_TIME_STOP. These variables determine the time span that the
users shall use if interpolation is required.

4.1.2 OEM Data: Ephemeris data lines

Each set of ephemeris data must be provided on a single line. The ephemeris shall include: Epoch,
X, Y, Z, X_DOT, Y_DOT, Z_DOT, X_DDOT, Y_DDOT, Z_DDOT. The position and velocity terms
shall be obligatory, acceleration terms may be provided. To separate the items in each ephemeris
data line, one space character must be used.

4.1.3 OEM Data: Covariance matrix lines

A single covariance matrix data section may optionally follow each ephemeris data block. It must
be preceded and followed by the keywords COVARIANCE_START and COVARIANCE_STOP. If
the reference frame of the covariance matrix is different from that of the states in the ephemeris, it
mist be provided with the keyword COV_REF_FRAME.

4.1.4 OEM Examples

In this section we show three examples in order to clarify the OEM format.
In Figure 4.1 there are two metadata blocks, each one preceded and followed by the keywords

META_START and META_STOP. In this OEM no covariance matrix nor acceleration data is
provided.
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In Figure 4.2 there is only one metadata block. In this file the accelerations are provided.
Finally, in Figure 4.3, the covariance matrices are used to estimate the error.

Figure 4.1 Version 1 OEM without acceleration nor covariance.
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Figure 4.2 Version 2 OEM with optional accelerations.

Figure 4.3 Version 2 OEM with optional covariance matrix.
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4.2 Perturbations model verification and validation

In Section 3.2.3 we said that Orekit provides a wide scope for analysing the different perturbations
that affect orbiting objects. To design a good perturbation model that accurately describes the
satellites’ orbits studied in this project, we divide the study of the different perturbations’ mod-
els by analysing them separately. This is, studying the effect of different models for third-body
perturbations, non-spherical body’s gravity, atmospheric drag and solar radiation.

To propagate orbits with high accuracy is truly complicated as there are many techniques and we
often select one method over another for the wrong reason. To corroborate the model designed for
this project, we verify and validate the model. As Vallado says [22], “the largest misconception in
evaluating methods of propagations is what represents truth. We verify to existing data or results
(ensure it’s coded properly), while we validate that the model accurately reflects the truth (consistent
and reliable results)."

The satellite used in this analysis is Sentinel-1A [12], a European radar imaging satellite launched
in 2014. It carries a C-band Synthetic Aperture Radar which provides images in all light and weather
conditions. Basically, this satellite serves as a tracker of many aspects of our environment. It has
an apogee altitude of 693 km and an inclination of 98.18◦, being a Sun-synchronous satellite of
2170 kg [1].

Orekit provides several models to compute the perturbations described in Section 2.2. To design
the optimal propagator we decided to test different models and select the ones that perform the best.
This analysis is carried out as follows:

• First, we randomly select one model for each of the perturbations that we considered in this
project.

• Then, when we want to study, for example, different models for the non-spherical body’s
gravity, we only change the model that models this perturbation, without modifying the rest
of the models described below.

This allows us to accurately compare the influence of using one model or another. The fixed
models that have been selected to remain the same whenever the perturbation they model is not the
one being analysed are the following:

• Non-spherical body’s gravity: We use a 40-40 harmonic degree/order model.

• Atmospheric drag: As we do not have the data to analyse the attitude of the satellite, we
use the isotropic drag model implemented in Orekit. It considers that all coefficients are
constant and do not depend of the direction of the satellite. To model the atmosphere (which
is the main problem when analysing atmospheric drag) we consider the Harris-Priester model,
which is reasonably precise and fast.

• Third-Body perturbations: In Section 2.2.3 we compared the magnitude of the Keplerian
force and the force exerted by the main bodies in the solar system. Hence, we take into account
just the Sun and the Moon for the standard model.

• Solar-Radiation pressure: We consider the isotropic radiation single coefficient model
implemented in Orekit, which corresponds with Eq. (2.28).

The most efficient perturbation model is decided by comparing the propagation data with the
data available from the OEMs. We choose the one that provides the higher accuracy/speed relation.

To analyse the error committed we randomly selected a 24-hour OEM window data and compared
the simulations with the data available.
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4.2.1 Optimisation process

Atmospheric drag, as well as solar-radiation pressure, depend on geometric parameters of the
satellites under analysis. These parameters (S ≡ Surface, SSRP ≡ Surface affected by solar-radiation
pressure and CD ≡ Drag coefficient) are computed through an optimisation process.

Orekit allows users to input the attitude of the satellite under study to accurately analyse the
orientation-dependent atmospheric drag and solar-radiation pressure. In this project, the lack of
information forces us to use models that do not consider any orientation, assuming that the satellite
is a spherical body with S∗, S∗SRP and C∗

D geometry. These models, called isotropic models, can not
accurately predict the satellite’s orbit if we use the geometric features of the original satellite S, SSRP
and CD (the non-spherical ones). Therefore, we have decided to calculate the spherical geometric
parameters that minimise the average error made when using these models. This is:

min
(∣∣∣P⃗(S,SSRP,CD,ϕ⃗)− P⃗∗(S∗,S∗SRP,C

∗
D)
∣∣∣) , (4.1)

where P⃗ is the position of the satellite with its real parameters (this is, the position given by the
OEMs), ϕ⃗ is the orientation of the satellite and P⃗∗ is the position computed by the propagator
assuming a spherical shape. Therefore, S∗, S∗SRP and CD represent the values that minimise the error
committed assuming a spherical shape.

This optimisation process is performed for each group of satellites (Sentinel-1 and Sentinel-2)
after the selection of the optimal propagator. However, the values obtained slightly vary depending
on the segment chosen. To palliate this, we decided to average the values obtained between different
segments.

We need the Sentinel-1A geometry to analyse different atmospheric drag and solar-radiation
pressure models. These values (S∗ = 3 m2, S∗SRP = 9.76 m2 and C∗

D = 1.75) have been extracted
from [18], where a similar process has been carried out to obtain these values. They serve as the
initial values for the optimisation process as well.

