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Abstract— In this article, a sparse-Bayesian treatment is
proposed to solve the crucial questions posed by power ampli-
fier (PA) and digital predistorter (DPD) modeling. To learn a
model, the advanced Bayesian framework includes a group of
specific processes that maximize the likelihood of the measured
data: regressor pursuit and identification, coefficient estimation,
stopping criterion, and regressor deselection. The relevance
vector machine (RVM) method is reformulated theoretically to
be implemented in complex-valued linear regression. In essence,
given an initial set of candidate regressors, the result of this
sparse-Bayesian learning approach is the most likely model.
Experimental results are provided for the linearization of class
AB and class J PAs driven by a 30-MHz fifth-generation new
radio signal for a fixed average power, where the evolution of
the figures of merit versus the number of active coefficients
is examined for the proposed sparse-Bayesian pursuit (SBP)
algorithm in comparison to other greedy algorithms. The SBP
presents a good performance in terms of linearization capabilities
and computational cost. Furthermore, the proposed Bayesian
framework enabled the design of a DPD model structure,
deselect regressors, and readjust coefficients in a direct learning
architecture, demonstrating the robustness to changes in the
power level over a 10-dB range.

Index Terms— Behavioral modeling, digital predistortion, non-
linear model identification, power amplifier (PA), Volterra series.

I. INTRODUCTION

MODERN wireless communications front ends are sub-
ject to demanding design requirements, generally shar-

ing a common trend toward efficiency. On the one hand,
diverse techniques have arisen to strive for better spec-
tral efficiency, being orthogonal frequency-division multi-
plexing (OFDM) and massive multiple-input/multiple-output
(MIMO) technologies among them. The fifth-generation new

Manuscript received September 15, 2021; revised December 14, 2021 and
February 22, 2022; accepted February 23, 2022. This work was supported
by Grant TEC2017-82807-P funded by MCIN/AEI/10.13039/501100011033/
and by “ERDF A way of making Europe”. The work of Sergio Cruces
was supported in part by the Junta de Andalucía through the FEDER-
Andalucian Research Project under Grant US-1264994. This article is an
expanded version from the 2021 IEEE MTT-S International Wireless Sym-
posium [DOI: 10.1109/IWS52775.2021.9499382]. (Corresponding author:
María J. Madero-Ayora.)

The authors are with the Departamento de Teoría de la Señal y
Comunicaciones, Escuela Técnica Superior de Ingeniería, Universidad de
Sevilla, 41092 Seville, Spain (e-mail: mjmadero@us.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMTT.2022.3157586.

Digital Object Identifier 10.1109/TMTT.2022.3157586

radio (5G-NR) standard makes use of both. On the other hand,
the seek for energy efficiency is also a core objective of 5G.
Radio transmitters can constitute a bottleneck in this search
for energy efficiency [1], with the power amplifier (PA) being
the most critical subsystem in terms of power consumption.
Furthermore, the PA output power is traded for linearity.
Considering the regulatory requirements to reduce out-of-band
emissions, the use of linearization techniques can help to
optimize the overall energy efficiency. Digital predistortion is
the most widely used form of linearization [2], being nowadays
successfully supported by machine learning and data science
techniques [3]–[5].

Pioneering papers on PA linearization use the memory
polynomial (MP) [6], the generalized memory polynomial
(GMP) [7], and the dynamic deviation reduction (DDR) [8]
models. The reason of this choice is twofold: first, the high
performance provided by beneficial terms, and second, the
simpler model structure of these models compared to the
huge full Volterra model. Once the digital predistorter (DPD)
designer has selected the nonlinear order and the memory
length, the number of regressors is fixed, and therefore, the
models with fewer regressors are preferred.

A different approach has been presented to prune PA
behavioral models and DPDs based on the compressed sam-
pling theory [9], [10]. In this perspective, pursuit algo-
rithms were implemented to identify the active regressors in
sparse systems and, unlike the previous approaches, models
with a very large and richer set of regressors are more
favorable.

Conventional pursuit algorithms proposed to prune the
models were orthogonal matching pursuit (OMP) and doubly
orthogonal matching pursuit (DOMP) [10], [11], but other
approaches are possible. In the case of real-valued sparse
systems, the relevance vector machine (RVM) [12]–[14] is
an elegant Bayesian technique for regression obtained by
linearly weighting a small number of active regressors from a
large set of potential candidates. The essence of the RVM is
the adoption of a particular strategy for maximization of the
marginal likelihood.

The sparse-Bayesian technique in [12] can be applied
without modification to the design of a DPD after the complex
envelope of the communication signal is transformed into the
real domain, as it was proposed by Peng et al. [15]. In that
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paper, they reported a lower efficiency compared to the pruning
procedure [10] when the size of the data matrix is small and
a computational cost comparable to that technique when the
size is large enough. Since work [11] was a later publication,
a comparison with the results for this pruning algorithm was
not provided.

In this present article, a complex-valued Bayesian treatment
for pruning baseband PA models, a limited summary of
which was advanced in the conference communication [16],
is further developed in Section II. In this article, the real-
valued treatment in [12] and the sequential method [14] are
adapted to complex-valued linear regression. The proposal
includes a sparse-Bayesian pursuit (SBP) based on a sim-
pler algorithm to search the active regressors, speeding up
the identification process. The proposed method has been
extended with new routines to remove nonactive regressors
and reestimate the model coefficients in a scenario of power-
level variation. After advancing some experimental results
for the behavioral modeling of a PA, Section III is devoted
to show the linearization performance achieved by the SBP
technique. First, the proposed pursuit approach is compared to
the greedy pursuit algorithms OMP and DOMP together with
the Bayesian information criterion (BIC) rule, and afterward,
the robustness of the reduced complexity DPD model structure
that the SBP technique provides is examined against power-
level changes. Finally, some concluding remarks are presented
in Section IV.

