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Abstract. In this paper, we focus on protein contact map prediction.
We describe a method where contact maps are predicted using decision
tree-based model. The algorithm includes the subsequence information
between the couple of analyzed amino acids. In order to evaluate the
method generalization capabilities, we carry out an experiment using
173 non-homologous proteins of known structures. Our results indicate
that the method can assign protein contacts with an average accuracy of
0.34, superior to the 0.25 obtained by the FNETCSS method. This shows
that our algorithm improves the accuracy with respect to the methods
compared, especially with the increase of protein length.

Keywords: protein structure prediction, protein contact map prediction,
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1 Introduction

One of the greatest challenges of bioinformatics is the protein structure predic-
tion [1], and inter-residual contact maps is a critical step in this problem. The
solution of inter-residue contacts prediction in proteins may be useful in protein-
folding recognition. The secondary structure, fold topology and others patterns
can be highlighted easily from a contact map. Similarly, the contact map infor-
mation is used to predict unknown structures and proteins functions. The ability
to make successful predictions involves understanding the relationship between
a sequence and its protein structure [2-5].

In the last 20 years, multiple methods to predicting contact maps have been de-
veloped. Based on ab initio approaches, in homology methods, fold recognition,
machine learning and others. [6-8].

In this paper we propose a solution based on decision trees, taking into account
the high degree of flexibility and ease of understanding. Our algorithm uses the
Quinlan C4.5 method [9], with the objective of know how a system based on
decision trees can learn the correlation between residue covalent structure of a
protein and its contact map, since it is calculated from their known 3D structure.
This article is structured as follows. A methodology section to explain the data



selection criteria, the proposed algorithm and its effectiveness measuring. A sec-
tion for the experimentation results. Finally, the conclusions of this work.

2 Materials and methods

2.1 Data bases

With the goal of completing the training and validation process, we choose 173
proteins from protein data bank (PDB). This proteins are grouped into four
classes, according to their length sequences (Ls): Ls < 100 (65 proteins), 100 <
Ls < 170 (57), 170 < Ls < 300 (30) and Ls > 300 (21). This data set combines
maximum coverage with minimum redundancy following the Fariselli criteria[6].
Were chosen only the chains: with lowest homology possible (less than 25% of
identity); whose structure does not contain redundant sequences; without lig-
ands, to eliminate false contacts due to the presence of hetero-atoms; and, those
proteins that do not belong to the same family or have a common origin, to eval-
uate the generalization capability of the predictor. Was excluded those chains
whose backbone was broken. The proposed procedure does not include contacts
between residues whose sequence separation is less than four residues, to avoid
small ranges of false contacts.

2.2 Contact maps definition

An alternative view of the protein uses of a distance matrix (Figure 1), a sym-
metric square NxN matrix whose elements are the Euclidean distances among
the atoms in the protein. This representation is obviously redundant, it requires
only N(N-1)/2 degrees of freedom.

2.3 Model architecture

In the proposed method we use distances matrix as a basis for training the pre-
dictor. It is to avoid the lost of information in the binaries contact maps. In our
method, the prediction is treated as a classification problem, which takes into
account the contacts, quasi-contacts or non-contacts between residues.
Moreover, decision trees are classifiers which make it possible to have under-
standable rules, which can be used to find further explanations of the data that
are classified. The proposed algorithm is based on the C4.5 decision tree, using
the default setting [9]. We build decision trees for all possibles pairs of contacts,
which has a total of 400 trees (20 x 20 amino acids).

As input coding, the algorithm uses vectors of length 23, which includes infor-
mation of the substring formed between non adjacent amino acids, the distance
and the sequence separation between the couple of analyzed amino acids (Figure
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Fig. 1. Contact Map of 4sgb-I protein. In the lower left, the binary contact map con-
structed with a threshold of 8A. In the upper right, the distance matrix, which is
independent of the selected threshold.

Sub sequence information A1, Az information
A C G F P --- Y Ls D Class
0 3 1 0 1 --- 0 15 6,3 Contact

Fig. 2. Scheme of coding input for decision trees. It is formed by the sub sequence and
the amino acids couple information.

2).

For a couple of amino A; As, the first 20 elements of the vector match the exist-
ing amino acids and contain their frequencies in the substring that is formed be-
tween the pair of amino acids analyzed. Ls represents the length of the substring
or the separation between the pair of amino acids. D, the Euclidean distance
between the amino acids couple and Class is the discretization of the distance
(D) in contact, quasi-contact and non-contact, depending on the established
thresholds in Angstroms (A). For this model we classified the contacts using
this criteria: contact < 8A< quasi-contact < 12A < non-contact.

