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a b s t r a c t

Source apportionment studies use prior exploratory methods that are not purpose-oriented and receptor
modelling is based on chemical speciation, requiring costly, time-consuming analyses. Hidden Markov
Models (HMMs) are proposed as a routine, exploratory tool to estimate PM10 source contributions. These
models were used on annual time series (TS) data from 33 background sites in Spain and Portugal. HMMs
enable the creation of groups of PM10 TS observations with similar concentration values, defining the
pollutant's regimes of concentration. The results include estimations of source contributions from these
regimes, the probability of change among them and their contribution to annual average PM10 con-
centrations. The annual average Saharan PM10 contribution in the Canary Islands was estimated and
compared to other studies. A new procedure for quantifying the wind-blown desert contributions to
daily average PM10 concentrations from monitoring sites is proposed. This new procedure seems to
correct the net load estimation from deserts achieved with the most frequently used method.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The main objective of many monitoring studies related to
atmospheric aerosols is the identification and apportionment of
pollutants to their sources. This information is crucial for the
development and implementation of policies protecting human
health and the environment as well as the design of effective miti-
gation strategies on a local or broader scale where the legislation
thresholds are exceeded. Source apportionment (SA) is the practice
of obtaining information about pollution sources and their
10, particulate matter with
al background; RM, receptor
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contribution to ambient air pollution levels. There are three main
groups of SA techniques (Viana et al., 2008): (i)methods that involve
the assessment of monitoring data, (ii) methods that rely on emis-
sions inventories and/or atmospheric dispersionmodelling, and (iii)
methods based on the statistical evaluation of the chemical data on
particulate matter gathered from receptor sites (receptor models or
RMs). The first group is considered to be based on basic numerical
data treatment (Belis et al., 2013). It also includes simple time series
(TS) modelling of data that may be used, for instance, to estimate
natural PM10 contributions from deserts (Escudero et al., 2007a).
The second one includes models to simulate aerosol emission for-
mation, transport and deposition, although they are limited by the
accuracy of emission inventories, when available. The third group is
especially used for airborne particulate matter. The foundational
principle of RMs is based on amass balance between the emitter and
the receptor, which assumes that the mass and species remain
constant from one to the other or experience minimal change.
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In addition to this classification, a basic statistical analysis is
recommended before undergoing any SA study, which should
include time-trend analyses or statistical distribution fitting that
may describe the data sets under study (Belis et al., 2014). Simple
statistical methods such as correlations or time-trend modelling
are then used as an initial approach for suggesting SA or as a task
prior to applying the time-consuming and more expensive RMs in
which chemical speciation is required. Exploratory methods are
varied and are not really SA oriented. Moreover, a strong statistical
theory to back them is missing. More robust SA results can be ob-
tained if the advantages of different types of modelling are com-
bined, since no single model is completely adequate due to the
theoretical assumptions. This represents themotivation behind this
work.

Hidden Markov Models (HMMs) are scarcely used in predicting
air quality due to their limited ability to accurately forecast
pollutant concentrations (Dong et al., 2009). This limited ability is
caused by the Markov property, by which only the present state
provides any insight into the future behaviour of the process (in-
formation regarding the history of the process does not reveal
anything new about the process). If no predictive statistics are
desired with respect to pollutant concentration, HMMs show
promise as flexible general purpose models for univariate (Capp�e
et al., 2005) and multivariate TS analyses (Zucchini and
MacDonald, 2009), while at the same time allowing for relatively
easy and straightforward interpretation (Visser et al., 2009; Visser,
2011).

HMMs constitute a starting point for SA based on the study and
characterisation of PM10 TS, clustering their observations over time
in homogeneous groups or regimes of concentrations. In this study,
Gaussian HMMs are applied to univariate PM10 TS obtained from
permanent background monitoring sites in the Iberian Peninsula
and the Canarian, Balearic and Azorean Archipelagos. Interesting
properties of HMMs are also applied to determine the probability of
change between regimes or to obtain the average concentrations of
the TS. The modelling was applied to the data relying on the au-
thors' prior knowledge of SA as a prerequisite. To that end, the case
of the Temisas site in Las Palmas de Gran Canaria Island (Canary
Islands, Spain) is analysed. The SA on this archipelago has been
previously studied by other authors (Rodríguez et al., 2001; Viana
et al., 2002; Querol et al., 2004) and high contributions of partic-
ulate matter due to the transport of air masses from the Sahel and
Sahara deserts (North Africa) has been confirmed.

This study aims: (i) to propose the use of homogenous HMMs as
a routine exploratory tool to complement other SA techniques to
estimate PM10 contributions from different sources; and (ii) to
introduce a newmethod for deriving the dust net load from deserts
using HMMs.