Figure 4.4 Process of optimisation.
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4.2.2 Non-spherical body’s gravity

We discussed in Section 2.2.1 the importance of accurately modelling the mass distribution
of Earth. Increasing the order/degree of the harmonic model used should increase accuracy at
the same time as it increases the computational time required to perform the computations. We
decided to compare the computational time and the accuracy of 5-5, 10-10, 20-20, 40-40 and
80-80 degree/order harmonic models in order to determine which one is the most efficient in terms
of precision and speed. In the following figures we present the error committed by each of the
models during a 24-hour window in position and velocity. The computational time required by each
harmonic model is presented in Table 4.4, as well as the position error and the velocity error at the
end of the 24-hour period and the maximum position error and the maximum velocity error.

Figure 4.5 Position error variation with different Earth harmonic models in a 24-hour window.

Figure 4.6 Velocity error variation with different Earth harmonic models in a 24-hour window.
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Table 4.4 Comparison between different harmonic models in a 24-hour window.

Degree/Order Time [s]
Maximum Maximum Final Final
position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

5-5 13.63 1537.03 1635.80 1537.03 1635.80
10-10 13.65 263.52 242.85 175.47 184.36
20-20 16.22 132.49 132.18 94.86 100.97
40-40 22.24 54.87 56.24 53.84 56.03
80-80 38.01 62.52 64.90 61.23 64.68

Observing Figures 4.5 and 4.6 we clearly see that from the 5-5 model to the 40-40 model the errors
in position and velocity decrease as we increase the model complexity. However, when we compare
the 40-40 and the 80-80 models we see that we lose accuracy and we increase the computational
time by 71%. We could expect that increasing the complexity of the model should increase the
accuracy, which is true in theory. Nevertheless, using too much complexity in the harmonics model
also increase the uncertainty of the model and the error accumulated in the 24-hour period selected
due to the immense amount of calculations performed, making it less accurate and less efficient.

Therefore, as the 40-40 degree/order harmonic model is the optimal one in terms of computational
time and accuracy, we use this model to propagate the orbits of the satellites.

4.2.3 Third-Body perturbations

In previous analyses (Section 2.2.3 and Table 2.2) we concluded that the most important third-
body perturbations are the ones exerted by the Sun and the Moon when we study geocentric orbits.
To be sure of this conclusion we study the variation of the error committed and the computational
time required when we add more and more solar system objects to the propagator. The models
taken into account are: none third-body perturbations, Luni-Solar perturbations, Sun-Moon-Jupiter
(SMJ) perturbations, inner planets and SMJ perturbations, outer planets and SMJ perturbations and
all-bodies perturbations. The results are presented in the following figures:

Figure 4.7 Position error variation with different third body perturbation models.
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Figure 4.8 Velocity error variation with different third body perturbation models.

We can not see any difference in the figures between the Luni-Solar perturbation model and the
rest of the models, so Table 4.5 is presented to compare them.

Table 4.5 Comparison between different third-body models in a 24-hour window.

Model Time [s]
Maximum Maximum Final Final
position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

None 20.05 65.06 67.36 57.62 34.01
Luni-Solar 22.24 54.87 56.24 53.84 56.03

SMJ 23.19 54.87 56.24 53.84 56.03
Inner+SMJ 24.05 54.87 56.24 53.84 56.03
Outer+SMJ 25.92 54.87 56.24 53.84 56.03

All 29.19 54.87 56.24 53.84 56.03

The only difference between the Luni-Solar model and the rest of the models that consider
third-body perturbations is the computational time, increasing as we consider more and more solar
system objects. The models errors vary, but the variation is so insignificant that it does not affect
the second decimal place.

Therefore, as the results are the same for the Luni-Solar perturbation model and the more complex
models, the Luni-Solar perturbation is the model that we must use when analysing geocentric orbits
as it provides accurate results while also guaranteeing reasonable computation time, as we predicted
in Section 2.2.3.

4.2.4 Atmospheric drag

To model atmospheric drag is very difficult due to the atmospheric variations occurring everyday.
To model the atmosphere accurately we can use tabular models (like Harris-Priester) that compute
the density using tables or empirical models (like NRLMSISE-00) that use daily data to obtain the
atmosphere properties. In Section 2.2.2 we described several numerical models that approximate
the properties of the air at a given altitude and we compare in this section the two most-used models
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nowadays: Harris-Priester and NRLMSISE-00. We do not compare these models with the recently
developed JB2008 because Orekit does not provide any method to obtain the data needed in this
model yet.

On the other hand, we use the isotropic drag model (which supposes that all coefficients are
constant and do not depend of the direction) as we do not know the satellite’s attitude.

We present the comparison between Harris-Priester atmospheric model and NRLMSISE-00
atmospheric model in the following figures, as well as Table 4.6 with the maximum errors and
closing errors.

Figure 4.9 Position error variation with different atmospheric models in a 24-hour window.

Figure 4.10 Velocity error variation with different atmospheric models in a 24-hour window.
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Table 4.6 Comparison between different atmospheric models in a 24-hour window.

Atmospheric model Time [s]
Maximum Maximum Final Final
position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

Harris-Priester 21.78 54.87 56.24 53.84 56.03
NRLMSISE-00 24.41 19.17 16.88 9.24 6.25

We could conclude that using the NRLMSISE-00 is, in general, a better choice. Nevertheless, in
the study performed in Section 4.2.6 we see that adding tides make NRLMSISE-00 perform worse
than Harris-Priester if the propagation time is less than 24 hours or higher than 39 hours. This result
is discussed in detail in the section mentioned before.

4.2.5 Solar-Radiation pressure

As we mentioned before, the data available of the satellites under study does not include their
attitude. This lack of information hinders the modeling of solar-radiation pressure (and atmospheric
drag). Therefore, we use the isotropic radiation single coefficient model implemented in Orekit,
which corresponds with the model described in Eq. (2.28). As no other model is used, the initial
model proposed for the standard model is the one that we use to predict the position and velocity of
the satellites under study.

4.2.6 Tides

We have already studied the effect of using different models to compute the four main perturbations.
In Section 2.2.5 we described other perturbations that we could take into account and deduced
that tides are the most important among the ones mentioned. These kind of perturbation are no
negligible, as their effect in LEO can divert the satellites out of their original orbit dozens of metres.
We compare the standard model (which uses Harris-Priester atmospheric model) when we use no
tides and tides. The results are presented in the following figures and in Table 4.7.

Figure 4.11 Position error variation with tides models in a 24-hour window using Harris-Priester.
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Figure 4.12 Velocity error variation with tides models in a 24-hour window using Harris-Priester.