II. BAYESIAN APPROACH TO PA MODELING

The Volterra series can be used to represent a PA and the
complex envelope of the output signal is described with the
corresponding discrete-time baseband model. In that case, the
PA output is expressed by a linear combination of basis func-
tions, denoted here as Volterra regressors, given by monomials
resulting from the multiplication of delayed samples of the
input complex envelope x(k) and its conjugate x∗(k). Gather-
ing M samples of the input signal to arrange the column vector
x = [x(1) x(2) · · · x(M)]T and defining in a similar way the
Volterra regressor vectors φi , normalized and arranged in an
ordered fashion, the output can be expressed in the matrix
form as

yd =
N∑

i=1

hiφ i

= Xh (1)

where N is the number of regressors, hi are the regression
coefficients arranged in the column vector h, and X =
[φ1 φ2 · · · φN ] is the M × N regressors matrix.

In the presence of experimental noise, a given acquisition
can be written as

y = X h + e (2)

where y is a column vector with M acquired samples of
the output complex envelope. The regression vector h and
the additive noise vector e are assumed to be drawn from
zero-mean random vectors, whose elements have respective
variances α−1

i , i = 1, . . . , N , and σ 2.

An oversized regressors stock of the model is a discourag-
ing drawback if the coefficients’ estimation is accomplished
directly by the least-squares (LS) procedure because it involves
the inversion of X and a high computational cost. However, the
richness of the regressor set is advantageous if it is combined
with a pursuit method to identify the active regressors of a
sparse system.

A suitable pruning procedure was presented in [10] and [11],
with the application of greedy algorithms (OMP and DOMP)
in the search of the most significant regressors among the
complete pool of the Volterra model and the use of the BIC
to stop the pursuit of regressors and avoid overfitting.

The present proposal is a Bayesian treatment of a general-
ized linear model [12] based on the application of the RVM to
the problem of PA linearization. The SBP algorithm included
in the proposal to pursuit the active regressors can be high-
lighted and its comparison with the other mentioned greedy
algorithms. One of the most popular Bayesian estimators for
h is given by the minimum of the mean square error (mse)
solution. This solution is given by the conditional mean of
the regression coefficients given the observed measurement
vector y. However, the analytical evaluation of this expectation
is only known for a few specific distributions, and one of
such favorable cases happens when the conditional density is
Gaussian. Instead of directly assuming the Gaussian density
ad hoc, in Appendix I, we theoretically justify its choice
as the robust density estimate with the maximum degree of
randomness given the current variance estimates of σ 2 and
α−1

i , i = 1, . . . , N . This robust density has the following
desirable properties.

1) The signal component yd and noise component e of the
measurement vector y are mutually independent.

2) The noise samples are independent and drawn from
a complex proper Gaussian density of zero mean and
σ 2 variance.

3) The regression coefficients h1, . . . , hN are mutually
independent and drawn from complex proper Gaussian
densities of zero mean and respective variances α−1

i ,
i = 1, . . . , N .

These three properties match well with those to be expected
from measurements in communications applications. In par-
ticular, the elementwise distributions of the measured samples
and noise are guaranteed to be circularly symmetric, i.e.,
invariant under planar rotation. This places a relevant differ-
ence with the sparse-Bayesian learning approach mentioned
in [15], which relies on the independence of the real and
imaginary components of hi , since this property alone is not
sufficient to guarantee the circularity of their distributions.
In this sense, the model we consider here seems to capture
better relevant properties of the signals involved while requir-
ing the estimation of a smaller number of real parameters. Note
that the number of parameters αi is doubled in [15] due to the
decoupling of the real and imaginary components. Therefore,
the descriptive efficiency of our proposed representation for
this specific scenario of application will, in general, result
in a more reliable Bayesian estimation of the regression
coefficients.
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A. RVM Applied to Complex-Valued PA Modeling

Since the measure of the PA model parameters is different
for different experiments, the statistical approach mentioned
in [12] is developed by assuming here a joint complex-valued
Gaussian distribution for the coefficients h and the vector of
measurements y. Interested readers can find a justification for
this assumption in Appendix I. Assuming independence of the
samples, the likelihood of the complete dataset can be written
as

p(y|h, σ 2) = 1

(πσ 2)M
e−

1
σ2 ||y−Xh||2 (3)

where y = [y1, . . . , yM ]T .
A Bayesian perspective to avoid overfitting is adopted and

the parameters are constrained by defining an explicit prior
probability distribution over them and adding a complexity
penalty term to (3). The likelihood function is complemented
by a zero-mean Gaussian prior distribution over the coeffi-
cients h

p(h|α) =
N∏

i=1

1

πα−1
i

e−αi |hi |2 (4)

with α a vector of N hyperparameters. Therefore,

p(h|α) = 1

π N |A|−1
e−hH Ah (5)

where A = diag(α1, . . . , αN ) is the diagonal precision matrix
of the hyperparameters vector α. The posterior distribution
over the coefficients is deduced from the Bayes rule

p(h|y,α, σ 2) = 1

π N+1 det �
e−(h−μ)H �−1(h−μ) (6)

where the posterior precision and mean of the coefficients are,
respectively, given by

�−1 = βXH X+ A (7)

and

ĥ ≡ μ

= β�XH y (8)

with β = σ−2. Note that the posterior precision matrix �−1

optimally updates in an additive manner the a priori precision
A of the coefficients with the increase in precision βXH X
provided from the extra information of the measurements.
On the one hand, for a reduced number of samples, the
posterior precision matrix of the estimate is dominated by
the a priori precision A. On the other hand, with a vague
prior A → 0, the posterior precision is dominated by the
contribution of the measurements and, therefore, tends to the
one of the LS estimator, i.e., �−1 → βXH X.

The new formulation of the RVM approach [12] in the case
of complex-valued systems involves the maximization over α

of the marginal likelihood, which is given by

p(y|α, σ 2) = 1

(π)Ns |C|e
−yH C−1y (9)

where

C = σ 2I + XA−1XH (10)

refers to the covariance matrix of the measurement vector.