This study is outlined as follows. In Section 2 the data used in
this study and the structure of the HMMs are explained. Section 3.1
deals with the application of HMMs to the Temisas site TS during
2013, defining their regimes, estimating different apportionments
and how these regimes contribute to the annual mean PM10 con-
centration in this area. Sections 3.2 and 3.3 extrapolate this appli-
cation to rest of the analysed sites, on a geographical and temporal
scale, respectively. In Section 3.4 a new method for estimating
contributions from deserts is proposed and finally concluding re-
marks are given in Section 4.

2. Material and methods

2.1. Monitoring sites and data

In this work, data sets of daily averages of PM10 concentrations
collected at 33 background sites on the Iberian Peninsula and the
Azorean, Balearic and Canarian archipelagos (Table SM.1 in
Supplementary Material) have been studied at different years. Of
these sites, 28 belong to the Spanish Ministry of Agriculture, Food
and the Environment (MAFE) and are included in the Iberian
background network for the detection of African episodes (Querol
et al., 2013a), with 13 of them also being included in the EMEP
(Co-operative Programme for Monitoring and Evaluation of the
Long-Range Transmission of Air Pollutants in Europe) network
(EMEP, 2014). The Comiss~ao de Coordenaç~ao da Direcç~ao Regional
(CCDR) do Centro, CCDR do Alentejo and Direcç~ao Regional do
Ambiente dos Açores from Portugal manage 5 of these monitoring
sites. The used data were provided by these Portuguese institutions
and MAFE after validation.

The PM10 concentrations from the monitoring sites were
determined using the gravimetric and automatic (beta-radiation
attenuation and TEOM) methods. Therefore, in order to harmonise
the TS data, the measurements were corrected by applying the
correction factors obtained by a comparison with the gravimetric
method (EN-12341, 1998). Occurrences of daily episodes of in-
trusions of particulate matter during 2013 due to North African
transport of air masses applied in this work were established by
P�erez et al. (2014) using a combination of methods (Querol et al.,
2009), including HYSPLIT modelling (Draxler and Rolph, 2003).

2.2. Model definition

HMM is a time-dependent process generated by two interre-
lated probabilistic mechanisms, in which one is an underlying and
hidden process, and a series of hidden states, while the other is the
TS observation sequence determined by the current hidden state of
a given Markov chain (Rabiner, 1989). HMM represents a flexible
method of modelling TS that exhibits dependence over time as well
as average PM10 concentrations collected in air quality monitoring
networks. In most HMM applications, the hidden state outputs are
represented by Gaussian distributions. Modelling daily average
PM10 concentrations sampled during a year represents a problem
because of the impossibility of capturing the asymmetrical distri-
bution of this pollutant in a single distribution (e.g. log-normal
distribution). One way to address this problem is to use multiple
(a mixture) Gaussians to approximate the real distribution.

The model consists of two parts: firstly, the daily average PM10
concentrations (observations) which describe a TS of length T, and
secondly, unobserved states, satisfying the Markov property, which
are responsible for generating the observations. The states are
hidden to the observer who just perceives the TS observations. The
Markov property ensures that the highly temporal-dependent na-
ture of PM10 concentrations on consecutive days is taken into ac-
count, a property which may be assumed when one day's
concentration shows dependency on that of the previous day.
States are distinct elements of the HMM, N being the number of
states of the model. This number is also used to name the HMM
(e.g. an N-state HMM).

In Fig. 1, how one hidden state transitions to another state
generating the observations of an annual TS (T ¼ 365) is first
depicted and then the elements of an HMM are defined. For the
sake of simplicity, this example uses a two-state HMM and the first
five observations (from the first day -t¼ 1- to the fifth -t¼ 5-) of the
TS are explained. Hidden states are denoted by circles and possible
transitions among hidden states by arrows, with their probabilities
given. The path generating the observation is indicated by high-
lighted arrows and blue circles. In the beginning (t¼ 1), the Markov
chain is initialised according to the initial state probability distri-
bution d¼ (1,0) and starts at state 1. Then the hidden state transfers
from the initial state to the next state according to a transition
probability matrix (A), which describes the probabilities for all the



Fig. 1. Example of a TS modelling with a two-state HMM with A representing the
transition probability matrix of the unobserved Markov chain. Calculation of the mean
value of the TS (mm).
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transitions. As elements of this matrix are probabilities, they are
non-negatives, no greater than 1 and each of the rows sum to unity.

Each of the hidden states addresses an associated statistical
distribution fromwhich the data are generated. These distributions
are referred to in the literature as emission probabilities denoted by
B. In this work, this distribution is represented by a weighted sum
of Gaussian densities. In Fig. 1, they are represented by two
Gaussian densities, N (15,3) and N (30,7), contributing equally
(p1 ¼ p2 ¼ 0.5) to capturing the shape (histogram) of the TS. The
example finishes at time t ¼ 5 after having generated five obser-
vations of the TS. Lower concentration values in the TS are gener-
ated by the Gaussian distribution associated with state 1, while
higher ones are generated by the Gaussian distribution associated
with state 2. This observation leads to the formation of two groups
of the TS observations depending on their concentration values.
This idea helps to clarify the role of hidden states as elements that
cluster the TS observations, modelling the temporal heterogeneity
of any given TS.
Next, the elements defining an HMM may be given:

1. The number of states of the model, N. The individual states are
denoted as S¼ {S1,…, SN} and the state at time t is denoted by qt.

