
Knowledge-Based Systems 193 (2020) 105422

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A deep-learning approach tomining conditions✩

Fernando O. Gallego ∗, Rafael Corchuelo
Universidad de Sevilla, ETSI Informática. Avda. de la Reina Mercedes, s/n. Sevilla E-41012, Spain

a r t i c l e i n f o

Article history:
Received 26 November 2018
Received in revised form 20 December 2019
Accepted 22 December 2019
Available online 31 December 2019

Keywords:
Natural language processing
Text mining
Condition mining
Neural networks

a b s t r a c t

A condition is a constraint that determines when a consequent holds. Mining them in text is paramount
to understand many sentences properly. In the literature, there are a few pattern-based proposals that
fall short regarding recall because it is not easy to characterise unusual ways to express conditions with
hand-crafted patterns; there is one machine-learning proposal that is bound to the Japanese language,
requires specific-purpose dictionaries, taxonomies, and heuristics, works on opinion sentences only,
and was evaluated very shallowly. In this article, we present a deep-learning proposal to mine
conditions that does not have any of the previous drawbacks; furthermore, we have performed a
comprehensive experimental study on a large multi-lingual dataset on many common topics; our
conclusion is that our proposals are similar to the state of the art in terms of precision, but improve
recall enough to beat them in terms of F1 score.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Web is an immense information repository. It is then not
surprising that there is a growing interest in processing web
documents to extract the data that they provide. Text miners
process such documents and extract structured information that
can be used to feed business processes. Common text miners
include entity-relation extractors, opinion miners, and recom-
menders. Unfortunately, they do not deal well with conditional
sentences because they neglect the conditions and focus on the
consequents, which may easily lead to wrong conclusions.

Entity-relation extractors mine entities and relations, which
results in overviews that are useful to make decisions. Next, we
provide some examples that clearly motivate the need for mining
conditions and make it clear how important they are regard-
ing making correct decisions. For instance, current systems [1,
2] return a relation of the form (‘‘NBT Bank’’, ‘‘won’t merge’’,
‘‘Alliance Bank’’) from a sentence like ‘‘may the new law be ap-
proved and NBT Bank will not merge Alliance Bank’’1; neglecting
condition ‘‘may the new law be approved’’ might lead a broker not
to recommend investing on NBT Bank regardless of the status of

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.105422.

∗ Corresponding author.
E-mail addresses: fogallego@us.es (F.O. Gallego), corchu@us.es

(R. Corchuelo).
1 The sample sentences come from actual reviews, which means that some

of them are grammatically incorrect.

the new law. Opinion miners analyse the opinions that people
express in social media, which is very useful for companies to
improve their products or to devise marketing campaigns. Cur-
rent systems [3,4] return an assessment of the form {‘‘flash’’ =

−0.99, ‘‘lens’’ = 0.55} from a sentence like ‘‘the flash’s horrible
when used indoors, but the lens is good enough for amateurs’’;
neglecting conditions ‘‘when used indoors’’ and ‘‘for amateurs’’
might result in a manufacturer not testing the flash appropriately
or targeting the wrong customers. Recommenders suggest items
building on a user’s profile that may include purchase records as
well as chat messages. Current systems [5] typically start placing
advertisements about rent-a-car agents and flights when they see
a sentence like ‘‘I will rent a Chevy later, when I book my flight’’,
independently from whether condition ‘‘when I book my flight’’
holds or not.

The previous examples clearly motivate the need for mining
conditions, which has been seldom explored in the literature. The
naivest proposals search for user-defined patterns that build on
syntactic anchors [6,7]. They generally attain good precision, but
fall short regarding recall because the distribution of connectives
that are used to introduce conditions is long-tail; that is, there
are a few usual ways to introduce conditions that can be easily
modelled using user-defined patterns, but too many unusual
ways that cannot be easily modelled using such an approach.
There is only one machine-learning proposal [8], which was in-
tended to recognise as many patterns as possible in the long-tail
distribution. Unfortunately, it is bound to the Japanese language,
it must be customised with several specific-purpose dictionaries,
taxonomies, and heuristics, mines conditions regarding opinions
only, and it was evaluated on a small dataset with 3155 sentences
that were sampled from hotel reviews.

https://doi.org/10.1016/j.knosys.2019.105422
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.105422
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.105422&domain=pdf
https://doi.org/10.1016/j.knosys.2019.105422
https://doi.org/10.1016/j.knosys.2019.105422
mailto:fogallego@us.es
mailto:corchu@us.es
https://doi.org/10.1016/j.knosys.2019.105422

2 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

In this article, we present a proposal to mine conditions. It
has been developed in close co-operation with Opileak.es, which
is a commercial text-mining service from which we have learnt
the importance of mining conditions so as not to misinterpret
the results of sentiment analysers. It relies on a deep-learning
regression approach to rank a set of candidates that are computed
from the dependency tree of the input sentence; such trees have
been widely used in several text mining tasks, e.g., machine
translation [9,10], summarisation [11,12], and semantic role la-
belling [13,14]. This proposal clearly improves on the state of
the art. The theoretical improvements are as follows: it does
not require to provide any user-defined patterns and it relies
on a deep neural learning approach that transforms the input
sentences into a rich feature space in which it is relatively easy
to learn a predictor that can identify the tokens that belong to a
condition. The practical improvements are as follows: it can mine
both factual and opinion sentences and it does not require any
specific-purpose resources. The superiority of our approach has
been experimentally proven on a dataset with 4.7M sentences on
16 common topics in 4 mainstream languages, where we have
beaten the few proposals in the literature in terms of F1 score.

The rest of the article is organised as follows: Section 2 re-
ports on the related work; Section 3 introduces some preliminary
concepts; Section 4 describes our proposal; Section 5 reports on
our experimental analysis; and, finally, Section 6 presents our
conclusions.

2. Related work

Narayanan et al. [15] range amongst the first authors who re-
alised the problem with conditions in the field of opinion mining.
They devised a feature model that helps machine-learn a regres-
sor that computes the polarity of a conditional sentence, but
they did not report on a proposal to mine their conditions; they
assumed that the sentences were pre-classified as either condi-
tional or non-conditional sentences by a person. Recently, Skepp-
stedt et al. [16] presented a complementary proposal that can
automatically classify a sentence in such categories, but neither
was it their goal to mine their conditions.

