
TYPE Review

PUBLISHED 13 October 2022

DOI 10.3389/fmed.2022.940454

OPEN ACCESS

EDITED BY

Aldert Zomer,

Utrecht University, Netherlands

REVIEWED BY

Ana Isabel Alvarez-Mercado,

University of Granada, Spain

Nirmal Kumar Ganguly,

Indraprastha Apollo Hospitals, India

*CORRESPONDENCE

Shaghayegh Baradaran Ghavami

sh.bghavami@yahoo.com

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to

Infectious Diseases – Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Medicine

RECEIVED 10 May 2022

ACCEPTED 07 September 2022

PUBLISHED 13 October 2022

CITATION

Kazemifard N, Dehkohneh A and

Baradaran Ghavami S (2022) Probiotics

and probiotic-based vaccines: A novel

approach for improving vaccine

e�cacy. Front. Med. 9:940454.

doi: 10.3389/fmed.2022.940454

COPYRIGHT

© 2022 Kazemifard, Dehkohneh and

Baradaran Ghavami. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Probiotics and probiotic-based
vaccines: A novel approach for
improving vaccine e�cacy

Nesa Kazemifard1†, Abolfazl Dehkohneh2,3† and

Shaghayegh Baradaran Ghavami1*

1Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research

Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,

Tehran, Iran, 2Department for Materials and the Environment, Bundesanstalt für Materialforschung

und -prüfung (BAM), Berlin, Germany, 3Department of Biology Chemistry Pharmacy, Freie

Universität Berlin, Berlin, Germany

Vaccination is defined as the stimulation and development of the adaptive

immune system by administering specific antigens. Vaccines’ e�cacy, in

inducing immunity, varies in di�erent societies due to economic, social,

and biological conditions. One of the influential biological factors is gut

microbiota. Cross-talks between gut bacteria and the host immune system are

initiated at birth during microbial colonization and directly control the immune

responses and protection against pathogen colonization. Imbalances in the

gut microbiota composition, termed dysbiosis, can trigger several immune

disorders through the activity of the adaptive immune system and impair the

adequate response to the vaccination. The bacteria used in probiotics are

often members of the gut microbiota, which have health benefits for the

host. Probiotics are generally consumed as a component of fermented foods,

a�ect both innate and acquired immune systems, and decrease infections.

This review aimed to discuss the gut microbiota’s role in regulating immune

responses to vaccination and how probiotics can help induce immune

responses against pathogens. Finally, probiotic-based oral vaccines and their

e�cacy have been discussed.

KEYWORDS

probiotics, vaccine, vaccine e�cacy, probiotic-based vaccines, gut microbiota,

adaptive immunity

Introduction

Vaccination is defined as the stimulation and development of the adaptive immune

system by the administration of specific antigens. Vaccines help prevent and eradicate

the mortality and morbidity of numerous infectious diseases (1). Vaccine efficacy (VE)

is described as the incidence proportion between the vaccinated and non-vaccinated

populations (2) and varies in different societies based on economic, social, and biological

conditions (3, 4). Several suggested economic and social determinants, such as country

income status, living conditions and access to healthcare appear to act indirectly and

non-specifically on VE. In contrast, many but not all biological factors, such as co-

infections, malnutrition, and enteropathy, presumably, act directly and proximally on

VE (5). Gut microbiota also plays a crucial role in the development and regulation of
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the immune system; hence, its composition might affect how

individuals respond to vaccinations (6, 7).

Gut microbiota develops alongside host development and

is affected by genetics and environmental factors, and is

an integral part of the human body (8, 9). The microbiota

interacts with the host in many ways. Cross-talks between gut

bacteria and the host immune system are initiated at birth

during microbial colonization (10). This interaction promotes

the intestinal epithelial barrier, immune homeostasis, protects

from pathogen colonization (11), and inhibits deleterious

inflammatory reactions that would harm both the host and its

gut microbiota (12). Gut lymph nodes, lamina propria, and

epithelial cells (mucosal immune system) form a protective

barrier for the integrity of the intestinal tract (13). Therefore

the gut microbiota composition can affect the normal mucosal

immune system (14).

During gut microbiota development, especially in early

life, various factors can affect and alter its composition. For

instance, the human gut changes considerably during the first

2 years of life as children grow from breast milk-dominated

diets to solid foods and are exposed to vast numbers of

bacterial species (15). Therefore undernourished children have

been reported to have less mature gut microbiota compared to

healthy children (16). Diet serves as a significant factor in gut

microbiota composition in adults too. Various studies reported

that a higher-fat diet in healthy adults appeared to be associated

with unfavorable changes in gut microbiota, fecal metabolomics

profiles, and plasma pro inflammatory factors, which might

result in long-term adverse consequences for health (17–19). In

addition, metabolic diseases such as diabetes can alter the gut

microbiome and disrupt gut bacterial equilibrium (20). Other

factors, including physical activity, mental health, and obesity

may also affect gut microbiota composition (21–23).