2. The initial state probability distribution, determining in which
state the Markov chain starts to transition at t ¼ 1, defined as
di ¼ P(S1 ¼ i), i ¼ 1,…, N.

3. The state transition probability matrix A ¼ {aij}, with elements:

aij ¼ PðSt ¼ jjSt�1 ¼ iÞ i; j ¼ 1;…;N

indicating the probability the state at time t (j) given the state at
time t � 1 (i).

4. M, the number of distinct observations of the TS for each state.
The individual observations are denoted by V ¼ {v1, v2,…, vM}.

5. The emission probability distribution in state Si, B ¼ {bi(k)},
where bi(k) ¼ P(vkjqt ¼ Si), is the probability that a particular
observation of the TS is emitted in a state Si at time t, i ¼ 1,…, N,
k¼ 1,…,M. This element of the HMM includes the parameters of
the weighted sum of N Gaussian distributions: the weighting
coefficient (pi), the mean (mi) and the standard deviation (si)
values, i ¼ 1,…,N, of the Gaussian distributions. The weighting
coefficients satisfy the constraint that their values sum to unity.
2.3. Model estimation

The estimation problem lies in finding the parameters of the
HMM that specify the model that is most likely to have gener-
ated a given TS. This is referred to as the maximum likelihood
estimation (MLE) problem. Although there are many methods
which can be used to estimate the parameters of an HMM, the
Expectation-Maximisation (EM) algorithm (Dempster et al.,
1977; Wu et al., 2008) is the most widely used. The EM algo-
rithm can be applied for MLE when there are hidden data (e.g.,
hidden states) or when a problem can be reformulated in those
terms. Briefly, the EM algorithm takes the observed data and an
initial estimate of the parameters and uses them to estimate the
hidden data (the expectation step); it then takes the observed
data and the estimated hidden data and uses them to provide a
new estimate of the parameters (the maximisation step) in an
iterative fashion. The algorithm iterates until a convenient
stopping criterion is met (Wilks, 2006). This criterion may be a
permitted number of iterations of the algorithm, an acceptable
minimum difference term (2) considering the parameter esti-
mations at each iteration, or both. The standard error of the
parameters of the HMMs was obtained by means of a bootstrap
approximation as described in Basford et al. (1997) adapted to
univariate TS data.

The computational implementation of the HMMs was accom-
plished using the “depmixS4” package (Visser and Speekenbrink,
2010) from the open-source software R (R Core Team, 2013). The
appropriate model selection was performed by estimating models
for different values of hidden states (S ¼ 1,…,7) and later the op-
timum solution was selected based on the lowest BIC (Bayesian
information criterion) value (Schwarz, 1978). The EM algorithm
used to obtain the parameters of every HMM was setup with
2 ¼ 10�8 and a maximum of 2000 iterations. The computational
implementation and commented R code is available in the
Supplementary Material of this work. To check the validity of the
modelling results obtained with the “depmixS4” library, the “Hid-
denMarkov” (Harte, 2015) and “HMM” (Himmelmann, 2010)
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libraries were also used, and negligible differences were found in
the parameter estimates.

2.4. Application of HMMs to the PM10 TS study

For many practical applications there is often some physical
significance attached to the hidden states of the model. For
instance, in economics, states of the HMM can be related to “state of
the economy” (e.g. expansion and recession) and the interest is in
studying the dynamics between them (Dias et al., 2010); in devel-
opment psychology, the states of the HMM are used to quantify
knowledge that subjects express in an implicit learning task (Visser
et al., 2002); or in the study of sleep stages, the states of an HMM
correspond to various stages such as REM (rapid eye movement)
sleep, deep sleep and wakefulness (Flexer et al., 2002).

In this work, hidden states of the HMMs are assigned to repre-
sent different PM10 concentration ranges in each modelled annual
TS (77 data sets; see Tables SM.1 to SM.6 in the Supplementary
Material). For the sake of simplicity and a more intuitive
approach, the hidden state concept and the term “concentration
ranges” will be unified and the term regimes of concentration or
simply regimeswill be used. These regimes, as a result of applying a
cluster technique, groups observations of the TS with a relatively
similar PM10 concentration, which at the same time are dissimilar
to other ones grouped in other regimes. However, values of these
regimesmay show some overlapping, which is required to precisely
capture the data distribution in the TS.