The naivest proposals to mine conditions are based on search-
ing for user-defined patterns that rely on syntactic anchors.
Mausam et al. [6] studied the problem in the field of entity-
relation extraction; they realised that many usual conditions can
be identified by locating adverbial clauses whose first word is
one of the sixteen one-word condition connectives in English;
unfortunately, they did not report on the effectiveness of their
proposal to mine conditions, only on the overall effectiveness of
their proposal for entity-relation extraction. Their system was
updated recently with new features [17], but their proposal to
mine conditions was not. Chikersal et al. [7] reported on a similar,
but simpler proposal: search for sequences of words in between
connectives ‘‘if’’, ‘‘unless’’, ‘‘until’’, and ‘‘in case’’ and the first oc-
currence of word ‘‘then’’ or a comma. Unfortunately, the previous
proposals are not appealing because there are many unusual ways
to introduce conditions, which makes hand-crafting patterns with
high recall very difficult; furthermore, it is not straightforward to
adapt them to other languages in which common connectives are
multi-word or there is not a unique, non-contextual translation
for some English connectives. We confirmed the previous claims
with our experimental analysis.

The only existing machine-learning proposal was introduced
by Nakayama and Fujii [8], who worked in the field of opin-
ion mining in Japanese. They devised a model that is based
on features that are computed by means of a syntactic parser
and a semantic analyser. The former identifies so-called bun-
setus, which are Japanese syntactic units that consists of one

independent word and one or more ancillary words, as well
as their inter-dependencies; the latter identifies opinion expres-
sions, which requires to provide some specific-purpose dictionar-
ies, taxonomies, and heuristics. They used Conditional Random
Fields and Support Vector Machines to learn classifiers that make
bunsetus that can be considered conditions apart from the oth-
ers. Unfortunately, their proposal was only evaluated on a small
dataset with 3155 sentences from hotel reviews and the best
F1 score attained was 0.58. As a conclusion, this proposal is not
generally applicable and its effectiveness seems to be poor.

Our conclusion is that some researchers have already realised
that mining conditions is of uttermost importance for text miners
not to return information that can be easily misinterpreted in
cases in which conditional sentences are involved. Unfortunately,
the problem remains quite unexplored since the few existing
proposals have many drawbacks that hinder their general ap-
plicability. This motivated us to work on a new proposal that
overcomes their weaknesses and outperforms them.

3. Preliminaries

In this section, we introduce some preliminary concepts that
are required to describe our proposal.

Preliminary 1 (Conditionals). A conditional sentence, or condi-
tional for short, is composed of two clauses, namely: a condition
and a consequent. The condition describes a state, a factor, or a
circumstance that must hold so that the consequent holds.

Preliminary 2 (Usual Conditionals). Usual conditionals are ex-
pressed by means of grammatical patterns that rely on con-
nectives and verb tenses that are well-known in the literature.
The patterns make a difference amongst zero-conditionals, which
convey general truths, first conditionals, which convey possible
conditions and their likely results, second conditionals, which
convey hypothetical conditions and their likely results, and third
conditionals, which convey unreal past conditions and their likely
results in the past.

Example 1. For instance, ‘‘if you heat ice, then it melts’’ is a zero
conditional sentence; ‘‘Unless I do not pass my exams, I will get
my degree’’ is a first conditional sentence; ‘‘I had quit my job as
long as I were not in debt’’ is a second conditional sentence; and
‘‘we had’ve attended the show even if she had not let us know’’ is
a third conditional sentence.

Preliminary 3 (Unusual Conditionals). Unusual conditionals do not
fit the patterns that characterise the previous types of condition-
als. There is not a standard set of connectives or verb tenses to
introduce their conditions.

Example 2. For instance, in sentence ‘‘put a grain in the tank and
the engine will break’’, the condition ‘‘put a grain in the tank’’ de-
scribes an action that is sufficient to break an engine. In sentence
‘‘people who like The Beatles will enjoy The Kinks’’, condition ‘‘who
like The Beatles’’ expresses a taste that characterises a group of
people that will likely enjoy ‘‘The Kinks’’. In sentence ‘‘after you
book Aladdin, you will get a discount for a DVD’’, condition ‘‘after
you book Aladdin’’ expresses a specific time after which one can
get a discount. In sentence ‘‘it smells terribly bad near the main
gate’’, the condition ‘‘near the main gate’’ expresses a place where
it does not smell well. In sentence ‘‘you must show your ID due to
law restrictions’’, the condition ‘‘due to law restrictions’’ expresses
the reason why an ID is mandatory.

F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422 3

Fig. 1. Main methods of our proposal.

Preliminary 4 (Deep Learning). Deep learning revolves around a
number of machine-learning methods whose focus is on learning
feature-based data representations of the input data that facilitate
learning classifiers or regressors. They typically build on non-
linear transformations that are organised in layers so that the
outputs of a layer constitute the inputs of the succeeding one.
Many deep learning approaches build on neural networks. They
have achieved relevant results in computer vision [18,19] and
natural language processing (NLP) [20,21]. In the case of NLP, it is
necessary to transform the input text into vectors using so-called
word embedders [22].

Preliminary 5 (Deep Neural Networks). A deep neural network is
an artificial neural network with multiple hidden layers. There are
two models that are very appropriate in NLP, namely: recurrent
neural networks (RNN) and convolutional neural networks (CNN).
An RNN is a neural network in which the connections between its
units form a directed graph across a sequence [23], which makes
them particularly well-suited to deal with sequences of data in
which each element depends on the previous ones. Bi-directional
recurrent neural networks (BiRNN) [24] are a particular class
of recurrent neural networks that can take both the past and
the future elements of a sequence into account. Unfortunately,
both RNNs and BiRNNs suffer from the so-called exploding and
vanishing gradient problems [25,26], which can be addressed by
controlling the data that is passed on to the next training epoch
by means of gated recurrent units (GRUs) [23] or bi-directional
gated recurrent units (BiGRUs) [27]. A CNN [28,29] is a class of
neural network that is composed of convolution layers, which
consist of computation units whose purpose is to transform some
regions of the input vectors by means of non-linear functions,
and pooling layers, which consists of filters that are intended to
subsample the output of the previous convolutions in an attempt
to reduce the number of parameters that need to be computed
in the network. Finally, it is worth mentioning other kinds of
neural networks, including Boltzmann Machines (BM) [30], Re-
stricted Boltzmann Machines (RBM) [31], and Extreme Learning
Machines (ELM) [32]. BMs and RBMs rely on a type of stochastic
recurrent neural network and Markov random fields; ELMs are
feed-forward neural networks in which the parameters of the
hidden nodes do not need to be tuned, and consequently, they
do not require back-propagation.

