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Abstract

This paper presents a new two-phase algorithm for the bi-objective minimum spanning tree (BMST) prob-
lem. In the first phase, it computes the extreme supported efficient solutions resorting to both mathematical
programming and algorithmic approaches, while the second phase is devoted to obtaining the remaining ef-
ficient solutions (non-extreme supported and non-supported). This latter phase is based on a new recursive
procedure capable of generating all the spanning trees of a connected graph through edge interchanges based
on increasing evaluation of non-zero reduced costs of associated weighted linear programs. Such a procedure
exploits a common property of a wider class of problems to which the minimum spanning tree (MST) prob-
lem belongs, that is the spanning tree structure of its basic feasible solutions. Computational experiments
are conducted on different families of graphs and with different types of cost. These results show that this
new two-phase algorithm is correct, very easy to implement and it allows one to extract conclusions on the
difficulty of finding the entire set of Pareto solutions of the BMST problem depending on the graph topology
and the possible correlation of the edge costs.

Keywords: multiple objective programming; combinatorial optimisation; minimum spanning tree; two-phase methods

1. Introduction

In many real-world problems, different goals, often in conflict with each other, have to be taken
into account simultaneously. Several examples of this appear in different application fields. In the
transportation sector, one finds conflicting interests between efficiency, cost-effectiveness and secu-
rity. In the telecommunications sector, energy saving and reliability should be combined. Finally,
to mention some others, in the construction industry cost and environmental impact, or in finance
expected return and risk have to be considered simultaneously. The increasing necessity of dealing
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with this type of problem has influenced the strong development of the field of multi-objective op-
timisation in recent years. The reader is referred to Salamirad et al. (2021), Amaruchkul (2021),
Xiang et al. (2021), Erdoǧdu and Karabulut (2021), Bissoli et al. (2021) and Queiroz and Mundim
(2020) for very recent applications. In this work, we focus on a particularly appealing problem: the
bi-objective minimum spanning tree (BMST) problem that has applications in different contexts.
For example, in the energy industry, for planning efficient distribution systems or in the telecommu-
nications sector, for designing networks whose topological structure ensures connectivity between
all nodes. In the context of the energy efficiency of the networks, both quality of the service and
energy consumption have to be taken into account. This leads to a bi-objective problem that, in its
basic form, can be formulated as a BMST problem.

The main contributions of this paper can be summarised as follows:

• it provides a new approach to solving the BMST problem, based on a new enumerative recursive
procedure (see Amorosi, 2018) applicable to a wider class of combinatorial optimisation problems
defined on graphs, able to generate all feasible solutions and that can be exploited in the second
phase for obtaining a complete set of efficient solutions;

• it gives a comparison between three alternative methods, and open source solvers, adopted to
implement the first phase: the dual variant of Benson’s algorithm (Ehrgott et al., 2012), by means
of Bensolve (Weißing and Löhne, 2014), the lifted weight space approach, by means of PolySCIP
(Schenker and Strunk, 2016), and the Prim’s algorithm embedded in a weighted sum approach
(Przybylski et al., 2010a);

• it proposes a new enumerative recursive procedure based on an analysis of reduced costs, first
introduced in Amorosi (2018) and in Amorosi and Ehrgott (2018) for the bi-objective integer
minimum cost flow problem, able to generate all the spanning trees of a connected graph;

• it contains extensive computational results obtained testing the algorithm on different prob-
lem instances, including complete and grid graphs and comparisons with the most recent two-
phase method for this class of problem by Steiner and Radzik (2008) and with the one by
Di Puglia Pugliese et al. (2018) that is the most recent one among the methods designed for
the multi-objective version of the MST problem;

• it reports a complete computational experience to analyse the complexity of solving the BMST
problem, depending on the type of edge costs considered, and how the proportion of non-
supported efficient solutions depends on the graph topology and type of costs (an electronic
summary includes detailed information of all tests).

This paper is organised as follows: in Section 2 some preliminary concepts are presented, Sec-
tion 3 discusses the literature focusing on two-phase methods. In Section 4, the three alternative
approaches for the first phase are described. A new recursive procedure able to enumerate all span-
ning trees of a connected graph, and its adaptation in the second phase is presented in Section 5.
Finally, Section 6 reports experimental results.

2. Bi-objective minimum spanning tree problem

Let G = (N, E ) be an undirected graph with node set N, with |N| = n, and edge set E . Let C =
(c1, c2) be the coefficient matrix where c1 and c2 are two different integer cost vectors on the edge

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



L. Amorosi and J. Puerto / Intl. Trans. in Op. Res. 29 (2022) 3435–3463 3437

set. Eventually, let E (S) be the set of edges connecting nodes belonging to S, ∀S ⊆ N : S �= ∅.
The BMST problem is defined as

min(y1, y2) = minCx = min(
∑

e∈E c1
exe,

∑
e∈E c2

exe) (1)∑
e∈E xe = n − 1 (2)∑
e∈E (S) xe ≤| S | −1 ∀S ⊆ N, S �= ∅ (3)

xe ∈ {0, 1} ∀e ∈ E (4)

In the multi-objective context, and thus in the bi-objective case, the feasible set in the decision
space (or decision set) X = {x ∈ Rn : Ax = b, x ≥ 0, x ∈ {0, 1}n or x ∈ Zn} is distinguished from
the feasible set in the objective space (or outcome set) Y = {Cx : x ∈ X }, containing the points as-
sociated with the feasible solutions by means of the linear mapping defined by the problem criteria.
Among the feasible solutions, we search for the ones which correspond to points in the outcome
set for which it is not possible to improve one component without deteriorating another.

Definition 1 (Efficient or Pareto optimal solution). A feasible solution x∗ ∈ X is efficient or Pareto
optimal if there does not exist another feasible solution x ∈ X such that Cx ≤ Cx∗ with strict in-
equality for at least one of the objectives. The corresponding vector (or point in the bi-objective case)
y∗ = Cx∗ is called non-dominated.

Definition 2 (Extreme efficient solution). An efficient solution which defines an extreme point of
conv(Y ) is called extreme efficient solution.

Definition 3 (Complete set of efficient solutions). Two feasible solutions x and x
′
are called equivalent

if Cx = Cx
′
. A complete set XE is a set of efficient solutions such that all x ∈ X \ XE are either non-

efficient or equivalent to at least one x ∈ XE .

Definition 4 (Pareto or non-dominated frontier). The set of non-dominated vectors, YN, is called
Pareto or non-dominated frontier.

There exist efficient solutions which are not optimal for any weighted sum of the objectives. These
solutions are called non-supported efficient solutions, while the remainder are called supported
efficient solutions. The set of supported efficient solutions is denoted by XSE , while the set of non-
supported efficient solutions is denoted by XNE = XE\XSE . Their images in the objective space
are indicated respectively by YSN and YNN . The computation of the set YNN is important because
it usually represents the majority of the Pareto frontier and it contributes to the difficulty of the
problem (see Ehrgott and Gandibleux, 2000). Indeed, from a geometrical point of view, the vectors
corresponding to non-supported efficient solutions, are located in the interior of the convex hull
of the feasible region in the objective space of the problem. Standard scalarisation techniques, like
the weighted sum method, are not able to generate them and it is necessary to resort to more
sophisticated methods. A detailed review of the ones proposed in the literature for the BMST is
reported in Section 3.

Definition 5. A set U B is an upper bound set of Y if ∀y ∈ Y , ∃u ∈ U B : ∀i, ui ≥ yi
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Definition 6 (T-exchange/cyclic-interchange). Let T be a spanning tree of the graph G. A T -exchange
is a pair of edges e, f where e ∈ T , f /∈ T , and T − e ∪ f is a spanning tree. The weight of the T -
exchange e, f is w( f ) − w(e), where w is the vector of the graph weights associated with the edges.