For convenience, we maximize the logarithm of the mar-
ginal likelihood, which gives the objective function

L(α) = − ln |σ 2I+ XA−1XH | − yH (σ 2I + XA−1XH )−1y.

(11)

The strategy of sparse-Bayesian learning is the maximization
of L(α) focusing on the contribution of a single hyperpara-
meter αi . This splitting is possible if the M × M matrix C is
decomposed as

C = σ 2I+
∑
m �=i

α−1
m φmφH

m + α−1
i φiφ

H
i

= C−i + α−1
i φiφ

H
i (12)

where C−i is C without the contribution of the regressor φi .
For its inversion, one can use the following identity:

C−1 = C−1
−i −

C−1
−i φiφ

H
i C−1
−i

αi + φH
i C−1
−i φi

(13)

and, through the substitution of (12) and (13) into (11), the
objective function L(α) additively decouples as

L(α) = L(α−i )+ �(αi ) (14)

where L(α−i ) denotes the value of the objective function when
it is evaluated without the contribution of regressor φi and
�(αi ) refers to the increment obtained in the objective function
due to the incorporation of this regressor. This increment is
given by

�(αi ) = |qi |2
si − αi

− ln

(
1− si

αi

)
(15)

where we have used the definitions

si = φH
i C−1
−i φ i and

qi = φH
i C−1
−i y. (16)

The “sparsity factor” si is a measure of the extent that
regressor φi “overlaps” those already present in the model.
The “quality factor” qi is complex-valued in this approach
and its magnitude gives a measure of how well φi increases
the marginal likelihood by helping to explain the data. The
objective function L(α) has a unique maximum with respect
to αi at

αi = s2
i

|qi |2 − si
, if |qi |2 > si (17)

or at αi = ∞ otherwise. During the regressor pursuit, many
αi ’s tend to infinity, meaning that these coefficients are peaked
at zero, i.e., hi = 0 and the corresponding regressors are not
included in the active set.

B. Sparse-Bayesian Pursuit

The search procedure of this treatment is a complex-
valued reformulation of the learning method in [14] and is
an alternative to [15]. The pursuit is initiated with an empty
active set of regressors, and therefore, C−i = σ 2 in (12).
Initially, the potential set is the full stock of N potential
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regressors and σ 2 is set to some sensible value, for example,
σ 2 = (1/M)�y�2 × 10−6.

The values of si and qi are computed and the potential
regressor φi that maximizes L(α) or, equivalently, maximizes

�(αi ) = |qi |2 − si

si
+ ln

si

|qi |2 (18)

is incorporated to the set of active regressors.
Notice that this step is equivalent to selecting the regressor

with the greatest projection |φH
i y|, as in the greedy pursuits,

but unlike OMP and DOMP, this procedure includes an addi-
tional condition so that the potential regressors not satisfying
|φH

i y|2 > σ 2 in (17), i.e. with projection below the noise level,
are deleted with αi = ∞.

After the first pursuit iteration, the active set is increased
by one regressor with a new computed αi and the number
of potential regressors is reduced. Likewise, the posterior
covariance � and mean μ of the coefficients, which are scalars
in this first iteration, are computed along with the updated
values of si and qi for all potential regressors.

Repeating these operations, in each successive iteration,
the SBP retrieves the regressor that maximizes the marginal
likelihood, and the posterior covariance and mean of the
coefficients are updated using the following formulas:

�̃ =
[

� + β2�ii�XH φiφ
H
i X� −β�ii�XH φi

−β�ii (�XHφ i)
H �ii

]
(19)

μ̃ =
[

μ− μiβ�XH φi

μi

]
(20)

where �i i = (αi+si )
−1, μi = �ii qi , and ei = φi−βX�XH φi .

The active set is increased until the candidate regressor set is
exhausted. The pseudocode of this SBP technique is shown in
Algorithm 1.

Enunciated in terms of the posterior coefficient covariance
� = (βXH X + A)−1, the first benefit of the method is a
formulation understood as a regularization procedure. Given
that � is an N × N matrix, a second benefit is observed in
terms of memory requirements compared to the direct use of
the M×N regressors matrix X in an overdetermined equation
system (M > N). Finally, the coefficients are estimated with
a sequential algorithm avoiding the expensive computation of
the regressor matrix pseudoinverse.

To illustrate the SBP performance, the learning curves in
the identification process of a class AB PA are plotted in
Fig. 1 for two GMP models of fifth and ninth orders. The
experimental test bench is the same used in [16] and is also
described in Section III. The resulting NMSE performance
is −52.2 dB with 77 active regressors, identified from the
unreduced set of 231 candidate regressors of the fifth-order
model, and −53.6 dB with 106 active regressors, identified
from the set of 451 regressors of the ninth-order model (red
circles). In the case of NMSE performance better than the
objective, it is possible a further reduction of the active set.
For example, if a target NMSE of −51 dB is allowed, the SBP
algorithm can reduce further the number of active regressors
to 19 and 16, as the red asterisks shown in Fig. 1.

The regressors kept in the reduced ninth-order model are
ordered by decreasing likelihood in Table I. The type of

Fig. 1. Performance of the SBP identification procedure using two GMP
models with fifth- and ninth-nonlinear orders. NMSE versus number of
coefficients for Po = 27.4 dBm. The full active sets (circles) and the active
sets that guarantee an NMSE = −51 dB (asterisks) are highlighted.

regressor and the associated NMSE improvement are also
displayed. The results of the fifth-order model are related,
except that regressors with higher nonlinear order, such as
those numbered 13 and 16, are missing. The NMSE worsens
slightly and the algorithm tries to compensate for the missing
regressors by adding less effective ones of lower nonlinear
order, thus demanding a total of 19 regressors. Notice that the
ninth-order GMP model with a richer initial set yields a better
NMSE with only 16 coefficients compared to the fifth-order
GMP model, which needs 19 coefficients.

