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The aim of this paper is to prove that a three dimensional Lagrangian flow which
defines equatorially trapped water waves is dynamically possible. This is achieved by
applying a mixture of analytical and topological methods to prove that the nonlinear
exact solution to the geophysical governing equations, derived by Constantin (2012),
is a global diffeomorphism from the Lagrangian labelling variables to the fluid
domain beneath the free surface.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we apply a mixture of analytical and topological methods to establish that a recently derived
solution defining Equatorially trapped waves is dynamically possible. This remarkable solution, derived by
Constantin in [2] and given below by Eq. (2.8), is an exact solution of the nonlinear β-plane governing
equations for Equatorial water waves, and it is explicit in the Lagrangian framework. The main result of
this paper establishes that the three-dimensional mapping (2.8) from the Lagrangian labelling domain to
the fluid domain defines a global diffeomorphism—a consequence of which is that the solution (2.8) defines
a fluid motion which is dynamically possible. We achieve this result by first establishing that (2.8) is locally
diffeomorphic and injective, and then we render our results global by applying a suitable version of the
classical Invariance of Domain Theorem, cf. [13,24].

The solution presented by Constantin in [2] represents a geophysical generalization of the celebrated
Gerstner’s wave, in the sense that ignoring Coriolis terms in (2.8) recovers Gerstner’s wave solution. The
primary importance of Gerstner’s wave is probably the fact that it represents the only known explicit
and exact solution of the nonlinear periodic gravity wave problem with a non-flat free-surface. Gerstner’s
wave is a two-dimensional wave propagating over a fluid domain of infinite depth (cf. [3,4,15,17,18,29]),
and interestingly it may be modified to describe edge-waves propagating over a sloping bed [5,31]. The
geophysical solution presented in [2] encompasses Gerstner’s solution, yet it also possesses a number of
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inherent characteristics which transcends Gerstner’s wave. The solution (2.8) is a truly three-dimensional
eastward-propagating geophysical wave, and furthermore it is equatorially-trapped—achieving its greatest
amplitude at the Equator and exhibiting a strong exponential decay in meridional directions away from the
Equator. The solution is furthermore nonlinear, as is seen from the wave-surface profile, and has a dispersion
relation that is dependent on the Coriolis parameter.

Since the solution (2.8) is explicit in the Lagrangian formulation, we may immediately discern some
qualitative properties of the physical fluid motion. Indeed, an advantage of solutions in the Lagrangian
framework is that the fluid kinematics may be explicitly described [1]. From (2.8) we see that at each
fixed latitude the solution prescribes individual fluid particles to move clockwise in a vertical plane. Each
particle moves in a circle, with the diameter of the circles decreasing exponentially with depth. This feature
is indicative of a flow with vorticity since in irrotational travelling waves such a situation cannot occur,
according to the considerations made in [6,7,11,19,25]. In [2] it was simply shown that the solution (2.8) is
compatible with the governing equations of the β-plane approximation for Equatorial water waves (2.3)–(2.7).

The aim of this paper is to rigorously justify that the fluid motion defined by (2.8) is dynamically possible.
This is achieved by establishing that the solution (2.8) defines a global diffeomorphism, thereby ensuring
that it is indeed possible to have a three-dimensional motion of the whole fluid body where all the particles
describe circles with a depth-dependent radius at fixed latitudes, and furthermore the particles never collide
but instead they fill out the entire infinite region below the surface wave. In so doing we show that the
fluid domain as a whole evolves in a manner which is consistent with the full governing equations. We note
that subsequent to the derivation of Constantin’s solution, a wide range of geophysical generalizations and
variations to [2] have been produced and analysed, for example [8–10,16,20–23,26,27]. It is expected that
the rigorous considerations of this paper are also applicable to these variants.

2. The Equatorially trapped wave solution

2.1. Governing equations

We consider geophysical waves in the Equatorial region, where we assume that the earth is a perfect
sphere of radius R = 6378 km. We are in a rotating framework, where the x-axis is facing horizontal due
east (zonal direction), the y-axis is due north (meridional direction), and the z-axis is pointing vertically
upwards. The governing equations for geophysical ocean waves are given by Euler’s equation with additional
terms involving the Coriolis parameter which is proportional to the rotation speed of the earth, see [12,28]

ut + uux + vuy + wuz + 2Ωw cos Φ − 2Ωv sin Φ = −1
ρ
Px

vt + uvx + vvy + wvz + 2Ωu sin Φ = −1
ρ
Py

wt + uwx + vwy + wwz − 2Ωu cos Φ = −1
ρ
Pz − g,

(2.1)

the mass conservation equation

ρt + uρx + vρy + wρz = 0 (2.2)

and the equation of incompressibility

ux + vy + wz = 0. (2.3)