Definition 7 (Fundamental cycle). Let T be a spanning tree of the graph G. The addition of any
non-tree edge to the spanning tree T creates exactly one cycle. Any such cycle is a fundamental cycle
of G with respect to the tree T .

3. State of the art

Among the exact methods for solving the BMST problem proposed in previous works, it
is possible to distinguish between generalisations of algorithms for the single-objective case
and generic approaches for multi-objective combinatorial optimisation problems applied to this
class.

3.1. Generalisations of single-objective algorithms

In Corley (1985), a generalisation of Prim’s algorithm is presented. The idea of this generalisation is
to build trees covering one more vertex at each iteration by selecting efficient edges in the subset con-
necting covered with non-covered vertices. However, this procedure can also produce non-efficient
spanning trees. Hamacher and Ruhe (1994) present an enhancement of Corley’s algorithm, exclud-
ing in each iteration subtrees which are non-efficient. The resulting algorithm is also discussed in
Ehrgott (2005) and used in Zhou and Gen (1999) to evaluate a genetic algorithm proposed by the
authors able to approximate the Pareto frontier. Knowles and Corne (2002) showed that using the
algorithm presented in Hamacher and Ruhe (1994), some efficient spanning trees may not be gen-
erated and consequently some non-efficient spanning trees may also be produced. Serafini (1987)
proposed a generalisation of Kruskal’s algorithm. Also in Perny and Spanjaard (2005) generalisa-
tions of Prim’s and Kruskal’s algorithms are considered to determine the set of efficient spanning
trees in accordance with a preference (binary) relation defined on the set of the graph edges. In
addition, in Fernández et al. (2017) multi-objective spanning tree problems are analysed from the
perspective of ordered weighted averaging operators.

3.2. Generic approaches for the BMST problem

Turning to the generic approaches for multi-objective combinatorial optimisation applied to the
bi-criteria minimum spanning tree problem, both two-phase methods and multi-objective branch-
and-bound methods have been studied. Ramos et al. (1998) presented a two-phase approach for
the BMST problem that works in the objective space, proposing a branch-and-bound algorithm in
the second phase. This algorithm evaluates search nodes according to ideal point associated with
the subproblem in the corresponding node, in order to explore the search area defined by the non-
dominated extreme points generated in the first phase (extreme points of the convex hull of feasible
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solution vectors in objective space). The computational results reported in that paper show that
this approach may not be practical for large instances.

Steiner and Radzik (2008) introduced another two-phase approach based on a ranking algo-
rithm, the k-best algorithm by Gabow (1977). This k-best algorithm is applied in the second phase
to explore the triangles identified by consecutive pairs of non-dominated extreme points. This pa-
per also provides a comparison with the procedure by Ramos et al. (1998) that shows the better
performance of their approach in terms of computational time and instance sizes that are solv-
able. Moreover, a heuristic enhancement of the k-best algorithm is also proposed which, in general,
speeds up the running time.

Sourd and Spanjaard (2008) proposed an improved branch-and-bound algorithm applied to the
BMST problem. The main idea is to perform the bounding at a given node in the search tree
defining a separating hypersurface in the objective space between the set of the reachable solutions
in the subtree and the set of improving solutions. The first ones are the solutions that derive from
the partial solution of the current node of the branch-and-bound tree, while the improving ones
are the solutions that are not dominated by the upper bound set. Experimental results show that
this algorithm is able to solve instances with up to 400–500 nodes, also improving the algorithm by
Steiner and Radzik (2008) in terms of instance sizes that are solvable.

Leitner et al. (2015) applied the ε-constrained method to the bi-objective prize-collecting Steiner
tree problem, comparing it with other scalarisation techniques and two-phase methods. This was
the first study on exact approaches to solve that bi-objective problem proposing some new generic
acceleration methods to recycle the information gleaned during these iterative solution procedures.
The reader is also referred to LabbÃ© et al. (2021) for another recent reference to multilevel deci-
sion problems on trees.

Di Puglia Pugliese et al. (2015) provided the extension of a dynamic programming formulation
for the spanning tree problem to solve the multi-objective minimum spanning tree problem. The
underlying idea is to model the spanning tree structure by means of states and transition between
states, defining a state-space. Their experimental results show that the proposed algorithm is able
to solve instances up to 100 nodes and 5 objective functions.

In a recent paper, Di Puglia Pugliese et al. (2018) present a further algorithm for the multi-
objective minimum spanning tree problem. This is based on a labelling algorithm for the multi-
objective shortest path problem in a transformed network. Additional restrictions to the minimal
paths are inserted in order to obtain a one-to-one correspondence between trees in the original net-
work and minimal paths in the transformed one. Computational results related to instances up to
14 nodes and 4 criteria show that the proposed algorithm outperforms the one in Di Puglia Pugliese
et al. (2015) in solution time on this type of instances. Focusing on the bi-objective case, although
only on small size graphs, the proposed algorithm performs better, with the exception of the in-
stances of 14 nodes, than the one by Steiner and Radzik (2008), which in turn performs better than
the algorithm introduced in Di Puglia Pugliese et al. (2015).

3.3. Two-phase methods

The two-phase method was introduced by Ulungu and Teghem (1994b). This is a general frame-
work for the exact solution of multi-objective combinatorial optimisation (MOCO) problems. It
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consists in generating a complete set of efficient solutions in two steps: in the first one, supported
efficient solutions are generated, whereas in the second one, using information from the first phase
to limit the exploration area in the outcome set, a complete set of non-supported efficient solutions
is found.

One can find, in the literature, several two-phase algorithms proposed for different MOCO prob-
lems: the bi-objective knapsack problem (Ulungu and Teghem, 1994a; Visée et al., 1998); the as-
signment problem (Przybylski et al., 2008), also including three objectives (Przybylski et al., 2010b);
the bi-objective set covering problem (Prins et al., 2006); the bi-objective integer network flow prob-
lem (Raith and Ehrgott, 2009b) and the bi-objective minimum spanning tree problem (Steiner and
Radzik, 2008), to mention a few.

Several techniques can be used for the generation of supported Pareto optimal solutions (for ex-
ample, the weighted sum method or the lexicographic method, see Ehrgott and Gandibleux (2000)
and Ehrgott (2006)). On the contrary, an efficient general procedure for generating non-supported
Pareto optimal solutions does not exist, due to the lack of a theoretical characterisation of those
solutions at the current state of the art and, for the BMST problem, the non-connectedness of ef-
ficient solutions (as stated in Ehrgott and Klamroth (1997) and Gorski et al. (2011), which study
connectedness of efficient solutions of MOCO problems).

In the bi-objective case, the prevalent strategy used in the second phase to generate them is the re-
striction of the exploration area in the outcome set. This strategy reduces the search to the triangles
that can be built considering consecutive pairs of non-dominated extreme points sorted in increas-
ing order according to the first objective (see Steiner and Radzik, 2008 and Raith and Ehrgott,
2009b). In each of these triangles, the exploration to find non-dominated points depends on the
specific problem under consideration.

Restricting oneself to the two-phase algorithms for the BMST problem, in the most recent one
proposed by Steiner and Radzik (2008), the first phase consists in Kruskal’s algorithm embedded
in a dichotomic search and, as regards the second phase, a k-best algorithm by Gabow (1977) is
applied to produce in an ordered manner feasible spanning trees of a graph G = (V, E ). Starting
from the initial optimal spanning tree T (the one with minimum cost), a T -exchange of two edges
e, f such that e ∈ T , f ∈ E \ T of minimum weight, is applied. In this way, the second best span-
ning tree is generated. At a generic iteration j, for each of the spanning trees generated until the
iteration j − 1 (T1, . . . , Tj−1), two lists of edges are created. The first one (IN) is the list containing
the edges in T that must remain in T and the second one (OU T ) is the list of edges that are not
in T and that must remain out of T . At each iteration, a T -exchange e, f , is applied such that
e ∈ T \ IN, f ∈ E \ T \ OU T and e, f have the smallest possible weight, among all the possible
T -exchanges applicable to the previous spanning trees generated until the current iteration. The
newly generated spanning tree is the one with the minimum possible deterioration of the objective
value with respect to the previous one.