Algorithm 1 SBP

Input: X ∈ CM×N , y ∈ CM

Output: h ∈ CNa , Na 	 N
1: Initialization: Initialize σ 2 to some sensible value (for

example, σ 2 = 1
M �y�2 × 10−6), C(0)

−i ← σ 2

2: Compute with (16) the values of si and qi for all potential
regressors φi , and remove from the potential set the
regressors that do not fulfil the requirement |qi |2 > si .

3: Compute αi and �(αi ) using (17) and (18). Move the
potential regressor that maximizes �(αi ) to the active set.

4: Compute with (19) and (20) the updated values of � and
μ (which are scalars initially). Update C−i along with si

and qi for all potential regressors.
5: Go to 2 until the stopping criterion is met or the potential

set is empty.

C. Deselecting Regressors

Once the active set has been identified, it is reasonable to
question if all regressors remain actually active or if some
regressors can be deselected otherwise, after new regressors
have been incorporated to the active set. The procedure to test
this active set can be initiated with the Na active regressors
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TABLE I

GMP(9, 10, 2) MODEL INITIAL SET: 451 REGRESSORS.
REDUCED SET: 16 REGRESSORS. TARGET NMSE:−51 dB

and the corresponding matrices X0 ∈ CM×Na , A0 ∈ CNa×Na ,
observing that

C0 = σ 2I + X0A−1
0 XH

0

= σ 2I +
Na∑

n=1

α−1
n φnφ

H
n . (21)

Deselection of the regressor φi yields

C = σ 2I +
∑
n �=i

α−1
n φnφ

H
n (22)

or

C = C0 − α−1
i φiφ

H
i (23)

where C is C0 with the contribution of the regressor i removed
(and also the dependence on αi ). Proceeding in a similar way
as in the SBP, it is possible to write the objective function
after deselection L(α) as

L(α) = L(α0)+ �(αi ) (24)

where L(α0) is the objective function before deselection of
regressor φi , and the increase of the objective function after
deselection is

�(αi ) = |qi |2
si − αi

− ln

(
1− si

αi

)
. (25)

The regressor that maximizes the objective function (or
the marginal likelihood) after deselection is discarded from
the active set, and the posterior covariance and mean of the
coefficients are updated using the formulas

�̃ = � − 1

� j j
� j�

H
j (26)

μ̃ = μ− μ j

� j j
� j (27)

and the appropriate row and/or column j is removed from �̃

and μ̃. � j is the j th column of �.
Note that deselection is not contemplated in standard greedy

pursuit techniques. However, it is a beneficial algorithm of

this Bayesian treatment that enables to check whether any
regressor of the set selected by the SBP algorithm is actually
active. Referring to Fig. 1, the deselection procedure was
carried out for the active sets of the two GMP models, 77 and
106 coefficients, with the result that no regressors had to
be removed if the respective accuracy must be preserved.
This is an indication that each regressor selected by the SBP
algorithm is consistently active even if new candidate regres-
sors are included in the set. However, some circumstances
can be foreseen for which deselection of regressors would
be convenient to reconfigure the pruned model. One possible
example is a PA suffering a bias point modification leading
to a less nonlinear operation and a consequent application
of the deselection subroutine would be positive to remove
higher order regressors. In this article, we focus on a different
situation in which the power level of the input signal varies, but
not the system, i.e., the PA. Therefore, the more likely model
learned with the input signal at a given power level is also valid
for other points with lower level and it is only necessary for the
coefficients’ reestimation. The details of model reconfiguration
in this context are discussed in the following.

D. Reconfiguring the Model in a Power-Varying Scenario

The PA was tested with the input signal power covering
an output dynamic range from 20.9 to 33.8 dBm. Taking into
account the benefits of a richer initial model as the power
level increases, previously illustrated for a given power level,
the SBP algorithm was repeated with the more complete set
of candidate regressors of the bivariate circuit-knowledge-
based Volterra (bi-CKV) model [19]. By way of explana-
tion, the pruned fifth-order bi-CKV model, optimized also
with 19 regressors for 27.4 dBm, was applied directly at other
power levels without readjustment of the coefficient values,
and the NMSE results (not shown) degraded dramatically, as it
could be expected.

A straightforward solution to this issue is to perform
again the complete model identification in a point-by-point
basis, i.e., to repeat the search of the active regressors and
the estimation of the coefficients. Considering that for a
scenario with changing power levels, the number of identified
regressors would be different, the SBP algorithm has been
modified to halt when an objective NMSE is reached. When a
target NMSE of −51 dB is selected as the stopping criterion
in the SBP algorithm, a large active set of 171 regressors is
necessary for the highest level, as the dotted line with circles
shown in Fig. 2. These results also demonstrate a viable further
reduction of the number of regressors for lower power levels,
e.g., only five regressors are necessary for the lowest level.

Since 19 regressors have been already determined at
27.4 dBm, a computationally more efficient procedure is the
reuse of these regressors, saving the searching steps, and
repeating only the coefficients’ reestimation subroutine for the
corresponding 19 coefficients. The NMSE performance with
the reestimated coefficients is indicated in the same figure
(blue line with dots).

The efficiency improvement offered by the reestimation
subroutine with respect to the full SBP algorithm can be
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Fig. 2. NMSE without and with the reestimation procedure applied to the
19 regressors model identified at Po = 27.4 dBm. SBP applied point-by-point
(circles), reestimation of the 19 coefficients (blue line), and readjustment and
reestimation for NMSE = −51 dB (red line).

Fig. 3. Comparison of the execution time for the complete identification and
reestimation procedures.

evaluated by comparing the respective execution times of each
iteration shown in Fig. 3. The reestimation (line with asterisks)
is nearly 80 times faster than the complete SBP with active
regressor selection and coefficient estimation (dashed line with
circles).

Considering that the 19 regressors’ set is oversized at lower
levels, a further reduction of the active set is achieved if the
reestimation subroutine of the SBP algorithm is performed
only for the regressors necessary to comply with the −51-dB
NMSE objective (red line). A possible procedure can be
summarized as follows. Initially, use the SBP to identify the
active regressors and estimate the coefficients at the maximum
power level. Since the regressors are arranged according to its
likelihood order, they can be orderly deselected if the power
decreases and the coefficients reestimated.