Imbalances in the gut microbiota composition, termed

dysbiosis, can trigger several immune disorders through

the activity of the adaptive immune system (24). For

example, recent studies on this subject reported that germ-

free (GF) mice had a reduced number of Th1 and Th17

cells. Th17 cells, which are grouped as CD4+ effector T

cells that secrete IL-17, play an important role in host

defense against extracellular pathogens and the development

of autoimmune diseases (25–27). Moreover, in dysbiotic

gut microbiota, the number of inducible Foxp3 Helio-Tregs

(iTregs) is reduced significantly in colonic lamina propria

(28). Other studies indicate that excessive use of antibiotics

disrupting gut microbiota hemostasis in young children might

delay or impair the proper development of IgG response

and immune memory that profoundly impacts adulthood

(29). This review highlighted studies about the relationship

between gut microbiota and related immune responses after

vaccination and the impact of gut microbiota dysbiosis

on VE.

Gut microbiota and vaccine e�cacy

Cross-talk between the gut microbiome and the immune

system by producing various metabolites and antimicrobial

peptides directly regulates innate and adaptive immunity

(30) and its failure to regulate inflammatory responses could

increase the risk of developing inflammatory conditions in the

gastrointestinal tract (31). Therefore the gut microbiota impacts

the efficacy of various immune system-related interventions,

including prevention of human immunodeficiency virus (HIV)

infection (32, 33), cancer immunotherapy (34–36), and

dysregulation in gut microbial composition associated with

autoantibodies production and autoimmune diseases (37–40).

Several studies were designed to evaluate the relationship

between gut microbiota and immune responses to assess

vaccine efficiency. A study by Pulendran et al. showed that

antibiotic consumption resulted in a 10,000-fold reduction in

gut bacterial composition and reduced specific neutralization

and binding antibody responses against the influenza vaccine,

and a significant association between bacterial species and

metabolic phenotypes in the gut was displayed in this study

(41). Furthermore, infants who received oral polio vaccine

(OPV), intramuscular tetanus-hepatitis B, and intradermal

Bacillus Calmette–Guérin (BCG) vaccines had detectable levels

of Bifidobacterium longum (B. longum) and displayed higher

specific T cell responses, serum IgG and fecal polio-specific

IgA levels. In contrast, a higher relative abundance of

Enterobacteriales and Pseudomonadales was associated with

lower specific T cell responses and serum IgG levels (6, 42).

Another study on infants receiving BCG, OPV, tetanus toxoid

(TT), and hepatitis B virus confirmed the previous results

that Bifidobacterium abundance in early infancy might increase

the protective effects of vaccines by enhancing immunologic

memory (7). The concurrent presence of non-polio enterovirus

(NPEV) and oral polio vaccination can affect VE and reduce

OPV seroconversion (43).

One of the critical factors in VE is the expression of

Toll-like receptor 5 (TLR5) within 3 days after vaccination,

which correlates to the amount of hemagglutination inhibition

(HAI) titers 4 weeks after influenza vaccination (44, 45).

TLR5 is a cell receptor for the recognition of flagellin and

stimulates inflammatory signaling and immune responses (46).

In addition, trivalent inactivated influenza vaccination of Trl5–

/– mice resulted in reduced antibody titers. TLR5-mediated

sensing of the microbiota also impacted antibody responses

to the inactivated polio vaccine (47). NOD2 (Nucleotide-

binding oligomerization domain 2), an intracellular pathogen

recognition sensor, is associated with the immune system and

VE stimulation (48, 49). Recognition of symbiotic bacteria

by NOD2 in CD11c-expressing phagocytes helps the mucosal

adjuvant activity of cholera toxin (CT), as confirmed by a study

on mice (50).
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One of the most influential factors that lead to dysregulation

of gut microbiota dysbiosis is antibiotic exposure (51). In 1

study, it is demonstrated that antibiotics-induced dysbiosis

in infant mice (but not adults) leads to impaired antibody

responses and promotes ex vivo cytokine recall responses

(52). Antibiotic-treated mice models also showed impaired

oral immunization in response to cholera toxin (53) and

dysregulation in the generation of anti-viral macrophages,

virus-specific CD4 and CD8T cells, and antibody responses

following respiratory influenza virus infection (54, 55). Gut

dysbiosis induced by antibiotics significantly decreased the

activation of CD4+ T cells and CD8+ T cells and declined

the level of memory of CD4+ T cells and CD8+ T cells in

secondary lymphoid organs of the vaccinated animals (56). In

a study on human adults with impaired microbiome induced

by antibiotics, reduced antibody response to TIV in subjects

with low pre-existing immunity to influenza virus was observed

(41). However, adults receiving Rotavirus (RV), Pneumo23, and

TT vaccines with antibiotics consumption showed increased

fecal shedding of RV and changes in gut bacteria beta diversity

which is associated with RV vaccine immunogenicity boosting

(57). Although antibiotics consumption could not improve the

immunogenicity of OPV in human infants, the reduction of

enteropathy and pathogenic intestinal bacteria biomarkers were

reported (58).

The composition of gut microbiota and its diversity are

associated with the response of the immune system to vaccines.

In this case, a study on specific pathogen-free layer chickens

(SPF) showed that shifts in gut microbiota composition might

result in changes in cell- and antibody-mediated immune

responses to vaccination against influenza viruses (59, 60).