In this paper, we present a new two-phase method for the BMST problem, which exploits a novel
recursive procedure, we proposed for enumerating feasible solutions of the problem in the second
phase in order to generate efficient solutions. Unlike the algorithm by Gabow (1977), adopted in
the second phase by Steiner and Radzik (2008), this procedure is not an “ad hoc” procedure for the
MST but it is based on the analysis of non-zero reduced costs, exploiting a characteristic of the basic
feasible solutions of the problem, that is of being spanning trees. This property, as it is well known, is
common to a wider class of problems (single- and multi-commodity network flow problems). Thus,
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even if in this paper we focus on the BMST, the working principle of this procedure can be easily
extended to other combinatorial optimization problems. Moreover, as regards the implementation
of the first phase, we present an experimental comparison between different strategies and available
tools for multi-objective programming. In particular, we adopted both mathematical programming
and algorithmic approaches by using two open-source solvers, Bensolve and PolySCIP, and by
coding Prim’s algorithm embedded in a weighted sum approach.

4. Finding supported efficient solutions

In this section, we describe three alternative strategies to implement the first phase of the two-
phase algorithm proposed for the BMST problem. The first one is the weighted sum method (see
for example Ehrgott, 2006), which is a scalarisation technique consisting in assigning a weight for
each objective function and solving the single-objective problem given by the weighted sum of the
objectives. Then, solving iteratively these single-objective problems, by varying each weight between
0 and 1, it is possible to generate all the supported efficient solutions of a bi-objective integer linear
programming problem.

We adopted this technique by means of two different approaches: a mathematical programming
one, resorting to the flow formulation of the BMST problem and a greedy one using Prim’s algo-
rithm embedded in a dichotomic search in the objective space. The third strategy, adopted for the
first phase, is the dual variant of Benson’s algorithm proposed by Ehrgott et al. (2012), using the
geometric duality theory for multi-objective continuous linear programming developed by Heyde
and Löhne (2008). To apply it to the MST problem, it is necessary to consider a different formu-
lation of the problem that ensures its continuous optimal solutions are integers. At this point, we
resort to a formulation by Kipp-Martin (1991) characterised by the integrality property.

4.1. The weighted sum method

The weighted sum method can be applied to any valid formulation of the BMST problem. Here, it
has been applied to its flow formulation (see Magnanti and Wolsey, 1995) reported below.

Flow formulation for the BMST problem:

min

(∑
e∈E

c1
exe,

∑
e∈E

c2
exe

)
(5)

∑
j:(1, j)∈E

f1 j −
∑

j:( j,1)∈E

f j1 = n − 1 (6)

∑
j:( j,i)∈E

f ji −
∑

j:(i, j)∈E

fi j = 1, ∀i ∈ V, i �= 1 (7)

fi j ≤ (n − 1)xe ∀e = (i, j) ∈ E (8)
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f ji ≤ (n − 1)xe ∀e = (i, j) ∈ E (9)∑
e∈E

xe = n − 1 (10)

fi j, f ji ≥ 0 ∀e = (i, j) ∈ E (11)

xe ∈ {0, 1} ∀e ∈ E (12)

This formulation is characterised by a polynomial number of constraints. Through this formu-
lation, the BMST problem is represented as a single-commodity flow problem in which node 1 is
considered as a source of n − 1 units of flow (6) and the rest of the network nodes are sinks each
requiring one unit of flow (7). Each edge e of the network is represented by a binary variable xe that
is equal to 1 if the edge is considered in the solution. The flows fi j and f ji can be non-zero only if
the corresponding edge is in the solution and is limited by the total flow from the source, equal to
n − 1 (8)–(9). Eventually, the total number of edges activated has to be equal to n − 1 (10) to assure
that the topological configuration of the solution is a spanning tree.

The weighted sum method can be applied to formulations (5)–(12) to generate supported effi-
cient solutions. The idea of such a procedure consists in identifying the partition in intervals of
the parametric space [0,1] of the weights (λ, 1 − λ), such that a supported efficient solution of the
bi-objective problem does not change when λ varies within the same interval of the partition. Anal-
ogously, the same procedure can be applied using Prim’s algorithm, instead of an LP solver, to
iteratively solve the weighted sum problem and thus to generate the supported efficient solutions
(see, e.g., Przybylski et al., 2010a).

4.2. Benson’s algorithm on the Kipp-Martin formulation

An alternative approach to implement the first phase is to be found in use of the dual variant
of Benson’s algorithm (Ehrgott et al., 2012). This is a solution method for multi-objective linear
programming problems capable of generating all the extreme efficient solutions, that is, the vertices
of the feasible region. The main idea of the primal version by Benson (1998) is to consider another
polyhedron Ȳ , opportunely defined so that it has the same set of non-dominated points as Y , but
where it is easier to identify the set of all non-dominated extreme points. In the integer case, this
algorithm can be applied only if the integrality property of the solutions is guaranteed, since it must
be applied to a continuous linear program.

In Kipp-Martin (1991), a linear programming formulation for the MST problem, based on a
totally dual integral system, was proposed and it was proved that this formulation satisfies the
integrality property. This means that, solving it with the dual variant of Benson’s algorithm, one
can ensure that the solutions thus obtained will be an integer. In this formulation, reported below,
new non-negative variables zki j∀k ∈ V, (i, j) ∈ E , associated with triplets of nodes, are introduced
together with additional constraints that guarantee the covering of all nodes without the presence
of cycles. More precisely, this formulation models an arborescence for each node k ∈ V . For k ∈ V
and (i, j) ∈ E , the variables zki j and zk ji respectively indicate whether or not arc (i, j) and ( j, i)
belong to the arborescence rooted at k.
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Kipp-Martin formulation of the BMST problem:

min

(∑
e∈E

c1
exe,

∑
e∈E

c2
exe

)
(13)

∑
e∈E

xe = n − 1 (14)

zki j + zk ji = xe, k = 1, . . . , n, e = (i, j) ∈ E (15)

∑
s>i

zkis −
∑
h<i

zkih ≤ 1, k = 1, . . . , n, i �= k (16)

∑
s>k

zkks −
∑
h<k

zkkh ≤ 0, k = 1, . . . n (17)

xe ≥ 0 ∀e ∈ E (18)

zki j ≥ 0 ∀k, i, j (19)

Constraints (15), (16) and (17) guarantee that the solution does not contain undirected cycles.
Indeed, if there is a cycle of undirected edges containing vertex k, then by constraints (17) there
is a corresponding cycle of directed edges defined by zki j , which also contains vertex k. However,
there cannot be a cycle of directed arcs which contains vertex k. This is impossible by constraints
(15) and the cycle cannot be directed. If the cycle is not directed, then there is at least one vertex
i with two cycles of directed edges containing k, which are directed out of i. This is impossible by
constraint (16). Thus, there are no cycles in the solution and the solution is spanning tree by (14).

5. A recursive algorithm to complete the set of efficient solutions

In the second phase of the algorithm, to generate the remaining non-dominated points, we perform
an exploration of the outcome set limited to the triangles that can be obtained considering con-
secutive pairs of non-dominated extreme points and the corresponding local nadir point, as shown
in Fig. 1, where the horizontal axis reports the values of the first objective function (y1) and the
ordinates refer to values of the second objective function (y2).

At each iteration of the algorithm, one of these triangles is analysed, starting from the one asso-
ciated with the first two non-dominated points, sorted in increasing order with respect to the first
objective (y1). Then, given the triangle under consideration at the generic iteration, the following
single-objective minimum spanning tree problem is defined (at implementation level any formula-
tion with the objective function defined as in (20) is suitable):

min
∑
e∈E

(λ1c1
exe + λ2c2

exe) (20)
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y2 

 Non-dominated non-supported points   

y1 

Non-dominated supported points   

 Local nadir points 

Fig. 1. Example of triangles in the objective space.