The decision tree-based predictor of protein contact maps (DTP) is shown in
Figure 3. Given the distance matrix of a proteins set with known structure (P,
Py, ..., P,;), the DTP builds a model of two-dimensional array of size NxN,
where N is the number of amino acids (20). Each matrix cell contains a function
f(A1,A2,S) formed by a decision tree, whose input vector is composed by the
amino acids couple (A1, As) and the information extracted from the substring
(S) contained between them. For an unknown sequence (S?), each couples of
amino acids is evaluated in the builded model. The result of prediction is ob-
tained by the occurrence of contact, quasi-contact or non-contact.
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Fig. 3. Scheme of the decision tree-based predictor of protein contact maps, where Py
to P,, are the training proteins, A is the algorithm that creates the knowledge model
and S7 is the unknow sequence. The knoledged model is formed by a matrix of functions
f(A1,A2,S), where it is introduced the sub sequence S for the amino acids A; and As.
As result, this algorithm returns the predicted distances matrix for the sequence S?.

2.4 Evaluation of the efficiency

To evaluate the effectiveness of the predictor, the problem was reduced to con-
tact and non-contacts classes. Taking into account the unbalanced nature of the
problem, was employed the precision Ap=TP/(TP+FP) as performance mea-
sure. In order to compare the effectiveness of the predictor, two extra measures
are implemented. “The improvement over a random predictor (R)” and “the
distribution of the predicted distances (Xd)”.

R, computes the ratio between Ap and the accuracy of a random predictor
Ar=Nc/Np. Where Nec is the number of real contacts in the protein of length
Lp, and Np are all the possible contacts. In order to limit the prediction of local
contacts, we considering 4 as the minimum length of sequence separation be-
tween residues. Computing Np as (Lp-4)(Lp-3)/2.

Xd, measures the difference in the distribution of the inter-residue distances in
the 3D structure for predicted pairs compared with all pair distances in the
structure. This index is defined by the equation Xd=X7" , (Pic-Pia)/n-di. Where
n is the number of bins of the distance distribution (15 equally distributed bins
from 4 to 60 cluster all the possible distances of residue pairs observed in the
protein structure); di is the upper limit (normalized to 60) for each bin; Pic and
Pia are the percentage of predicted contact pairs (with distance between di and
di-1) and that of all possible pairs, respectively. By definition, values of Xd=0
indicate no separation between the two distance populations, meaning that the
predicted contacts are randomly distributed; values of Xd>0 indicate positive
cases, when the population of the distances between predicted contact pairs is
shifted to smaller values with respect to the population of the distances of all
residue pairs in the protein. For contact distances with an upper limit of 8A, the
larger and positive Xd is, more efficient the prediction of contacts is. Similarly



Algorithms All173) Ls <1005y 100 < Ls < 170¢57) 170 < Ls < 300(30) Ls > 30021

Ap R Xd Ap R Xd Ap R Xd Ap R Xd Ap R Xd
DTP 0,34 10,96 64,07 0,27 4,71 12,3 0,31 8,99 40,55 0,31 13,72 92,22 0,36 24,86 174,32
FNETCSS 0,25 8,05 11,87 0,33 6,28 12,91 0,25 7,33 12,14 0,19 9,47 10,78 0,15 12,71 9,77
MDS 0,23 5,17 - 0,17 2,61 - 0,19 5,28 -0,15 6,82 -0,15 9,54 -

Table 1. Protein data set. The proteins identity value is less than 25% and the sequence
length (Ls) is equivalent to the number of structure covalent residues.

to the other two indexes, Xd is also averaged on the protein sets [6].

3 Results

In order to determine the efficiency of the predictor implemented, a 10 fold
cross-validation method was performed. The results were compared with those
obtained by Fariselli and Casadio (FNETCSS) [6] and a simple predictor based
on the average of the distances and the sequences separation length (MDS) (Ta-
ble 1).

With the aim of highlighting the results dependence to the proteins size, the
effectiveness values were calculated after grouping proteins according to their
sequence length.

The results show that, in general, for all proteins, the proposed algorithm (DTP)
shows good behavior. DTP not only improves the minimum efficiency threshold
proposed by the MDS algorithm, but except for less than 100 amino acid protein
that has a lower performance than FNETCSS, DTP is visibly superior.

Figure 4 shows the effectiveness of predictions based on the proteins length, us-
ing different methods (DTP, FNETCSS and MDS). This graph shows that the
effectiveness of the algorithm is dependent on the length of the protein. However,
unlike FNETCSS, which is more efficient to predict contacts in short sequences,
the proposed DTP method is more efficient to predict in large sequences, even
when the density of contacts is much lower.

4 Conclusions

This work clearly demonstrates that the decision trees are efficient tools for pro-
tein contact maps prediction. The proposed method combines the use of decision
trees with a newest input codification for all possible pairs of amino acids that
were formed in the training dataset. The method performance was very satisfac-
tory (0.34), especially with the increase of protein length, greatly enhancing the
accuracy with respect to the 0.25 obtained by the FNETCSS method.
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Fig. 4. This graph shows the efficiency of the prediction of contacts based on the
sequence lengths of proteins.
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