Table 4.7 Comparison between different tides models in a 24-hour window.

Tides model Time [s]
Maximum Maximum Final Final
position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

No tides 22.10 54.87 56.24 53.84 56.03
Tides 23.561 28.98 29.12 28.10 28.75

These results state that using tides is necessary to propagate accurately the orbit of the satellites
under study. However, if we implement the NRLMSISE-00 atmospheric model when using tides
instead of Harris-Priester the propagator gets worse. This result is presented in the following figures:

Figure 4.13 Position error variation with tides models in a 24-hour window using NRLMSISE-00.
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Figure 4.14 Velocity error variation with tides models in a 24-hour window using NRLMSISE-00.

This particular result is truly striking, as we could think that using the most accurate model in
each perturbation should give us the most accurate propagator possible. Nevertheless, perturbation
models are not linear, and adding the most accurate ones up does not necessarily perform better
than using a combination that, in theory, is less precise.

Now the following question emerges: Which model should we use in this project? The one that
uses Harris-Priester and tides or the ones with NRLMSISE-00 atmospheric model without tides?
We answer this question by comparing both propagators during 60 hours. The result is presented in
Figure 4.15:

Figure 4.15 Comparison between the two models proposed.
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This analysis shows that during the first 24 hours the best performing propagator is Harris-Priester
with tides. Afterwards, the error of this model grows larger than the error committed with the
NRLMSISE-00 atmospheric model without tides. Finally, when the propagation is longer than 39
hours, the model with tides and the Harris-Priester atmosphere outperforms the NRLMSISE-00
model. Therefore, the model used in this project is a hybrid between these two models, selecting
one of them depending on the propagation duration.

4.2.7 Final propagation model

To summarise, the model that we use in this project to predict the position and velocity of the
satellites Sentinel-1A/B and Sentinel-2A/B is the following:

• Non-spherical body’s gravity: We implement a 40-40 harmonic degree/order model as
improving the complexity of this model results in worse results.

• Third-Body perturbations: The Luni-Solar perturbations are the ones considered in this
project.

• Solar-Radiation pressure: We use the isotropic radiation single coefficient model imple-
mented in Orekit.

• Atmospheric drag: The lack of information related with the satellites’ attitude force us to
use the isotropic drag model, which considers that all coefficients are constant and do not
depend of the direction of the satellite. To model the atmosphere we consider two scenarios:
if the propagation’s length is greater than 24 hours and less than 39 hours, the NRLMSISE-00
atmospheric model is used. Otherwise, the Harris-Priester atmospheric model is used.

• Tides: Similar to the atmospheric model, we consider two cases: if the propagation length
is longer than 24 hours and shorter than 39 hours, tides are not used. Otherwise, tides are
considered together with the rest of the perturbations.

4.3 Precise prediction of LEO satellites

As we mentioned in the introduction, the main objective of this project is to develop a propagator
that captures the real behaviour of the four satellites under study (Sentinel-1A, Sentinel-1B, Sentinel-
2A and Sentinel-2B) and that minimises the maximum and mean error during the propagation.
In this section we present the results obtained when we propagate the orbit of these four object,
comparing the results obtained with the data from the OEMs given by ESA. The OEMs provide
data of the position and velocity of the satellites during specific time lapses, and the propagation is
performed using just the initial value of these time lapses for each satellite. The error is obtained by
comparing the results given by the propagator with the ones provided by ESA.

For each satellite we present two tables with the results obtained. The first one contains the initial
date of the propagation, the duration of the propagation, the maximum position error, the maximum
velocity error, the mean position error, the mean velocity error and an indicator for manoeuvre
(Y/N). The second table summarises the results presented in the first one showing the maximum and
mean value of each column of the first table, in order to facilitate the interpretation of the results.

4.3.1 Sentinel-1

First, the parameters of this satellite class are provided. They have been obtained by minimising
the mean error obtained during several windows (Section 4.2.1) and by comparing them with the
data provided by ESA [12]. Thus, m = 2180 kg (obtained from the ESA datasheet), S∗ = 1.76 m2,
S∗SRP = 9.75 m2 and C∗

D = 5.24.
The results obtained for Sentinel-1A and Sentinel-1B are the following.
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Sentinel-1A

Table 4.8 Sentinel-1A results.

Start Duration [h]
Maximum Maximum Mean Mean

Manoeuvreposition velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

06-Aug-2019 06:52:40 11.0125 8.8030 9.0560 4.1315 4.3313 N
06-Aug-2019 17:53:25 36.7044 16.3921 14.9128 4.7798 4.8405 Y
08-Aug-2019 06:35:50 11.0194 9.0384 9.5819 4.3234 4.6056 N
08-Aug-2019 17:37:00 24.6847 12.9223 11.0860 5.0216 5.0980 N
09-Aug-2019 18:18:05 36.7103 35.4462 33.8126 9.2625 9.6972 N
11-Aug-2019 07:00:42 11.0156 8.9177 8.1745 4.0334 4.2311 N
11-Aug-2019 18:01:38 36.7078 41.9285 40.9626 15.1721 16.0343 N
13-Aug-2019 06:44:06 11.0097 9.0247 9.4176 4.1857 4.4756 N
13-Aug-2019 17:44:41 24.6878 10.7980 10.2972 4.8385 5.0733 N
14-Aug-2019 18:25:57 12.0245 6.2222 6.7454 4.0509 4.3501 Y
15-Aug-2019 06:27:56 24.6831 15.4868 14.5224 5.7073 5.9824 N
16-Aug-2019 07:08:55 11.0071 7.6040 8.1595 3.8565 4.1386 N
23-Jan-2020 06:35:50 35.7042 29.8916 29.4446 9.4405 9.9611 N
24-Jan-2020 18:18:05 36.7103 25.0776 23.9756 11.2522 11.9117 N
26-Jan-2020 07:00:42 11.0064 7.5942 8.1698 3.8408 4.1381 N
26-Jan-2020 18:01:05 36.7169 19.2974 17.6297 5.9307 6.0038 N
28-Jan-2020 06:44:06 11.0097 9.5537 9.6883 4.2754 4.5459 N
28-Jan-2020 17:44:41 24.6872 14.5856 12.2159 5.6167 5.5280 N
29-Jan-2020 18:25:55 12.0336 9.3803 9.5636 4.5417 4.8084 Y
30-Jan-2020 06:27:56 24.6740 38.0289 39.1784 13.0154 13.8724 N
17-May-2020 06:27:56 24.6831 40.3020 40.3478 14.0102 14.9282 N
18-May-2020 07:08:55 11.0158 7.5984 8.0340 3.8559 4.1430 N
18-May-2020 18:09:52 36.7075 24.6588 22.5834 7.2358 7.4970 N
20-May-2020 06:52:19 11.0153 9.9578 9.8275 4.6735 4.8757 N
20-May-2020 17:53:14 36.7081 37.5865 36.9348 10.7140 11.2305 Y
22-May-2020 06:35:51 11.0192 7.5999 8.1559 3.8375 4.1393 N
22-May-2020 17:37:00 24.6847 9.9267 11.0220 5.2704 5.4248 N
23-May-2020 18:18:05 12.0236 9.2047 8.8111 3.9714 4.2262 N
24-May-2020 06:19:30 24.6867 24.8169 23.3316 7.3180 7.6953 N
25-May-2020 07:00:42 11.0070 9.6716 8.8510 4.1241 4.2995 N
19-Aug-2020 17:45:08 24.6856 9.4382 9.5279 4.1553 4.4203 Y
20-Aug-2020 18:26:16 12.0281 11.3312 11.2978 4.8570 5.1251 N
21-Aug-2020 06:27:57 24.6828 18.7409 16.4489 6.4415 6.7787 N
22-Aug-2020 07:08:55 11.0158 12.0683 11.9908 5.6986 6.0383 N
22-Aug-2020 18:09:52 36.7131 21.3634 19.0116 6.3202 6.6222 N
24-Aug-2020 06:52:39 11.0128 8.7869 8.5437 3.9126 4.1564 N
24-Aug-2020 17:53:25 36.7067 15.7319 15.5078 6.7336 7.0265 N
26-Aug-2020 06:35:49 11.0222 10.6982 11.4110 5.6474 6.0141 N
26-Aug-2020 17:37:09 24.6700 18.5093 19.7147 5.7064 6.0731 Y