Finally, above 27.4 dBm, the objective NMSE of −51 dB
is not reached for the highest power, even if the number of

Fig. 4. Graph of NMSE versus number of active regressors for the
reconfigured models. The encircled points corresponding to the higher power
levels do not comply with the target NMSE.

regressors is increased to 171. This leads to reconsidering the
option of a more favorable initial model.

E. Initial Model Selection

The above discussion has illustrated the advantage of a more
complete initial model, mainly as the power level increases.
For that reason, a comparison of four models is presented: the
fifth- and ninth-order GMP models and two bi-CKV models of
fifth and ninth orders. In all cases, the primary memory length
is 10 and the secondary length is 2. Instead of a traditional
representation of the NMSE for a power sweep, the results
are plotted in an NMSE-Na plane to facilitate comparison.
The pruned model showing the best NMSE with the minimum
number of active regressors is finally selected. The point-by-
point results in the output power range from 20.9 to 33.8 dBm
are shown in Fig. 4 for each model. In the four cases, the
identified active sets are small for the lower powers (the
left-hand side in the figure) and become larger as the level
increases.

Although the most simple fifth-order GMP model seems
advantageous because of its initial set of 231 candidate
regressors, it is unable to comply with the objective NMSE
for the points of maximum power (encircled blue asterisks).
The use of a more complex model, fifth-order bi-CVK with
1453 candidate regressors, improves slightly the NMSE to a
value of about −50.5 dB, but it is not sufficient to comply with
the objective at the highest powers. This is a consequence of
the need for a higher nonlinear order model, as demonstrated
in the results of the ninth-order GMP model. In this case, the
initial set contains 451 candidate regressors and the accuracy
is further improved to about −50.8 dB due to the new higher
order regressors. Finally, the ninth-order bi-CKV model with
1805 candidate regressors is able to fulfill the objective NMSE
in the whole dynamic range with 126 active regressors.

The results of the figure indicate that a good selection is the
ninth-order bi-CKV model to comply with the target NMSE
at all power levels and suggests an adaptive procedure to gain
further model reduction under low-level PA operation. In this
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Fig. 5. Photograph of the experimental setup composed of (1) a VSG,
(2) two cascaded preamplifiers, (3) a VSA, (4) the PA under test, (5) a
directional coupler, and (6) an attenuator terminated with a 50-� load.

way, once the 126 active regressors have been identified at
the maximum power, it is possible to reshape the PA model
after a variation of the average output power. Since this is a
model with sufficient richness and recalling that each regressor
is ordered according to its likelihood, the coefficients can
be reestimated orderly until the NMSE objective is achieved.
In that form, the number of regressors is optimized for each
power level.

For similar reasons, this method can also help in the recon-
figuration of DPDs in the case of power-varying operation.
In a DPD based on indirect learning architecture (ILA), the
application is immediately following the procedure presented.
In a DPD based on direct learning architecture (DLA),
the application is not as direct because the coefficients are
readjusted by the DLA procedure. Notwithstanding, the more
likely regressors selected at the highest operation level can be
reused at lower power points and the active set can be reduced
by orderly removing the last regressors, that is, the less likely
regressors. This method is implemented in Section III.

III. LINEARIZATION PROCEDURES

To illustrate the features of the proposed Bayesian treatment
in comparison with other regressor selection approaches, the
linearization of two different types of PAs is shown in this
section: a commercial class AB PA and a highly efficient class
J PA that exhibit a complicated nonlinear characteristic with
gain expansion and compression.

A. Experimental Setup

The experimental setup employed in this work is shown
in Fig. 5. The probing signal was created by an SMU200A
vector signal generator (VSG) from Rohde & Schwarz with
built-in arbitrary waveform generator. It allowed a maximum
sampling rate of 100 MS/s, thus imposing a limitation to
the maximum signal bandwidth that could be linearized with
an oversampling factor of 3. Considering that limitation, the
probing signal was designed according to the 5G-NR standard
with 30-MHz bandwidth, 30-kHz subcarrier spacing, 16-QAM
symbols over all the subcarriers, and a peak-to-average power
ratio (PAPR) of 10.5 dB. Although this bandwidth is in the low
part of the channel values of the 5G-NR standard, this probing

Fig. 6. Iteration runtime for the analysis of a model with 800 components.
The implementation of the DOMP algorithm is the RC-DOMP.

signal is valid to illustrate the features of the Bayesian pursuit
procedure.

The VSG was followed by two cascaded Mini-Circuits
TVA-4W-422A+ preamplifiers to drive the PA under test in
a mildly nonlinear operation while keeping the behavior of
the modulator sufficiently linear. The first PA under test was
the evaluation board of a class AB amplifier based on the
CGH40010 GaN HEMT from Cree Inc., operated with a
drain-to-source current of about 200 mA at 3.6 GHz. The
second PA under test was a continuous-mode class J amplifier
based on the CGH35030F GaN HEMT from Cree, which
was designed for an operation frequency of 850 MHz. The
output of the PA under test for each case was fed to a
PXA-N9030A vector signal analyzer (VSA) from Keysight
Technologies through a directional coupler and an attenuator
to avoid introducing undesired distortion from the equipment.
The RF output signal was then downconverted to baseband and
acquired in the VSA with a sampling frequency of 92.16 MS/s,
where the measurement dynamic range was optimized by
averaging 300 repetitions of the measured signal. Finally, the
signals were time-aligned to synchronize the input and output
datasets.

B. Comparative Assessment of the SBP Versus Greedy
Algorithms for a Class AB PA

As a first experiment, the pursuit algorithm of the Bayesian
treatment proposed in this article will be contrasted with
the OMP and DOMP techniques for the linearization of the
commercial class AB PA under test with an average output
power of 30.1 dBm and a gain compression of 2.34 dB.
Comparison with these techniques is justified because the
OMP is a reference in [15] and the DOMP has demonstrated
superior performance compared to other algorithms [20].