4. Our proposal

In this section, we describe our proposal to mine conditions,
which consists in learning a regressor that assesses how likely a
candidate condition is an actual condition. Hereinafter, we refer
to condition candidates as candidates and to actual conditions as
conditions since there is no room for confusion. We first describe
the main methods and then provide an insight into the ancillary
methods.

4.1. Main methods

Fig. 1 shows the main methods of our proposal, namely: train,
which learns a regressor that assesses candidates, and apply,
which computes the best candidates in a sentence.

Method train takes a dataset ds as input and returns a re-
gressor r . The input dataset is of the form {(s(i), L(i))}ni=1, where
each s(i) denotes a sentence and each L(i) denotes a set of labels
that identify the conditions in that sentence (n ≥ 0). The output
regressor is a function that given a candidate returns a score
that assesses how likely it is an actual condition. The method
first initialises training set T to the empty set and then loops
over dataset ds; for each sentence s and set of labels L in ds, it
first computes a set of candidates; then, for each candidate c , it
computes a score z and stores a tuple of the form (c, z) in training
set T . When the main loop finishes, it learns a regressor from T
using a deep-learning approach.

Method apply takes a sentence s, a regressor r , and a threshold
θ as input and returns a set R of tuples of the form {(c(i), z(i))}ni=1,
where each c(i) denotes a candidate and z(i) its corresponding
score, which must be equal to or greater than threshold θ (n ≥ 0).
The method first generates the candidates in s, stores them in
set C , and initialises R to an empty set; it then iterates over set
C; for each candidate c in set C , it first computes its score by
applying regressor r to it; if it is equal to or greater than threshold
θ , then candidate c is added to the result set. When the main loop
finishes, R provides a collection of candidates and scores; before
returning it, we must remove the candidates that overlap others
with a higher score. The candidates in R are considered the actual
conditions in the input sentence s.

4.2. Generating candidates

Our first ancillary method is generateCandidates, which takes
a sentence as input and returns a set of candidates. A naive
approach would simply generate as many sub-strings as possible,
but it would be very inefficient because a sentence with n words
has O(n2) such sub-strings. In order to reduce the candidate space,
we use a sequence of non-overlapping blocks that are computed
from a dependency tree.

Method generateCandidates first computes the dependency
tree of the input sentence [33], changes the words in its nodes
to lowercase, and stems them. It then computes a sequence of
non-overlapping blocks, which are sequences of tokens of the
form (w, d, p), where w denotes a stem, d the dependency tag
that links its node in the dependency tree to its parent, if any,
and p its position in the sentence. To compute a non-overlapped
sequence of blocks we first recursively select the sub-trees whose
depth is exactly two because it helps to select syntactical units
like noun-phrases, adjective-phrases, or verb-phrases; then, we
repeat the procedure for the nodes whose depth is equal to one

4 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

Fig. 2. Sample candidate generation.

because it helps to select smaller syntactical units; and, finally, we
select the nodes that have only one token. The depth of a sub-tree
is the distance from its root node to its deepest leaf node. Note
that we need to ensure that the tokens in a block are consecutive.
For that reason, we split every block that contains a hole. Finally,
we generate the candidates as the sequences of tokens from all
of the sequential combinations of the blocks.

Example 3. Fig. 2a shows the dependency tree of sentence ‘‘I
would buy PSP1 when the battery will be improved’’. The nodes
that correspond to the condition are highlighted in grey. Fig. 2b
shows a legend that helps understand how a token (w, d, p) is
mapped onto our graphical notation. Fig. 2c shows the blocks that
are generated from the previous dependency tree. Fig. 2d shows
the candidates that are generated from the previous blocks. Can-
didate c(1) is generated from block b(1), candidate c(2) is generated
from block b(2), and candidate c(3), which corresponds to the
whole sentence, is generated from blocks b(1) and b(2).

4.3. Computing matching scores

Our second ancillary method is computeScore, which takes a
candidate c and a set of labels L as input and returns its corre-
sponding score. A naive approach would simply return 0.00 if c
does not exactly match any of the labels in L and 1.00 otherwise,
but that is too crisp. An approach in which a candidate gets a
score in range [0.00, 1.00] captures the chances that it is an actual
condition much better.

Our idea was to use an approach that is based on the well-
known F1 score in order to balance the precision and the recall

of a candidate. The F1 score is computed as 2 tp
(tp+fp)+(tp+fn) , where

tp, fp, and fn denote, respectively, the number of true positives,
false positives, and false negatives. Given a candidate c and a
label l, it makes sense to interpret the tokens that they have in
common as true positive tokens, the tokens in c that are not in
l as false positive tokens, and the tokens in l that are not in c as
false negative tokens. We also realised that the first few tokens
in a condition typically provide an anchor that characterises it by
means of a connective. (In Section 5, we analyse them and their
influence on conditions.) So, we decided to measure the matching
between a candidate and a label as follows:

match(c, l) =

|l|∑
i=1

{
1/i if li ∈ c
0 otherwise

}
Simply put: let li denote the ith token in the label (i = 1 . . |l|);

if li is in the candidate, we then add 1/i to the score and zero
otherwise. This way, the first few tokens in the label contribute
much more to the score than the remaining ones. That is, given
a candidate c and a label l, match(c, l) may be interpreted as a
measure of the number of true positive tokens in c .

Given the previous definition, the maximum matching for a
candidate or a label x is defined as follows:

match∗(x) =

|x|∑
i=1

1/i

Realise that given a candidate c , match∗(c) is a measure of
the number of true positive tokens (the tokens that belong to
both the candidate and the label) plus the false positive tokens

F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422 5

Fig. 3. Sample matching scores.

(the tokens that belong to the candidate, but not to the label);
similarly, given a label l, match∗(l) is a measure of the number
of true positive tokens (the tokens that belong to both the label
and the candidate) plus the number of false negative tokens (the
tokens that belong to the label, but not to the candidate).

Our proposal to compute the matching score of candidate c
with respect to the set of labels L is then as follows:

score(c, L) = max
l∈L

2 match(c, l)
match∗(c) + match∗(l)

Note the similarity to the F1 score since match(c, l), match∗(c),
and match∗(l) are measures of tp, tp+ fp, and tp+ fn, respectively.