Table 4.9 Sentinel-1A results summary.

Maximum Maximum Maximum Maximum Mean Mean Mean Mean
maximum maximum mean mean maximum maximum mean mean
position velocity position velocity position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s]
41.9285 40.9626 15.1721 16.0343 16.5124 16.1012 6.1990 6.5216
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Sentinel-1B

Table 4.10 Sentinel-1B results.

Start Duration [h]
Maximum Maximum Mean Mean

Manoeuvreposition velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

05-Aug-2019 07:00:15 11.0047 10.1840 9.4293 4.1305 4.2973 N
05-Aug-2019 18:00:32 36.7164 42.9887 42.6395 16.1093 17.2265 N
07-Aug-2019 06:43:31 11.0161 9.0445 9.4725 4.2395 4.5313 N
07-Aug-2019 17:44:29 24.6781 13.2200 13.0489 4.6769 4.9434 Y
08-Aug-2019 18:25:10 36.7200 44.0731 44.2221 8.9966 9.6172 N
10-Aug-2019 07:08:2’ 11.0069 9.1113 8.9222 3.8514 4.1507 N
10-Aug-2019 18:08:47 36.7147 14.3125 13.3465 6.2360 6.4523 N
12-Aug-2019 06:51:40 11.0111 7.6323 8.2051 3.8582 4.1403 N
12-Aug-2019 17:52:20 36.7117 37.6041 36.7069 10.2387 10.7246 N
14-Aug-2019 06:35:02 11.0158 8.1922 8.1652 3.9391 4.2124 N
14-Aug-2019 17:35:59 24.6841 15.3105 15.9260 5.6542 6.0128 Y
15-Aug-2019 18:17:00 12.0325 10.3521 10.1465 4.0018 4.2438 N
16-Aug-2019 06:18:57 24.6700 14.5790 15.0189 7.0004 7.4034 N
10-Sep-2019 18:00:32 36.7169 13.7950 12.8418 5.7607 6.0778 N
12-Sep-2019 06:43:33 11.0097 8.6515 9.1754 4.0930 4.3762 N
12-Sep-2019 17:44:08 36.7100 21.2721 21.4754 6.5348 6.8393 N
14-Sep-2019 06:26:44 24.6939 12.8443 11.7692 4.8695 5.0869 N
15-Sep-2019 07:08:22 11.0069 9.7109 10.0479 3.9913 4.2689 N
15-Sep-2019 18:08:47 36.7147 13.5810 12.2790 4.8377 5.1043 N
17-Sep-2019 06:51:40 11.0111 8.1534 8.5719 3.8975 4.1819 N
17-Sep-2019 17:52:20 36.7144 18.5693 19.1026 5.6130 6.0186 Y
19-Sep-2019 06:35:12 11.0208 9.4765 10.1969 4.0082 4.3244 N
19-Sep-2019 17:36:27 24.6758 11.8907 11.2651 4.8294 5.1136 N
20-Sep-2019 18:17:00 12.0325 10.3543 10.7249 4.3060 4.5779 N
21-Sep-2019 06:18:57 24.6790 13.8897 13.9539 4.3399 4.5909 N
12-May-2020 18:08:47 36.7147 31.0206 29.9118 7.8186 8.2381 N
14-May-2020 06:51:40 11.0111 8.2816 8.2111 3.9468 4.2050 N
14-May-2020 17:52:20 36.7144 38.7888 38.3806 9.3499 9.8625 N
16-May-2020 06:35:12 11.0117 7.6060 8.1768 3.8514 4.1419 N
16-May-2020 17:35:54 24.6850 15.5359 13.1421 5.4520 5.6014 N
17-May-2020 18:17:00 12.0325 10.8830 11.0909 4.5875 4.8742 N
18-May-2020 06:18:57 24.6883 18.7758 17.8141 4.7646 5.0156 N
19-May-2020 07:00:15 11.0047 15.1475 14.7589 7.0955 7.6036 N
19-May-2020 18:00:32 36.7169 27.5155 26.3823 8.6692 9.1498 Y
21-May-2020 06:43:33 11.0097 14.7326 15.1522 5.1562 5.5327 N
21-May-2020 17:44:08 36.7192 34.8421 34.3436 8.9019 9.2729 N
23-May-2020 06:27:17 24.6756 28.7193 27.8280 8.7430 9.1746 N
24-May-2020 07:07:49 11.0161 8.5250 8.2107 3.9411 4.1681 N
24-May-2020 18:08:47 36.7136 44.5920 43.7662 12.2840 12.8908 N
26-May-2020 06:51:36 11.0142 10.0263 9.9656 4.5641 4.7606 N
26-May-2020 17:52:27 36.7161 38.0818 36.9285 9.4370 9.9087 N
28-May-2020 06:35:25 11.005 9.0498 9.2842 3.7419 3.9987 N
09-Jun-2020 17:36:27 24.6794 40.2233 39.7264 14.6238 15.5099 N
10-Jun-2020 18:17:13 12.0289 7.6020 8.2120 3.8651 4.1532 N
11-Jun-2020 06:18:57 24.6881 16.9582 15.7914 5.1911 5.4054 N
12-Jun-2020 07:00:14 11.0050 8.6523 8.1681 3.9951 4.2201 N
12-Jun-2020 18:00:32 36.7169 44.9292 45.0957 13.5317 14.5004 N
14-Jun-2020 06:43:33 11.0097 8.8412 9.0475 3.9801 4.2379 N
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Start Duration [h]
Maximum Maximum Mean Mean