A bi-CKV model was selected to implement the DPD. The
structure, with seventh-order and maximum memory depth of
seven taps, provides an initial full stock of 812 regressors.
The three algorithms under assessment were executed over
this model to reduce its complexity by keeping only the most
relevant regressors in the active set. A segment of M = 1843
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Fig. 7. (a) Linearization NMSE; (b) upper and lower ACPR, denoted as
+1 and −1, respectively; and (c) EVM achieved by the techniques under
comparison in a sweep of number of active coefficients for the class AB PA
under test.

samples of the input–output dataset was employed for the
identification of the reduced-order model structure.

The computational cost of the three algorithms was com-
pared by evaluating the runtime of each iteration, as shown
in Fig. 6 for a typical experiment with 10 000 samples
and 800 components. In agreement with the runtime figures

Fig. 8. PSDs of the output signal without DPD and the linearized class
AB PA output with 100 coefficients attained by the OMP, DOMP, and SBP
techniques. Po = 30.1 dBm.

presented in [16], these results demonstrate the total execution
time for the greedy pursuit algorithms, OMP, and the reduced
complexity implementation of the DOMP, as well as for the
pursuit algorithm of the present Bayesian treatment. Although
this issue may vary for other possible scenarios, the OMP algo-
rithm provides a lower running time than the present proposal
with a poorer accuracy, and the SBP algorithm outperforms
the DOMP in running time with the same accuracy.

Once the SBP has been completed, the result is a set
with the most likely active regressors. Then, the DPD is
implemented through DLA [21], where 30 iterations with a
step size of 1/4 were executed for training. Afterward, the
DPD coefficients were fixed and a different validation signal
was applied, randomly generated with different binary data.

The outcomes of Fig. 7 show the evolution of the lineariza-
tion figures of merit as the number of selected coefficients
increases following the order determined by each algorithm.
These figures of merit are the linearization NMSE, the lower
and upper adjacent channel power ratio (ACPR), and the error
vector magnitude (EVM). For comparison, the characteristics
of the OMP and DOMP algorithms are also plotted. As it can
be observed, the SBP and DOMP algorithms achieve a fine
performance with modeling capabilities for a reduced number
of coefficients. Based on the presented results for the runtime
and linearization performance, the SBP approach offers a
reliable procedure for DPD design. The superior reduction of
spectral regrowth produced by the SBP and DOMP algorithms
can also be corroborated in Fig. 8, where the normalized power
spectral densities (PSDs) at the output of the PA are presented
without DPD and linearized with the pruned model structures.
Results for the OMP-based DPD are also shown.

Observe that if an ACPR goal of −55 dBc is set, Fig. 7(b)
shows the feasibility of a DPD with 20 coefficients to deliver
the required ACPR at a power level of 30.1 dBm. This
pruned set means a significant reduction in model complexity
compared with the full 100 coefficients model. According to
the discussion in Section II, an oversized DPD with regressors
identified by the SBP algorithm at a given output power can be
reconfigured by applying the reestimating algorithm to shorten
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Fig. 9. (a) AM/AM and (b) AM/PM characteristics of the unlinearized
class AB PA and with a DPD of 20 coefficients attained through SBP.
Po = 30.1 dBm.

the active set. The AM/AM and AM/PM characteristics shown
in blue in Fig. 9 also show that, even reducing the number
of coefficients of the model to 20, the algorithm is able to
linearize the PA output.

C. Comparative Assessment of the SBP Approach Versus
Greedy Algorithms for a Class J PA

A second experiment with a different PA under test was
performed to show that the feature selection capabilities of
the SBP approach are independent of the type of the PA to
be linearized. In this case, the class J amplifier under test
was employed with an average output power of 31.1 dBm,
exhibiting a complicated nonlinear characteristic with gain
expansion followed by compression. This behavior produces
a remarkable nonlinear distortion for the operation point,
in which it exhibits an ACPR of −27.9 and −28.9 dBc,
an NMSE of −16.5 dB, and an EVM of 14.7%. Again,
the linearization performance of the SBP approach will be
compared to that of the OMP and DOMP algorithms.

The selected model structure to implement the DPD, in this
case, was the same bi-CKV model with the seventh order and

Fig. 10. (a) Linearization NMSE; (b) upper and lower ACPR, denoted as
+1 and −1, respectively; and (c) EVM achieved by the techniques under
comparison in a sweep of number of active coefficients for the class J PA
under test.

memory depth of seven taps as in the previous experiment,
providing an initial full stock of 812 regressors. The segment
of input–output data employed for the identification of the
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Fig. 11. (a) PSDs and (b) constellations of the output signal without DPD
and the linearized class J PA output with 100 coefficients attained by the SBP
technique. Po = 31.1 dBm.

most relevant regressors by means of the three algorithms
under assessment contained M = 92 160 samples. Again,
the DPD was implemented through a DLA scheme with
30 iterations and a step size of 1/4. Then, the DPD coefficients
were fixed and the linearization performance was validated
with a different signal.

As it is reasonable to expect, the evolution of the lineariza-
tion figures of merit NMSE, ACPR, and EVM for the class J
PA provided in Fig. 10 is similar to the previously explained
one for the class AB PA. Due to the stronger nonlinear
behavior of the class J amplifier, the values achieved by the
three approaches for a large enough number of coefficients
show a lower degree of linearization than for the class AB
PA. The SBP approach still achieves almost coincident values
of NMSE, ACPR, and EVM than the DOMP algorithm, with
superior performance than the OMP approach.

The more complicated nonlinear behavior in the case of
the class J PA without DPD can also be appreciated in the
normalized PSD and constellation at the output of the PA
shown in Fig. 11. As it can be observed, in addition to a
notable spectral regrowth, the PA output exhibits a nonflat
in-band spectrum and the corresponding distortion of the
constellation diagram of the received 16-QAM symbols. These
impairments are successfully compensated when the DPD is

Fig. 12. (a) Linearization NMSE and (b) upper and lower ACPR, denoted
as +1 and −1, respectively, in a sweep of number of coefficients identified
with the SBP at 31.9 dBm of output power (blue line), validating at 30.1 dBm
(red line) and readjusting the coefficients at 30.1 dBm (green line).

applied with the pruned model structure provided by the SBP
approach with 100 coefficients.