HMM provides the mean and standard deviation values for
every regime. These values define the different Gaussian distribu-
tions assigned to the regimes, providing very useful information as
they fully characterise every analysed TS for a given time period and
monitoring site. HMM enables this parameterisation to be sum-
marised by using simple algebraic expressions, as indicated in
Appendix A. These expressions calculate the mean and standard
deviation values of every TS using these same values for every
regime in a sum that is weighted by the representativeness of every
regime (p) to the overall distribution of the TS data. These values
defining the TS are denoted as mm (Fig. 1) and sm (where m stands
for mixture). They are quantitatively similar to the arithmetic mean
(x) and standard deviation (s) values which could be obtained
without considering a temporal dependence in the TS data.
Therefore, mm serves as a quantitative indicator of the annual mean
PM10 exposure level of populations and sm represents the level of
variation of the pollutant distribution around the mm.

In addition, HMM results include the transition probability
matrix, which indicates the dynamic transition among regimes as
probability values. Thus, it is possible to determine how probable it
is that after an observed PM10 concentration is assigned to a regime
the next observationwill be similar (stay at the same regime) or not
(switch to other regime). This leads to the concept of stability of the
TS, which is derived from the main diagonal elements of A. This
diagonal is related to the probability of the process being in a given
regime in the long run. Thus, the closer the elements of the diag-
onal are to 1, the greater the probability of expecting similar PM10
concentration values on a lasting basis for a given regime. For
instance, in Fig. 1, these elements (A) show a remarkable instability
of the hypothetical TS, as values of the main diagonal are closer to
0 than to 1 (a11 ¼ 0.2 ≪ 1; a22 ¼ 0.3 ≪ 1).

3. Results and discussion

3.1. HMM modelling and estimations

The numerical values of the HMM application to the daily
average PM10 concentrations from the Temisas site during 2013 are
shown in Table 1 (calculations of mm and sm are shown in Appendix
A). A graphical depiction of this application is shown in Fig. 2 where
the grouping of the daily average PM10 concentrations can be
observed. This site and the others indicated in Table SM.1 from the
Canarian archipelago have been used by other authors (P�erez et al.,
2014; Pey et al., 2013; Querol et al., 2013a) to quantify the contri-
bution of North African dust outbreaks in this area.

Fig. 2A and B are both equivalent and show the formation of four
groups within the data as a TS and histogram, respectively. These
groups correspond to the regimes (hidden states) of the HMM
referred to in Section 2.2 (a four-state HMM). In Fig. 2A each
observation is labelled with the number of the regime to which it
has been assigned by the HMM, or is grouped below a coloured
Gaussian line in Fig. 2B. The latter shows how the resulting density
of the clustering (black line) captures the form of the data distri-
bution (grey line) much better than any single density, whatever its
family. In Table 1, it can be observed that the range of values for
every regime shows the typical overlapping, but the similarity
between the mm and sm values and the arithmetic mean (x) and
standard deviation (s) of the analysed data set can be appreciated.

After modelling the data, a meaning for each regime is assigned.
The following definitions are proposed for the mean concentration
value of every regime, applied both to the regional background case
and period under study:

� m1 (10.3 mg/m3) represents the underlying or threshold con-
centration over which great changes in value are not expected
over the years if atmospheric and pollution conditions remain
relatively constant, being a characteristic of the studied area.
Daily average PM10 concentrations assigned to this regime are
supposedly not caused by any direct influence of natural or
anthropogenic sources, or if they are, they are negligible.

� m2 (17.7 mg/m3) is the average PM10 concentration on the days
affected by moderate contributions of anthropogenic sources
due to activities that take place in the region. The value of m2 is
subject to slightly more variation than m1 between years. The
referenced days may be affected by contributions from natural
sources attributable to African dust transport episodes that have
a minor impact on the observed PM10 concentrations.

� m3 (42.8 mg/m3) is the average PM10 concentration on days
affected by characteristic, usual contributions from African
outbreaks. These contributions are highly variable in concen-
tration and are the main factor responsible for the exceedances
of the 50 mg/m3 limit value established by the Directive 2008/
50/EC on ambient air quality and cleaner air for Europe
(Directive, 2008) for this pollutant.

� m4 (153.3 mg/m3) is the average PM10 concentration on days with
unusual but severe episodes of natural contributions fromNorth
African episodes.

Remarkably, the aforementioned definitions for regimes after
applying HMM coincide from a conceptual point of view with the
PM10 level separation made by Lenschow et al. (2001) at the Berlin
(Germany) region, where local, urban and regional background
fractions were made. The authors of this study gave these regimes
the intuitive name of horizontal profiles of the ambient PM10 con-
centration and particularly, what is here defined as the first regime
was called natural background concentration. The later work by
Escudero et al. (2007b) mentions the usefulness of interpreting the
variability of the RB PM10 levels, since local contributions may be
identified and thus plans and programmes for air quality
improvement can be properly implemented.

It must be noted that the definitions given above have to be
adapted to the geographical area under study. In general, these
concentrations have an accumulative affect, as several pollution



Table 1
HMM results from the Temisas site and comparison of mm and sm with the arithmetic mean (x) and standard deviation (s) of the analysed data set. n indicates the number of
observations grouped in each regime and the probability transition matrix is represented by A.