Other experiments on adults receiving an HIV vaccine

showed the immunogenicity of the vaccine was correlated

with microbiota clusters (61). On the contrary, another

study on human adults reported no differences in overall gut

microbiota community diversity between humoral responders

and non-responders to the oral Salmonella Typhi vaccine

(62). Co-infection with porcine reproductive and respiratory

syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2)

in pig models revealed that high growth outcomes were

associated with several gut microbiome characteristics, such as

increased bacterial diversity, increased relative abundance of

Bacteroides pectinophilus, decreased Mycoplasmataceae species

diversity, higher Firmicutes:Bacteroidetes ratios, increased

relative abundance of the phylum Spirochaetes, reduced relative

abundance of the family Lachnospiraceae, and increased

Lachnospiraceae species (63). Diet is also influential on the

gut microbiome and vaccine efficacy. A study showed that a

gluten-free diet was associated with a reduced anti-tetanus

IgG response, and it increased the relative abundance of the

anti-inflammatory Bifidobacterium in the mice model (64).

Humans harbor several latent viruses, including

cytomegalovirus (CMV) implicated in the modulation

of host immunity (65). However, there is an insufficient

understanding of the influence of lifelong persistent latent

viral infections on the immune system (66). In a rhesus

macaques model, subclinical CMV infection increased butyrate-

producing bacteria and lower antibody responses to influenza

vaccination (67).

Oral RV vaccines have the potential role in reducing the

morbidity and mortality of RV infection that causes diarrhea-

related death in children worldwide, but RV vaccines showed

significantly lower efficacy in low-income countries (68, 69).

A comparison between infants in India and Malawi and

infants born in the UK showed that ORV immune response

was significantly impaired among infants in the former. This

result is linked with their gut microbiome composition, in

which microbiota diversity was significantly higher among

Malawian infants, while Indian infants had high Bifidobacterium

abundance (70). Despite low RVV immunogenicity which

was also reported in rural Zimbabwean infants, it was not

associated with the composition or function of the early-life

gut microbiome (71). Human gut microbiota transplanted pig

models vaccinated with attenuated RVV showed significantly

enhanced IFN-γ producing T cell responses and reduced

regulatory T cells and cytokine production (72). Moreover,

poor diet decreased total Ig and HRV-specific IgG and IgA

antibody titers in serum or ileum and it increased fecal virus

shedding titers in human infant microbiome transplanted pig

models (57, 73, 74). In a study on rural Ghana’s infants, RVV

response was associated with an increased relative abundance

of Streptococcus gallolyticus, decreased relative abundance of

phylum Bacteroidetes and higher Enterobacteria/Bacteroides

ratio (75). Another study reported that RVV response correlates

with a higher relative abundance of bacteria belonging to

Clostridium cluster XI and Proteobacteria (76). Bacteroides

thetaiotaomicron is also associated with anti-rotavirus IgA titer

(77). However, a study on Nicaraguan Infants reported a limited

impact of gut microbial taxa on response to oral RVV (78).

Recent studies indicated that dysbiosis might be relevant

in systemic severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infections. Khan et al. indicated an association

between dysbiosis and severe inflammatory response in

coronavirus disease 2019 (COVID-19) patients. Decreased

Firmicutes/Bacteroidetes ratio, induced by the depletion of

Faecalibacterium prausnitzii (F. prausnitzii), Bacteroides plebeius

(B. plebeius), and Prevotella, which utilize fiber, and a relative

increase in Bacteroidetes species is associated with raised serum

IL-21 levels and better prognosis (79). A study on a cohort of 100

patients revealed that the composition of the gut microbiome

in patients with COVID-19 correlates with disease severity,

plasma concentrations of several inflammatory cytokines, and

tissue-damaged associated chemokines. Patients with COVID-

19 are recommended to consume beneficial microorganisms

with immunomodulatory potentials, such as F. prausnitzii,

Eubacterium rectale, and several Bifidobacterium species, and
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TABLE 1 Probiotics’ e�ect on immune responses and vaccine e�cacy.

Probiotic

strain

Participants Vaccine Effects of probiotics on vaccine

response

Reference

B. longum

BB536

Human infants DTP (diphtheria,

pertussis, and

tetanus)

An increase in the ratio of IFN-γ/IL-4

secretion cells in the BB536 supplementation

group

(92)

L. paracasei 431 Human adults Inactivated trivalent

influenza vaccine

No difference in A/H1N1, A/H3N2, and B

strain-specific IgG/No difference in A/H1N1,

A/H3N2, and B strain-specific IgA levels in

saliva / No difference in seroconversion rates

3w after vaccination

(118)

L. rhamnosus GG Human pregnant

women

Combined

diphtheria-tetanus-

acellular

pertussis-

Haemophilus

influenza type b

vaccine

Lower pneumococcal-specific IgG

levels/Lower seroconversion rates for

pneumococcal serotypes /Lower tetanus

toxoid-specific IgG levels/No difference in

Hib-specific IgG levels/Higher tolerogenic T

regulatory (Treg) responses

(117)

L. paracasaei

MoLac-1

(heat-killed)