D. Robustness Against Power-Level Changes

With the aim of highlighting the robustness of the attained
SBP structures with respect to power-level changes, the fol-
lowing experiment was performed with the class AB PA under
test employed in Section III-B. First, the 100 most likely
regressors of the same model as the one used in the previous
experiment were selected at 31.9 dBm of output power. These
regressors were used to implement a DPD, and through ten
DLA iterations with a step size of 1/2, the resulting ACPR is
shown in Fig. 12(b) (blue line).

Thereafter, the input level was reduced 3 dB and, due to
the gain compression, the average output power decreases
to 30.1 dBm. The linearization performance was measured
without changing the parameters of the DPD, and the results
were plotted in the same figure (red line). With the unchanged
DPD, the new power level worsens the linearization perfor-
mance. Finally, ten DLA iterations of the DPD with the same
regressor structure were performed at 30.1 dBm of output
power obtaining a significant NMSE and ACPR improvement,
as it is shown in Fig. 12 (green lines). Observe that, once
the DPD has been readjusted, the linearization performance
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Fig. 13. (a) Linearization NMSE and (b) upper and lower ACPR, denoted
as +1 and −1, respectively, in a power sweep without DPD and with the
DPD that resulted in the analysis of the highest power level (30 most likely
regressors).

of the 100-regressor structure identified at 31.9 dBm keeps
up after the power-level change. Since this is a decrease of
the power level, the ACPR improvement is not surprising, but
this outcome also proves the feasibility of reducing orderly
the same identified set of most likely regressors to a number
that guarantees a given objective ACPR. For example, a model
with the first 30 most likely regressors delivers an ACPR of
about −57 dBc, keeping up the linearization performance after
this power-level change.

As a second test for showcasing the power-level change
characteristics of the proposal, the first 30 coefficients of the
most likely structure identified at the highest power were
trained over a power sweep of 10 dB with a step size of
1 dB, corresponding to an output power-level range from
22 to 32 dBm. Fig. 13 shows the linearization NMSE and
ACPR in this power sweep. No new identification of the
regressors was necessary after each power change.

The steps of the DPD reshape procedure would be as
follows. Identify first the active set of regressors with the SBP
algorithm at the highest operation level and adjust the coeffi-
cients with the DLA scheme. Under power reduction, the total
set of active regressors is suitable to perform with an ACPR
much better than necessary. Therefore, a computationally

more efficient approach is to orderly remove the least likely
regressors until the ACPR target is obtained and then perform
the iterations of the DLA scheme. Notice that a second
identification search is not necessary.

IV. CONCLUSION

The DPD approach presented in this work is based on a
complex-valued Bayesian treatment, which includes a fast pur-
suit algorithm to select active regressors. Previously reported
techniques are adapted to complex-valued linear regression
and a detailed exposition of the statistical background of
the proposal is demonstrated. The present approach involves
procedures not only for the search of active regressors but also
for removing those not relevant. Based on the demonstrated
formal deduction, the proposed SBP algorithm joins a pursuit
technique with a Bayesian stopping criterion to select the
active regressor set following a marginal likelihood maximiza-
tion order. In this sense, we can say that, given an initial set of
candidate regressors, the selected set is the most likely reduced
model. It is remarkable that the sparse-Bayesian procedure
contains in its nature the valuable benefits of regulariza-
tion avoiding the regressor matrix pseudoinverse calculation.
The evolution of the linearization figures of merit versus
the number of active coefficients is examined for the SBP
algorithm in comparison to other accepted greedy algorithms.
In addition to presenting a reduced computational cost with
respect to the reduced complexity DOMP and outperforming
the OMP algorithms in modeling and linearization capabilities,
this Bayesian treatment includes a stopping criterion and a
regressor deselection procedure. An appreciated feature of this
Bayesian approach is the possibility that it offers to optimize
the DPD performance by reestimating the coefficients after
a power-level increase in a DPD with a fixed number of
coefficients and by removing regressors of the active set for
the case of power-level lowering. It makes possible to realize
design techniques for DPDs that are reconfigurable under
power-varying operation. Experimental results demonstrate the
DPD performance in the linearization of PAs driven by a 5G-
NR signal and its robustness to changes in the power level
over a 10-dB range.

APPENDIX I
MODEL HYPOTHESES AND BAYESIAN ESTIMATORS

In this appendix, we will resort to the maximum entropy
principle of Jaynes [22] for the justification of the model
hypotheses adopted in this work. These are summarized by
the next lemma.

Assumption 1 (A1): We model the joint density of the
coefficients and measurements as a proper complex Gaussian
density that factorizes as

p(h, y|α, σ 2) = p(y|h, σ 2)p(h|α) (28)

where the likelihood of the measurements

p(y|h, σ 2) = 1

(πσ 2)M
e−

1
σ2 ||y−Xh||2

≡ CN (0, σ 2I) (29)
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and the prior distribution

p(h|α) = 1

π N |A|−1
e−hH Ah

≡ CN (0, A−1) (30)

are both complex Gaussian densities and proper (with
circularly symmetric elements), that is, they have null pseudo-
covariance matrices, where, by definition, the pseudocovari-
ance matrix of a complex random vector z of mean z̄ is
E[(z− z̄)(z− z̄)T ].