∑
e∈E

xe = n − 1 (21)

∑
e∈E (S)

xe ≤| S | −1 ∀S ⊆ N, S �= ∅ (22)

xe ∈ {0, 1} ∀e ∈ E (23)

where λ1 and λ2 are the weights associated with each objective function. These weights are de-
fined as in Raith and Ehrgott (2009b): given the two non-dominated points that define the current
triangle, yi = (y1(xi), y2(xi)) and yi+1 = (y1(xi+1), y2(xi+1)), the weights are computed as follows:

λ1 = y2(xi) − y2(xi+1) and λ2 = y1(xi+1) − y1(xi). (24)

This definition of weights implies that this single-objective MST problem has optimal solutions xi

and xi+1.
The strategy of the second phase consists in an enumeration of the spanning trees of the network

restricted to some pre-specified regions. To this end, we design a new recursive algorithm, based
on an analysis of the reduced costs associated with an initial optimal spanning tree, that is able to
generate all the other spanning trees of a given network in a given order. This algorithm, unlike
the k-best algorithm by Gabow (1977), does not produce spanning trees in strict ranking order
with respect to the scalarised objective function but, according to its operating principle, at each
recursion step it generates a spanning tree that is certainly worse than the previous one in terms
of objective value. This algorithm is very easy to implement and it can be applied to each triangle
starting indifferently from any of the optimal vertices, xi+1 or xi, of the weighted sum problem
(20)–(23).
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5.1. Procedure to generate all the spanning trees of a graph

The procedure proposed to generate all the spanning trees of a graph works considering the reduced
costs associated with the edge variables of the initial optimal solution. The reduced cost of each
edge is computed as the difference between its cost and the highest cost along the (unique) path
between its endpoints in the spanning tree. The reduced costs are then sorted from the lowest one
to the highest one and analysed in this order.

More in detail, given the smallest non-zero reduced cost rc∗
e , the fundamental cycle C∗

e created
by edge e and the starting optimal spanning tree T ∗ is identified. The edges in the fundamental
cycle are then sorted according to their integer costs, from the highest to the lowest. For each of
these edges, a new spanning tree is generated by swapping (exchanging) edge e with the edge under
consideration. The order in which the edges in the fundamental cycle are exchanged with the edge
e guarantees that the obtained spanning trees have non-decreasing objective function value.

At the first iteration of this algorithm, after the first exchange, the spanning tree obtained is
exactly the second best with respect to the current weighted objective function. Indeed, this new
spanning tree is generated by inserting in the initial one, the edge with minimum non-zero reduced
cost and removing from the fundamental cycle thus created, the edge with maximum cost. There-
fore, the corresponding deterioration of the objective function is minimal. When all the edges in
the fundamental cycle created by edge e are exchanged with e, the second non-zero reduced cost is
analysed, starting again from the original optimal spanning tree.

Considering e
′
, the edge with the second reduced cost, the same procedure described above is

applied to generate new spanning trees (their number will be equal to the number of edges in the
fundamental cycle that can be exchanged with edge e

′
). In this case, after each exchange, starting

from the new spanning tree T
′

obtained, the first non-zero reduced cost, associated with edge e,
has to be considered again, implementing all the possible exchanges of edge e with the edges in
the fundamental cycle created by e in the current spanning tree T

′
. Indeed, in order not to miss

feasible solutions and to obtain the minimum possible deterioration of the objective function, this
procedure has to be iterated considering all the non-zero reduced costs sorted from the lowest to
the highest, and all their possible combinations. Therefore, the resulting algorithm consists in a
recursive procedure that is summarised in the pseudocode of Algorithm 1.

In order to prove the correctness of the recursive procedure find_feasible_trees, we recall Theo-
rem 1 from Gross and Yellen (2006).

Theorem 1. Let G be a connected graph with n vertices and m edges. Starting from any spanning tree,
one can obtain every other spanning tree of G by cyclic interchanges. Moreover, if T and T

′
are two

spanning trees, then one can form tree T
′
starting from tree T by at most D(T, T

′
) cyclic interchanges,

where:

D(T, T
′
) ≤ min({n − 1, m − n + 1})

Next, we prove that our recursive procedure generates all possible T ∗-exchanges.

Theorem 2. Let us assume that the minimum spanning tree problem (20)-(23) has a unique optimal
solution T ∗. Procedure find_feasible_trees examines all the feasible combinations of T ∗-exchanges.
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Algorithm 1. Recursive procedure able to generate all spanning trees of a connected graph G = (N, E )

INPUT: graph G = (N, E ), integer costs vector c, optimal solution T ∗, vector of the non-zero reduced costs
r̄c∗ = {rc∗

1, rc∗
2 . . . rc∗

K} (sorted from the lowest to the highest) where K is the number of non-zero reduced costs, and
the list F T = {T ∗} containing at the beginning only the initial optimal spanning tree T ∗.
find_feasible_trees(G = (N, E ), c, T ∗, r̄c∗, K, F T )
1: it = 1
2: while it ≤ K do
3: Let e be the edge not in T ∗ corresponding to the element rc∗

it ∈ r̄c (r̄c∗
1 is the minimum non-zero reduced cost)

4: Let C∗ be the cycle that the edge e creates with the edges belonging to the spanning tree T ∗

5: Sort by cost (from the highest to the lowest) the edges of the cycle C∗ different from e
6: for e∗ ∈ C∗ with e∗ �= e in decreasing order of cost do
7: Add e to T ∗ and remove e∗ from T ∗

8: Add the tree T
′

so obtained to the list F T
9: if it > 1 then
10: Let rc

′
the vector containing the first it − 1 reduced costs

11: find_feasible_trees (G = (N, E ), c, T
′
, rc

′
, it − 1, F T )

12: end if
13: end for
14: it = it + 1
15: end while
16:
OUTPUT: Set F T containing all spanning trees of the graph G.

Proof. The proof relies on showing that all feasible T ∗-exchanges obtained from edges with non-
zero reduced costs can be generated. This is ensured because the algorithm performs recursive calls
from each found spanning tree and the remaining not considered edges with non-zero reduced
costs. In this way, all possible configurations of feasible trees with non-zero reduced costs are gen-
erated in the recursive calls. In the first call, find_feasible_trees first examines all the fundamental
cycles associated with an edge out of T ∗ with non-zero reduced cost. Next, the procedure combines
the previous T ∗-exchange with a second edge with non-zero reduced cost and so on, generating all
possible feasible trees. With this mechanism, all the feasible combinations of T ∗-exchanges gener-
ated by the first two fundamental cycles are examined. At a generic stage k of the algorithm, the
non-zero reduced cost rc∗

k is considered and with the same mechanism all feasible combinations of
T ∗-exchanges generated by the fundamental cycles associated with the first k − 1 non-zero reduced
costs with the T ∗-exchanges associated with the kth non-zero reduced cost are generated. The algo-
rithm continues generating feasible combinations of T ∗-exchanges in order of increasing reduced
cost until all non-zero reduced costs are examined, that is until all the feasible combinations of
T ∗-exchanges are generated. In this way, all possible combinations of edges with non-zero reduced
costs are considered and thus, all feasible T ∗-exchanges are generated. �

Finally, the combination of Theorems 1 and 2 leads us to correctness result.

Theorem 3. Let T ∗ be the unique optimal solution of the minimum spanning tree problem (20)–(23)
on graph G. The procedure find_feasible_trees, starting from T ∗ can generate all the other spanning
trees of the graph G.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



L. Amorosi and J. Puerto / Intl. Trans. in Op. Res. 29 (2022) 3435–3463 3447

Proof. For the hypothesis, the procedure find_feasible_trees starts from the unique optimal span-
ning tree T ∗. According to Theorem 1, any spanning tree T can be obtained from T ∗ by at most
D(T ∗, T ) cyclic interchanges with D(T, T ∗) ≤ min({n − 1, m − n + 1}).