Example 4. Fig. 3 shows label l, which corresponds to the
condition in our running example, and how the candidates match
it. Candidate c(1) does not match any true positive token, but
four false positive tokens and six false negative tokens, which
results in a matching score of 0.00. Candidate c(2) matches the
label perfectly, i.e., it matches six true positive tokens and no false
positive or false negative token, which results in a matching score
of 1.00. Candidate c(3) represents the whole input sentence, which
obviously contains the label, i.e., six true positive tokens, but also
four false positive tokens, which results in a matching score of
0.91.

4.4. Learning a regressor

Our third ancillary method is learnRegressor , which takes a
training set T as input and returns a regressor r .

Prior to learning a regressor, the candidates in the training
set must be vectorised; note that it is necessary to put a limit
to the maximum candidate length, which is referred to as η, and
that padding must be used when analysing shorter candidates.
Given a candidate of the form ⟨(wi, di)⟩ni=1, we transform it into
a sequence of the form ⟨wi ⊕ di⟩

η

i=1, where wi denotes the vec-
torisation of stem w using a word embedder [22], d denotes the
vectorisation of dependency tag d using one-hot encoding [34],
w ⊕ d the vector that results from catenating the previous ones,
and η denotes the size of the longest possible condition; padding
tokens need to be added if the original condition is shorter than
η tokens. Note that the vectorisation of a condition can then be
interpreted as a matrix with η rows and δ columns, where δ
denotes the dimensionality of the word embedding vectorisation
plus the dimensionality of the one-hot vectorisation.

Fig. 4 summarises some of the neural network architectures
that we have devised. We used the Mean Squared Error [35] as
the loss function and we trained them using Stochastic Gradient
Descent Optimisation [36] with batch size 32. In order to prevent
over-fitting as much as possible, we used some drop-out regu-
larisations [37] and early stopping [38] when the loss did not
improve significatively after 10 epochs. We did not apply a decay

momentum because we observed that the loss always converges
smoothly, even if it needs more epochs in some cases.

Our baseline architectures are the following: a shallow multi-
layer perceptron (MLP1), which has an input layer and an output
layer, and a deep multi-layer perceptron (MLP2), which has an
input layer, a hidden layer, and an output layer. We devised
a dozen more architectures with several combinations of MLP,
GRU, BiGRU, and CNN layers and different configurations of ac-
tivation functions, loss functions, regularisation parameters, and
optimisation methods. In the sequel, we focus on the best ar-
chitectures, namely: gated recurrent units (GRU), bi-directional
gated recurrent units (BiGRU), convolutional neural networks
(CNN), and a hybrid approach that combines convolutional neural
networks and bi-directional gated recurrent units (CNNBiGRU).
The CNN network includes two convolution layers and a pooling
layer. Our proposal is to use a convolution layer with a large
number of filters in order to create a wide range of first-level
features, but a smaller number of filters in the second convolution
layer to obtain a more specific range of second-level features
that combine the first ones. Finally, the pooling layer combines
the previous deep features using a global maximum function as
the global pooling strategy since our experiments prove that it
performs very well. The CNNBiGRU network uses a convolution
with a number of filters similar to the input length, and then
applies a local pooling that captures the most relevant features
only. We then apply a BiGRU layer that takes the dependencies
between tokens into account, from both the beginning to the end
of the sentences and vice versa.

4.5. Removing overlaps

The fourth ancillary method is removeOverlaps, which takes
a set of tuples of the form (c, z) as input, where c denotes a
candidate and z its corresponding score, and removes the tuples
whose candidates overlap a candidate with a higher score. In
other words, given the input set of tuples R, it computes the
following subset:

{(c, z) ∈ R |̸ ∃(c ′, z ′) : (c ′, z ′) ∈ R ∧ c ′
∩ c ̸= ∅ ∧ z ′ > z}

We do not provide any additional details since this method
can be implemented very straightforwardly.

Example 5. Assume that the threshold to select the best can-
didates is set to θ = 0.50. In our running example, method
apply would return candidates c(2) and c(3) since they are the
only whose scores exceed the threshold, cf. Fig. 3. Note that both
candidates overlap, so the one with the lowest score is filtered
out. In this case, method apply would then return condition c(2)
only, which, indeed, represents the condition in our running
example.

6 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

Fig. 4. Neural network architectures.

5. Experimental analysis

In this section, we first describe our computing machinery, the
dataset used for evaluation, the baselines, and the alternatives
compared; next, we report on our experimental results; finally,
we present our statistical analysis.

5.1. Computing machinery

We implemented our proposal2 using Python 3.5.4, Snow-
ball 1.2.1 to compute word stems, the Stanford NLP Core Li-
brary 3.8.0 to generate dependency trees, Gensim 2.3.0 to com-
pute word embedders using a Word2Vec implementation, and
Keras 2.0.8 with Theano 1.0.0 for training our neural networks.
We run our experiments on a virtual computer that was equipped
with one Intel Xeon E5-2690 core at 2.60 GHz, 2 GiB of RAM,
and an Nvidia Tesla K10 GPU accelerator with 2 GK-104 GPUs at
745 MHz with 3.5 GiB of RAM each; the operating system on top
of which we run our experiments was CentOS Linux 7.3.0.

5.2. Our dataset

In this subsection, we first describe our dataset of conditions,3
then analyse how conditional connectives are distributed, and,
finally, analyse how similar conditions are.

Description. We have not found any public datasets with condi-
tions, which motivated us to create one. It consists of 4 671 533
sentences in English, Spanish, French, and Italian that were gath-
ered from Ciao.com between April 2017 and May 2017. The sen-
tences were classified into 16 topics according to their sources,

2 The implementation is available at https://github.com/FernanOrtega/
candidate-ranking.
3 The dataset is available at https://www.kaggle.com/fogallego/reviews-with-

conditions.

namely: adults, baby care, beauty, books, cameras, computers,
films, headsets, hotels, music, ovens, pets, phones, TV sets, and
video games. For each sentence, we labelled its conditions and
made it explicit where their connectives start and end.

To create the word embedding efficiently without degrad-
ing effectiveness, we replaced numbers, e-mail addresses, URLs,
and words whose frequency was equal or smaller than five by
‘‘NUMBER’’, ‘‘EMAIL’’, ‘‘URL’’, and ‘‘UNK’’, respectively.

In Table 1, we provide a summary of our dataset. The columns
of the table denote the language (Lang), the domain (Domain), the
number of conditions found (#Conds), the number of sentences
(#Sents), the number of sentences that we have labelled as of
the time of writing this article (#Lab), the number of sentences
that contain at least one condition (#SwC), and the corresponding
percentage (%SwC).