Moreover, we will also present in this appendix the mini-
mum mean square error (MMSE), Bayesian MSE, and maxi-
mum a posteriori (MAP) estimators of the complex vector h,
which, as we will show, share the next common expression

ĥ∗ = (β XH X+ A)−1β XH y. (31)

For the proof of the previous results, let us start by denoting
the integral of a real function f (y) ∈ R, with complex-valued
arguments y ∈ CM , as∫

CM
f (y) dy ≡

∫
RM

∫
RM

f (y) d�e{y}d�m{y}. (32)

With this notation, the MSE for the estimation of h refers to
the following quadratic risk function:

R(ĥ) =
∫ ∫

�h− ĥ�2 p(h, y) dh dy (33)

where ĥ is the considered estimate and p(h, y) denotes the
joint density of h and y. Similarly, the Bayesian mse is given
by

R(ĥ|y) =
∫
�h− ĥ�2 p(h|y) dh (34)

where p(h|y) denotes the conditional density of h given y.
The MMSE and Bayesian mse are related by

R(ĥ) =
∫

R(ĥ|y) p(y) dy (35)

where p(y) is the marginal density of the measurements.
The minimization of the mse (i.e., the MMSE criterion)

leads to the optimization of the Bayesian mse risk function,
whose solution is attained at the center of the conditional
distribution p(h|y), so it is given by the conditional mean
of the regression coefficients given the measurements [17]

ĥ∗ = arg min
ĥ

R(ĥ)

= arg min
ĥ

R(ĥ|y)

=
∫

h p(h|y) dh.

Unfortunately, this later integral is usually intractable for
arbitrary distributions. Although there are notable exceptions,
such as the Gaussian density, for which the integral can be
solved analytically, the question is whether one can theoreti-
cally justify the use of such favorable distributions. For this
purpose, one can resort to the maximum entropy principle of
Jaynes [22], which essentially states that in a choice between
alternative modeling densities, the one with a maximum degree

of randomness or entropy has the desirable property of “being
maximally noncommittal with regard to missing information.”

It is shown in Appendix II how the distribution of maxi-
mum differential entropy that is compatible with our relevant
statistics (α = (α1, . . . , αN )T and σ 2) leads to a robust model
p(h, y|α, σ 2) for the joint density of the regression coefficients
and measurements. This justifies our choice of a complex
proper and Gaussian joint density model whose details have
been summarized in Assumption A1.

The joint Gaussianity of the distribution implies Gaussianity
of the posterior density p(h|y), simplifying the evaluation of
the Bayesian mse estimator in (36). In this case, the optimal
estimator reduces to the linear MMSE estimator

ĥ∗ = ChyC−1
y y (36)

where Chy = E[h yH ] and Cy = E[y yH ]. By evaluating
these covariance matrices and applying the matrix inversion
lemma, one obtains the estimator presented in (31), which we
reproduce here for the readers’ convenience

ĥ∗ = (β XH X+ A)−1β XH y. (37)

This alternative expression to (36) emphasizes the dependence
of the estimator on the prior precision matrix of the parameters
A ≡ diag(α) = C−1

h and the precision of the measurement
noise β ≡ σ−2.

Having seen in (37) the expression of the MMSE estima-
tor, we would like to review its connection with the MAP
estimator. By definition, the MAP estimator of h is the mode
of the posterior density of the regression coefficients given
the measurements vector. Due to Assumption A1, it can be
shown that the posterior distribution p(h|y) is also Gaussian
and proper, with a precision matrix

�−1
h|y = βXH X+ A (38)

and mean

μh|y = �h|y β XH y. (39)

Since the mode of a Gaussian distribution is trivially attained
at its mean, the MAP estimate is also given by ĥ∗ ≡ μh|y.
Therefore, under Assumption A1, the MMSE, Bayesian mse,
and MAP estimators of h coincide with (31).

Besides, in general, the regression coefficients are sparse,
i.e., only a few of them are active. Thus, we still need a
suitable way to select and estimate those coefficients that are
more relevant for the considered problem while keeping the
remaining ones inactive. As we show in Section II-A, the
relevance vector learning approach considered by Tipping [12]
provides a computationally convenient way to automatically
infer the most relevant α1, . . . , αN , through the maximization
of the evidence (or marginal likelihood) of the measurements.
This approach further regularizes the estimator in (31), which
conveniently contributes to avoiding the potential overfitting
to the measurements.

APPENDIX II
DISTRIBUTION OF MAXIMUM DIFFERENTIAL ENTROPY

In this section, we obtain the distribution of maximum dif-
ferential entropy that is compatible with the relevant statistics
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of our model, which are given by the available estimates of
α = (α1, . . . , αN )T and σ 2.

The joint density of h and y trivially decomposes as the
product of a likelihood and a prior distribution

p(h, y|α, σ 2) = p(y|h,α, σ 2)p(h|α, σ 2). (40)

Note also that p(h, e|α, σ 2) ≡ p(h, y|α, σ 2), and the joint
differential entropy of h and e given α and σ 2 is bounded
above by the sum of differential entropies of the additive noise
e|σ 2 and the regression coefficients h|α. This upper bound is
attained if and only if the model coefficients and the additive
noise are mutually independent. A property looks reasonable
in our problem since any information on the coefficients does
not alter the probability of the noise, i.e.,

p(y|h,α, σ 2) ≡ p(e|h,α, σ 2)

= p(e|σ 2). (41)

Due to this independence, the pursuit of maximum entropy
decouples in the problem of finding the individual densities
p(e|σ 2) and p(h|α) that maximize their respective differential
entropies given their diagonal second-order statistics. In both
cases, the distribution of maximum entropy enforces them to
be complex-valued Gaussian random vectors with mutually
independent and circularly symmetric elements. Hence, the
covariance matrices of the noise σ 2I and the coefficients
A−1 ≡ diag(α−1

1 , . . . , α−1
N ) are both diagonal, while their

respective pseudocovariance matrices vanish. Therefore, the
joint distribution of maximum differential entropy for h and
y is Gaussian and factorizes as

p(h, y|α, σ 2) = p(y|h, σ 2)p(h|α) (42)

with a prior distribution of the coefficients equal to

p(h|α) =
N∏

n=1

p(hn|αn)

= CN (0, A−1) (43)

and a likelihood distribution of the observations

p(y|h, σ 2) =
M∏

m=1

p(em|σ 2)

= CN (0, σ 2I). (44)

This justifies the robust model adopted in Assumption A1.
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