Note that the recursive procedure find_feasible_trees, as stated in Theorem 2, generates all feasi-
ble combinations of T ∗-exchanges. Hence all the other spanning trees are produced. �
Remark 1. It is worth observing that using the recursive procedure above, it is possible to generate
the same spanning tree more than once. We also observe that if the optimal solution of the minimum
spanning tree problem is not unique, we can proceed including in the analysis also zero reduced
costs associated with variables out of the basis and the result still holds.

5.2. The recursive procedure adapted to the second phase

The recursive algorithm described in Section 5.1 is used to generate the remaining efficient solu-
tions in the second phase. In each triangle, starting from one of the two extreme efficient solutions
corresponding to the non-dominated extreme points provided from the first phase, the procedure
in the previous section is applied setting an upper bound on the value of the objective function, for
a non-dominated point inside the considered triangle, of the weighted sum problem (20)–(23). For
the first triangle, this upper bound is defined (see Raith and Ehrgott, 2009b) as follows:

� = λ1(y1(xi+1) − 1) + λ2(y2(xi) − 1). (25)

This upper bound is updated during the recursive procedure with the new spanning trees generated.
More in detail, when a new spanning tree is produced, the corresponding point in the objective
space is computed. If this point is non-dominated by points found so far and belongs to the current
triangle, the corresponding solution is inserted in the list of current efficient solutions and it is used
to update the upper bound by means of the formula below (see Raith and Ehrgott, 2009a):

� = max {λ1(y1(xi, j+1) − 1) + λ2(y2(xi, j ) − 1), j = 0, . . . , r} (26)

where r is the number of efficient solutions found in the triangle under consideration and it is
assumed that xi,0, xi,1, . . . xi,r+1 are sorted in increasing order with respect to the first objective
(xi,0 = xi and xi,r+1 = xi+1 are the two extreme efficient solutions associated with the triangle).
Figure 2 shows an example of this update. It represents a given triangle defined by two consecutive
extreme non-dominated points (the dark blue ones) and the corresponding local Nadir point (the
black cross). The initial upper bound, to start the recursive procedure in this triangle, is represented
by the constant term associated with the orange dotted line parallel to the line joining the two
extreme non-dominated points and passing through the point defined by Equation (25), that is the
point obtained subtracting one unit to each component of the local Nadir point. The light blue
crosses represent the new non-dominated points generated up to the current stage of the recursive
procedure applied to the given triangle. Let us consider the set composed of these two new non-
dominated points and the two initial extreme non-dominated points, sorted in increasing order
with respect to the first objective (y1). For each pair of consecutive points, sub-triangles as the
ones shown in Fig. 2 with light blue dotted lines, are built. For each of them, the corresponding
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y2 

y1 

Fig. 2. Example of bound update during the recursive procedure.

local Nadir point is computed and, from it, the point obtained subtracting one unit to each of its
components (orange crosses inside the sub-triangles in Fig. 2). Similar to the initial upper bound,
the lines passing for each of these points so determined and parallel to the line joining the two
extreme non-dominated points are considered (orange dotted lines in Fig. 2). The new upper bound
defined by Equation (26) corresponds to the constant term of the line, among these latter, that has
maximum distance from the line joining the two extreme non-dominated points. In the example
of Fig. 2, this is the line whose distance from the hypotenuse of the triangle is represented by the
black segment.

We should observe that formula (26) can be adopted even if the feasible solutions found by
means of the recursive procedure are not generated in strict ranking order. Indeed, representing
this procedure by means of a tree whose root is the initial optimal basic solution, as the analysis
of the reduced costs is made in order from the lowest to the highest one in absolute value, at each
branch of the tree certainly the value of the objective function will worsen. Thus, it is possible to
adopt formula (26) to limit the generation of feasible solutions at each branch without missing any
potentially efficient solution. The algorithm terminates when all the triangles have been explored by
means of this recursive procedure. The pseudocode of the second phase is shown in Algorithm 2.

In order to limit the recursion and not to generate all feasible spanning trees, as explained above,
the recursive procedure find_feasible_trees, called by the algorithm Two_phase_btree, is slightly
modified by introducing the additional parameter � as reported in Algorithm 3.

Theorem 4. The set E∗ = ∪i=1,...,s−1Ei generated by the algorithm Two_phase_btree is a complete set
of efficient solutions of the BMST problem.

Proof. Let 1 ≤ i ≤ s − 1. We shall prove that, Ei contains a complete set of efficient solutions in Ti.
Whenever a solution xb is inserted into Ei the following conditions hold:

• its objective vector lies within Ti;
• its objective vector is non-dominated by the objective vector of any x ∈ Ei;
• xb is not equivalent to any x ∈ Ei.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



L. Amorosi and J. Puerto / Intl. Trans. in Op. Res. 29 (2022) 3435–3463 3449

Algorithm 2. Second phase

INPUT: Network G = (N, E ), integer costs vector c, list of extreme efficient solutions [x1, . . . , xs].
Two_phase_btree
1: i = 1
2: E = ∅
3: while (i < s) do
4: Ei = {xi, xi+1}
5: Compute λ1 = y2(xi ) − y2(xi+1), λ2 = y1(xi+1) − y1(xi ) and cλ = λ1c1 + λ2c2

6: if E �= ∅ then
7: for xb ∈ E do
8: if y(xb) ∈ Ti, it is not dominated and not equivalent to any x ∈ Ei then
9: Insert xb in Ei and remove xb from E
10: end if
11: end for
12: � = max{λ1(y1(xi, j+1) − 1) + λ2(y2(xi, j ) − 1), j = 0, . . . , r}, r + 1 =| Ei |
13: else
14: � = μλ = λ1(y1(xi+1) − 1) + λ2(y2(xi ) − 1) /* initial value of Delta*/
15: end if
16: E = find_feasible_trees[G = (N, E ), c, T ∗(xi+1), r̄c∗(xi+1), K, E,�] /*with T ∗(xi+1) and r̄c∗(xi+1) respectively

spanning tree and vector of the non-zero reduced costs (sorted from the lowest to the highest) associated with
xi+1 and � additional input parameter representing the upper bound to limit the recursion*/

17: for xb ∈ E do
18: if y(xb) ∈ Ti, it is not dominated and it is not equivalent to any x ∈ Ei then
19: Insert xb in Ei and remove xb from E
20: end if
21: end for
22: i = i + 1
23: end while
24: for Ei i = 1, . . . s − 1 do
25: Remove potential non-efficient solutions
26: end for
OUTPUT: Complete set E∗ = ∪i=1,...,s−1Ei of efficient solutions.