Human adults Inactivated trivalent

influenza vaccine

No differences in natural killer cell activity,

neutrophil bactericidal or phagocytosis

activity/No difference in IgA, IgG, and IgM

levels/Higher H3N2 specific IgG levels/No

difference in seroconversion rates

(119)

B. lactis BB-12 / L.

paracasei 431

Human adults Inactivated trivalent

influenza vaccine

An increase in influenza-specific IgG

levels/Higher seroconversion rates for

IgG/Higher influenza-specific IgA levels in

saliva /No differences in NK-cells activity,

number of CD4+T-lymphocytes and

phagocytosis/No differences in INF-γ, IL-2,

and IL-10 levels

(95)

LGG and inulin Human adults Nasal attenuated

trivalent influenza

vaccine

Increased seroprotection rate to the H3N2

strain, but not to the H1N1 or B strain

(106)

B. longum BL999

/L.rhamnosus

LPR

Human infants Hepatitis B Virus

(HBV), DTP

An improvement in HepB surface antibody

responses in subjects receiving monovalent

and a DTPa-HepB combination vaccine at 6

months but not those who received 3

monovalent doses

(93)

B. bifum /

B.infantis/

B.longum/

L.acidophilus

Human infants Measles-Mumps-

Rubella-Varicella

vaccine

Higher overall seroconversion rates/No

difference in specific seroconversion rates for

rubella, mumps, measles, varicella/No

difference in the rate of treatment-related

adverse effects between the two groups

(96)

L. acidophilus

CRL431/ L.

rhamnosus GG

Human adults Oral polio vaccine An increase in poliovirus neutralizing

antibody levels/ Increase in poliovirus-specific

IgA and IgM levels /No change in

poliovirus-specific IgG levels

(108)

L. casei GG Human infants Oral rotavirus

vaccine

Higher number of rotavirus-specific IgM

secreting cells/ Higher IgA seroconversion

rates /Higher IgM seroconversion rates

(107)

(Continued)
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TABLE 1 (Continued)

Probiotic

strain

Participants Vaccine Effects of probiotics on vaccine

response

Reference

Escherichia coli

Nissle 1917

Ciprofloxacin

(Cipro)-treated Gn

piglets colonized

with a defined

commensal

microbiota (DM)

Virulent human

rotavirus (HRV)

An increase in the numbers of total

immunoglobulin-secreting cells, HRV-specific

antibody-secreting cells, activated

antibody-forming cells, memory

antibody-forming B cells, and naive

antibody-forming B cells/ A Decreased in

levels of pro-inflammatory but increased levels

of immuno-regulatory cytokines and

increased frequencies of Toll-like

receptor-expressing cells

(109)

L.rhamnosus GG Human gut

microbiome

transplanted

neonatal Gn pig

Attenuated HRV

vaccine

Significantly enhancement in HRV-specific

IFN-γ producing T cell responses to the

AttHRV vaccine. Neither doses of LGG

significantly improved the protection rate,

HRV-specific IgA and IgG antibody titers in

serum, or IgA antibody titers in intestinal

contents

(72)

L. plantarum 24-Month-old

children

- An increase in fecal sIgA titer /A Significant

positive correlation between TGF-β1,TNF-α,

and fecal sIgA

(100)

B. longum+ gluco-

oligosaccharide

Human adults Influenza seasonal

vaccine

Significantly higher number of senescent

(CD28–CD57+) helper T cells/Significantly

higher plasma levels of anti-CMV IgG and a

greater tendency for CMV

seropositivity/Higher numbers of

CD28–CD57+ helper T cells

(94)

L. plantarum

GUANKE (LPG)

Mice SARS-CoV-2

vaccine

Enhancement of SARS-CoV-2 neutralization

antibodies production/A boost in specific

neutralization antibodies >8-fold in

bronchoalveolar lavage and >2-fold in sera

when LPG was given immediately after

SARS-CoV-2 vaccine inoculation /Persistence

in T-cell responses

(103)

Lactococcus lactis

strain plasma

(LC-Plasma)

Human adults Dengue fever (DF) Significant reduction in the cumulative

incidence days of DF-like

symptoms/Significantly reduced severity score

in the LC-Plasma group

(111)

Lactobacillus&nbsp;

plantarum

Probio-88

In vitro and in silico

study

SARS-CoV-2

infection

A significant inhibition in the replication of

SARS-CoV-2 and the production of reactive

oxygen species (ROS) levels/A significant

reduction in inflammatory markers such as

IFN-α, IFN-β, and IL-6

(104)

probiotic

Lactobacillus

Chickens Herpesvirus of

turkeys vaccine

An increase in the expression of major

histocompatibility complex (MHC) II on

macrophages and B cells in spleen/A decrease

in the number of CD4+CD25+ T regulatory

(99)

(Continued)
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TABLE 1 (Continued)

Probiotic

strain

Participants Vaccine Effects of probiotics on vaccine

response

Reference

cells in the spleen/ higher expression of IFN-α

at 21dpi in the spleen/A decrease in the

expression of tumor growth factor (TGF)-β4

probiotic

Escherichia coli

Nissle (EcN) 1917

Malnourished piglet

model transplanted

with human infant

fecal microbiota

(HIFM)