In Fig. 5a and b, we present a box and whisker plot that
represents the number of words per condition and sentence in
our dataset. Regarding our candidate ranking proposal, we set
the length of the candidates to η = 50 and the length of the
input sentences to λ = 100 since these thresholds are enough
for the vast majority of sentences in our dataset. Note that these
thresholds do not miss any conditions, but some extremely long
sentences that can be considered outliers.

Connective distribution. In Table 2, we show the frequency of two
groups of connectives, namely: the five most frequent and the
five around the 75th percentile. In every language, there are a
few usual connectives that have high frequencies and many other
connectives with low frequencies.

The previous figures suggest that the distribution of con-
nectives is a long-tail distribution. To confirm this intuition, it
is necessary to compare the distribution of connectives to the
Power-Law and Log-Normal distributions, which are the standard
long-tail distributions, and to the Exponential distribution, which
is not long-tail by definition [39,40].

In Fig. 6, we plot the Complementary Cumulative Distribution
Functions (CCDF) of the previous distributions. It is not difficult to

https://github.com/FernanOrtega/candidate-ranking
https://github.com/FernanOrtega/candidate-ranking
https://www.kaggle.com/fogallego/reviews-with-conditions
https://www.kaggle.com/fogallego/reviews-with-conditions

F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422 7

Fig. 5. Typical numbers of words.

Fig. 6. Connective distribution.

realise that the Log-Normal distribution and the Power-Law dis-
tributions are very similar to the connective distribution, whereas
the Exponential one is not. We conducted a Likelihood Ratio
Test [41] to check the previous idea statistically. The results of
the test are shown in Table 3: for each language in our dataset,
we compared the distribution of connectives to every two pairs
of the previous standard distributions and computed R as the
log likelihood ratio and the corresponding p-value. Independently
from the language, the comparison to the Power-Law distribution
and the Log-Normal distribution returns p-values that are greater
than the standard significance level (α = 0.05), which indicates
that there is not enough empirical evidence to prove that the

connective distribution is significantly different from a Power-
Law or a Log-Normal distribution; note that the comparisons
to the Power-Law and the Exponential distributions or the Log-
Normal and the Power-Law distribution return a positive log
likelihood ratio with a p-value that is smaller than the standard
significance level, which indicates that there is enough empirical
evidence to prove that the connective distribution is similar to the
Power-Law or the Log-Normal distributions, but different from
the Exponential distribution.

The conclusion is that there is enough statistical evidence
to consider the connective distribution a long-tail distribution.
Simply put, relying on a collection of handcrafted patterns will

8 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

Table 1
Summary of our dataset.
Lang Domain #Conds #Sents #Lab #SwC %SwC

en

Adults 325 2164 1007 290 28.80%
Babycare 26 28282 1008 22 2.18%
Beauty 19 109348 1007 18 1.79%
Books 3 49653 1002 3 0.30%
Cameras 10 8574 1010 10 0.99%
Films 3 45547 1024 3 0.29%
Hotels 231 21908 1002 214 21.36%
Music 113 24218 1000 106 10.60%
Pets 284 34878 1002 251 25.05%
Phones 172 2052 1027 162 15.77%
Tvsets 175 3537 1007 159 15.79%
Video games 176 111439 1006 159 15.81%

es

Books 597 1013746 2005 502 25.04%
Computers 359 102021 1006 303 30.12%
Films 210 209810 1004 185 18.43%
Headsets 243 10222 1022 195 19.08%
Hotels 173 317177 1028 162 15.76%
Music 114 417456 1033 100 9.68%
Oven 177 17197 1011 152 15.03%
Pets 130 66845 1017 114 11.21%
Phones 146 547921 1010 132 13.07%
Tvsets 132 108287 1005 108 10.75%
Video games 158 537921 1008 140 13.89%

fr

Adults 42 7586 1012 42 4.15%
Babycare 16 47972 1023 16 1.56%
Beauty 32 74739 1004 30 2.99%
Books 42 94141 1002 40 3.99%
Cameras 61 3641 1008 54 5.36%
Computers 59 2792 1006 56 5.57%
Films 59 136068 1010 54 5.35%
Hotels 46 12941 1000 46 4.60%
Music 23 25109 1004 21 2.09%
Pets 49 13991 1003 45 4.49%
Phones 62 7972 1001 61 6.09%
Tvsets 39 6410 1009 37 3.67%
Video games 66 77457 1007 61 6.06%

it

Adults 40 5068 464 40 8.62%
Books 5 5890 554 5 0.90%
Computers 2 3403 430 2 0.47%
Films 2 267454 1236 2 0.16%
Headsets 139 4703 1020 129 12.65%
Hotels 37 35915 895 35 3.91%
Music 77 46029 1170 68 5.81%
Oven 48 2049 1041 44 4.23%

typically fall short in terms of recall because there are too many
ways to introduce conditions, which clearly argues for a machine-
learning solution.

Condition similarity. We have also analysed the similarity of the
conditions in our dataset. Our goal was to check if there are

Table 3
Fitting the connective distribution.
Lang Dist1 Dist2 R p-value

en
Power-Law Log-Normal −1.14 0.33
Power-Law Exponential 19.32 0.04
Log-Normal Exponential 20.47 0.01

es
Power-Law Log-Normal −0.77 0.31
Power-Law Exponential 64.32 0.00
Log-Normal Exponential 65.09 0.00

fr
Power-Law Log-Normal −0.06 0.46
Power-Law Exponential 15.40 0.01
Log-Normal Exponential 15.46 0.01

it
Power-Law Log-Normal −7.00 0.11
Power-Law Exponential 70.02 0.00
Log-Normal Exponential 77.02 0.00

groups of conditions that are similar enough to be modelled using
some common features, e.g., verbs, adverbs, or prepositions. To
carry this analysis out, we changed every word into lowercase
and then computed a vectorisation of each condition as follows:
each component of the vectors corresponds to a different word
and represents its tf-idf frequency in the condition being vec-
torised [42]. The vectorisations have 2311 words in English, 3796
words in Spanish, 1386 words in French, and 658 words in Italian.

To visualise them, we performed dimensionality reduction by
means of Isomap [43]. Furthermore, we computed the Gaus-
sian Kernel Density Estimation [44] to better visualise the den-
sity of samples with Scott’s Rule [45] to compute the estimator
bandwidth.