Regime d n Range (mg/m3) p mg/m3

m s mm x sm s

1 1 200 5e17 0.532 10.3 2.4

21.3 21.0 25.3 25.3
2 0 95 10e29 0.265 17.7 4.3
3 0 64 7e96 0.181 42.8 17.7
4 0 6 103e237 0.022 153.3 62.6

A ¼

Regime to 1 to 2 to 3 to 4

from 1

from 2

from 3

from 4

0
BBBB@

0:871 0:110 0:019 z0

0:221 0:679 0:066 0:034

0:025 0:170 0:782 0:023

z0 z0 0:666 0:333

1
CCCCA
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sources may contribute simultaneously to air quality (e.g. one
observation belonging to regime 3 also includes contributions from
the sources associated with regimes 1 and 2). Some useful quan-
tities can be roughly estimated using these definitions and this
assumption, namely:
Fig. 2. A. Clustered PM10 TS at the Temisas site. Each observation is numbered after being a
respectively). Mean values of every regimes (clusters) are indicated by m1, m2, m3 and m4 and a
data distribution. A and B show correspondence in colour. Black vertical lines in the TS in
references to colour in this figure legend, the reader is referred to the web version of this
� m2� m1 (7.4 mg/m3): average concentration due to anthropogenic
contributions from the region.

� m3 � m2 (25.1 mg/m3): average concentration associated with
characteristic contributions from dry regions from North Africa
when they occur.
ssigned to a regime by the HMM (regime 1, 2, 3 and 4 in blue, green, orange and red,
re coloured accordingly. B. Mixture of Gaussian distributions capturing the shape of the
dicate days in which African dust intrusions are detected. (For interpretation of the

article.)



Fig. 3. Contributions of the different regimes to the annual PM10 average concentra-
tion (21.3 mg/m3) at the Temisas RB site. Each regime contribution to the annual PM10

average concentration is indicated within the bars (in mg/m3), and their representa-
tiveness in %. Contributions are calculated as pi · mi, i ¼ 1,…, 4, from Table 1.

Fig. 4. A. Study of the regimes in the Iberian Peninsula and Canarian, Balearic and Azorean a
by geographical areas. B. Boxplot diagrams summing up the information from A. The colo
indicated in Table SM.1. (For interpretation of the references to colour in this figure legend

�A. G�omez-Losada et al. / Atmospheric Environment 117 (2015) 271e281276
� m4 � m2 (135.6 mg/m3): average concentration from severe con-
tributions from dry regions from North Africa when they occur.

More precise information from themodelling can be obtained as
the contribution of every regime to the annual mean concentration
of PM10 at this site (21.3 mg/m3). This can be easily calculated from
the figures given in Table 1 bymultiplying the representativeness of
every regime (p) by its mean value (m). Fig. 3 shows these
contributions.

The transition probabilitymatrix (Amatrixe Table 1) shows that
regimes in this site are somewhat unstable, as the elements from
the main diagonal of A are not close to 1 (each row sums to unity).
Less probable transitions among regimes are close to 0, namely: a41,
from regime 4 to regime 1, and a42, both due to atmospheric resi-
dence times after a severe African outbreak occurs; also, a14, for the
impossibility of a sudden increase in PM10 concentration from one
to day to the next. In addition, the A matrix shows that the likeli-
hood of two consecutive severe episodes is low (a44 ¼ 0.333).

3.2. Behaviour of regimes in the Iberian Peninsula and archipelagos

The HMM described in Section 3.1 was applied to the data
collected at 33 monitoring sites for 2013 indicated in Table SM.1.
Fig. 4A displays these results, with each coloured dot representing
rchipelagos during 2013. Each dot represents the mean values of PM10 regimes at sites,
ur codes for regimes are the same as in Fig. 2. Geographical areas are abbreviated as
, the reader is referred to the web version of this article.)



Fig. 5. A. Boxplot representation of mm values from 2009 to 2013 of sites in selected
areas of the Iberian Peninsula and the Azores Archipelago. B. Boxplot study of the
regimes of A. Abbreviation and colour codes are the same as in Fig. 4. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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the mean value of every PM10 regime at sites (the number of re-
gimes detected and results of central tendency and dispersion
measures are given in SupplementaryMaterial 5), with a maximum
of four being detected (m1, m2, m3 and m4), depending on the site. For
the sake of simplicity, Fig. 4B sums up this information using
boxplot diagrams, as the aim is not to describe every regime from
monitoring sites but to gain a general overview of the behaviour of
regimes by geographical area. Definition of the regimes in TS is a
previous and necessary step for estimating the contribution of
sources in a specific area using this modelling. Defining the regimes
is always subjective and subject to several interpretations, and
some consensus is needed among experts. Due to the number of
studied sites, this task could not be carried out in this work.
However, there are certain cases that are worth analysing. The
remote Faial site in the Azores Archipelago (AZ) was significant. The
fourth regime is missing and the concentrations of the existing
ones are typically low (mm ¼ 5.80 mg/m3; m1 ¼ 2.30 mg/m3,
m2 ¼ 5.88 mg/m3, m3 ¼ 11.13 mg/m3). Whether this site is influenced
by particulate matter from the desert or not cannot be determined,
although the marine aerosol could be present, being represented
partially by the third regime, considering the isolated location of
this site in the Atlantic Ocean. Of three North sites, two lack the
third regime. Sites located in the centre of the Iberian Peninsula
(CE) present a fourth regime that could be represented both by dust
resuspensions and by natural contributions from North Africa. The
rest of the regime analyses are considered for further investigation.