Manoeuvreposition velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

14-Jun-2020 17:44:08 24.6839 38.3744 0.0388 15.2865 0.0164 N
15-Jun-2020 18:25:10 12.0261 10.4312 0.0100 4.1572 0.0043 N
16-Jun-2020 06:26:44 24.6922 37.5319 37.9095 14.8236 15.8636 N
17-Jun-2020 07:08:16 11.0158 7.5999 8.1756 3.7779 4.0575 N
17-Jun-2020 18:09:13 36.7075 30.2171 29.4636 10.7603 11.3795 Y
19-Jun-2020 06:51:40 11.0111 7.6308 8.1972 3.8587 4.1347 N
19-Jun-2020 17:52:20 36.7144 32.7714 31.8010 7.1335 7.3856 N
21-Jun-2020 06:35:12 11.0208 8.0023 8.2092 3.8442 4.1326 N
21-Jun-2020 17:36:27 24.6758 12.7608 12.1071 5.6525 5.6248 N
22-Jun-2020 18:17:00 12.0294 7.7358 8.2103 3.8873 4.1650 N
23-Jun-2020 06:18:46 24.6897 36.0877 35.0053 10.5292 11.1045 N
24-Jun-2020 07:00:09 11.0060 7.6130 8.1518 3.8068 4.0901 N

Table 4.11 Sentinel-1B results summary.

Maximum Maximum Maximum Maximum Mean Mean Mean Mean
maximum maximum mean mean maximum maximum mean mean
position velocity position velocity position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s]
44.9292 45.0957 16.1093 17.2265 18.5813 17.5554 6.4170 6.4484

The results obtained for the Sentinel-1 class show that the propagator performs well, having less
than 45 metres of maximum position error in time lapses of 36 hours. Furthermore, the mean mean
position error is less than 6.5 metres, which means that most of the time the propagator allows us to
know the position of the satellite with an accuracy of 6.5 metres.

4.3.2 Sentinel-2

As we did for the Sentinel-1 class, the parameters of this satellite group are provided. The
parameters obtained with the process analysed in Section 4.2.1 that describe these satellites are
m = 1148 kg (obtained from the ESA datasheet, S∗ = 4.02 m2, S∗SRP = 10.29 m2 and C∗

D = 0.74.
The results obtained for Sentinel-2A and Sentinel-2B are the following.

Sentinel-2A

Table 4.12 Sentinel-2A results.

Start Duration [h]
Maximum Maximum Mean Mean

Manoeuvreposition velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

06-Feb-2020 11:21:51 11.2244 9.3952 9.6343 3.9174 4.1231 N
06-Feb-2020 22:35:19 23.4881 16.9754 17.6300 5.7098 5.9926 N
07-Feb-2020 22:04:36 60.9497 52.9363 56.0824 21.0365 22.2666 N
10-Feb-2020 11:01:35 11.2236 7.5507 7.9735 3.7919 4.0058 N
10-Feb-2020 22:15:00 37.4425 39.7013 41.9450 14.1348 14.8563 N
12-Feb-2020 11:41:33 23.4997 8.9898 8.2175 3.9376 4.0890 N
13-Feb-2020 11:11:32 11.2140 7.5577 7.9375 3.7860 3.9974 N
03-Sep-2020 11:21:54 11.2239 8.2158 8.3824 3.8256 4.0288 N
03-Sep-2020 22:35:20 12.2661 7.5497 7.9966 3.8055 4.0267 N
04-Sep-2020 10:51:18 48.6706 36.4581 37.5711 16.4665 17.2878 N
06-Sep-2020 11:31:32 23.5000 13.9493 14.2102 5.2463 5.4935 N
07-Sep-2020 11:01:32 48.6753 9.2992 9.1002 3.8823 4.0983 N
09-Sep-2020 11:42:03 34.7150 13.8962 12.2077 4.5961 4.7096 Y
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Table 4.13 Sentinel-2A results summary.

Maximum Maximum Maximum Maximum Mean Mean Mean Mean
maximum maximum mean mean maximum maximum mean mean
position velocity position velocity position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s]
52.9363 56.0824 21.0365 22.2666 19.1265 19.7089 7.9387 8.3485

Sentinel-2B

Table 4.14 Sentinel-2B results.

Start Duration [h]
Maximum Maximum Mean Mean

Manoeuvreposition velocity position velocity
error [m] error [mm/s] error [m] error [mm/s]

11-Sep-2019 11:11:29 11.2240 7.5509 7.9917 3.7913 4.0149 N
18-Sep-2019 11:01:24 48.6775 22.8871 23.2213 9.4275 9.8655 Y
20-Sep-2019 11:42:03 23.4906 9.4372 9.4395 4.1917 4.3673 N
21-Sep-2019 11:11:29 11.2245 7.9509 8.3704 3.7658 3.9669 N
08-Sep-2020 11:21:54 11.2239 7.5634 7.9694 3.7889 4.0022 N
08-Sep-2020 22:35:20 60.9356 13.8118 12.9298 4.4651 4.6412 N
11-Sep-2020 11:31:28 23.5014 9.2452 9.1939 4.0938 4.2994 N
12-Sep-2020 11:01:33 11.2239 7.5503 7.9625 3.9477 4.1684 N
12-Sep-2020 22:14:59 60.9417 15.3078 14.8242 6.2735 6.5397 N
15-Sep-2020 11:11:29 11.2333 7.9925 3.7579 3.7579 3.9673 N
15-Sep-2020 22:25:29 60.9400 54.3628 57.0431 16.2913 17.1195 Y
18-Sep-2020 11:21:53 11.2242 11.8230 12.2680 4.4097 4.6385 N
18-Sep-2020 22:35:20 11.2250 7.5525 7.9725 3.7950 4.0100 N
22-Sep-2020 22:15:32 37.4347 36.2555 36.9748 9.4037 9.9594 N
24-Sep-2020 11:41:37 34.7250 36.6082 37.3566 10.1613 10.7438 N

Table 4.15 Sentinel-2B results summary.