In Fig. 7, we show a graphical representation of the Isomap
projections of conditions. The hues range from bright yellow,
which represents the highest densities (conditions that are very
similar to each other), to dark blue, which represents the lowest
densities (conditions that are not similar to each other). It is not
difficult to realise that the conditions are organised as follows:
there is one small group with high density, a larger group with
average density, and a very large group with low density.

As a conclusion, it must not be difficult for a person to learn
a rule to mine instances of the first group since there are many
examples available and they seem very similar to each other; but
it must not be that easy to deal with the many other conditions
since they are not similar to each other. This also argues for a
machine-learning solution.

5.3. Baselines and alternatives

We used the proposals by Chikersal et al. [7] and Mausam et al.
[6] as baselines. The proposal by Nakayama and Fujii [8] was not

Table 2
Connectives samples.
(a.1) Top. (a.2) 75th percentile. (b.1) Top. (b.2) 75th percentile.

Lang Connective Freq Lang Connective Freq Lang Connective Freq Lang Connective Freq

en

if 349

en

every time 2

es

si 600

es

a medida que 3
when 239 over 2 cuando 235 además de 3
for 100 regardless of 2 para 221 porque si 3
after 100 regardless 2 en 119 incluso cuando 3
before 64 prior 2 al 105 a causa de 3
while 60 but in 2 a 94 viendo 3

(c.1) Top. (c.2) 75th percentile. (d.1) Top. (d.2) 75th percentile.

Lang Connective Freq Lang Connective Freq Lang Connective Freq Lang Connective Freq

fr

si 384

fr

sauf si 2

it

se 170

it0

in 2
même si 63 avec 2 quando 108 in cerca 2
pour 48 même s′ 2 per 7 da 2
mais si 15 si bien qu′ 1 anche 7 soprattutto 2
en cas de 11 si on ne 1 in cui 4 ogni volta 2
quand 9 quant 1 da quando 3 qualora 1

F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422 9

Fig. 7. Similarity of conditions.

Fig. 8. GRU baseline.

taken into account because it is bound to the Japanese language
and it is not clear how it can be extended to deal with other
languages.

Fig. 8 represents two additional approaches that we used as
baselines, namely: a recurrent neural network with GRU units
(GRU) and a recurrent neural network with BiGRU units (BiGRU).
Both approaches use word embeddings to transform the input
sentence (x1, x2, . . . , xλ) into vectors (Ei) that represent its words.
Due to our dataset analysis, we set parameter λ to 100, which
is large enough, and padding was used when vectorising shorter
sentences. The output is computed from the last recurrent layer

as Ŷi = ϕ(W Di + b), where ϕ is the Sigmoid function, W is a
weight matrix, Di is the output of the decoder, and b is a bias
vector. It represents the IOB tags of each word. Each IOB tag deter-
mines whether the corresponding word belongs to a condition or
not. Then, it is easy to reconstruct the conditions of the sentence.
In both cases, we used Categorical Cross Entropy [46] as the loss
function, drop-out regularisations [37] to prevent over-fitting,
early stopping [38] when the loss did not improve significantly
after 10 epochs, the Adam method [47] with batch size 32 as the
optimiser, and the sigmoid activation function.

10 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

Table 4
Experimental results.

Regarding our proposal, we evaluated our six alternatives us-
ing the following values for the threshold: θ = 0.25, θ = 0.50, or
θ = 0.75. For the sake of readability, we refer to them using their
names and the threshold as subscripts, namely: MLP1θ , MLP2θ ,
GRUθ , BiGRUθ , CNNθ , and CNNBiGRUθ .

5.4. Experimental results

We evaluated the baselines and our alternatives on our dataset
using 4-fold cross-validation. We measured the standard per-
formance measures, namely: precision, recall, and the F1 score.
Table 4 presents the experimental results.

The conclusion from our results is that the state-of-the-art
baselines can attain relatively good precision; Mausam et al.’s
[6] proposal attains a recall that is similar to its precision, but
Chikersal et al.’s [7] proposal falls short regarding recall. The
baselines perform slightly worse than our alternatives in most
situations. Most of our alternatives beat the baselines regarding
recall because they learn complex patterns that a person cannot

easily spot. Note that the improvement regarding recall is enough
for the F1 score to improve all of the baselines.

5.5. Statistical analysis

To make a decision regarding which of the alternatives per-
forms the best according to their F1 score, we used a stratified
strategy that builds on Hommel’s statistical comparison test at
the standard significance level (α = 0.05). The test computes
the empirical ranking of every alternative; it then compares the
best-ranked one to the others by computing a z statistic and its
corresponding p-value, which must be compared to the signif-
icance level α as follows: if the it is smaller than or equal to
α, then the conclusion is that there is enough evidence in the
experimental data to support the hypothesis that the difference
between two alternatives is statistically significant; otherwise,
the conclusion is that the experimental data cannot sustain that
there is a statistically significant difference.

In Table 5a, b, and c, we report on the results of the statistical
analysis regarding our alternatives. The best-ranked alternative
is CNNBiGRU in every case, independently from the value of the
threshold. Note that the difference in F1 score is not significant
with respect to the BiGRU, the GRU, or the CNN alternatives
when θ = 0.25, it is not significant with respect to the GRU,
the BiGRU, the MLP2, or the CNN alternatives when θ = 0.50,
and it is not significant with respect to the BiGRU or the GRU
alternatives when θ = 0.75. Our conclusion is that the CNNBiGRU
alternative is the best one in terms of F1 score. In Table 5d, we
report on the results of comparing the CNNBiGRU alternative with
the three values of θ . Note that the p-value is always greater than
the standard significance level, which means that the differences
in F1 score are not significant. Thus, we select the CNNBiGRU
alternative with θ = 0.50 as the best alternative.

In Table 6, we report on the results of comparing our best
alternative to the baselines. The best-ranked alternative is the
CNNBiGRU alternative with θ = 0.50. The difference with our
recurrent neural network baseline regarding the F1 score is not
significant from a statistical point of view since the p-value is
greater than the standard significance level. Note, however, that
the difference is very significant with respect to the baselines
since the p-value is nearly zero. Thus, we select the CNNBiGRU
alternative with θ = 0.50 as our best proposal to mine conditions.

6. Conclusions

In this article, we have motivated the need for mining condi-
tions and we have presented a proposal to address the problem.
It relies on a deep-learning regression approach to rank a set of

Table 5
Comparison of our alternatives.
(a) Comparison with θ = 0.25. (b) Comparison with θ = 0.50.