The initial regime definitions given for the Temisas site may be
considered again in this section, bearing in mind the background
nature of all the studied site in this work. This is the case of regime
1, as it is assumable in theory that every site holds a minimum,
underlying PM10 concentration that is characteristic of the site and
that shows little variation over time if atmospheric conditions
remain relatively constant. Consequently, the first regime (Fig. 4A,
lower plot) may provide an indication of PM10 pollution at sites.
Other regimes defined for the Temisas site are also applicable to the
rest of monitoring sites from the Canarian Archipelago (CA in Fig. 4)
due to the fact that all of them are affected by the same natural
source of contributions. Therefore, Table 2 compares the estimated
contribution from African episodes in the Canarian Archipelago
given by P�erez et al. (2014) and the one using HMMs after
considering the regime definitions given in Section 3.1 (regimes 3
and 4). As can be appreciated, the estimation results are similar.
Those authors use a methodology based on the assessment of PM10
concentration TS at background sites by means of the calculation of
the monthly mobile 40th percentile (Escudero et al., 2007a; Querol
et al., 2013a, 2013b). This latter method is outlined in Section 3.4.
3.3. Study of the regimes over time

The same study of the behaviour of regimes is broadened from
2009 to 2013 for selected geographical areas (N, SE, CE and AZ) and
the results are displayed in Fig. 5 (see Supplementary Material 6 for
additional information). Fig. 5A shows the general trend of PM10 for
that period using boxplot diagrams. Every boxplot describes all of
Table 2
Comparison between estimated contributions (in mg/m3) after African outbreaks in
the Canarian Archipelago for 2013 and average values (x). The Temisas site included.

Site HMMs P�erez et al. (2014)

El Río 11.6 10.8
Temisas 11.1 9.0
Echedo 6.1 6.2
Tefia 9.9 10.4

x¼9.7 x¼9.1
the mm values at sites located in each area. The graph corresponding
to the year 2013 in Fig. 5B repeats the results of Fig. 4B for these
selected sites, and they are included again for comparative pur-
poses with previous years. Sites from the Canarian Archipelago (CA)
have not been included, as the air quality network of these islands
was altered during the studied five years.

As can be appreciated in Fig. 5A, a general, slightly downward
trend in PM10 concentration is shown using a horizontal grey line,
calculated using themean value of all of the mm values for each year.
This trend is also reflected in the disaggregation of the mm values by
regimes shown in Fig. 5B, which was expected as every mm value is
calculated considering the mean values of each regime. A close
parallelism is detected between the first regime trend (boxplots
and the horizontal line in blue) and the general trend (Fig. 5A),
supporting the plausible use of this regime as a pollution indicator.
This is due to the high representativeness of this regime in the
overall distribution of the TS data (e.g. in the Temisas site,
p1 ¼ 0.532).

The disaggregation shown in Fig. 5B may help to understand
new/altered contribution phenomena, as the appearance of a
fourth regime in 2010 for the N area (red boxplot) that is not pre-
sent in the rest of years or a fifth regime in the CE area in 2012
(detected in S. Pablo). These events are by no means quantitatively
important but could describe different apportions or changes from
the expected ones. In the North case (N) for 2010, the fourth regime
is described only at the Niembro and Pagoeta sites. These sites are
located approximately 1 km and 6 km from the Cantabrian Coast
respectively. In addition, a modification to the PM10 concentration
levels is possible due to the marine aerosol apportion, although
African contributions have also been described in studies carried
out at the Niembro and Pagoeta sites (Pey et al., 2011) using the
monthly mobile 40th percentile method. These studies determine
that the African apportion in the Niembro and Pagoeta sites are
0.9 mg/m3 and 0.7 mg/m3, respectively. The HMM establishes that
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the contribution of the fourth regime (m4) to the annual average
PM10 concentration at these sites was 0.47 mg/m3 and 2.33 mg/m3

respectively.
In the case of the SE area for 2010, the fourth regime is present at

the Viznar and Alcornocales sites. The fourth regime contributes to
the annual average PM10 concentration for these sites by 4.31 mg/m3

and 0.84 mg/m3, respectively. Pey et al. (2011) calculate that the
contribution from North African dust is 3.9 mg/m3 and 2.0 mg/m3 at
these sites.