The recursive procedure enumerates all solutions x with cλ(x) ≤ �. Among all enumerated so-
lutions, a complete set of efficient solutions is inserted in Ei. We shall prove this by contradic-
tion. Assume that, after the recursive procedure stops, there exists an efficient solution xe /∈ Ei
within triangle Ti that is not equivalent to some x ∈ Ei. The recursion stops as soon as cλ(x) > �.
As the solution xe /∈ Ei was not obtained during the recursive procedure before it was stopped
(otherwise xe or an equivalent solution would be included in Ei), it follows that cλ(xe) > �.
As it holds | Ei |≥ 2, therefore y1(xi j ) < y1(xe) < y1(xi j+1) and y2(xi j ) > y2(xe) > y2(xi j+1) for
some j ∈ { j

′
: j

′ = 0, . . . , r and y1(xi j+1) − y1(xi j ) ≥ 2 and y2(xi j ) − y2(xi j+1) ≥ 2}. In particular,
y1(xe) ≤ y1(xi j+1 − 1) and y2(xe) ≤ y2(xi j − 1). Consequently we obtain the following inequalities:

λ1y1(xe) + λ2y2(xe) ≤ �

equivalently

cλ(xe) ≤ �.
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Algorithm 3. Recursive procedure able to generate the spanning trees of a connected graph G = (N, E ) which return a
value of the objective function less or equal to �

INPUT: graph G = (N, E ), integer costs vector c, optimal solution T ∗, vector of the non-zero reduced costs
r̄c∗ = {rc∗

1, rc∗
2 . . . rc∗

K} (sorted from the lowest to the highest) where K is the number of non-zero reduced costs, the
list F T = {T ∗} containing at the beginning only the initial optimal spanning tree T ∗, and the upper bound �.
find_feasible_trees(G = (N, E ), c, T ∗, r̄c∗, K, F T , �)
1: it = 1
2: while (it ≤ K)&&(ob j(T ∗) ≤ �) do /*with ob j(T ∗) value of the objective function in T ∗*/
3: Let e be the edge not in T ∗ corresponding to the element rc∗

it ∈ r̄c (r̄c∗
1 is the minimum non-zero reduced cost)

4: Let C∗ be the cycle that the edge e creates with the edges belonging to the spanning tree T ∗

5: Sort by cost (from the highest to the lowest) the edges of the cycle C∗ different from e
6: for e∗ ∈ C∗ with e∗ �= e do
7: Add e to T ∗ and remove e∗ from T ∗

8: Let T
′

be the spanning tree so obtained
9: if ob j(T

′
) ≤ � then

10: Add T
′

to the list F T
11: if it > 1 then
12: Let rc

′
the vector containing the first it − 1 reduced costs

13: find_feasible_trees (G = (N, E ), c, T
′
, rc

′
, it − 1, F T )

14: end if
15: end if
16: end for
17: it = it + 1
18: end while
19:
OUTPUT: Set F T containing the spanning trees of the graph G which return a value of the objective function less or
equal to �.

The latter inequality contradicts the existence of an efficient solution xe /∈ Ei within Ti that is not
equivalent to some solution in Ei and that was not obtained during the recursive procedure.

The argument above proves that Ei contains a complete set of efficient solutions but it may also
contain, when the recursion stops, some solutions potentially non-efficient. Indeed, it may occur
that a solution x ∈ Ei generated at a given stage of the recursive procedure dominates a solution
previously inserted in Ei. Thus, the final step of the algorithm (lines 24–26) checks if Ei contains any
non-efficient solutions, in order to remove them. This way when the algorithm ends, Ei is an actual
complete set of efficient solutions whose image is within Ti. �

5.3. Illustrative example

In this section, we illustrate the computation of the Two_phase_btree algorithm on the small
undirected graph represented in Fig. 3 with six nodes, seven edges E = {e1 = (1, 2), e2 = (1, 4),
e3 = (2, 3), e4 = (2, 5), e5 = (3, 6), e6 = (4, 5), e7 = (5, 6)}, and edge costs c1 = [29, 25, 13, 17,

20, 35, 10] and c2 = [15, 25, 20, 17, 13, 10, 35].
Table 1 reports the three extreme efficient solutions generated in the first phase by Bensolve,

which create the two triangles T1 and T2 shown in Fig. 4.
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Fig. 3. Example graph.

Table 1
Extreme efficient solutions computed by Bensolve

Tree Point

{(1, 2), (1, 4), (2, 3), (2, 5), (5, 6)} (94, 112)
{(1, 2), (1, 4), (2, 3), (2, 5), (3, 6)} (104,90)
{(1, 2), (2, 3), (2, 5), (3, 6), (4, 5)} (114, 75)

Fig. 4. Pareto Frontier of the illustrative example.

Table 2 reports the solutions in the order in which they were generated by the Two_phase_btree
algorithm in the first triangle T1 obtained by the first pair of extreme efficient solutions.

From Table 2 we can observe that the recursive procedure applied in triangle T1 generates 13
spanning trees (3 of them are generated twice), which correspond to 5 points belonging to triangle
T1, 7 points belonging to triangle T2 and 1 point outside of both triangles. Among the 5 points inside
triangle T1, 4 of them are non-dominated and thus they correspond to non-supported efficient
spanning trees. The related Pareto frontier is shown in Fig. 4.

6. Experimental results

The two-phase strategies TP #1 (PolySCIP), TP #2 (Bensolve) and TP #3 (Prim’s algorithm em-
bedded in a weighted sum approach), whose first phases were illustrated in Sections 4.1 and 4.2,
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Table 2
Solutions computed by Two_phase_btree for triangle T1 of the illustrative example

# Tree Weighted cost Point Comment

1 {(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)} 3214 (97, 108) Non-dominated
2 {(1, 2), (1, 4), (2, 5), (3, 6), (5, 6)} 3272 (101,105) Non-dominated
3 {(1, 2), (2, 3), (2, 5), (4, 5), (5, 6)} 3258 (104, 97) Dominated
4 {(1, 4), (2, 3), (2, 5), (4, 5), (5, 6)} 3270 (100, 107) Non-dominated
5 {(1, 2), (1, 4), (2, 3), (4, 5), (5, 6)} 3514 (112 105) not in T1 (and T2)
6 {(1, 2), (2, 3), (3, 6), (4, 5), (5, 6)} 3284 (107,93) not in T1 (and T2)
7 {(1, 4), (2, 3), (3, 6), (4, 5), (5, 6)} 3296 (103, 103) Non-dominated
8 {(1, 2), (1, 4), (2, 3), (3, 6), (4, 5)} 3514 (122,83) not in T1 (and T2)
9 {(1, 2), (1, 4), (2, 3), (4, 5), (5, 6)} 3294 (112,105) not in T1 (and T2)
10 {(1, 2), (1, 4), (3, 6), (4, 5), (5, 6)} 3598 (119, 98) not in T1 (and T2)
11 {(1, 2), (2, 5), (3, 6), (4, 5), (5, 6)} 3342 (111, 90) not in T1

12 {(1, 4), (2, 5), (3, 6), (4, 5), (5, 6)} 3354 (107, 100) not in T1 (and T2)
13 {(1, 2), (1, 4), (3, 6), (4, 5), (5, 6)} 3598 (119, 98) not in T1 (and T2)
14 {(1, 2), (2, 3), (2, 5), (3, 6), (4, 5)} 3258 (114,75) not in T1

15 {(1, 4), (2, 3), (2, 5), (3, 6), (4, 5)} 3270 (110, 85) not in T1

16 {(1, 2), (1, 4), (2, 3), (3, 6), (4, 5)} 3514 (122, 83) not in T1 (and T2)

respectively, have been tested and compared on a testbed of instances generated from two different
sets of graphs: grid and complete graphs. We implemented two simple generators of both topologies
adopting the procedure described in Steiner and Radzik (2008), considering different numbers of
vertices. With respect to the grid graphs, we generated instances of 4, 9, 16, 25, 36, 49, 64, 81, 100
and 121 nodes while for the class of complete graphs we generated instances of 10, 14, 18, 22, 26, 34
and 38 nodes. For each set, we considered weak and strong correlations between edge costs. More in
detail, we developed a procedure to generate costs with different correlation degrees based on three
steps: in the first one, two uniform random values (rand1 and rand2) between 0 and 1 are generated
and a parameter δ (less than 45◦) is given as input. Then an angle α = [rand1 ∗ 2δ + (45◦) − δ)] is
defined. Finally, the two costs c1 = [100 ∗ cos(α) ∗ rand2] and c2 = [100 ∗ sin(α) ∗ rand2] are com-
puted. The idea underlying this procedure is to convert one of the two initial random values into
an angle α between 45◦ − δ and 45◦ + δ and to generate the two costs as functions of cos(α) and
sin(α), respectively, with values that range between 0 and 100. Through this procedure if α = 45◦

the costs are identical otherwise, depending on the value of the parameter δ, we have more or less
correlation between the two costs (small values of δ correspond to stronger positive correlation and
to weaker negative correlation).