Maximum Maximum Maximum Maximum Mean Mean Mean Mean
maximum maximum mean mean maximum maximum mean mean
position velocity position velocity position velocity position velocity
error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s] error [m] error [mm/s]
54.3628 57.0431 16.2913 17.1195 17.0599 17.1517 6.1043 6.4203

The results obtained for the Sentinel-2 class show that the propagator predict the orbit with less
than 55 metres of maximum position error in time lapses of 61 hours. The mean maximum position
error is less than 20 metres and the mean mean position error is less than 8 metres (slightly greater
than for the Sentinel-1 class due to the length of the propagations). These results, along with the
results obtained for Sentinel-1, assure the good behaviour of the propagator designed.

4.3.3 Results discussion

The OEMs have errors of a few meters, and they have to be interpolated with some loss of
precision. This, along with the fact that the propagator designed is capable of measuring the position
of any of the satellites studied with a maximum error of 54.5 metres and a mean error less than 8
metres in time lapses of 61 hours, allows us to affirm that the propagator designed perfectly captures
the perturbations to which the satellites under study are subjected. Furthermore, the fact that the
mean maximum position error committed during these analysis is less than 19.2 metres speaks of
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the precision of this propagator, having in most cases the certainty of not being wrong by more than
20 metres.

In the case of the velocity error, we have roughly the same results as for the position error. The
propagator never exceeds the error of 6 cm/s and we have a mean error of less than 8.5 mm/s in
time lapses of 61 hours.

It should be noted that in the sections where manoeuvres are performed, these have been eliminated
as no data on them are available. Therefore, the sections with manoeuvre indicator Y have been
analysed by propagating from the beginning to the start of the manoeuvre and propagating after the
end of the manoeuvre to the end of the section, which leaves two separate propagation sections.



5 Conclusions and future work

5.1 Conclusions

Throughout this project we have reviewed the importance of considering perturbations when
trying to recreate the orbit of orbiting objects. These perturbations, which deviate satellites from
their original orbits, are not trivial to study and require in most cases the use of numerical methods
to obtain accurate results. The combination of the most accurate models for the different types of
perturbations does not always result in the most accurate propagator, as discussed above.

This worsening of the propagator depending on the models we use is due to the non-linearity of
the models used and the fact that in the world we live in, sometimes, 1+1 does not result in 2. In an
ideal world, taking more and more precision would result in the best propagator. But unfortunately,
models sometimes interfere with each other and lead to inaccuracies that we must avoid.

One thing to take away from this project is that we should always analyse how to combine
the different models available to decide which set of perturbation models to use. Choosing the
most accurate models and combining them without prior analysis can lead to inaccuracies, such as
when increasing the degree and order of Earth harmonics or when combining the NRLMSISE-00
atmospheric model with tides.

To minimise the error made in assuming isotropic drag and isotropic solar pressure radiation
due to the lack of information related to the orientation of the satellites, we obtained the geometric
characteristics that best fit the satellite data provided. However, this minimisation process can never
be better (in theory) than having the actual satellite attitude data.

It is very remarkable that the designed propagator is able to predict in most cases the orbit of the
studied satellite with the same order of accuracy as the built-in error of the OEMs. This may lead
us to think that the propagator is not able to obtain a higher accuracy in the prediction of the orbits
of the satellites studied because it is limited by the error of the OEMs themselves. If this is the case,
it is virtually impossible for the propagator to obtain better results, so it is necessary to increase the
accuracy in the measurements of the real data.

5.2 Future work

As we have made clear on numerous occasions throughout the development of this project, we
lack information on the attitude of the satellites. This fact, which detracts from the accuracy of
the modelling of atmospheric drag and solar-radiation pressure, together with the possible limiting
factor due to the error in the OEMs discussed above, leads us to recommend improvements focused
on these two aspects to try to further improve the accuracy of the propagator.

To determine the attitude of the satellites is truly complex [16], but there are several methods
that allow to control the attitude of these objects [27]. Controlling the satellite’s attitude is, in
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fact, knowing the orientation the satellite has at any desired time. This information could make a
difference in determining the future position of the satellites under study, so it is worth checking its
influence.

On the other hand, it goes without saying that the more accurate the measurements we make
of the position and velocity of satellites, the less initial error the propagators we use will have. A
measurement error of a few metres is a very high accuracy considering the dimensions of the Earth,
but as technology advances and we have access to smaller measurement errors, our propagators will
become more and more accurate.



List of Figures

1.1 Geocentric satellites 2
1.2 Sentinel-1 [12] 3
1.3 Sentinel-2 [13] 4

2.1 Gravitational force between two isolated masses 8
2.2 Mass-centre reference frame 9
2.3 Keplerian orbital elements 10
2.4 Zonal Harmonics. The shading indicates regions of additional mass and the numbers link

regions between the views [22] 13
2.5 Sectorial Harmonics. They take into account the extra mass distribution in longitudinal

regions [22] 13
2.6 Tesseral Harmonics, which are dependent on latitude and longitude [22] 13
2.7 Object orbiting Earth affected by the Moon [25] 16
2.8 Precession and nutation of Earth’s axis [22] 19