Here Φ represents the latitude, (u, v, w) is the fluid velocity, Ω = 73 · 10−6 rad/s is the (constant) rotational
speed of earth (which is the sum of the rotation of the earth about its axis and the rotation around the sun,
see [12]), g = 9.8 m/s−2 is the gravitational constant, ρ is the water density, and P is the pressure.
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We are interested in Equatorial waves, that is, geophysical ocean waves in a region which is within 5◦
latitude of the Equator. Since the latitude is small, we may use the approximations sin Φ ≈ Φ, and cos Φ ≈ 1,
and thus linearizing the Coriolis force leads to the β-plane approximation to Eqs. (2.1) given by

ut + uux + vuy + wuz + 2Ωw − βyv = −1
ρ
Px

vt + uvx + vvy + wvz + βyu = −1
ρ
Py

wt + uwx + vwy + wwz − 2Ωu = −1
ρ
Pz − g,

(2.4)

where β = 2Ω/R = 2.28 · 10−11 m−1 s−1. The relevant boundary conditions are the kinematic boundary
conditions

w = ηt + uηx + vηy on z = η(x, y, t), (2.5)
P = Patm on z = η(x, y, t), (2.6)

where Patm is the (constant) atmospheric pressure, and η(x, y, t) is the free surface. The boundary condition
(2.5) states that all the particles in the surface will stay in the surface for all time t, and the boundary
condition (2.6) decouples the water flow from the motion of the air above. We work with an infinitely-deep
fluid domain and so we require the velocity field to converge rapidly to zero with depth, that is

(u,w)→ (0, 0) as z → −∞. (2.7)

The governing equations for the β-plane approximation of geophysical ocean waves are given by (2.3)–(2.7).

2.2. Exact solution

In this section we present and describe briefly the exact solution of the β-plane governing equations (2.3)–
(2.7) which was recently derived by Constantin [2]. This solution describes a three-dimensional eastward-
propagating geophysical wave which is Equatorially trapped, exhibiting a strong exponential decay in merid-
ional directions away from the Equator, and which is periodic in the zonal direction. Equatorially trapped
waves propagating eastward and symmetric about the Equator are known to exist, and they are regarded as
one of the key factors in a possible explanation of the El Niño phenomenon (cf. [12,14]). The formulation of
the solution employs a Lagrangian viewpoint, describing the evolution in time of an individual fluid parti-
cle [1]. Each particle path is circular and this feature is indicative of a flow with vorticity since in irrotational
travelling waves such a situation cannot occur, according to the considerations made in [6,7,11,19,25]. The
Lagrangian positions of the fluid (x, y, z) are given in terms of the labelling variables (q, r, s), and time t by

x = q − 1
k
ek[r−f(s)] sin [k(q − ct)] ,

y = s,

z = r + 1
k
ek[r−f(s)] cos [k(q − ct)] ,

(2.8)

where k is the wave number, defined by k = 2π/L where L is the wavelength, and the wave phase speed is
determined by the dispersion relation

c =


Ω2 + kg − Ω
k

, (2.9)

and also

f(s) = cβ2g s
2 (2.10)
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Fig. 1. Exact solution (2.8).

determines the decay of fluid particle oscillations in the meridional direction. The labelling variables take
the values (q, r, s) ∈ R × (−∞, r0) × R, where r0 ≤ 0 is fixed. For every fixed s, the system (2.8) describes
the flow beneath a surface wave propagating eastwards (in the positive x-direction) at constant speed c
determined by (2.9). At fixed latitudes (that is, for s fixed) the free surface z = η(x, y, t) is obtained by
setting r = r0(s) in the third equation in (2.8), where r0(s) < r0 is the unique solution to

e2k[r0(s)−f(s)]

2k − r0(s) = e
2kr0

2k − r0.

A plot of the free-surface for the wave solution (2.8) is given in Fig. 1.
In [2] the author focuses on proving, by explicit computation, that the exact solution (2.8) is compatible

with the governing equations (2.3)–(2.7). Our aim in this work is to prove that it is dynamically possible to
have a global motion of the fluid domain where, at fixed latitudes, the particles move in circular paths with
depth-dependent radius. Indeed, we prove in our main result Proposition 3.3 that the fluid motion defined
by (2.8) is dynamically possible, that is, at any instant t, the label map is a global diffeomorphism from the
labelling variables, {(q, r, s) : q ∈ R, r ≤ r0 and s ∈ R}, to the fluid domain beneath the free surface given by

(q, s) →

q − 1
k
er0(s)−f(s) sin [k(q − ct)] , s, r0(s) + 1

k
er0(s)−f(s) cos [k(q − ct)]


. (2.11)

For a fixed latitude s, the surface wave profile (2.11) is a reverse trochoid if r0(s) < 0 and a reverse cycloid
with a cusp at the wave crest if r0(s) = 0 and s = 0. We define below what is a trochoid and a cycloid curve.