For each set of parameters, we generated 10 graphs. We set a time limit of 600 s of CPU time
for each run and we report the average running time of the 10 runs distinguishing between the time
devoted to the first and the second phase. Moreover, we run TP #1, TP #2 and TP #3 also on the in-
stances by Di Puglia Pugliese et al. (2018) available at http://www.mat.uc.pt/∼zeluis/INVESTIG/
MOMST/momst.htm. This section reports average results of our computational experiments and
the comparison with the ones related to the most recent two-phase strategy by Steiner and Radzik
(2008) and the most recent algorithm by Di Puglia Pugliese et al. (2018) designed for the BMST
problem. Detailed results, instance by instance, can be found in the Appendix. Note that the consid-
ered problem sizes are not comparable with the ones used in Sourd and Spanjaard (2008). Indeed,
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Fig. 5. Average solution time (s) for grid graphs with strongly positively correlated costs.

an important difference between the algorithm presented in this paper and the branch-and-bound
approach proposed by Sourd and Spanjaard is that the first one leads to compute the complete set
of efficient solutions XE , i.e., a complete set of efficient spanning trees in the decision space, whereas
the latter one computes YN , the set of non-dominated outcomes in the image space. This implies
that |XE | is generally exponential while |YN | is pseudopolynomial since it can contain at most nK
points, where K is the maximum edge weight. Therefore, any approach that searches for Pareto trees
is necessarily limited to smaller instances because computation time is in (|XE |), although it has the
advantage of providing the actual efficient trees rather than only their objective function values.

First phase 1 was developed using PolySCIP (Schenker and Strunk, 2016), which is the SCIP
module for multi-objective mixed-integer programming. This module is based on a particular im-
plementation of the weighted sum method, namely the lifted weight space algorithm, see Borndör-
fer et al. (2016). The implementation of the First phase 2 is based on Bensolve, see Weißing and
Löhne (2014), which is an open-source solver for vector linear programs and, in particular, for
multiple objective linear programs based on Benson’s algorithm (Weißing and Löhne, 2017). More
precisely, we used this solver resorting to the dual variant of Benson’s algorithm (Ehrgott et al.,
2012). The First phase #3, consisting in Prim’s algorithm embedded in a weighted sum method by
means of a recursive interval based algorithm, and the recursive procedure on which the second
phase is based, have been implemented by the authors in C++. The whole code has been devel-
oped in Xcode for Mac and all tests were run on a node of a high-performance computing cluster,
composed of four nodes, each of them with 32 cores and 64 GB of RAM.

In Fig. 5 the computational times related to grid graphs with strongly positively correlated
costs are reported. Similarly, in Fig. 7, we show the results of grid graphs with weakly positively
correlated edge costs. For each set of instances, we distinguished the running times of the two
phases, considering the three different strategies for the first phase (First phase 1, First phase 2,
First phase 3).

From Fig. 5 we can observe that all instances can be solved within the time limit (600 s). First
phase 3 is the fastest one in all cases, followed by First phase 2 and First phase 1 (note that for the set
of grid graphs with 121 nodes PolySCIP is able to solve only one instance within 600 CPU seconds
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Fig. 6. Average number of non-dominated points for grid graphs with positively correlated costs.

and for this reason it does not appear in the histogram). Consequently, the total running time of
the two-phase method is smaller using Prim’s algorithm for the first phase. This is an expected
behaviour, as the latter is a greedy algorithm. However, these results show that it is also possible
to solve the problems up to the maximum considered size in less than 5 minutes, at least for strong
positive correlation instances, by means of a mathematical programming approach (dual variant
of Benson algorithm). The average solution time of the second phase ranges between 0 and 89
CPU seconds. Thus, considering the fastest strategy TP #3, we can observe that for all instances
belonging to this class, the first phase needs a running time that is almost always equal to 0 and the
second phase takes up most of the solution time which increases with the input size. This behaviour
can be understood by looking at the number of non-dominated points.

Figure 6(a) shows the average number of non-dominated points for each set of instances, distin-
guishing between supported non-dominated points (SN) and non-supported non-dominated points
(NN). We can see that the number of extreme non-dominated points augments with the input size
and thus the number of triangles that have to be analysed in the second phase grows. For this reason
the running time of the second phase increases. Moreover, we note that for instances with 4 and 9
nodes there are no non-supported non-dominated (NN) points in the Pareto frontier, while from in-
stances of 16 nodes or more we have an increasing number of non-supported non-dominated points.
For instances with 81, 100 and 121 nodes, they represent the majority of the non-dominated points.
This is also an expected behaviour because as already observed the number of non-supported non-
dominated points increases with the input size. Similar observations can be made for weakly pos-
itively correlated costs from Fig. 7, but for this class of instances, our two-phase algorithm is not
able to solve problems with 121 nodes within the time limit.

In the case of weakly positive correlation, we detect from Fig. 6(b) that for each size of instances
the average number of non-supported non-dominated points is larger than the mean number of
supported ones and they appear in the Pareto frontier also for instances of 4 and 9 nodes. This
is due to the weak correlation between costs which leads to enlarging the angle formed by the
gradients of the objective functions, that is, to more conflict between objectives and thus to an
increase of the cardinality of the Pareto frontier. For this class of instances, Table 3(a) reports also
the comparison between the running times of the two-phase algorithm TP#3 and the ones provided
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Fig. 7. Average solution time (s) for grid graphs with weakly positively correlated costs.

Table 3
Running time comparison with Stainer and Radzik (S&R) algorithm

(a) Grid graphs (weakly positively correlated costs) (b) Complete graphs (strongly positively correlated costs)

Running times (in seconds) for grid graphs with
weakly positively correlated costs

Running times (in seconds) for complete graphs with
strongly positively correlated costs

n S&R TP#3 n S&R TP#3

4 0 0 10 0.01 0.03
9 0 0 14 0.04 0.11
16 0.06 0.14 18 0.26 0.82
25 0.4 0.84 22 1.65 1.23
36 1.35 3.59 26 3.37 0.46
49 5.14 10.8 30 9.76 0.14
64 18.5 37.92 34 24.32 0.17
81 58.27 107.97 38 65.64 0.46
100 166.8 233.24
121 328.26 –

Fig. 8. Average solution time (s) for grid graphs with strongly negatively correlated costs.

by Steiner and Radzik (2008) (S&R). They show that for this set of instances Steiner and Radzik
method is faster.

We also considered negative correlation between costs, always distinguishing between strong
and weak correlation. Figure 8 reports the average solution times of the two-phase algorithm for
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Fig. 9. Average number of non-dominated points for grid graphs with negatively correlated costs.

Fig. 10. Average solution time (s) for grid graphs with weakly negatively correlated costs.

strongly negatively correlated costs. In this case, the fastest version of our method (TP#3) is able to
solve grid instances up to 81 nodes within the time limit. Indeed, the size of the Pareto frontier is
further increased due to the negative correlation between costs as can be observed in Fig. 9(a). The
number of non-dominated points of each set of instances is more than double that in the case of
weakly positively correlated costs.

Regarding the instances with weakly negatively correlated costs, Fig. 10 shows that, even if First
phase 3 is always the fastest one, First phase 1 performs significantly better than First phase 2,
differently from the previous cases. Indeed, the two-phase algorithm is able to solve instances of 64
nodes within the time limit applying PolySCIP or Prim’s algorithm embedded in the weighted sum
method. The size of the Pareto frontier further increases and the supported non-dominated points
represent a very small proportion of it, as shown in Fig. 9(b).

Similarly, we tested the two-phase algorithm on complete graphs from 10 to 38 nodes like in
Steiner and Radzik (2008). In Fig. 11, we can see that the algorithm is able to generate the Pareto
frontiers within the time limit for each set of instances when the costs are strongly positively corre-
lated. In this case, from instances of size 30, First phase 1 performs better than First phase 2 but the
fastest one remains, as expected, First phase 3. The second phase takes a very limited amount of the
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Fig. 11. Average solution time (s) for complete graphs with strongly positively correlated costs.