HRV vaccine Increased frequencies of activated

plasmacytoid dendritic cells (pDC) and

activated conventional dendritic cells

(cDC)/increased frequencies of systemic

activated and memory antibody-forming B

cells and IgA+ B cells in the systemic

tissues/Increase in the mean numbers of

systemic and intestinal HRV-specific IgA

antibody-secreting cells (ASCs), as well as

HRV-specific IgA antibody titers in serum and

small intestinal contents

(110)

Bacillus velezensis Pigeons Pigeon circovirus

(PiCV)

Significant reduction in the PiCV viral load in

the feces and spleen of pigeons/Up-regulation

in Interferon-gamma (IFN-γ), myxovirus

resistance 1 (Mx1), signal transducers and

activators of transcription 1 (STAT1), toll-like

receptor 2 (TLR2) and 4 (TLR4)gene

expression

(115)

Lactococcus lactis

NZ1330

BALB/c Mouse

Model

Allergy to

Amaranthus

retroflexus pollens

Significantly reduction in the serum IgE

level/Best performance in terms of improving

allergies to Th1 and Treg responses

(112)

L.acidophilus;

L.plantarum;

Pediococcus

pentosaceus;

Saccharomyces

cerevisiae; B.subtilis;

B.licheniformis

Broiler chickens Salmonella

Enteritidis (SE)

vaccine

Diminished the negative effect of live vaccine

growth performance/reduced mortality rate,

fecal shedding, and re-isolation of SE from

liver, spleen, heart, and cecum

(102)

long-chain inulin

(lcITF) and

L.acidophilus W37

(LaW37)

Piglets Salmonella

Typhimurium

strains (STM)

Enhanced vaccination efficacy by 2-fold

/Higher relative abundance of Prevotellaceae

and lower relative abundance of

Lactobacillaceae in feces/Increased the relative

abundance of fecal lactobacilli was correlated

with higher fecal consistency

(105)

fecal microbiome+

Clostridium

butyricum and

Saccharomyces

boulardii

Gpiglets - Increased the plasma concentrations of IL-23,

IL-17, and IL-22, as well as the plasma levels of

anti-M.hyo and anti-PCV2 antibodies/

Decreases in inflammation levels and

oxidative stress injury, and improvement of

intestinal barrier function

(116)

L.rhamnosus GG

(LGG)

Patients with type 1

diabetes

Betapropiolactone-

whole inactivated

virus

Reduction in the inflammatory responses (i.e.,

IFN-γ, IL17A, IL-17F, IL-6, and

TNF-α)/Significantly

(120)

(Continued)
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TABLE 1 (Continued)

Probiotic

strain

Participants Vaccine Effects of probiotics on vaccine

response

Reference

production of IL-17F prior to and after (90±

7 days later) vaccination

B. toyonensis

BCT-7112T

Ewes of the

Corriedale sheep

Recombinant

Clostridium

perfringens epsilon

toxin (rETX)

Higher neutralizing antibody titers/An

increase in serum levels for total IgG

anti-rETX/Increase IgG isotypes IgG1 and

IgG2 /Higher cytokine mRNA transcription

levels for IL-2, IFN-γ, and transcription factor

Bcl6

(113)

B. toyonensis and

Saccharomyces

boulardii

Sheep Clostridium

chauvoei vaccine

Significantly higher specific IgG, IgG1, and

IgG2 titers/Approximately 24- and 14-fold

increases in total IgG levels/ Increased mRNA

transcription levels of the IFN-γ, IL2, and

Bcl6 genes

(114)

the dysbiosis persisted after the clearance of the virus (80, 81).

Currently, controlling and preventing the spread of SARS-CoV2

infection is one of the critical challenges in the healthcare

system. Vaccination is the best strategy to overcome this

challenge (82). Among all recently proposed vaccines, an

important note is to balance the humoral (neutralizing antibody)

and T cell responses (83). Mucosal immunity is the most

influential factor in preventing viral respiratory infections and

response to vaccination. In this regard, the intestinal immune

system is as important as the respiratory system’s mucosal

immunity (84). Thus, the intestinal immune system might

be a promising approach for improving current SARS-CoV2

vaccination strategies (85). On the other hand, risk factors

that reduce the immune system’s defenses against SARS-CoV-

2 infections could also reduce their responses to vaccination and

increase vaccination’s adverse effects. Thus gut dysbiosis is one

of the mechanisms that can cause a pathological and impaired

immune response to SARS-CoV-2 vaccination (86).

So far, most studies around vaccine efficacy and gut

microbiota composition demonstrated that gut microbiota

can influence vaccines’ immunogenicity and the mucosal and

acquired immunity against pathogens.

The e�ects of probiotics on vaccine
e�cacy

Probiotics are live commensal microorganisms that have

positive benefits for the host that are generally consumed as a

component of fermented foods. They have an impact on both

innate and adaptive immune systems and decrease infections

(87, 88). A meta-analysis comprising 1,979 adults showed that

probiotics and prebiotics effectively promote immunogenicity

by influencing seroconversion and seroprotection rates in adults

vaccinated with influenza vaccines (89).