3.1 Frame transformation tree 23
3.2 CIO-based transformations 24
3.3 Equinox-based transformations 24
3.4 Topocentric frame 25
3.5 Object view of topocentric frame 26
3.6 Variation of the semi-major axis of a GEO due to Luni-Solar perturbation 31
3.7 Variation of the eccentricity of a GEO due to Luni-Solar perturbation 32
3.8 Variation of the inclination angle of a GEO due to Luni-Solar perturbation 32
3.9 Shorter analysis of the variation of the semi-major axis of a GEO due to Luni-Solar perturbation 33
3.10 Shorter analysis of the variation of the eccentricity of a GEO due to Luni-Solar perturbation 33
3.11 Shorter analysis of the variation of the inclination angle of a GEO due to Luni-Solar perturbation 34
3.12 Variation of the semi-major axis of a LEO due to Luni-Solar perturbation 34
3.13 Variation of the eccentricity of a LEO due to Luni-Solar perturbation 35
3.14 Variation of the inclination of a LEO due to Luni-Solar perturbation 35
3.15 Variation of the argument of the perigee of a LEO due to Luni-Solar perturbation 36
3.16 Variation of the RAAN of a LEO due to Luni-Solar perturbation 36
3.17 Variation of the semi-major axis of a LEO due to Luni-Solar perturbation for different inclinations 37
3.18 Variation of the eccentricity of a LEO due to Luni-Solar perturbation for different inclinations 37
3.19 Variation of the argument of the perigee of a LEO due to Luni-Solar perturbation for

different inclinations 38
3.20 Variation of the RAAN of a LEO due to Luni-Solar perturbation for different inclinations 38

79



80 List of Figures

3.21 Variation of the semi-major axis of a GEO due to J2 perturbation 39
3.22 Variation of the eccentricity of a GEO due to J2 perturbation 39
3.23 Variation of the inclination of a GEO due to J2 perturbation 40
3.24 Shorter analysis of the variation of the semi-major axis of a GEO due to J2 perturbation 40
3.25 Shorter analysis of the variation of the eccentricity of a GEO due to J2 perturbation 41
3.26 Shorter analysis of the variation of the inclination angle of a GEO due to J2 perturbation 41
3.27 Variation of the semi-major axis of a LEO due to J2 perturbation 42
3.28 Variation of the eccentricity of a LEO due to J2 perturbation 42
3.29 Variation of the inclination of a LEO due to J2 perturbation 43
3.30 Variation of the argument of the perigee of a LEO due to J2 perturbation 43
3.31 Variation of the RAAN of a LEO due to J2 perturbation 44
3.32 Long periodic/short periodic beat period from zonal harmonics [22] 44
3.33 Variation of the semi-major axis of a LEO due to J2 perturbation for different inclinations 45
3.34 Variation of the argument of the perigee of a LEO due to J2 perturbation for different inclinations 45
3.35 Variation of the RAAN of a LEO due to J2 perturbation for different inclinations 46
3.36 Variation of the semi-major axis of a LEO due to atmospheric drag 46
3.37 Variation of the eccentricity of a LEO due to atmospheric drag 47
3.38 Variation of the inclination of a LEO due to atmospheric drag 47
3.39 Variation of the argument of the perigee of a LEO due to atmospheric drag 48
3.40 Variation of the RAAN of a LEO due to atmospheric drag 48
3.41 Influence of altitude in the variation of the semi-major axis of a LEO due to atmospheric drag 49
3.42 Influence of altitude in the variation of the eccentricity of a LEO due to atmospheric drag 49
3.43 Influence of altitude in the variation of the inclination of a LEO due to atmospheric drag 50
3.44 Influence of altitude in the variation of the argument of the perigee of a LEO due to

atmospheric drag 50
3.45 Influence of altitude in the variation of the RAAN of a LEO due to atmospheric drag 51
3.46 Variation of the semi-major axis of a GEO due to solar radiation pressure 51
3.47 Variation of the eccentricity of a GEO due to solar radiation pressure 52
3.48 Variation of the inclination of a GEO due to solar radiation pressure 52
3.49 Variation of the semi-major axis of a LEO due to solar radiation pressure 53
3.50 Variation of the eccentricity of a LEO due to solar radiation pressure 53
3.51 Variation of the inclination of a LEO due to solar radiation pressure 54
3.52 Variation of the argument of the perigee of a LEO due to solar radiation pressure 54
3.53 Variation of the RAAN of a LEO due to solar radiation pressure 55

4.1 Version 1 OEM without acceleration nor covariance 60
4.2 Version 2 OEM with optional accelerations 61
4.3 Version 2 OEM with optional covariance matrix 61
4.4 Process of optimisation 63
4.5 Position error variation with different Earth harmonic models in a 24-hour window 64
4.6 Velocity error variation with different Earth harmonic models in a 24-hour window 64
4.7 Position error variation with different third body perturbation models 65
4.8 Velocity error variation with different third body perturbation models 66
4.9 Position error variation with different atmospheric models in a 24-hour window 67
4.10 Velocity error variation with different atmospheric models in a 24-hour window 67
4.11 Position error variation with tides models in a 24-hour window using Harris-Priester 68
4.12 Velocity error variation with tides models in a 24-hour window using Harris-Priester 69
4.13 Position error variation with tides models in a 24-hour window using NRLMSISE-00 69
4.14 Velocity error variation with tides models in a 24-hour window using NRLMSISE-00 70
4.15 Comparison between the two models proposed 70



List of Tables

2.1 Forms of perturbations wielded on each orbital element. P stands for periodic and S for
secular [25] 11

2.2 Comparison between the forces exerted by the Moon and the main solar system objects
and the force Earth produces on LEO and GEO satellites 17

4.1 OEM Layout 58
4.2 OEM Header 58
4.3 OEM Metadata 59
4.4 Comparison between different harmonic models in a 24-hour window 65
4.5 Comparison between different third-body models in a 24-hour window 66
4.6 Comparison between different atmospheric models in a 24-hour window 68
4.7 Comparison between different tides models in a 24-hour window 69
4.8 Sentinel-1A results 72
4.9 Sentinel-1A results summary 72
4.10 Sentinel-1B results 73
4.11 Sentinel-1B results summary 74
4.12 Sentinel-2A results 74
4.13 Sentinel-2A results summary 75
4.14 Sentinel-2B results 75
4.15 Sentinel-2B results summary 75

81





Bibliography

[1] European Space Agency, Sentinel-1a data sheet: https://esamultimedia.esa.int/docs/S1-Data_-
Sheet.pdf.

[2] James M Bardeen and Jacobus A Petterson, The lense-thirring effect and accretion disks
around kerr black holes, The Astrophysical Journal 195 (1975), L65.