Alternative Rank z p-value Alternative Rank z p-value

CNNBiGRU0.25 2.38 – – CNNBiGRU0.50 2.56 – –
BiGRU0.25 2.75 0.57 1.00 GRU0.50 2.88 0.47 1.00
GRU0.25 3.13 1.13 1.00 BiGRU0.50 3.25 1.04 1.00
CNN0.25 3.69 1.98 0.33 MLP20.50 3.56 1.51 0.78
MLP20.25 4.31 2.93 0.03 CNN0.50 3.81 1.89 0.59
MLP10.25 4.75 3.59 0.00 MLP10.50 4.94 3.59 0.00

(c) Comparison with θ = 0.75. (d) Comparison of best alternatives.

Alternative Rank z p-value Alternative Rank z p-value

CNNBiGRU0.75 1.56 – – CNNBiGRU0.50 1.75 – –
BiGRU0.75 2.72 1.75 0.26 CNNBiGRU0.75 1.88 0.35 0.72
GRU0.75 2.78 1.84 0.26 CNNBiGRU0.25 2.38 1.77 0.23
MLP20.75 3.81 3.40 0.00
CNN0.75 4.38 4.25 0.00
MLP10.75 5.75 6.33 0.00

F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422 11

Table 6
Comparison to the baselines.
Proposal Rank z p-value

CNNBiGRU0.50 1.19 – –
GRU 2.16 1.98 0.13
BiGRU 2.21 2.05 0.11
Mausam et al. 3.06 4.11 0.00
Chikersal et al. 3.69 5.48 0.00

candidates that are computed from the dependency tree of the
input sentence. It does not rely on any user-defined patterns, it
does not require any specific-purpose dictionaries, taxonomies
or heuristics, it can mine conditions in both factual and opinion
sentences, and it is not bound to a specific language. We have also
performed an exhaustive experimental analysis on a publicly-
available multi-lingual dataset with a large number of sentences
on many common topics. Our results confirm that our proposal is
similar to the state-of-the-art proposals in terms of precision, but
it improves recall enough to beat them in terms of F1 score. We
have sustained the previous conclusions using sound statistical
tests. We foresee two interesting future work paths, namely: to
explore conditions in question answering systems and to explore
transfer learning to adapt our proposal to other languages.

CRediT authorship contribution statement

Fernando O. Gallego: Methodology, Software, Validation, In-
vestigation, Data curation, Writing - original draft, Writing -
review & editing, Visualization. Rafael Corchuelo: Conceptualiza-
tion, Formal analysis, Data curation, Writing - review & editing,
Supervision.

Acknowledgements

Supported by Opileak.es, Spain and the Spanish R&D pro-
gramme (grants TIN2013-40848-R and TIN2016-75394-R). The
computing facilities were provided by the Andalusian Scientific
Computing Centre (CICA), Spain. We also thank Dr. Francisco Her-
rera for his hints on statistical analyses and sharing his software
with us.

References

[1] O. Etzioni, A. Fader, J. Christensen, S. Soderland, Mausam, Open information
extraction: the second generation, in: IJCAI, 2011, pp. 3–10.

[2] T.M. Mitchell, W.W. Cohen, E.R. Hruschka, P.P. Talukdar, J. Betteridge, A.
Carlson, B.D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K.
Mazaitis, T. Mohamed, N. Nakashole, E.A. Platanios, A. Ritter, M. Samadi,
B. Settles, R.C. Wang, D.T. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves,
J. Welling, Never-ending learning, in: AAAI, 2015, pp. 2302–2310.

[3] K. Ravi, V. Ravi, A survey on opinion mining and sentiment analysis: tasks,
approaches and applications, Knowl.-Based Syst. 89 (2015) 14–46.

[4] K. Schouten, F. Frasincar, Survey on aspect-level sentiment analysis, IEEE
Trans. Knowl. Data Eng. 28 (3) (2016) 813–830.

[5] W.X. Zhao, S. Li, Y. He, E.Y. Chang, J. Wen, X. Li, Connecting social media
to e-commerce, IEEE Trans. Knowl. Data Eng. 28 (5) (2016) 1147–1159.

[6] Mausam, M. Schmitz, S. Soderland, R. Bart, O. Etzioni, Open language
learning for information extraction, in: EMNLP-CoNLL, 2012, pp. 523–534.

[7] P. Chikersal, S. Poria, E. Cambria, A.F. Gelbukh, C.E. Siong, Modelling public
sentiment in Twitter, in: CICLing (2), 2015, pp. 49–65.

[8] Y. Nakayama, A. Fujii, Extracting condition-opinion relations toward
fine-grained opinion mining, in: EMNLP, 2015, pp. 622–631.

[9] A. Tamura, T. Watanabe, E. Sumita, H. Takamura, M. Okumura, Part-of-
speech induction in dependency trees for statistical machine translation,
in: ACL, 2013, pp. 841–851.

[10] C. Ding, Y. Arase, Dependency tree abstraction for long-distance reordering
in statistical machine translation, in: EACL, 2014, pp. 424–433.

[11] Y. Kikuchi, T. Hirao, H. Takamura, M. Okumura, M. Nagata, Single document
summarization based on nested tree tructure, in: ACL, 2014, pp. 315–320.

[12] S.B. Özates, A. Özgür, D.R. Radev, Sentence similarity based on dependency
tree kernels for multi-document summarization, in: LREC, 2016.

[13] K. Hacioglu, Semantic role labeling using dependency trees, in: COLING,
2004.

[14] C. Chen, A. Palmer, C. Sporleder, Enhancing active learning for semantic
role labeling via compressed dependency trees, in: IJCNLP, 2011, pp.
183–191.

[15] R. Narayanan, B. Liu, A.N. Choudhary, Sentiment analysis of conditional
sentences, in: EMNLP, 2009, pp. 180–189.

[16] M. Skeppstedt, T. Schamp-Bjerede, M. Sahlgren, C. Paradis, A. Kerren,
Detecting speculations, contrasts, and conditionals in consumer reviews,
in: WASSA@EMNLP, 2015, pp. 162–168.

[17] Mausam, Open information extraction systems and downstream applica-
tions, in: IJCAI, 2016, pp. 4074–4077.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-V4, Inception-
ResNet, and the impact of residual connections on learning, in: AAAI, 2017,
pp. 4278–4284.

[19] P. Tang, H. Wang, S. Kwong, GoogleNet based multi-stage feature fusion
of deep CNN for scene recognition, Neurocomputing 225 (2017) 188–197.

[20] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural
networks, in: NIPS, 2014, pp. 3104–3112.