No direct conclusions from these HMMs results can be obtained,
as regimes in these geographical areas have not been defined.
However, similar results achieved by the currently used method-
ology (Escudero et al., 2007a, 2007b) and HMMs suggest that
further research is needed. It would be interesting to establish how
both methodologies (and others) complement each other as HMMs
may offer significant information once regimes are defined,
namely: (i) net contributions due to different sources; (ii) contri-
butions to the annual PM10 mean from every regime; and (iii) the
probability of change among regimes. Because of this valuable in-
formation provided, HMM represents a single statistical analysis
with a strong theoretical background with which to characterise
any TS. In addition, the ease of interpretation and reproducibility of
the results should be considered, as well as the fact that this
modelling can be performed making use of free software available
to the research community.

3.4. New method proposed to quantify the apportionment of PM10

from deserts

Directive 2008/50/EC (Directive, 2008) allows for subtracting
exceedances on the daily limit values of PM10 concentrations
(50 mg/m3) when they are attributable to natural events such as the
transport of natural particles from dry regions (articles 2.15, 20.1
and 20.2). African dust outbreaks are responsible for a relevant
percentage of the exceedances of the PM10 daily limit vale regis-
tered at rural and urban sites in the Mediterranean Basin (Salvador
et al., 2014). The method that at present is more widely accepted
(Viana et al., 2014) to estimate the daily African PM10 load was
introduced by Escudero et al. (2007a) and it is based on the mobile
40th percentile (P40) method. This method is considered a refer-
ence method and is included in the text “Commission staff working
paper establishing guidelines for demonstration and subtraction of
exceedances attributable to natural sources under the Directive
2008/50/EC on ambient air quality and cleaner air for Europe” (EC,
2011).

Briefly, this method obtains the African PM10 load on a given day
with the influence of African dust outbreaks, subtracting the RB
level from the measured PM10 concentration. This RB level is ob-
tained after applying the monthly mobile 40th percentile to the
PM10 concentration TS at an RB site, after prior extraction from the
TS of those dayswith African influence. Themotivation to propose a
new method is based on the suggestion of Viana et al. (2008) for
further research on the current methodologies dealing with this
Table 3
Example of five observations from the Temisas data set when using the proposed method
quantity after applying the P40 method (in mg/m3).

Date Observed PM10 Regime

05 January 2013 69 3
04 February 2013 223 4
05 February 2013 237 4
25 April 2013 21 2
12 December 2013 134 4
specific contribution.
The aforementioned methodology was applied initially using

the monthly mobile 30th percentile. This percentile was later
shifted to the 40th percentile in order to correct the possible
overestimation in the calculation of the North African contribution
(Querol et al., 2009, 2013a). Although in the authors' opinion, this
new percentile represents a suitable approximation for estimating
the RB level on a given day, themethod proposed in this work could
improve the P40 method in two ways since it avoids: (i) the
smoothed effect which is implicit in the P40 method after applying
a mobile procedure in the TS treatments, and (ii) the empirical
approach based on a correlation analysis applied in order to select
this particular percentile (40th).

The example of Temisas (Section 3.1) is again taken into account
and in particular, Fig. 1A shows a graphical and intuitive approach.
The proposed method calculates the net contribution of African
episodes as a result of subtracting the m2 value from the daily PM10
concentration when an African outbreak is detected. An example is
given in Table 3 and compared to the P40method. To gain a broader
view of this comparison, Fig. 6 displays the different estimations of
the dust loads in PM10 obtained through both methods for the
Canarian archipelago sites (Temisas, Echedo and Tefia), and South
(Viznar and Do~nana), East (Zarra) and Centre (San Pablo, Pe~nau-
sende and Campis�abalos) sites on the Iberian Peninsula. As can be
appreciated from this figure, the P40 method could overestimate
the daily net load attributable to severe African episodes that
frequently occur in the Canarian archipelago (Fig. 6AeC). This
overestimation is less significant from a quantitative point of view
when less severe contributions are observed (Fig. 6D, FeI; in Fig. 6E
a slight underestimation is observed). Table 4 shows the difference
between both methods when estimating average contributions on
days affected by desert outbreaks for the analysed sites. Due to the
empirical approach on which the P40 method is based, an analyt-
ical reasoning of these discrepancies cannot be directly derived.
However, the smoothing effect referred to above is likely to be
involved.