[3] Blue Book, Time code formats, (2002).

[4] PINK BOOK, Orbit data messages, (2003).

[5] Riccardo Borghi, On newton’s shell theorem, European Journal of Physics 35 (2014), no. 2,
028003.

[6] Bruce Bowman, W Kent Tobiska, Frank Marcos, Cheryl Huang, Chin Lin, and William Burke,
A new empirical thermospheric density model jb2008 using new solar and geomagnetic indices,
AIAA/AAS astrodynamics specialist conference and exhibit, 2008, p. 6438.

[7] P Cefola, JF San-Juan, S Setty, R Proulx, et al., Review of the draper semi-analytical satellite
theory (dsst), Proc. 18th Australian Int. Aerosp. Congr.: HUMS-11th Defence Sci. Technol.
Int. Conf. Health Usage Monit.: ISSFD-27th Int. Symp. Space Flight Dyn., 2019.

[8] CelesTrak, Norad two-line element set format: https://www.celestrak.com/NORAD/documentation/tle-
fmt.php.

[9] Vladimir A Chobotov, Orbital mechanics, Aiaa, 2002.

[10] DH Dickson and IW Kelly, The ‘barnum effect’in personality assessment: A review of the
literature, Psychological Reports 57 (1985), no. 2, 367–382.

[11] MC Eckstein and F Hechler, A reliable derivation of the perturbations due to any zonal and
tesseral harmonics of the geopotential for nearly-circular satellite orbits(computation of nearly
circular satellite orbit perturbation due to geopotential harmonics), (1970).

[12] ESA, Sentinel-1: https://sentinel.esa.int/web/sentinel/missions/sentinel-1.

[13] European Space Agency ESA, Sentinel-2: https://sentinel.esa.int/web/sentinel/missions/sentinel-
1.

[14] CS Group, Orekit: https://www.orekit.org/.

[15] Felix R Hoots and Ronald L Roehrich, Models for propagation of norad element sets, Tech.
report, Aerospace Defense Command Peterson AFB CO Office of Astrodynamics, 1980.

83

https://esamultimedia.esa.int/docs/S1-Data_Sheet.pdf
https://esamultimedia.esa.int/docs/S1-Data_Sheet.pdf
https://www.celestrak.com/NORAD/documentation/tle-fmt.php
https://www.celestrak.com/NORAD/documentation/tle-fmt.php
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://www.orekit.org/


84 Bibliography

[16] VJ Modi, Attitude dynamics of satellites with flexible appendages-a brief review, Journal of
Spacecraft and Rockets 11 (1974), no. 11, 743–751.

[17] Oliver Montenbruck, Eberhard Gill, and Fh Lutze, Satellite orbits: models, methods, and
applications, Appl. Mech. Rev. 55 (2002), no. 2, B27–B28.

[18] Jose M Montilla, Julio C Sanchez, Rafael Vazquez, Jorge Galan-Vioque, Javier Rey Benayas,
and Jan Siminski, Manoeuvre detection in low earth orbit with radar data, arXiv preprint
arXiv:2203.03590 (2022).

[19] NASA, Spacewarn bulletin: https://nssdc.gsfc.nasa.gov/spacewarn/.

[20] Gérard Petit and Brian Luzum, Iers conventions (2010), Tech. report, Bureau International
des Poids et mesures sevres (france), 2010.

[21] JM Picone, AE Hedin, D Pj Drob, and AC Aikin, Nrlmsise-00 empirical model of the atmo-
sphere: Statistical comparisons and scientific issues, Journal of Geophysical Research: Space
Physics 107 (2002), no. A12, SIA–15.

[22] David A Vallado, Fundamentals of astrodynamics and applications, vol. 12, Springer Science
& Business Media, 2001.

[23] David A Vallado and Paul J Cefola, Two-line element sets-practice and use, 63rd International
Astronautical Congress, Naples, Italy, 2012, pp. 1–14.

[24] Rafael Vazquez, Mecánica orbital y vehículos espaciales tema 1.

[25] Rafael Vázquez, Mecánica orbital y vehículos espaciales tema 4.

[26] GA Watson, Computing helmert transformations, Journal of computational and applied math-
ematics 197 (2006), no. 2, 387–394.

[27] Bing Xiao, Mingyi Huo, Xuebo Yang, and Youmin Zhang, Fault-tolerant attitude stabilization
for satellites without rate sensor, IEEE Transactions on Industrial Electronics 62 (2015), no. 11,
7191–7202.

https://nssdc.gsfc.nasa.gov/spacewarn/

	Resumen global
	Abstract
	Introduction
	Motivation
	The urge to predict the future
	Sentinel project
	Sentinel-1 sent-1
	Sentinel-2 sent-2


	Objectives of this project
	Structure

	Introduction to Orbital Mechanics
	The two-body problem
	Motion equation
	Orbital elements

	Perturbations
	Non-spherical body's gravity
	Atmospheric drag
	Third-Body perturbations
	Solar-Radiation pressure
	Other effects


	Introduction to Orekit
	About Orekit
	Orekit features
	Time
	Frames
	Forces
	Attitudes
	Orbits
	Two-Line Elements
	Bodies
	Propagation

	Introductory examples
	Geostationary satellite affected by the Sun and the Moon
	Low Earth Orbit satellite affected by the Sun and the Moon
	GEO satellite affected by J2 perturbation
	Low Earth Orbit satellite affected by J2 perturbation
	Low Earth Orbit satellite affected by atmospheric drag
	GEO satellite affected by solar radiation pressure
	LEO satellite affected by solar radiation pressure


	Precise analysis and characterisation of real satellites in Low Earth Orbits
	Orbit ephemeris message (OEM)
	OEM Header
	OEM Metadata

	OEM Data: Ephemeris data lines
	OEM Data: Covariance matrix lines
	OEM Examples

	Perturbations model verification and validation
	Optimisation process
	Non-spherical body's gravity
	Third-Body perturbations
	Atmospheric drag
	Solar-Radiation pressure
	Tides
	Final propagation model

	Precise prediction of LEO satellites
	Sentinel-1
	Sentinel-1A
	Sentinel-1B

	Sentinel-2
	Sentinel-2A
	Sentinel-2B

	Results discussion


	Conclusions and future work
	Conclusions
	Future work

	List of Figures
	List of Tables
	Bibliography
	End/Last page
	First page