Fig. 12. Average number of non-dominated points for complete graphs with positively correlated costs.

total running time. Indeed, the average number of non-dominated points is always around 2 with
the exception of the set of instances with 18 nodes for which it is roughly speaking 3, Fig. 12(a).
The limited number of efficient solutions can be explained considering that the strong positive cor-
relation between costs originated test instances characterised by a large domination cone.

Table 3(b) reports also the comparison between the running times of the two-phase algorithm
TP#3 and the ones provided by Steiner and Radzik (2008) (S&R) for complete graphs with strongly
positively correlated costs. In this case, we can observe better performance of our method, with a
maximum saving in running time of 99% for complete graphs with 38 nodes.

Also in the case of weak positive correlation, the algorithm is able to generate a complete set of
efficient solutions within the time limit for all the instances (Fig. 13). The second phase is slower
than the first one for each set. Indeed, as shown in Fig. 12(b), the number of non-dominated ex-
treme points is bigger than in the case of a strong positive correlation. Moreover, the total number
of non-dominated points increases with respect to the case of strong correlation, since the weak cor-
relation between costs implies a smaller domination cone. Moreover, the number of non-supported
non-dominated points increases with the size of the instances up to the set of complete graphs with
30 nodes (Fig. 12b).
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Fig. 13. Average solution time (s) for complete graphs with weakly positively correlated costs.

Fig. 14. Average solution time (s) for complete graphs with strongly negatively correlated costs.

Considering negative correlation, similarly to the class of grid graphs, the size of the instances for
which the algorithm is able to generate the Pareto frontier within the time limit decreases. As we can
observe from Fig. 14, the maximum solvable size is 26 nodes. First phase 3 continues to be the best
strategy and the second phase takes up most of the solution time because complete graphs imply a
higher number of fundamental cycles to be examined through the recursive procedure. Figure 15(a)
shows that the set of non-dominated points is mainly composed of non-supported ones.

The weak negative correlation between costs makes the instances harder to solve and, as repre-
sented in Fig. 16, the maximum solvable size, within the time limit, decreases to 18 nodes.

The comparison between the three strategies for the first phase appears more similar than in the
previous cases even if First phase 1 continues to be faster than the First phase 2. First phase 3 is
the fastest one. The number of non-supported non-dominated points always increases with the size
of the instances and they represent almost the entire Pareto frontier, Fig. 15(b).

Table 4 reports the comparison between the running times of the two-phase algorithm TP#3 and
the ones provided by Di Puglia Pugliese et al. (2018) (BN) on their instances. Di Puglia Pugliese
algorithm is faster than ours although the larger the size the smaller the difference in the running
times between their and our algorithm. This trend seems to indicate that further increasing the size
of the instances would yield the performance of both algorithms to be similar. Nevertheless, we
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Fig. 15. Average number of non-dominated points for complete graphs with negatively correlated costs.

Fig. 16. Average solution time (s) for complete graphs with strongly negatively correlated costs.

Table 4
Running time comparison with Di Puglia Pugliese et al. algorithm

Running times (in ms) for Di Puglia Pugliese et al. instances

n BN TP#3

5 0.18 7.07
6 0.20 23.73
7 0.61 59.37
8 1.58 135.89
9 3.26 211.01
10 17.54 452.61
11 41.08 698.86
12 110.91 1156.21
13 344.52 1691.21
14 1122.22 2586.84

could not confirm our guess on this behaviour of the algorithms for larger sizes since the dataset
provided by Di Puglia Pugliese et al. (2018) only goes until 14 nodes.

Summing up, from our computational experience, it appears that Bensolve outperforms
PolySCIP for grid graph instances with the exception of weakly negatively correlated costs.
PolySCIP compares favourably with Bensolve for complete graph instances. This behaviour is
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possibly due to the different formulations adopted. Indeed, the Kipp-Martin formulation that
must be used with Bensolve is characterized by a larger number of variables with respect to the
flow formulation used with Polyscip. This difference makes the Kipp-Martin formulation more
complex to be solved when the graphs are complete and thus the number of variables zki j increases
considerably. As expected, in all cases the first phase based on Prim’s algorithm outperforms the
others. However, the adoption of a mathematical programming approach is reasonable up to
instances of size 36 for grid graphs with positively correlated costs, for which the running time of
Bensolve, even if it is longer than the one associated with Prim’s algorithm, is still limited. Also for
complete graphs with positively correlated costs, the mathematical programming approach can be
adopted without very big differences in terms of running time up to size 18, resorting to Polyscip.

As far as the second phase is concerned, the solution time is correlated to the average number
of non-dominated extreme points of the convex hull defined by the feasible region in the objective
space. As could be expected, negatively correlated costs give rise to much larger non-dominated sets,
also including a larger proportion of non-supported non-dominated points. This structure makes it
more difficult to compute the sets of Pareto solutions increasing significantly the requirements on
computing time. Moreover, we compared our algorithm with the most recent two-phase method,
Steiner and Radzik (2008) and with the most recent algorithm designed for the multi-objective
MST problem Di Puglia Pugliese et al. (2018).

Concerning the comparison in the case of Steiner and Radzik (2008), our algorithm performs
better in the class of complete graphs with strongly positively correlated costs and their method
performs better for grid graphs. As regards the comparison with Di Puglia Pugliese et al. (2018),
we observed their algorithm performs better than ours, but as the size of the problems increases
the behaviour becomes similar. Our results confirm what is already known in the literature about
the difficulty of these problems related with the graph topology and edge cost correlations. The
proposed method is not always faster than already existing ones although it solves similar instance
sizes. This behaviour can be explained by observing that the enumerative recursive procedure does
not find feasible solutions in strict ranking order. Consequently, the update of the upper bound,
which limits the recursion, can be in some cases slower, making the whole second phase not always
faster than the one of previous algorithms proposed in the literature. Thus, at least in our imple-
mentation, the more general applicability of the procedure, in some cases, results in a convergence
of the algorithm not faster than the already existing ones.

7. Conclusions

This paper presents a new two-phase algorithm to compute a complete set of Pareto solutions of
the BMST problem. In the first phase, the extreme efficient solutions are obtained by three differ-
ent strategies: (1) a weighted sum approach that can be implemented by any mixed-integer linear
programming solver although we have applied it with PolyScip; (2) a dual variant of Benson’s algo-
rithm that is applied to the Kipp-Martin formulation of the BMST problem and (3) Prim’s greedy
algorithm embedded in a weighted sum approach. The second phase is based on a new recursive
algorithm which takes advantage of the particular structure of the problem and its basic feasible
solutions able to generate all the spanning trees of a connected network. Extensive computational
experiments show the correctness of our new approach. We solve problems on two different graph
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topologies (grid and complete) and with different cost structures (positively and negatively corre-
lated). Moreover, we also compare our algorithm with the most recent two-phase method (Steiner
and Radzik, 2008) and with the most recent algorithm designed for the multi-objective MST prob-
lem (Di Puglia Pugliese et al., 2018). Qualitative analysis of the solutions based on the graph topol-
ogy and cost structure are reported. All the results are included in the electronic appendix associ-
ated with this paper. Although the proposed approach is not always faster than the existing ones,
it solves problem instances of a size similar to those already considered in the literature. Moreover,
the presented recursive procedure adopted in the second phase, has the advantage to be easy to
implement and the potential to be embedded in a two-phase method to deal with a wider class of
combinatorial optimization problems. Indeed, it exploits the spanning tree structure of the basic
feasible solutions, which is a property satisfied by single- and multi-commodity network flow prob-
lems (e.g., min cost flow problem and shortest path problem). This opens a new line of research
in designing two-phase methods not relying on the adoption of “ad hoc” procedures for problems
belonging to this class.
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