Bifidobacteria (BIF) is one of the probiotics and beneficial

bacteria for human and animal health, having roles in the

prevention of infection, modulation of lipid metabolism, and

reduction of allergic symptoms by stimulating the host’s

mucosal immune system and systemic immune response

(90, 91). Consumption of B. longum BB536 in newborns

showed an increase in the number of interferon-γ (IFN-

γ), a representative cytokine for T helper 1 response,

secretion cells, and the ratio of IFN-γ/IL-4 secretion cells

(92). In addition, a combination of B. longum BL999 and

Lactobacillus rhamnosus (L. rhamnosus) [LPR (CGMCC1.3724)]

consumption after Hepatitis B vaccination resulted in improved

antibody responses (93). The results of a study on adults who

received seasonal influenza vaccines was the same. Probiotic

consumption (B. longum bv. infantis CCUG 52,486, combined

with a prebiotic gluco-oligosaccharide) could improve total

antibody titers and seroprotection (94). Bifidobacterium lactis

BB-12 and Lactobacillus paracasei (L. paracasei) 431 improved

specific Antibody titers and seroconversion rates after influenza

vaccination but there was no difference in INF-γ, IL-2, and IL-10

levels (95). In a randomized placebo-controlled, double-blinded

prospective trial, the effect of probiotics [Bifidobacterium

bifidum, B. infantis, B. longum, and Lactobacillus acidophilus

(L. acidophilus)] on vaccination efficacy could not be proven

statistically (96).

Strains of Lactobacillus are a subdominant component of

the commensal human intestinal microbiota and are identified

as a potential driving force in the development of the human

immune system (97). They exert early immunostimulatory

effects that may be directly linked to the initial inflammation

responses in human macrophages (98). Chickens who
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FIGURE 1

How to build a probiotic-based vaccine: 1. Extract the antigen gene from the pathogen, 2. Amplify the gene by polymerase chain reaction (PCR),

3. Build a recombinant expression plasmid by ligating antigen gene into a proper plasmid, 4. Transfect recombinant plasmid into a probiotic

(Continued)
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FIGURE 1 (Continued)

host, 5. Select successfully transfected recombinant probiotic bacteria 6. Probiotic-based oral vaccines could be manufactured with a

recombinant probiotic host expressing the pathogenic antigen (Created with BioRender.com).

received Lactobacillus spp as probiotics showed an increased

major histocompatibility complex (MHC) II expression on

macrophages and B cells. The number of CD4 + CD25 + T

regulatory cells was also reduced in the spleen (99). In a

study, the probiotic function of Lactobacillus plantarum (L.

plantarum) was assessed and the results showed that fecal

secretory immunoglobulin A (sIgA) titer significantly increased

in the probiotic group infants (100). Another study on chicken

models showed that a mixture of probiotic Lactobacillus spp can

enhance IFN-γ gene expression but does not influence antibody

production after influenza vaccination (101). Consumption of

probiotics containing Lactobacillus acidophilus; Lactobacillus

plantarum; Pediococcus pentosaceus; Saccharomyces cerevisiae;

Bacillus subtilis, and Bacillus licheniformis in broiler chickens

resulted in the diminished adverse effect of live vaccine,

reduced mortality rate, fecal shedding, and re-isolation of

Salmonella Enteritidis (SE) from liver, spleen, heart, and cecum

against SE vaccine (102). On this subject, oral administration

of L.plantarum GUANKE (LPG) on mice models acted as a

booster for COVID-19 vaccination and boosted>8-fold specific

neutralization antibodies in bronchoalveolar lavage (BAL)

and >2-fold in serum (103). An in-vitro and in-silico study

showed that L.plantarum could reduce inflammatory markers

such as IFN-α, IFN-β, and IL-6 and block virus replication by

interaction with SARS-CoV-2 helicase (104). L. acidophilus

W37 (LaW37) with long-chain inulin (lcITF) was also used as a

probiotic in a study on piglets and increased two-folded vaccine

efficacy against Salmonella Typhimurium strains (STM) (105).

A pilot study on adults who received the influenza vaccine

reported that L. rhamnosus GG (LGG) could be an influential

adjuvant to improve influenza vaccine immunogenicity (106).

LGG also improves T cell responses but not antibody production

on human gutmicrobiota (HGM) transplanted gnotobiotic (Gn)

pig model vaccinated with AttHRV (72). However, specific RV

antibody production was stimulated in infants who received

LGG (107). Another study confirms that the combination of L.

acidophilus CRL431 and LGG enhanced IgA and IgM (but not

IgG) production after OP vaccination (108).

Other types of probiotics have been studied on this subject

as well. For example, Escherichia coli Nissle (EcN) 1917 was used

to colonize antibiotic-treated and human infant fecal microbiota

transplanted Gn piglets and immune response was evaluated to

human Rotavirus (HRV). As a result, the humoral and cellular

immune responses were enhanced, and EcN biofilm increased

the frequencies of systemicmemory and IgA+ B cells (109, 110).