Fixed s, and given k > 0 and r0(s) ≤ 0, the curve z = hs(x) given parametrically by

ξ →

ξ

k
− e

r0(s)−f(s)

k
sin (ξ) , 1

k
− e

r0(s)−f(s)

k
cos (ξ)


(2.12)

is a trochoid if r0(s) − f(s) < 0 and a cycloid if r0(s) − f(s) = 0. It represents the curve traced by a
fixed point at a distance e

r0(s)−f(s)

k < 1
k from the centre of a circle of radius 1

k rolling along a straight line
without slipping (see Fig. 2). Therefore, for a fixed latitude s, the free surface of the fluid has the equation
z = r0(s) + 1

k − hs(x − ct) which represents a reverse trochoid propagating from the left to the right with
velocity c. Since hs is periodic with minimal period 2π/k then the surface is a periodic wave with period 2π/k.
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Fig. 2. Trochoid and cycloid curves.

3. Main results

To prove that the motion (2.8) is dynamically possible, it is sufficient to analyse (2.8) for the time t = 0,
when it takes the form 

x = q − e
k[r−f(s)]

k
sin (kq) ,

y = s

z = r + e
k[r−f(s)]

k
cos (kq) .

(3.1)

The case of a general time t in (2.8) is recovered making first the change of variables (q, r, s) → (q+ ct, r, s),
performing (3.1), and finally shifting the horizontal variable x by ct. Therefore we can focus on (3.1), and
we further note that as q varies by 2π/k, the z value reoccurs and x is shifted linearly by 2π/k. Hence, it
suffices to analyse (3.1) on the domain

D =


(q, r, s) : q ∈

0, 2π
k


, r ≤ r0 and s ∈ R


.

In the following result we first prove that the map (3.1) is an injective local diffeomorphism.

Lemma 3.1. For every fixed t ≥ 0, if r0 < 0 then the map (3.1) is a local diffeomorphism from D =
(q, r, s) : q ∈


0, 2πk


, r ≤ r0 and s ∈ R


into its image, being also globally injective. In the limiting case

r0 = 0, the map is merely continuous at the cusps (representing the equatorial wave crests).

Proof. We remark first that r − f(s) ≤ r0 − f(s) ≤ r0 ≤ 0, as we see from the definition of r0 and (2.10).
The differential of (3.1) at a point (q, r, s) is given by1− ek(r−f(s)) cos(kq) f ′(s)ek(r−f(s)) sin(kq) −ek(r−f(s)) sin(kq)

0 1 0
−ek(r−f(s)) sin(kq) f ′(s)ek(r−f(s)) cos(kq) 1 + ek(r−f(s)) cos(kq)

 (3.2)

with determinant 1 − e2k(r−f(s)). As an aside, we note that the time independence of this expression im-
plies that the fluid is incompressible and so (2.3) holds, cf. [2]. It follows that if r0 < 0 the Jacobian of
(3.1) is non-zero (strictly positive) everywhere, whereas in the case r0 = 0 the Jacobian is zero precisely
at the Equator (s = 0), where the break-down in regularity corresponds to the appearance of cusps at the
wave-crest as discussed above. Therefore, aside from the situation when r0 = s = 0, the mapping (3.1) is
differentiable, continuous with non-zero derivative, and hence we can apply the Inverse Function Theorem
to infer that (3.1) is a smooth local diffeomorphism onto its image.
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Let us prove now that (3.1) is injective. Let (qi, ri, si) ∈ D for i = 1, 2, and let

x(qi, ri, si), y(qi, ri, si),

z(qi, ri, si)


be the corresponding fluid particles given by (3.1). First of all, if
x(q1, r1, s1), y(q1, r1, s1), z(q1, r1, s1)


=

x(q2, r2, s2), y(q2, r2, s2), z(q2, r2, s2)


then s1 = s2. Thus, we can fix s and then focus on checking injectivity with respect to x and z in (3.1).
Letting ξ = q + ir, then the values of (x, z) in (3.1) correspond to the map

ξ → ξ + ie
−kf(s)

k
eikξ.