This proposed method is intuitive and simple, however a
drawback is present. This is represented by the m2 concentration
on which the method is based, and in particular, on its definition.
As stated in Section 3.2, defining the regimes is always subjective
and some consensus is needed among experts. This can discourage
the end user from applying this method if knowledge on the main
pollution sources of an area is missing. This difficulty is not pre-
sent just in this application but in general when applying HMMs,
as the regimes (hidden states) have to be given meaning. The
given definition in this work for the Temisas site assumes that the
main sources contributing to this regime have a regional anthro-
pogenic origin and that the impact from natural sources to the
range of concentrations on the regime is present in a lesser pro-
portion. This regime definition is based on the study of the work
by Viana et al. (2002, 2014) and Rodríguez et al. (2001). With
respect to the rest of regimes, matrix A mentioned in Section 3.1
helps to clarify their behaviour and hence to give coherence to
to obtain the natural apportions from deserts. The last column shows the resulting

m2 Desert contribution

Proposed method P40 method

17.7 z 18 69�18 ¼ 51 60
223�18 ¼ 205 213
237�18 ¼ 219 227
21�18 ¼ 3 10

134�18 ¼ 116 125



Fig. 6. Comparison between both methods for estimating the PM10 contributions when desert outbreaks are detected. Dotted colours indicate the assignment of every quantity to a
regime (the same colour code as in Fig. 2). The regression (dashed line) indicates the discrepancy between both methods and the black line indicates a hypothetically perfect
correlation between them. Such discrepancy (in mg/m3) is shown by a simple linear regression, where the equations regress the P40 method (y) on the proposed method (x). From A
to I: Temisas, Echedo, Tefia, Viznar, Do~nana, Zarra, San Pablo, Pe~nausende and Campis�abalos sites, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 4
Estimations of average PM10 contributions on days when African episodes are
detected during 2013 using both methods (in mg/m3) at Canarian archipelago and
Iberian Peninsula (IP) sites.

Area Site P40 Proposed

Method Method

Canarian Archipelago Temisas 29.6 25.4
Echedo 22.2 18.6
Tefia 34.7 24.8

South of the IP Víznar 8.9 9.9
Do~nana 6.6 9.8

East of the IP Zarra 7.3 7.3
Center of the IP S. Pablo 9.0 10.2

Pe~nausende 8.6 10.5
Campis�abalos 9.9 12.1
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these definitions. The possible use of the quantity m2�m1 instead of
m2 is not recommended for obtaining the net load as it is derived
from the estimation of two mean values (m2 and m1) and therefore
the difference is a rough estimation of the anthropogenic
contributions.
4. Conclusions

Properties and uses of a new SA methodology based on the
grouping of TS are presented as well as a method for estimating the
PM10 contributions from deserts. The results of the application of
HMMs on daily average PM10 concentrations collected during
different time periods at background sites from the Iberian Penin-
sula and some archipelagos were analysed. Net contributions due
to different sources, contributions to the annual PM10 mean of
every regime and probability of change among regimes at the
Temisas site were estimated, after defining the regimes of its TS.
This site is characterised by high PM10 contributions from the dry
regions from North Africa. The first regime is proposed as an indi-
cator of the background pollution in the analysed sites, taking into
consideration the atmospheric variations in the time scale.

Regime defining for every TS is a previous and necessary step
when this modelling is applied and the consensus of experts is
necessary. These definitions provide a formal theoretical grounding
to background pollutions fractions introduced by other authors,
which must be considered when plans for the improvement of air
quality are to be designed. The study of the regimes on a spatial
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scale helps to distinguish and quantify the different source con-
tributions in geographical areas, although such studies must be
complemented by other types of modelling to gain more robust SA
deductions. The annual contribution of North African episodes to
the PM10 mean value in the Canarian Archipelago coincides mark-
edly with the same estimationmade using the P40method, applied
by other authors. By adding a temporal scale to this analysis, the
detection of new source contributions or the alteration of the ex-
pected ones is enabled in such areas of study.

The introduced method for estimating contributions from de-
serts seems to correct the net load of PM10 given by the P40method
and attributes less impact on areas suffering greater influence from
African episodes on the daily PM10 concentrations.

The clustering of TS using HMMs provides an important meth-
odological approach to exploratorymethods used in SA but can also
be used to complement other RM techniques that require time-
consuming and expensive chemical speciation. The results of
HMMs are easy to interpret and have a high degree of reproduc-
ibility. HMM implementation is also available through free soft-
ware, which does not require advanced programming skills or
advanced knowledge of statistics. The use of HMMs is therefore
encouraged in the study of PM10 pollution.
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Appendix A

The aim of this appendix is to show how the values of mm and sm
are calculated for the TS of the Temisas site (Table 1):

mm ¼
X4
i¼i

pimi

¼ ð0:532$10:325Þ þ ð0:265$17:720Þ þ ð0:181$42:752Þ
þ ð0:022$153:256Þ

¼ 21:298
sm ¼
"X4

i¼i

�
m2i þ s2i

�
pi � m2m

#1=2

¼
h�

10:3252 þ 2:4182
�
$0:532þ

�
17:7202 þ 4:3252

�
$0:265

þ
�
42:7522 þ 17:7022

�
$0:181

þ
�
153:2562 þ 62:5602

�
$0:022� 21:2982

i1=2
¼ 25:315:

Appendix B. Supplementary data

Supplementary material related to this article can be found at
http://dx.doi.org/10.1016/j.atmosenv.2015.07.027.
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