Likewise, the Lactococcus lactis strain decreased severity and

symptoms in volunteers with Dengue fever (DF) compared

to the placebo group, promoted IFN-γ and TGF-β cytokines

secretion, and reduced serum IgE and IL-4 cytokine levels

in mice models (111, 112). Bacillus toyonensis (B. toyonensis)

BCT-7112 was also enabled to improve the humoral immune

response of ewes against the clostridium perfringens epsilon

toxin (rETX) vaccine and boost higher neutralizing antibody

titers (113). B. toyonensis and Saccharomyces boulardii also

successfully boosted antibody production and expression of

IFN-γ, IL2, and Bcl6 genes in Clostridium chauvoei vaccinated

sheep (114). Likewise, Bacillus velezensis significantly reduced

the pigeon circovirus (PiCV) viral load in the feces and spleen

of pigeons and promoted TLR 2&4 expression (115). Fecal

microbiome transplantation with Clostridium butyricum and

Saccharomyces boulardii treatment in piglets not only improved

plasma concentrations of IL-23, IL-17, IL-22 and specific

antibodies against Mycoplasma hyopneumoniae (M. hyo) and

Porcine Circovirus Type 2 (PCV2), but also decreased the

inflammation levels and oxidative stress injury, and improved

intestinal barrier function (116).

Although several studies reported a positive effect of

Lactobacillus on VE, some studies yielded different results. For

example, maternal LGG supplementation showed decreased

specific antibody responses in tetanus, Haemophilus influenza

type b (Hib), and pneumococcal conjugate (PCV7) vaccinated

infants (117). Also, probiotic consumption containing

Lactobacillus strains (L. paracasei and Lactobacillus casei

(L. casei) 431 showed no effects on the immune response

to the influenza vaccine but shortened the duration of

respiratory symptoms (118). Another study on L. paracasei

and MoLac-1 (heat-killed) supplemented diet reported the

same results, and these probiotics could not boost immune

responses after vaccination (119). A recent study also assessed

LGG consumption impact on influenza vaccine efficacy in

type 1 diabetic (T1D) children and reported no significant

improvement in humoral response in the probiotic group (120).

In conclusion, although some studies show that probiotics

are inefficient in boosting the immune system and increasing

vaccine efficacy, most studies demonstrated the positive effects

of probiotics on promoting vaccine immunity and protecting

the gut barrier simultaneously (Table 1).

Probiotic-based vaccines

One efficient way to increase VE, produce a better immune

response to an antigen, and reduce attenuated vaccine risk is to

utilize recombinant antigens in gut microbiota vectors. Based

on this idea, several probiotic-based vaccines were developed
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(Figure 1). For instance, the recombinant Streptococcus gordonii

RJM4 vector has been used to express the N-terminal fragment

of the S1 subunit of pertussis toxin (PT) as a SpaP/S1 fusion

protein in mice. SIgA in saliva and IgG were detected, and long-

term oral colonization and maintenance of recombinant protein

were observed in these animal models (121). The B subunit of

the heat-labile toxin (LTB) was one of the antigen targets that

colonized Bacillus subtilis (B. subtilis) with episomal expression

systems. Vaccinated mice with engineered B. subtilis via the

oral route could be recognized and neutralize the native toxin,

produced by enterotoxigenic Escherichia coli (ETEC) strains in

vitro (122). B. subtilis was also used as a shuttle for Clonorchis

sinensis antigen. Compared with control groups, the results

indicated that the vaccinated group could induce humoral

and cellular immune responses successfully (123). Furthermore,

another vaccine against ETEC strains, the probiotic E. coli

Nissle 1917 (EcN) was used to express Stx B-subunits, OspA,

and OspG protein antigens. This system could elicit hormonal

responses but could not trigger selective T-cell responses against

selected antigens (124). On the other hand, EcN 1917 expressing

heterologous F4 or F4 and F18 fimbriae of ETEC improved anti-

F4 and both anti-F4 and anti-F18 IgG immune responses (125).

Lactococcus lactis is a commonly used food-grade probiotic.

To develop a vaccine against Helicobacter pylori, L. lactis

expressing Helicobacter pylori urease subunit B (UreB) was used

and results demonstrated that orally vaccinated mice elicited

significant humoral immunity against gastric Helicobacter

infection (126). Tang et al., designed a recombinant L. lactis

expressing TGEV spike glycoprotein. Results on mice revealed

induction of local mucosal immune responses and IgG and

IgA antibodies production against TGEV spike glycoprotein

(127). On this subject, L. lactis PppA (LPA+) recombinant

strain containing pneumococcal protective protein A (LPA)

in oral immunized mice showed mucosal and systemic

antibody production against different serotypes of Streptococcus

pneumonia (128). L. lactis was likewise used to deliver rotavirus

spike-protein subunit VP8 in the mouse model. The serum

of animals that received L. lactis with cell wall-anchored RV

VP8 antigen could inhibit viral infection in vitro by 100%

and vaccinated mice developed significant levels of intestinal

IgA antibodies in vivo (129). The oral vaccine with L. Lactis

expressing a recombinant fusion protein of M1 and HA2

proteins derived from the H9N2 virus successfully induces

protective mucosal and systemic immunity in eighty 1-day-old

chickens (130). Mohseni et al. employed L. lactis as a vector for

expressing the codon-optimized human papillomavirus (HPV) -

16 E7 oncogenes, and it showed cytotoxic T lymphocytes (CTL),

and humoral responses after vaccination in healthy women

volunteers with this probiotic-based vaccine (131). Similarly,

another study on L. lactis expressing HPV codon-optimized E6

protein reported induction of humoral and cellular immunity

and significantly increased intestinal mucosal lymphocytes,

splenocytes, and vaginal lymphocytes in the vaccinated group

compared to controls (132).