To prove injectivity, we consider F (ξ) = ξ+h(ξ), where ξ = (q, r) and h(ξ) = i e
−kf(s)

k eikξ. Let ξ1 ̸= ξ2, then
applying the Mean Value Theorem we derive

|F (ξ1)− F (ξ2)| ≥ |ξ1 − ξ2| − |h(ξ1)− h(ξ2)|
≥ |ξ1 − ξ2| − max

s∈[0,1]
∥Dhsξ+(1−s)ξ2∥ |ξ1 − ξ2| . (3.3)

Computing Dh in terms of (q, r), yields

Dh(q,r) = ek(r−f(s))

− cos(kq) − sin(kq)
− sin(kq) cos(kq)


(3.4)

then ∥Dh(q,r)∥ = e2k(r−f(s)). From (3.3), and considering that ξi = (qi, ri) for i = 1, 2, we obtain that

|F (ξ1)− F (ξ2)| ≥ |ξ1 − ξ2| − e2k(max{r1,r2}−f(s)) |ξ1 − ξ2|
=

1− e2k(r̃−f(s))


|ξ1 − ξ2| ,

where r̃ = max{r1, r2}. Therefore, if r̃ − f(s) < 0, F is injective, and we have proved that (3.1) is in-
jective. In the limiting case the above analysis covers all parameters ranges, except for r0 = s = 0, but
the latter are distinguished by being the global maxima of the range, so that injectivity holds again. More
specifically, for r0 = s = 0, if


x(q1, 0, 0), z(q1, 0, 0)


=

x(q2, 0, 0), z(q2, 0, 0)


, then cos(kq1) = cos(kq2) and

k(q1 − q2) = sin(kq1)− sin(kq2) =
 kq2
kq1

cos(q)dq. Hence q1 = q2, and we have proved the injectivity. �

The following result will be used to prove that (2.8) is in fact a global diffeomorphism, cf. [24,30].

Theorem 3.2 (Invariance of Domain Theorem). If U ⊂ Rn is open and F : U → Rn is a continuous
one-to-one mapping, then F : U → F (U) is a homeomorphism, and F (∂U) = ∂F (U).

We have already proved in Lemma 3.1 that the exact solution (3.1) gives us a local diffeomorphism that
is globally injective on D. The result below proves that (2.8) is a global diffeomorphism for all t ≥ 0, that is,
(2.8) is dynamically possible.

Proposition 3.3. For every fixed t ≥ 0, if r0 ≤ 0 the map (2.8) is a global diffeomorphism from V =
{(q, r, s) : q ∈ R, r < r0 and s ∈ R} into the fluid domain beneath the free surface z = η(x, y, t). Moreover,
if r0 < 0 the free surface z = η(x, y, t) has a smooth profile, and in the limiting case r0 = 0 the free surface
is piecewise smooth with upward cusps at s = 0.

Proof. From Lemma 3.1, we know that the map (3.1) is an injective local diffeomorphism from D =
(q, r, s) : q ∈


0, 2πk


, r ≤ r0 and s ∈ R


into its image. To prove that the local diffeomorphism is in

fact a global diffeomorphism we just have to prove that it is a homeomorphism. Indeed, since the
hypotheses in the Invariance of Domain Theorem 3.2 are satisfied, then the map (3.1) is a homeomorphism.
Although it is guaranteed by the Invariance Domain Theorem 3.2, we can see directly that the map
(3.1) sends ∂D into the boundaries of the image of D. The vertical semiplanes {(0, r, s) : r ≤ r0
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and s ∈ R} and {(2π/k, r, s) : r ≤ r0 and s ∈ R} are transformed by (3.1) in the vertical surfaces
(0, y, z) : z ≤ r0(s) + ek(r0(s)−f(s))

k , y ∈ R


and


(2π/k, y, z) : z ≤ r0(s) + ek(r0(s)−f(s))

k , y ∈ R


respectively,
and the horizontal semiplane {(q, r0, s) : 0 ≤ q ≤ 2π/k and s ∈ R} becomes part of the reverse trochoid if
r0(s)− f(s) < 0, which is smooth, and it becomes part of the reverse cycloid if r0(s) = 0 and s = 0, which
is piecewise smooth with upward cusps.

We have proved that (3.1) is a global diffeomorphism map fromD into its image if r0 < 0, with singularities
occurring when r0 = 0 and s = 0. Since the full system (2.8) can be recovered from (3.1) by making the
change of variables (q, r, s) → (q+ ct, r, s), and finally shifting the horizontal variable x by ct, it follows that
(2.8) is a global diffeomorphism from V = {(q, r, s) : q ∈ R, r < r0 and s ∈ R} into the fluid domain below
the free surface. �
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