[21] F. Zhai, S. Potdar, B. Xiang, B. Zhou, Neural models for sequence chunking,
in: AAAI, 2017, pp. 3365–3371.

[22] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed repre-
sentations of words and phrases and their compositionality, in: NIPS, 2013,
pp. 3111–3119.

[23] H. Han, S. Zhang, J. Qiao, An adaptive growing and pruning algorithm for
designing recurrent neural networks, Neurocomputing 242 (2017) 51–62.

[24] M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks, IEEE
Trans. Signal Process. 45 (11) (1997) 2673–2681.

[25] Y. Bengio, P.Y. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE Trans. Neural Netw. 5 (2) (1994) 157–166.

[26] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent
neural networks, in: ICML, 2013, pp. 1310–1318.

[27] M. Nußbaum-Thom, J. Cui, B. Ramabhadran, V. Goel, Acoustic modeling
using bi-directional gated recurrent convolutional units, in: Interspeech,
2016, pp. 390–394.

[28] Y. Kim, Convolutional neural networks for sentence classification, in:
EMNLP, 2014, pp. 1746–1751.

[29] C.N. dos Santos, B. Xiang, B. Zhou, Classifying relations by ranking with
convolutional neural networks, in: ACL (1), 2015, pp. 626–634.

[30] J. Zhang, S. Ding, N. Zhang, Y. Xue, Weight uncertainty in Boltzmann
machine, Cogn. Comput. 8 (6) (2016) 1064–1073.

[31] N. Zhang, S. Ding, J. Zhang, Y. Xue, An overview on restricted Boltzmann
machines, Neurocomputing 275 (2018) 1186–1199.

[32] N. Zhang, S. Ding, J. Zhang, Multi layer ELM-RBF for multi-label learning,
Appl. Soft Comput. 43 (2016) 535–545.

[33] D. Chen, C.D. Manning, A fast and accurate dependency parser using neural
networks, in: EMNLP, 2014, pp. 740–750.

[34] X. Zhang, J.J. Zhao, Y. LeCun, Character-level convolutional networks for
text classification, in: NIPS, 2015, pp. 649–657.

[35] A.Y. Aravkin, J.V. Burke, A. Chiuso, G. Pillonetto, Convex versus non-convex
estimators for regression and sparse estimation: the mean squared error
properties of ARD and GLasso, J. Mach. Learn. Res. 15 (1) (2014) 217–252.

[36] K. Cohen, A. Nedic, R. Srikant, On projected stochastic gradient descent
algorithm with weighted averaging for least squares regression, in: ICASSP,
2016, pp. 2314–2318.

[37] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from over-fitting, J.
Mach. Learn. Res. 15 (1) (2014) 1929–1958.

[38] R. Caruana, S. Lawrence, C.L. Giles, Overfitting in neural nets: back-
propagation, conjugate gradient, and early stopping, in: NIPS, 2000, pp.
402–408.

[39] F. Chierichetti, R. Kumar, B. Pang, On the power laws of language: word
frequency distributions, in: SIGIR, 2017, pp. 385–394.

[40] S. Singh, Y.M. Tripathi, Bayesian estimation and prediction for a hy-
brid censored Log-Normal distribution, IEEE Trans. Reliab. 65 (2) (2016)
782–795.

[41] M. Shafiq, M. Atif, R. Viertl, Generalized likelihood ratio test and Cox’s
F-test based on fuzzy lifetime data, Int. J. Intell. Syst. 32 (1) (2017) 3–16.

[42] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, 2008.

[43] V. de Silva, J.B. Tenenbaum, Global versus local methods in nonlinear
dimensionality reduction, in: NIPS, 2002, pp. 705–712.

[44] M. Kristan, A. Leonardis, D. Skocaj, Multivariate online kernel density
estimation with Gaussian kernels, Pattern Recognit. 44 (10–11) (2011)
2630–2642.

[45] D.W. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization, John Wiley & Sons, 2015.

[46] P. Golik, P. Doetsch, H. Ney, Cross-entropy versus squared error training:
a theoretical and experimental comparison, in: Interspeech, 2013, pp.
1756–1760.

[47] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: ICLR,
2014, pp. 1–15.

http://refhub.elsevier.com/S0950-7051(19)30653-7/sb1
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb1
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb1
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb2
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb3
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb3
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb3
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb4
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb4
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb4
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb5
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb5
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb5
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb6
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb6
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb6
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb7
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb7
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb7
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb8
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb8
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb8
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb9
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb9
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb9
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb9
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb9
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb10
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb10
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb10
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb11
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb11
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb11
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb12
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb12
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb12
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb13
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb13
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb13
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb14
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb14
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb14
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb14
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb14
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb15
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb15
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb15
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb16
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb16
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb16
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb16
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb16
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb17
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb17
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb17
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb18
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb18
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb18
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb18
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb18
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb19
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb19
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb19
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb20
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb20
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb20
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb21
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb21
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb21
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb22
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb22
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb22
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb22
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb22
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb23
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb23
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb23
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb24
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb24
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb24
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb25
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb25
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb25
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb26
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb26
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb26
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb27
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb27
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb27
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb27
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb27
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb28
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb28
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb28
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb29
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb29
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb29
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb30
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb30
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb30
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb31
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb31
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb31
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb32
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb32
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb32
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb33
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb33
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb33
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb34
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb34
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb34
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb35
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb35
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb35
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb35
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb35
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb36
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb36
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb36
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb36
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb36
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb37
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb37
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb37
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb37
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb37
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb38
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb38
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb38
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb38
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb38
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb39
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb39
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb39
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb40
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb40
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb40
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb40
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb40
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb41
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb41
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb41
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb42
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb42
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb42
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb43
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb43
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb43
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb44
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb44
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb44
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb44
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb44
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb45
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb45
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb45
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb46
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb46
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb46
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb46
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb46
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb47
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb47
http://refhub.elsevier.com/S0950-7051(19)30653-7/sb47

12 F.O. Gallego and R. Corchuelo / Knowledge-Based Systems 193 (2020) 105422

Fernando O. Gallego Rafael Corchuelo

	A deep-learning approach to mining conditions
	Introduction
	Related work
	Preliminaries
	Our proposal
	Main methods
	Generating candidates
	Computing matching scores
	Learning a regressor
	Removing overlaps

	Experimental analysis
	Computing machinery
	Our dataset
	Baselines and alternatives
	Experimental results
	Statistical analysis

	Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	References