Lactobacillus casei strains are known for their immune

stimulatory effect and have been used as probiotics for many

years. A genetically engineered L. casei oral vaccine expressing

dendritic cell (DC)-targeting peptide for Porcine epidemic

diarrhea (PED) resulted in significantly elevated levels of anti-

PEDV specific IgG and IgA antibody responses in mice and

piglets (133, 134). Yoon et al. expressed poly-glutamic acid

synthetase A (pgsA) protein from HPV-16 L2 in L. casei,

and interestingly, L2-specific antibodies had cross-neutralizing

activity against diverse HPV types in the mouse model (135).

Recombinant L. casei was also used for immunizing piglets

against TGEV. As a result, solid cellular response, switching

fromTh1 to Th2-based immune responses, and IL-17 expression

in systemic and mucosal immunity was reported (136). In

another study, α, ε, β1, and β2 toxoids of Clostridium perfringens

expressed in L. casei ATCC 393 vector and elevated the levels

of antigen-specific mucosa sIgA and sera IgG antibodies with

exotoxin-neutralizing activity were seen in rabbit models (137).

A different study used this probiotic expressing the VP2 protein

of infectious pancreatic necrosis virus (IPNV) and reported

induction of local mucosal and systemic immune responses in

rainbow trout juveniles (138).

Other strains of lactobacillus are used in this technique

as well. Oral recombinant Lactobacillus vaccine containing

VP7 antigen of porcine rotavirus (PRV) showed stimulation in

the differentiation of dendritic cells (DCs) in Peyer’s patches

(PPs) significantly, increased serum levels of IL-4 and IFN-

γ and production of B220+ B cells in mesenteric lymph

nodes (MLNs). Also, it increased the titer levels of the VP7-

specific antibodies in mice models (139). Recombinant L.

Plantarum expressing H9N2 avian influenza virus used for

specific pathogen-free (SPF) 3-week-old chickens and could

elicit humoral and cellular immunity (140). Shi et al. showed

excessive serum titers of hemagglutination-inhibition (HI)

antibodies in mice, and robust T cell immune responses

in both mouse and chicken H9N2 vaccinated models by

Recombinant L. Plantarum (141). L. PlantarumNC8, expressing

oral rabies vaccine G protein fused with a DC-targeting

peptide (DCpep), resulted in more functional maturation of

DCs and a strong Th1-biased immune response in mice

(142). A recent study utilized L. Plantarum for developing

SARS-CoV-2 food-grade oral vaccine. The results indicated

that the spike gene could be efficiently expressed on the

surface of recombinant L. Plantarum and displayed high

antigenicity (143). As a novel approach for vaccination against

SARS-Cov2, L. plantarum strain expressing the SARS-CoV-

2 spike protein was used, and high yields for S protein

were obtained in an engineered probiotic group in vitro

(143). In murine models, Lactobacillus pentosus expressing D

antigenic site of spike glycoprotein transmissible gastroenteritis
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coronavirus (TGEV) could induce IgG and sIgA against this

virus (144). Recombinant Lactobacillus rhamnosus that contains

Koi herpesvirus (KHV) ORF81 protein in vaccinated fish was

also successfully generated antigen-specific IgM with KHV-

neutralizing activity (145). Another study used Lactobacillus

acidophilus vector with the membrane-proximal external region

from HIV-1 (MPER) and secreted interleukin-1ß (IL-1ß) or

expressed the surface flagellin subunit C (FliC) as adjuvants, and

reported as an improved vaccine efficacy and immune response

against HIV-1 in mice (146). These studies demonstrated

that probiotics have a potential role in acting as a shuttle

for recombinant oral vaccines and successfully promoting the

immune system against pathogens, and improving intestinal

condition simultaneously.

Future perspective

There is no doubt that gut microbiota significantly impacts

human metabolism and the immune system. Even further, some

scientists consider gut microbiota as an endocrine organ in

the human body. Probiotics are part of gut microbiota that

have health benefits and promote immune responses. Based

on the impact of gut mucosal immunity in the humoral

immune response to vaccination, using probiotics as an

immune booster next to oral vaccines can lead to better

immunity, and probiotic-based recombinant vaccines promise

a better generation of recombinant vaccines. Although a few

human studies were performed on this subject, probiotics and

probiotic-based recombinant vaccines’ efficacy on immunity

against pathogens is promising. Such a new oral vaccine

against SARS-CoV-2 infection was developed by Symvivo

Corporation (a Vancouver-based Biotech Company) using

Bifidobacteria longum, for expressing spike protein (named

bacTRL-Spike), and it is under investigation in phase 1

clinical trials (NCT04334980). However, more studies need

to be performed to detect the effectiveness of probiotics and

engineered probiotic vaccines in clinical trials and investigate

their role in human immunological pathways to ensure their

safety and durable immunity.
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